TWO-SIDED GLUINGS OF TILTED ALGEBRAS

IBRAHIM ASSEM AND FLAVIO U. COELHO

ABSTRACT. We study the class of algebras A satisfying the prop-
erty: all but at most finitely many non-isomorphic indecomposable
A-modules are such that all their predecessors have projective di-
mension at most one, or all their successors have injective dimen-
sion at most one. Such a class includes the tilted algebras [20], the
quasi-tilted algebras [19], the shod algebras [10], the weakly shod
[12], and the left and right glued algebras [1].

Let A be an artin algebra. We are interested in studying the rep-
resentation theory of A, thus in characterizing A by properties of the
category modA of finitely generated right A-modules. One method to
achieve this goal is to start from a class of algebras whose representa-
tion theory is considered to be sufficiently well-understood, and then
to generalize this class to another whose representation theory is close
enough to that of the preceding class. Thus, tilted algebras were in-
troduced in [20] as a generalization of hereditary algebras. The class
of tilted algebras is now considered to be one of the most useful for
the general theory. For instance, it is known that an indecomposable
module over an arbitrary algebra which does not lie in an oriented cycle
of non-zero non-isomorphisms, is a module over a tilted algebra [28].
It was therefore natural to consider various generalizations of this no-
tion. Thus, over the years, the following classes of algebras were defined
and investigated: the quasi-tilted (which generalize the tilted and the
canonical algebras of [28]) [19], the shod algebras (which generalize the
quasi-tilted) [10], the weakly shod algebras (which generalize the shod
and the representation-directed algebras) [11, 12] and the left and the
right glued algebras (which generalize the tilted and the representation-
finite algebras) [1]. The purpose of the present paper is to introduce a
new class of algebras which generalizes all the previous classes.

We define an artin algebra A to be a laura algebra if all but at most
finitely many non-isomorphic indecomposable A-modules are such that
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all their predecessors have projective dimension at most one, or all
their successors have injective dimension at most one. We start by
giving various examples and characterizations of laura algebras. We
then study the representation theory of laura algebras, and our main
theorem (4.6) gives a full description of the Auslander-Reiten quiver
of a laura algebra. The class of laura algebras is then characterized
in the spirit of [1] as a double gluing of tilted algebras (5.4). Since,
in general, laura algebras are representation-infinite, a measure of the
complexity of the module category is given by the nilpotency of the
infinite radical. We show that, if A is a representation-infinite laura
algebra with nilpotent infinite radical, then its nilpotency index lies
between 3 and 5, inclusively (6.3).

For further results on laura algebras, we refer the reader to [2, 3].

During the writing of this paper, we have learnt that I. Reiten and
A. Skowronski have also independently considered laura algebras, ob-
taining some of our results here [27].

1. PRELIMINARIES

1.1. Notations. Throughout this paper, our algebras are connected
artin algebras. For an algebra A, we denote by modA its category of all
finitely generated right A-modules, and by indA a full subcategory of
modA consisting of one representative from each isomorphism class of
indecomposable modules. We denote by rad(modA) the ideal in mod A
generated by all non-isomorphisms between indecomposable modules.
The infinite radical rad®(modA) of modA is the intersection of all
powers rad’(modA), with 7 > 1, of rad(modA). We also denote by
rk(Kp(A)) the rank of the Grothendieck group of A, which equals the
number of isomorphism classes of simple A-modules. If M is an A-
module, we denote by pdsM (or idsM) its projective dimension (or
injective dimension, respectively) of M. Also, we denote by gl.dimA
the global dimension of A. An algebra B is called a full subcategory of
A if there exists an idempotent e € A such that B = eAe. It is called
convez in A if whenever there exists a sequence e; = €;,€;,,- -+, €;, = €;
of primitive idempotents such that e;  Ae; # 0 for 0 <1 < ¢, and
ee; = €;, ee; = ¢;, then ee;, = ¢;,, for all [.

For an algebra A, we denote by I'(mod A) its Auslander-Reiten quiver,
and by 74= DTr, 7, '= TrD the Auslander-Reiten translations. An in-
decomposable A-module M is called right stable (or left stable, or stable)
provided 74X # 0 for each n < 0 (or n > 0, or any n, respectively).
If T is a connected component of I'(modA), we denote by ,I" (or ,T,
or ;I') the full subquiver of T generated by the left stable (or the right
stable, or the stable, respectively) indecomposables in I'. A component



TWO-SIDED GLUINGS OF TILTED ALGEBRAS 3

[ of T'(modA) is called semireqular if it does not simultaneously con-
tain a projective module and an injective module, and non-semiregular
if it does contain simultaneously a projective module and an injective
module.

For further definitions or facts needed on I'(modA), we refer the
reader to [4, 28|.

1.2. Paths. Given two modules M, N in indA, a path from M to N
of length ¢ in ind A is a sequence

(*) M:MOAMIL"'QMt_léMt:N

(t > 0), where all the M; lie in indA, and all the f; are non-zero
morphisms. We write in this case M ~» N, and we say that M is
a predecessor of N, while N is a successor of M. Observe that each
indecomposable module is a predecessor and a successor of itself. It is
sometimes necessary to assume that the f; are non-isomorphisms, in
which case we explicitly say so. The path (x) is called a path of irre-
ducible morphisms or a path in I'(modA) if each of the f; is irreducible.
A path (%) of irreducible morphisms such that M =2 N and ¢t > 0
is called a cycle in T'(modA). A path (x) of irreducible morphisms is
called sectional if TAM;, 1 2 M;_4 for each i such that 0 < ¢ < t. A
refinement of the path (*) is a path

RN

M =M, SR VLN Vi

in indA with s > ¢ together with an order-preserving function
o:{l,---,t =1} — {1,--+,s — 1} such that M; = M, for each
twith 1 <¢<t—1.

1.3.  The following result from [29, 32] will be very useful later on.

LEMMA. Let A be an artin algebra, M and N be two indecomposable
A-modules, and f be a non-zero morphism in rad¥ (M, N ). Then, for
each t > 1,

(a) There exists a path in indA

M=M,— M === M, — N
where fi1,- -+, fr are irreducible morphisms, and g, € rad (M, N ).
(b) There exists a path in indA
M N, LN T B N A N =N

where f1,- -+, f] are irreducible morphisms, and g, € rad¥ (M, Ny).
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1.4. The following proposition will be very useful in the sequel.

PROPOSITION. Let T' be a component of I'(modA) and M € T be an
indecomposable module lying in a cycle in T.

(a) If T contains projective modules, then there is a path in T (modA)
from M to a projective.

(b) If T contains injective modules, then there is a path in I (modA)
from an injective to M.

Proof. We only prove (a) since the proof of (b) is dual.

(a) Let M = My — M; — --- — M, = M be an oriented cycle in
I containing M. Suppose first that there exists an index j and an r > 0
such that 7} M; is a projective module. Without loss of generality we
may also assume that 7} M; is not projective for each I < r and each
i=0,--+,t By [15](1.4), there exists a path from M; to 7} M; and so
from M to a projective, as required.

Suppose now that each of My, ---, M, _; is left stable, that is, for each
n > 0 and each 7 = 0,---,¢ — 1, the module 7} M; is not projective.
Since I' contains projective modules and it is connected, there exists a
walk

in I'(modA) of minimal length, where P is a projective module in I' and
N lies in the 74-orbit of M. It follows from the minimality of the length
of (%) that each of Ny,---, N, is left stable. Therefore, by applying
74 if necessary, we get a path N' — --- — P, where N’ = 74 M for
some integer s. If s < 0, there clearly exists a path M ~» 74 M in I'. If
s > 0, then by [15](1.4), there exists a path M ~» 7§4M in I'. In both
cases, we get a path M ~» P, as required. O

1.5. The subcategories £, and R 4. Following [19], for an algebra
A, denote by L4 and R 4 the following subcategories of ind A:

L4={X €indA: pd,Y <1 for each predecessor Y of X}
Ra={X €indA: id,Y <1 for each successor ¥ of X}

Clearly, £, is closed under predecessors, while R, is closed under
successors. These subcategories played an important role in the study
of the quasi-tilted algebras [19, 15], the shod algebras [10] and the
weakly shod algebras [12]).

LEMMA. Let A be an artin algebra.

(a) If P is an indecomposable projective A-module, then there are at
most finitely many modules M € R 5 such that there exists a path
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M ~» P. Moreover, any such path is refinable to a path of irre-
ducible morphisms, and any such path of irreducible morphisms is
sectional.

(b) If I is an indecomposable injective A-module, then there are only
finitely many indecomposable modules N € L 4 with a path I ~» N.
Moreover, any such path is refinable to a path of irreducible mor-
phisms, and any such path of irreducible morphisms is sectional.

Proof. We only prove (a) since the proof of (b) is dual.
(a) Assume that P has infinitely many predecessors in R 4. Then, for
each s > 0, there exists a path in ind A

(%) M, LM — My IS My =P

where all M; lie in R4, and all f; are non-isomorphisms. We claim that
(+%) induces another path

(*) Nt —> Nt 1> N1 NO P

where ¢ > s, all N; lie in R4, and all g; are irreducible.
Indeed, the non-isomorphism f; factors through the right minimal al-

!

most split morphism ending with P, so that we have a path M; —

N; — P with N; indecomposable, g; irreducible and ¢| # 0 (hence
Ni belongs to R4, becauseM; does). Inductively, assume that we have
a path

M; 2 Ny 25N,y — - — N P

where i > j, all the N; are in R 4, all the g; are irreducible and g; # 0.
We have one of two cases. If ¢/ is not an isomorphism, then it factors
through the right minimal almost split morphism ending with N;, so
that we have a path

g; gi i
M; "B Ny BN, 2o — N2 P

with N;y, indecomposable, g, irreducible and g; ; # 0 (hence N
belongs to R4, because M; does). If, on the other hand, g} is an
isomorphism, then the non-isomorphism g¢;f;11: M;41 — N; factors
through the right minimal almost split morphism ending with N;, so
that we have a path

MHL&NZHMN—> — NP

with Njy; indecomposable, g;;; irreducible and g;,; # 0. Again, N;;
lies in R 4. This establishes our claim.

We now show that (x) is sectional. If this is not the case, there exists
a least j such that 74N;_; = N, and the subpath N; — N;;; —
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-+« — Ny — P is sectional. In particular, Hom4(N;_, P) # 0 by
[22, 6], and so id4N; 41 > 2, by [28](pg. 74), which contradicts the fact
that Nji; lies in R 4.

The sectionality of (%) implies in particular that the NNV, are pairwise
non-isomorphic [5, 6].

Assume now that (%) is such that ¢ > rk (Ko(A)) + 1. By [33], there
exist p,q such that 1 < p,¢,< ¢ and Homa(N,,7aN,) # 0. Since
Hom4(Ny, P) # 0, we have, as before, id474 N, > 2, and so N, ¢ R4,
a contradiction which finishes the proof. O

1.6. COROLLARY. Let A be an artin algebra.

(a) R4 consists of the modules M € indA such that, if there exists
a path from M to an indecomposable projective module, then this
path can be refined to a path of irreducible morphisms, and any
such refinement is sectional.

(b) L4 consists of the modules N € indA such that, if there exists a
path from an indecomposable injective module to N, then this path
can be refined to a path of irreducible morphsims, and any such
refinement is sectional.

Proof. We only prove (a) since the proof of (b) is dual.

(a) Assume that M € indA is a module such that, if there exists a path
from M to an indecomposable projective, then this path is refinable to
a path of irreducible morphisms, and any such refinement is sectional.
We claim that M belongs to R4. If N is a successor of M such that
idgyN > 2, there exist an indecomposable projective module P and a
non-zero morphism 7,'N — P. By hypothesis, the composed path
M ~+ N —s ¥ — 7,"N —> P is refinable to a path of irreducible
morphisms, which is sectional. The ensuing contradiction shows that
idyN < 1, and hence our claim. Since the converse follows directly
from (1.5), the proof is complete. O

2. LAURA ALGEBRAS: DEFINITIONS AND EXAMPLES

2.1. We say that a subcategory C of indA is finite if it contains only
finitely many isomorphism classes of indecomposable A-modules. We
say that C is cofinite in indA if all but at most finitely many isomor-
phism classes of indecomposable A-modules belong to C.

DEFINITION. An artin algebra A is said to be a laura algebra provided
the union £4 U R 4 is cofinite in indA.
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It follows immediately from this definition that any representation-
finite algebra is laura. We now discuss some other classes of laura
algebras.

We need to recall a few definitions. An algebra is called weakly shod
[12] if there exists a positive integer ng such that the length of any
path from an indecomposable injective module to an indecomposable
projective module is bounded by ngy. The class of weakly shod algebras
includes the class of shod algebras of [10], that is, of the algebras A
such that, for any indecomposable A-module M, we have pd,M < 1
or id4M < 1. Since any quasi-tilted algebra [19] (hence, a fortiori, any
tilted algebra [20]) is shod, the class of weakly shod algebras contains
all the preceding classes. The following reformulation of [12](2.5) shows
that all these are examples of laura algebras.

THEOREM. An artin algebra is weakly shod if and only if it is a
laura algebra such that none of the non-semiregular components of the
Auslander-Reiten quiver contains oriented cycles.

We prove in (4.8) below a stronger version of this theorem.

2.2.  The class of left and right glued algebras were introduced in [1].
We recall here the definition of right glued algebra, and refer the reader
to [1] for the dual definition of left glued algebra.

DEFINITION. Let By,---, B; be representation-infinite tilted algebras
having complete slices Xy,---,%; respectively, in their preinjective
components and no projectives in these components, B = By X -+ X B;
and C be a representation-finite algebra. An algebra A is called a right
gluing of By,---, By by C along the slices ¥, -+ ¥, or, more briefly,
to be a right glued algebra if A = C' or:

(RG1) Each of By,---, B, and C' is a full convex subcategory of A,
and any object in A belongs to one of these subcategories;

(RG2) No injective A-module is a proper predecessor of the union
Y1 U---UY,, considered as embedded in indA; and

(RG3) indB is cofinite in indA.

The next result shows that right and left glued algebras are examples
of laura algebras.

PROPOSITION. Let A be a connected algebra. Then
(a) A is right glued if and only if L4 is cofinite in indA.
(b) A is left glued if and only if Ra is cofinite in indA.
Proof. We only prove (a), since the proof of (b) is dual.
(a) Suppose first that £4 is cofinite. Then pdsM < 1 for all but at
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most finitely many isomorphism classes of indecomposable A-modules
M. By [1](3.2)(b), A is right glued.

Conversely, assume that A is right glued. Then there are tilted al-
gebras By, ---, B; with complete slices Y, - -, Y, respectively, and a
representation-finite algebra C as in the definition above. Moreover,
there are only finitely many isomorphism classes of indecomposable A-
modules which are not predecessors of ¥; U .- U X;. The result now
follows from the facts that ¥; U---UX; C L4, and L4 is closed under
predecessors. O

2.3. ExamMPLES. We now give examples of laura algebras which do
not belong to any of the above classes. Let k be a commutative field.

(a) Our first example shows that there are triangular representation-
infinite laura algebras of arbitrarily large finite global dimensions. For
any n > 4, let A = A(n) be the radical square zero algebra given by
the quiver

3 4 n—1
1 2 n n+1

By [17, 16], pdaS,y1 = n and also gl.dimA = n. Moreover, the
Auslander-Reiten quiver I'(modA) of A consists of:

(i) the postprojective component and the family of orthogonal homo-
geneous tubes corresponding to the Kronecker algebra given by the full
subcategory generated by 1 and 2;

(ii) the preinjective component and the family of orthogonal homoge-
neous tubes corresponding to the Kronecker algebra given by the full
subcategory generated by n and n + 1;

(iii) a non-semiregular component I" of the following shape:

P I, 1
NN N NN
N : :
VIONONS N, DY
57,1,1 N \/ \/ 57,1,1
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where we identify the two copies of S,,_1, along the vertical dotted lines.
Here (and in the sequel), we denote by P; (or I; or S;) the indecom-
posable projective (or injective, or simple, respectively) corresponding
to the point ¢ of the quiver. Moreover, the indecomposables M and N
are given by M = (P; & P,)/S; and N 2 P,/S,, 1.

There are no morphisms from one of the components described in (ii)
or from I' to one of the components described in (i). So, there are no
morphisms from injective modules to any of the components described
in (i). Therefore, these components are contained in £4. Also, it is eas-
ily seen that the modules in the components of (i) are predecessors of
Sy, and id4S2 > 1. Therefore, these components lie in £4\R 4. Dually,
the components described in (ii) are contained in R4\ L4. Concerning
the component T, it is not difficult to see that the modules in I" which
lie in £4 (or in R4) are the predecessors of Py (or the successors of
I,, 1, respectively). We then infer that £4 UR 4 is cofinite in indA and
so, A is laura. It follows from (2.1) and (2.2) that A is neither weakly
shod, nor left, nor right glued.

(b) We give an example of a representation-infinite laura algebra of
infinite global dimension. Let A = A(oco) be the radical square zero
algebra given by the quiver

We have pdaSs; = oo and so gl.dimA = co. Here I'(modA) contains a
unique non-semiregular component I' of the following shape

where we identify the two copies of S5, along the vertical dotted lines.
The indecomposables M and N are given by M = (P; & P,)/S; and
N = P;/S,. Tt is not hard to see that those modules in I" which lie
in £, (or in R,4) are the predecessors of S, (or the successors of Sy,
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respectively). Asin (a) above, we infer that A is a laura algebra, which
is neither weakly shod, nor left, nor right glued.

2.4.  We finish this section with the following result which character-
izes laura algebras in terms of the number of modules lying in certain
paths. A similar result holds true of weakly shod algebras [2](1.4).

THEOREM. The following statements are equivalent for an algebra A:

(a) A is laura.

(b) There are only finitely many indecomposable modules M with a
path I ~ M ~» P in indA where I is an injective and P is a
projective.

(c) There are only finitely many indecomposable modules M with a

path L~ M ~> N in indA where L ¢ L4 and N ¢ Ra.

Proof. (a) implies (b). By (1.5), there are at most finitely many in-
decomposable modules M € L4 U R4 such that there exists a path
I ~ M ~» P in indA where I is an injective and P is a projective.
Since £, U R 4 is cofinite, the result follows.

(b) implies (a). Let M € indA and suppose M ¢ L4 U R,4. Since
M ¢ L4, there exists a path L ~» M where pd4L > 2, and so a path

I — 71y —*%x—L~M

in indA where [ is an injective module. Dually, since M ¢ R4, there
exists a path

M«»N—>*—>T;1N—>P
in indA where P is a projective module. Therefore, for each indecom-
posable M ¢ L4 U R, there exists a path [ ~» M ~» P with I an

injective and P a projective. Therefore, L4 U R 4 is cofinite and A is
laura.

(b) implies (c). Let M € indA be such that there is a path L ~» M ~ N
where L ¢ L4 and N ¢ R4. As before, there exists a path

(%) I~L~ M~ N~ P

in indA where [ is an injective module and P is a projective module.
Since there are at most finitely many indecomposable modules M lying
in paths as (x), the result follows.

(c) implies (a). Suppose L4 U R, is not cofinite. So, there exists
an infinite family (M) )xea of indecomposable A-modules not lying in
L4 UR4. For each A, the trivial path M, LN M, LN M, gives a
contradiction to (c¢). The result is proven. O
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3. (QUASI-DIRECTED COMPONENTS

3.1.  The objective of this section is to show that, if A is a laura algebra
which is not quasi-tilted, then its Auslander-Reiten quiver I'(modA)
has a component with some special properties which generalize those
of the pip-bounded components of [11].

DEFINITION. Let A be an artin algebra. A component I" of I'(modA)
is called quasi-directed provided it is generalized standard and at most
finitely many modules in I' lie in oriented cycles.

REMARK. Let A be an algebra, and I' be a quasi-directed component
of I'(modA). It follows from [32](2.3) that I' has only finitely many
T 4-0rbits.

3.2. ExampLEs. (a) If A is a representation-finite algebra, then
I'(modA) is clearly quasi-directed.

(b) Let A be a quasi-tilted algebra. It follows from [8, 15] that the quasi-
directed components of I'(modA) are the postprojective, the preinjec-
tive and the connecting components (the latter occurs only in case A
is tilted).

(c) Let A be a weakly shod algebra which is not quasi-tilted. It follows
from [12] that I'(modA) has a unique pip-bounded component I', that
is, such that there exists a positive integer ny such that any path in
indA from an injective in I' to a projective in I' has length at most
ng. Moreover, I is faithful, generalized standard and has no oriented
cycles. Then, I' is quasi-directed.

(d) In each of the examples (2.3)(a) and (2.3)(b), the illustrated com-
ponent I' is quasi-directed.

(e) We now consider the case of left or right glued algebras. We recall
from [7], that, if A is an artin algebra, then a component I' of I'(mod A)
is called a m-component (or an t-component) provided:

(i) All but finitely many modules in I lie in the 74-orbit of a projec-

tive (or of an injective, respectively).

(ii) Only finitely many modules in T lie in oriented cycles.

It is shown in [1] that a left (or right) glued algebra has a faithful 7-
component (or t~component, respectively). The following lemma says
that these are quasi-directed.

LEMMA. Let A be an algebra, and T be a component of T (modA).

(a) If T is a mw-component, then T is quasi-directed.
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(b) If T is an t-component, then T is quasi-directed.

Proof. We only prove (a), since the proof of (b) is dual.

(a) It suffices to show that I" is generalized standard. However, by [7],
if M lies in I, then it has only finitely many predecessors in indA. In
particular, rad®(—, M) = 0 and so, I is generalized standard. O

REMARK. In fact, the existence of a faithful m-component character-
izes left glued algebras. Indeed, assume that A is an algebra such that
['(modA) contains a faithful 7-component I'. Then, this 7-component
is unique: let P4 be an indecomposable projective, the faithfulness of I"
implies the existence of a module M in I such that Hom 4 (P, M) # 0;
however, since [' is a m-component, M has only finitely many prede-
cessors in indA and therefore P lies in I, thus showing that I' is the
unique m-component of I'(modA) . Applying [1](2.2) and (3.2), we de-
duce that A is left glued. We have thus shown that an algebra A is left
(or right) glued if and only if I'(modA) contains a - necessarily unique
- faithful 7-component (or t-component, respectively).

3.3.  Assume that A is a weakly shod algebra. It follows from [12](1.6)
that, if there exists a path in indA from an indecomposable injective
module to an indecomposable projective module, then such a path con-
tains at most finitely many indecomposable modules, and, since it lies
in the unique pip-bounded component of I'(modA), it is refinable to
a path of irreducible morphisms and contains no morphism lying in
rad®(modA). We now show that the same statement holds true for
laura algebras.

LEMMA. Let A be a laura algebra. Any path in indA from an in-
decomposable injective module to an indecomposable projective module
contains at most finitely many modules. Moreover, such a path con-
tains no morphisms lying in rad™® (modA), and, hence, can be refined
to a path of irreducible morphisms.

Proof. Let 14, P, be respectively an indecomposable injective and an
indecomposable projective such that there exists a path I ~» P in ind A.
Such a path is of the form

I~M —M~N—N~P

where M’ lies in L4, N’ lies in R4, while M does not lie in £, and
N does not lie in R 4, and we make the conventions that, if I does not
belong to L4 (or P does not belong to R 4), then we take I = M (or
P = N, respectively). By (1.5), the subpaths I ~» M" and N’ ~» P can
be refined to sectional paths, hence have bounded length. Moreover,
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since M does not belong to £ 4, and N does not belong to R 4, then no
module on the subpath M ~» N lies in £L4UR 4. Since at most finitely
many indecomposable A-modules do not belong to L4 UR 4 (because
A is laura), this shows that the subpath M ~» N (and hence the path
I ~ P) contains at most finitely many modules.

We now claim that the subpath M ~» N factors through no morphisms
in rad*®(modA). Indeed, assume that it factors through the morphism
f € rad¥(L,L"). Then, for each t > 1, the given path can be refined
to a path in indA

M~L=Letsrn, 2. I, =1~ N

This contradicts the fact that the number of modules of any path M ~»
N is bounded. This shows our claim, and hence that no morphism in
the path I ~» P lies in rad*(modA). O

3.4. LEMMA. Let A be a laura algebra. Then any non-semiregular
component of T (modA) is quasi-directed.

Proof. Let T be a non-semiregular component of I'(modA). That I' has
only finitely many modules lying in oriented cycles follows from (1.4)
and (3.3). We now have to prove that I' is generalized standard.

We first show that [ has only finitely many 74-orbits. Assume indeed
that this is not the case. Then there exists a connected component
[ of the right stable part of ,I' of ' with infinitely many 74-orbits.
Moreover, there exists a connected component I of the left stable
part ;I of IV with infinitely many 74-orbits. Observe that I has no
oriented cycles (otherwise, it either contains a 74-periodic module and
so it is a stable tube by [18], or else it has no 74-periodic modules, and
so stability gives in either case a contradiction to the fact that I' has
at most finitely many modules lying in cycles).

Let now ¢ > 2 rk(Ky(A)) and M; be a module in ' such that the least
length of a walk from M; to a non-stable module in I' is at least 7. Let
I =Ny—N;—---—N, = M be a walk of least possible length from an
injective I in I' to a module M in the 74-orbit of M;. The minimality
of r implies that Ny,---, N, are right stable. We deduce, as in the
proof of (1.4), a path I ~» M with M in the 74-orbit of A;. Dually,
we construct a path M!" ~» P, with P a projective in I', and M}" in the
Ta-orbit of M;. Applying [15](1.5), we get a path M} ~ M!", hence a
path I ~» M/ ~» M!" ~» P. This being true for each i > 2 rk(Ky(A)),
we get a contradiction to (3.3). This shows that I' has only finitely
many 74-orbits.

We now deduce that I' is generalized standard. Let f € rad¥ (M, N)
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be a non-zero morphism, with M and N in I'. Then, for each s > 1,
there exists a path in ind A

(%) M= M, I vy L vy — o Ly g

of irreducible morphisms, and a non-zero morphism g, € rad%’ (M, N),
by (1.3). If one of the M; lies in a cycle, then, by (1.4), there is a path
from an injective to such an M;. If, on the other hand, no M; lies in a
cycle, it follows from the fact that I' has only finitely many 74-orbits
that we may assume that (x) crosses the 74-orbit of M. Therefore,
there exists an s large enough so that there exists an injective I in
I' and a path I ~ M,. We deduce a path I ~ M; Py N with
gs € rad’ (M, N). Applying the dual argument, we find a projective

Pin [ and a path [ ~ M, -5 N, ~ P with h €rad?(M,, N,), a
contradiction to (3.3). O

3.5.  PROPOSITION. Let A be a laura algebra which is not quasi-tilted.
Then T (modA) has a non-semireqular quasi-directed component.

Proof. Since A is not quasi-tilted, it follows from [19](I1.1.14) that there
exists an indecomposable projective A-module P not lying in £4. This
means that there is an indecomposable module M such that pd M > 2
which is a predecessor of P. Consequently, there exist an indecompos-
able injective A-module I and a path in indA

I — 1 yM — x — M~ P

By (3.3), this path can be refined to a path of irreducible morphisms
and therefore I and P belong to the same component I' of I'(modA),
which is thus non-semiregular. By (3.4), I is quasi-directed. O

4. LEFT AND RIGHT END ALGEBRAS

4.1.  Our objective now is to give a complete description of the Aus-
lander-Reiten quiver of a laura algebra. We show that, if the algebra
is not quasi-tilted, then it has a unique non-semiregular quasi-directed
faithful component while the other components are components of (di-
rect product of) tilted algebras which we call the left and the right end
algebras of the given laura algebra. The use of this term comes from
the fact that they generalize the left and the right end algebras of a
tilted algebra, as defined in [23].

Throughout this section, we let A be a laura algebra which is not
quasi-tilted, and we let I be a non-semiregular component of I'(mod A).
Such a component exists by (3.5).

LEMMA. Let A and T" be as above.
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(a) Assume that I is an indecomposable injective module such that
there exists a path I ~» M with M € T", then I belongs to I.

(b) Assume that P4 is an indecomposable projective module such that
there exists a path N ~ P with N € ', then P belongs to T.

Proof. We only prove (a) since the proof of (b) is dual.

(a) Suppose there exists a path I ~» M in indA, with M € T" and
I an indecomposable injective not in I'. Clearly, such a path factors
through a morphism in rad®(modA). Then, by (1.3), there exists, for
each ¢t > 0, a path in indA

(é-t) MtLMt,1—>"'—>M1L>MOZM

of irreducible morphisms, and a path I ~» M;, which factors through
a morphism in rad®(modA). Since I' has only finitely many 74-orbits,
we may assume that the paths (&) cross arbitrarily many times the
Ta-orbit of M. In particular, M is left stable. Let now M’ = N, —
Ny —---— Nz = P be a walk of least length between an indecomposable
projective module P in I" and a module M’ in the 74-orbit of M. It
follows from the minimality of s and the fact that M is left stable that
Ny, -, Ns_1 are also left stable. Applying 7, if necessary, we get a
path M" ~» P with M" in the 74-orbit of M. Replacing, if necessary,
M and M" by other modules in the same 74-orbit, we get a path from
I to P passing through a morphism in rad*(modA), a contradiction
to (3.3). O

4.2. 1In the sequel, we use the following notation: if C and D are
two classes of A-modules, then Hom4(C,D) = 0 (or Homy4(C,D) # 0)
means that there exists no non-zero morphism (or that there exists a
non-zero morphism, respectively) from a module in C to a module in
D. With this notation, we have the following lemma.

LEMMA. Let M € indA be a module not in T
(a) If Homy(M,T') # 0, then M belongs to L4\ Ra.
(b) If Homa(L', M) # 0, then M belongs to Ra \ La.
(c) Either Homa(I', M) =0, or Hom(M,T') = 0.

Proof. (a) Suppose there is a non-zero morphism f: M — N with

N € T. Clearly, f € rad®(modA) and so the left stable part of T is
infinite. By (1.3), there exists, for each ¢t > 1, a path in indA

(*) MLMthtflﬁ"'—)MlgMozN
where fy,---, f; are irreducible morphsims. Since I' is non-semiregular

and has only finitely many 74-orbits, there exists an indecomposable
projective P, a direct summand L of its radical and £y > 1 such that
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there is a path M;, ~» 74L. Since ids74L > 2, we deduce that M does
not belong to R 4. Now, assume that M does not belong to £4. Then
M has a predecessor M’ such that pd,4M' > 2. Hence, there exists an
indecomposable injective I and a path I — 7y M' — x — M' ~ M
in indA. This gives a path

I~ M -2 My, ~ 74L~> P

which factors through a morphism in rad®(modA), a contradiction to
(3.3).

(b) The proof is dual to that of (a).

(c) Tt follows directly from (a) and (b). O

4.3. Assume now that A is representation-infinite. Then the left sta-
ble part ;I or the right stable part ,I' of I' is infinite. Suppose ;I" is
infinite. Since I' has only finitely many 74-orbits, then, clearly ;I" has
only finitely many non-trivial components (that is, containing more
than one point). We choose, for each such left stable component, a
maximal subsection, and denote these by 3, - ,; 3. For each i, with
1 < i < s, we denote by A; the full subcategory of A generated by
the support of (all the A-modules lying on) ;3. We define the left end
algebra oo A of A by oA =5 Ap X -+ X As.

We define dually the right end algebra Ay of A.

Clearly, these notions generalize those introduced for tilted algebras
in [23].

LEMMA. With the above notations,

(a) For each i, «A; is a tilted algebra having ;% as a complete slice.

(b) If P,P' are indecomposable projective A-modules such that
Homa(P,P') # 0, and P' is a projective ,A;-module, then P
is also a projective o A;-module. In particular, for each i, s, A; is
a full conver subcategory of A.

Proof. (a) It follows from the definition of ,, A; that the direct sum M of
all the indecomposable A-modules lying in ;3 is a faithful ., A;-module.
Since I is generalized standard (3.4), we have Hom__ 4,(U,7,_4,V) =0
for any two indecomposable summands U and V of M. Applying
[26, 31|, we infer that ., A; is tilted, having ;¥ as a complete slice.

(b) Since M is a faithful o, A;-module, there exist m > 0 and a monomor-
phism P — M. The second statement follows. O

4.4. LEMMA. With the above notations.

(a) If P € indA is a projective module which is not an - A-module,
then P lies in I'.
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(b) If I € indA is an injective module which is not an A-module,
then I lies in I

Proof. We only prove (a) since the proof of (b) is dual.

(a) The existence of P implies that A #., A. Since A is connected,
there is a sequence of indecomposable projective modules P’ = P,
Py, ---, P, = P such that P’ is a projective o, A-module and, for each
i=1,---,t, we have either Hom4(P; 1, P;) # 0 or Hom4(P;, P, 1) # 0.
Without loss of generality, we may assume that, for ¢ > 0, P; is not
a projective A-module. In particular, it follows from (4.3)(b) that
Homy(P;, P) = 0. Therefore, Hom (P, P;) # 0. Hence, there exists
an index j such that Hom4(;2, P;) # 0 (because ;X is a complete slice
in modyA;, and P; is not an ., A-module). Applying (4.1), we infer
that P; belongs to I'. Now, if Hom(P;, P») # 0, then, again by (4.1),
P, belongs to I'. Assume that Hom 4 (P, P;) # 0. If P, does not belong
to I', then any morphism P, — P; would factor through the union
12X U---Ug X, and so P, would be an o A-module, a contradiction.
Therefore, P, lies in I'. Proceeding inductively in this fashion, we infer
that P lies in I', as required. O

4.5.  We have shown that an indecomposable projective (or injective)
A-module either lies in I or is a projective o, A-module (or an injective
Ao-module, respectively). We now show that the endomorphism alge-
bra of the projectives in ' having the property that the corresponding
injectives lie also in ' forms a full convex subcategory of A.

COROLLARY. Let P denote the direct sum of all indecomposable pro-
jective A-modules P, which lie in T' and such that the corresponding
indecomposable injective I, also lies in I'. Then C= EndP is a full
convex subcategory of A.

Proof. This follows from the fact that the class of projectives in oA is
closed under projective predecessors and, dually, the class of injectives
in A is closed under injective successors, by (4.3)(b). O

4.6. We are now ready to show the main result of this section.

THEOREM. Let A be a laura algebra which is not quasi-tilted. Then
['(modA) has a unique non-semiregular component T which is quasi-
directed and faithful.

Further, if T" is a component of T (modA) distinct from T, then T is
a semireqular component satisfying exactly one of the following condi-
tions:
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(i) I is a component of T'(modyA) such that Homa(I',T') # 0 and
lying in Lo\ Ra.

(i) I is a component of I'(modAs) such that Homu(T',T") # 0 and
lying in Ra\ La.

Proof. By (3.5), I'(modA) has a non-semiregular quasi-directed compo-
nent I'. If A = 0, then by (4.4), all the projectives lie in I'. Moreover,
rad¥(—, M) =0 for all M € . Therefore, I' is a m-component contain-
ing all the projective modules. By [1](2.2), A is a left glued algebra.
Dually, if A,, = 0, then A is a right glued algebra. In these two cases,
the required result follows from [1](3.5). We may thus assume that
A # 0 and A # 0. This means that the right and the left stable
parts of I' are infinite.

By (4.3)(a), any indecomposable projective ,, A-module can be embed-
ded in a direct sum of modules in I". Since the remaining projectives
lie in ['; we infer that T is faithful.

Let now I'" be a component of I'(modA) distinct from I', and M be
a module in I". We claim that, if M is not an ., A-module, then M
belongs to R4 \ L4 and, dually, if M is not an A,.-module, then M
belongs to L4 \ Ra. Indeed, assume that M is not an ., A-module.
Using (4.4), we infer that there exists a projective P in I' such that
Hom (P, M) # 0. By (4.2), M belongs to R4 \ £4. This establishes
our claim.

This fact entails several consequences.

(a) Every indecomposable in I is an ., A-module or an A -module.
Indeed, if M is neither an ., A-module nor an A,-module, then it
belongs to both R4 \ £4 and L4 \ R4, an absurdity.

(b) T is either a component of I'(mod,A) or a component of
['(modAs). Indeed, assume that I contains at the same time an
As-module L and an . A-module N. Since I is connected, we may
assume that there exists an irreducible morphism L — N or N — L.
Since L is an A,-module, it lies in R4 \ £4 and similarly N lies in
L4\ Ra. Since L4 is closed under predecessors and R 4 is closed under
successors, both L — N or N — L lead to contradictions.

(c) Assume I" is a component of I'(mod.,A), then it lies entirely
inside £4 \ Ra. Moreover, we have Hom4 (I, T") # 0, because any in-
decomposable in I embeds into a direct sum of modules in I'. Further,
[ is semiregular without injectives (since any injective in I would
embed into a direct sum of modules in T'). Dually, if ' is a com-
ponent of I'(modAy), then it lies entirely inside R4 \ L4, satisfies
Hom 4 (I", ") # 0, and is semiregular without projective modules.
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Since the above arguments show at the same time that [" is the unique
non-semiregular component, of I'(modA), the proof is complete. O

REMARK. We have shown in the course of the proof that, if A is a
laura algebra which is not quasi-tilted, then A is left (or right) glued if
and only if A =0 (or Ay = 0, respectively).

4.7. COROLLARY. Let A be a laura algebra which is not quasi-tilted.
Then

(a) indwA U indAy is cofinite in indA.

(b) LANR 4 is finite and lies in the unique non-semireqular component

of T'(modA).

Proof. (a) Allindecomposable A-modules which are neither ., A-modules
nor As-modules lie in T, by the proof of (4.6) and, further, at most
finitely many indecomposable modules in I" which are neither . A-
modules nor A,-modules.

(b) By (4.6), the indecomposables not in I" lie in £4\R 4 or in R4\ La.
Finally, at most finitely many indecomposables in I' lie neither in
LA\RA nor in RA\EA. O

4.8. COROLLARY. Let A be a laura algebra which is not quasi-tilted.
Then A is weakly shod if and only if the unique non-semiregular com-
ponent of T (modA) contains no oriented cycles.

4.9. The Auslander-Reiten quiver of a laura algebra. We are
now able to describe the shapes of the components of the Auslander-
Reiten quiver of a laura algebra A which is not quasi-tilted. By (4.6),
['(modA) has a unique non-semiregular quasi-directed and faithful com-
ponent I'. Also, if I is a component of I'(modA) distinct from ', then
it is a component of a tilted algebra (which is itself a connected factor
of wA or Ay). Using the well-known description of the Auslander-
Reiten quiver of tilted algebras [25], we deduce the possible shapes of
the components of I'(modA).

(a) A unique and faithful non-semiregular and quasi-directed compo-
nent.

(b) Postprojective component(s) (those of I'(mod.,A)).

(c) Preinjective component(s) (those of I'(modAy)).

(d) Stable tubes.

(e) Components of type ZA .

(f) Components obtained from tubes or from components of type
ZA ., by finitely many ray inserctions of by finitely many coray
insertions.
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Moreover, the components of I'(mod.,A) (or I'(modA,)) which are
fully embedded in T'(modA) are semiregular without injective (or pro-
jective, respectively) modules and are contained in £4 \ R4 (or in
R\ La, respectively).

Thus, I'(modA) has a shape similar to that of the Auslander-Reiten
quiver of a tilted algebra which is not concealed [23](4.1) (we stress,
however, that, in general, the non-semiregular component I" may con-
tain cycles and, even, if it does not, is generally not a connecting com-
ponent).

4.10. The above results yield an explicit description of the classes £ 4
and R4. Assume that A is a laura algebra which is not quasi-tilted,
and let [ denote the faithful non-semiregular quasi-directed component
of I'(modA). Then, I' contains at the same time an injective and a
projective. Following [21], we say that a primitive idempotent e € A is
a strong sink if the corresponding indecomposable injective I, is such
that there is no non-trivial path from another indecomposable injective
to I.. We consider the full connected subquiver ¥_ of I" consisting of
the modules M such that there exist a strong sink e and a path I, ~ M,
and, moreover, any such path is sectional. Then, by definition, > is a
maximal subsection of ¥, called the left extremal subsection of T'. We
construct, dually, the right extremal subsection ¥ of I.

COROLLARY. Let A be a weakly shod algebra which is not quasi-tilted.

(a) L consists of all the predecessors of ._, and its support is a tilted
algebra, having A as a full conver subcategory.

(b) Ra consists of all the successors of ¥, and its support is a tilted
algebra, having As as a full convexr subcategory.

Proof. We only prove (a) since the proof of (b) is dual.

(a) The first statement follows easily from (1.5), the above description
and the definition of strong sink. Let B denote the support algebra
of ¥_. The direct sum M of the indecomposable A-modules lying in
Y _ is a faithful B-module. Since I' is generalized standard, we have
Hom (U, 75V') = 0 for any two indecomposable summands U and V' of
M. Applying [26, 31], we get that B is tilted, having ¥ as a complete
slice. The last statement follows from (4.3). O

5. TWO SIDED GLUINGS OF TILTED ALGEBRAS

5.1.  The results of Section 4 show that a laura algebra which is not
quasi-tilted can be seen as a two-sided gluing of tilted algebras. The
aim of this section is to formalize this idea and to characterize the laura
algebras in this way.
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DEFINITION. Let B, -, B be representation-infinite tilted algebras
having complete slices {3, - - - | ¥ in components not containing projec-
tive modules, let By,---, B, be representation-infinite tilted algebras
having complete slices ,---,%, in components not containing in-
jective modules, and let C' be a representation-finite algebra. Write
wB =1 Bx---xyBand By, = B; x ---x B,.. We say that an alge-
bra A is a two sided gluing of 1B,--- ,s B,By,---, B, by C along the
slices 12, -+ 5,5, -+, 3, (or simply a double glued algebra) provided
A=C or:

(a) Eachof 1B, -+ s B, By,---, B, and C is a full convex subcategory
of A and any primitive idempotent in A belongs to one of these
subcategories;

(b) ind,BU ind By, is cofinite in ind A.

(c) Each ;3 is fully embedded in I'(modA) and no injective A-module
is a proper predecessor of ;X U --- U, X, considered as embedded
in indA and, dually, each ¥; is fully embedded in I'(modA) and
no projective A-module is a proper successor of ¥; U --- U X,
considered as embedded in indA.

5.2. EXAMPLES. (a) Assume B = 0, then A is left glued. Con-
versely, any left glued algebra is of this form. Dually, an algebra A is
right glued if and only if it is double glued with B, = 0.

(b) Examples (2.3) (a) and (b) show double glued algebras. In the
example (2.3)(a), B and By, are two copies of the Kronecker algebra,
while C' is the radical square zero algebra given by the following quiver

In the example (2.3)(b), B and B, are again two copies of the Kro-
necker algebra, while C' is the radical square zero algebra given by the

quiver

5.3. REMARKS. (a) Let A be a double glued algebra. Since C' is an
arbitrary representation-finite algebra, a component of I'(modA) con-
taining modules not in ind B U ind B,, may contain periodic modules
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and oriented cycles. It is actually a faithful non-semiregular quasi-
directed component. As we see below, it is unique.

(b) Let A be a double glued algebra. It is not difficult to see that there
are no non-zero morphisms from a projective in By, to one in C' X o, B,
nor from one in C to one in o B. In particular, A may be written in
matrix form

B 0 0
A2 | M; C 0
M, M; By

where My, My, M3 are appropriate bimodules. Consequently, A may
be obtained from C' by a sequence of one-point extensions and co-
extensions.

(b) It is easy to see that A is representation-equivalent to o, B X By,
so that A is tame if and only if so is each of {B,--- B, By,---, B,.

5.4. The main theorem of this section is the following.

THEOREM. Let A be an algebra which is not quasi-tilted. Then A is
laura if and only if A is double glued.

Proof. Suppose that A is a laura algebra which is not quasi-tilted, and
let C' be as in (4.5). Then it follows easily from (4.3), (4.5) and (4.7)
that A is a two-sided gluing of . A, A, by C along the slices considered
in (4.3).

Conversely, assume that A is a double glued algebra, and assume the
notations in the definition (5.1) above. By hypothesis, each of the slices
;2 (with 1 <@ <s)and ¥; (with 1 < j <r)is fully emdedded in ind A.
Let ooX =1 XU---Ug X and Yo = X1 U---UX,. All predecessors of X
lie in ind,,B. Moreover, each indecomposable module in ind., B which
precedes X lies in L4, because no injective A-module is a proper
predecessor of . Y. Dually, all successors of ¥, lie in ind B, and each
indecomposable module in ind B, which is a successor of ¥, liesin R 4.
Therefore, £L4 UR 4 is contained in ind,, AU indA,,. Consequently, A
is a laura algebra. O

6. THE INFINITE RADICAL OF A LAURA ALGEBRA

6.1. The study of the Auslander-Reiten quiver I'(mod A) of an algebra
A gives important informations on the category modA. However, the
morphisms in rad®(modA) are not represented there, and so it is im-
portant to study also this ideal to understand the complexity of modA.
Of particular interest is the study of when rad>(modA) is nilpotent.
This has been considered, for instance, in [24, 13, 14, 30, 9]. In this
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section, we use the description of laura algebras given in Section 5 to
study these algebras such that rad®(modA) is nilpotent.

Let A be a representation-infinite algebra. If there exists a positive
integer 14 such that (rad*(modA) )7 = 0 but (rad*®(modA) )7a~! £
0, then we say that rad*(modA) is nilpotent of index ns. Otherwise,
we just write ny = oo. It follows from [13] that A is representation-
finite if and only if (rad®(modA) )? = 0 and so, if A is representation-
infinite, then n4 > 3. Also, by [30], one can find algebras A with finite
but arbitrarily large nilpotency index.

Our purpose here is to show that if A is a representation-infinite
laura algebra, then n4 = 3,4,5 or co. A similar result has been proven
for tilted algebras in [9].

6.2. The following proposition characterizes the infinite radical of the
module category of a quasi-tilted algebra.

PROPOSITION. [34](Corollary B) Let A be a quasi-tilted algebra. Then
the following conditions are equivalent:

(a) A is domestic.

(b) A is tame and no full convex subcategory of A is a tubular algebra.
(c) rad® (modA) is nilpotent.

(d) (rad> ( modA))> = 0.

6.3. We now generalize the above result to laura algebras as follows.

THEOREM. Let A be a representation-infinite laura algebra. The fol-
lowing conditions are equivalent:

(a) A is domestic.

(b) A is tame and no full convex subcategory of A is a tubular algebra.

(c) rad® (modA) is nilpotent.
Furthermore, if this is the case, and na s the nilpotency index of
rad>® (modA), then, 3 < na < 5. Moreover, n4 = 3 if one of the
following holds:

(i) A is tilted and one of A or Ay is zero.
(i) A is not quasi-tilted and one of A or Ay is zero.

Proof. If A is quasi-tilted, then the equivalence of (a), (b) and (c) fol-
lows from (6.2). Moreover, if A is tilted such that one of A or Ay is
zero, then 4 = 3 by [9].

We may then assume that A is not quasi-tilted.

We first assume that (c) holds. By (3.5) and the results of section
4, there exists a faithful non-semiregular quasi-directed component I'.
Moreover, at least one of . A or A, is non-zero. Suppose that A is
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non-zero. By construction, A is a product of tilted algebras whose
connecting components contains no projective modules. On the other
hand, since rad®(modA) is nilpotent, we get from [24] that A is
tame. We then infer from [23] that A is a product of tilted algebras
of Euclidean type. Dually, if A, is non-zero, then it is the product
of tilted algebras of Euclidean type. Since both . A and A, are do-
mestic, so is A. This shows (a). Since, clearly, (a) implies (b), we
just have to show that (b) implies (c). Note that, by [2](3.4), if A is
a representation-infinite laura algebra which is not quasi-tilted, then it
contains no full subcategory which is tubular, therefore assuming (b)
reduces to assuming that A is tame, and this implies that both A
and A, are tame, thus each of them is a product of tilted algebras of
Euclidean type. We then consider 3 cases: (1) oA = 0 and A, # 0;
(2) A #0and Ay, =05 (3) 50A #0 and Ay # 0.

Case 1: wcA =0and A, #0.

In this case, A is a left glued algebra and T" is a w-component of
['(modA). Moreover, I' contains injective modules since, otherwise,
by [1](2.8), it would be a connecting component. By construction,
(rad®( mod;Ay))* = 0, for each i = 1,--- , s (in the notation of (4.3)).
Observe also that ind(As) is cofinite in indA, and that all the inde-
composable A-modules which are not A,-modules belong to I'. If now
(rad>®(modA) )* # 0, then there is a path in indA

VAL VAL VAL VA

with the f; in rad®®(modA) and such that f3ff; # 0. Observe first that
M, does not belong to I': indeed, by [1], we have that rad¥(—, N) =0
for each N € I'. Hence, M, is an indecomposable ;A -module for
some i. Since f3f; is a non-zero morphism in (rad*(modA) )? then,
by the description of the Auslander-Reiten quiver of a tilted algebra of
Euclidean type, we infer that M3 is a regular ; A,-module and M, is
either a postprojective ;A,-module or a module in indA\ indA,. In
both cases, M, lies in " and hence rad¥(—, Ms) = 0. This, however,
contradicts our assumption on f;. Therefore, in this case, rad®(modA)
is nilpotent of index 74 = 3.

Case 2: wA # 0 and Ay, = 0.
This case is dual to the first one, and we leave to the reader the details
of the proof.

Case 3: oA # 0 and A, # 0.
By [14](2.1), we have

(rad™(mod,,A;))* = 0 = (rad™(mod;A.))?
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for all 2,7, 1 < i < t, 1 < j < s. Moreover, it is easily seen that
Hom (M, N) =0, in the following cases:

(i) M € indooA; \T and N € indA; \ T, with ¢ # j.
(i) M € ind;Ax \T and N € ind; A, \ ', with ¢ # j.
(ii) M € ind;As and N € indA; \ T, for all ¢ and j.
(i) M € ind;Ax \T and N € indwA;, for all i and j.
(ili) M €T and N € indoA; \ T, for all j.

(iii") M € ind;A, \T and N € T, for all i.

Suppose now that (rad>®(modA))® # 0. Then there exists a path in
indA

My L, 2o Lo I v B

with f; € rad®(modA), fori =1,---,5, and f5---f; # 0. Using the
above observations, it is not difficult to see that if M; € indoA4; \ T,
for some 4, then j < 2 and, dually, if M; € ind; A \ T, for some 4, then
j > 5. Therefore, M3 and M, both belong to I', and rad® (M3, M) # 0,
which is a contradiction, because I' is generalized standard. Therefore,
rad®(modA) is nilpotent and n4 < 5. This completes the proof. [

6.4. ExaMpPLE. While it is easy to find examples of laura algebras
with n4 = 3 or n4 = 5, we now give an example of an algebra having
na = 4. Let A be given by the quiver

Lo oy 0
152 3 € 4

bound by ay = 0, v0 = 0, and ve = 0. Then it is easily seen that
A is a strict shod algebra. Moreover, any postprojective ., A-module
M (or preinjective o, A-module N) has support the full convex sub-
category of A generated by {1,2} (or {3,4}, respectively). Therefore
Hom (M, N) = 0. This clearly implies (rad>®(modA))* = 0. On the
other hand, (rad®(modA))? # 0, as is seen from the morphisms

P3—>53—>U—>[3

where U is the uniserial module of length two with socle S3 and top
Sy.
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