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ABSTRACT. Let a finite dimensional algebra R be a split extension of an algebra A by a
nilpotent bimodule Q. We give necessary and sufficient conditions for a (partial) tilting module
T4 to be such that T ® 4 Rg is a (partial) tilting module. If this is not the case, but Q4 is
generated by the tilting module T4, then there exists a quotient R of R such that T ® Rﬁz is
a tilting module.

INTRODUCTION

Let A be a finite dimensional algebra over a commutative field k. By module is meant
throughout a finitely generated right A-module. Following [5], we call a module T4 a tilting
module if it satisfies the following conditions : If only 1) and 2) are satisfied, then T is said
to be a partial tilting module. In this note, we are interested in the problem of extending a
(partial) tilting module. More precisely, let A and R be two finite dimensional k-algebras
such that there exists a split surjective algebra morphism R — A whose kernel @) is contained
in the radical of R: we then say that R is a split extension of A by the nilpotent bimodule
@, or simply a split-by-nilpotent extension. This notion is easily seen to be equivalent to
that of f-extension, see [7]. It is rather general: indeed, let R be a bound quiver algebra
and @ be generated by a family of arrows, then there exists a subalgebra A of R such that
R is the split extension of A by Q.

Let thus R be a split extension of A by the nilpotent bimodule ). The module categories
over A and R are related by the classical “extension of scalars” functor — ®4 Rp of [3]. We
ask under which conditions the image of a tilting A-module under this functor is a tilting R-
module. This problem was first solved by Tachikawa and Wakamatsu when R is the trivial
extension of A by the dual of its trace ideal [12], then by Miyachi when R is any trivial
extension algebra [9]. It was then solved in [8] for #-extensions. Here, we present a new
approach which we believe is more conceptual and allows an easier calculation of examples.
Our first result is thus the following theorem.

Theorem A. Let R be a split extension of A by the nilpotent bimodule @), and T4 be an
A-module. Then T ®4 R is a (partial) tilting R-module if and only if T4 is a (partial) tilting
A-module, Hom A (T ® 4 Q,74T) =0 and Hom 4 (D(4Q),74aT) = 0.

A (partial) tilting module satisfying the equivalent conditions of the theorem is called
extendable. Clearly, T is extendable if and only if ExtY (T, T ®4 Q) = 0, Ext' (T, D(4Q)) =
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0. If T is actually a tilting module, this is equivalent to saying that T ®4 @ and D(4Q),
respectively, are generated by T'.

We also show that, it T' is an extendable tilting module, the torsion pair induced by
T ®4 R in modR is entirely determined by that induced by 7' in modA. Moreover, the
endomorphism algebra of T'®4 R is itself a split extension of B = End T4 by the nilpotent
bimodule Hom4 (T, T ® 4 Q). We next consider the case where T4 is not extendable but
Q4 is generated by T4 (this is the case, for instance, when 4@ 4 is the minimal injective
congenerator bimodule 4 D A4). We prove that then T is extendable over a quotient algebra
of R, thus generalising [12] (1.6).

Theorem B. Let R be the split extension of A by the nilpotent bimodule ), and Ts be
a tilting module which generates Q4. Let R be the split extension of A by the nilpotent
bimodule () = Q/Q" where Q' = {q€ Q | Tq=0}. Then T ®4 R is a tilting R-module.

Clearly, the results dual to the ones above, for cotilting modules, hold. We leave to the
reader their straightforward formulations.

The authors were informed that some results of this note were generalised in [6] to the
case of tilting modules of large projective dimension, in [10] to the case of tilting complexes,
and in [4] to the case of *-modules.

We use freely and without further reference properties of the module categories and
Auslander-Reiten sequences as can be found, for instance, in [2,11]. For an algebra C|,
we denote by 7¢ the Auslander-Reiten translation DTre in mod C. For tilting theory,
we refer the reader to [1]. The paper is organised as follows: in section (1), we survey
those properties of split extensions that will be needed, our two theorems will be proved
respectively in sections (2) and (3), while section (4) is devoted to examples.

1. EXTENSION AND RESTRICTION OF SCALARS

1.1. Let A and R be two finite dimensional algebras over a commutative field &, such that
R is a split extension of A by the nilpotent bimodule @, that is, we have a split short exact
sequence of abelian groups

0-Q>R5 A0

where ¢ : ¢ — (0, q) is the inclusion of () as a two-sided ideal of R = A® (@), and the projection
(algebra) morphism 7 : (a,q) — a has as section the inclusion morphism o : @ — (a,0) Thus,
the k-vector space R = A & @) has the multiplication

(a1,q1)(a2, ¢2) = (a1a2,a1¢2 + qra2 + 1 g2)

(where a1,a2 € A and ¢1,¢2 € Q) .
Associated with 7 and o are the tensor product functors

—®rAs :modR —-modA and — ®4Rgr:modA — modR
(see [3]). We clearly have an isomorphism of functors
(—®a Rr) ®r A4 = lmoa a.
For our purposes, another expression of the functor — ® g A4 will be useful. Let Xg be
an R-module. The R-module X/X(@ is annihilated by @ and hence has a canonical A-
module structure. This yields a functor mod R — mod A which is additive and right exact

(because it is a cokernel functor). Hence, by Watts’ theorem, it is functorially isomorphic
to — Qr (R/RQ)a = — ®g Aa.
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Lemma. For any R-module X, the canonical R-linear epimorphism px : X — X/XQ is
minimal.

Proof. By Nakayama’s lemma, the canonical epimorphism f : X — X/X rad R is minimal.
Since ) C rad R, we have a canonical morphism ¢g : X/X@Q — X/Xrad R such that f =
gopx. In particular, g is an epimorphism. Now let A : W — X be such that px o h is an
epimorphism. Then so is go px o h = f o h. Since f is minimal, h is an epimorphism. [

1.2. Lemma. Let M be an A-module. There exists a bijective correspondence between
the isomorphism classes of indecomposable projective summands of M in mod A, and the
isomorphism classes of indecomposable summands of My ® 4 Rg in mod R, given by N —
N ®4 Rp.

Proof. We first show that if V4 is indecomposable in mod A, then N ® 4 Ry is indecompos-
able in mod R. Indeed, assume that N ®4 Rp =2 X; ® X5. Then N @2 N @4 Rp ®p Ax =
(X1 ®r A) ® (X2 ®r A). If N4 is indecomposable, then X; ® g A = 0 or Xo ®g A = 0,
say the former. Since px, : X1 — X1/X;Q is minimal, and X;/X1Q = X; ® g A =0, then
X1 =0. Thus N ® 4 R is indecomposable.

To complete the proof it suffices to observe that Ny = N if and only if Ny ® 4 R =
Ny®4 Rgr. O

Remark. Applying the lemma to A4 and A4 ® 4 Rr = Rpg, there exists a bijective corre-
spondence between the isomorphism classes of indecomposable projective A-modules and
the isomorphism classes of indecomposable R-modules, given by P +— P ®4 Rp.

1.3. Lemma. If f : Py — My is a projective cover in mod A, then f® 1p : P ®4 Rr —
M ®4 Rpg is a projective cover in mod R.

Proof. Considering P and M as R-modules, we have a commutative diagram of R-modules
and R-linear epimorphisms

1
PosRIZE MouR

PP®R\L lpM@R
P 4f> M

Since P ®4 R is projective, we must only show that the epimorphism f ® 1g is minimal.
Assume that h : X — P ®4 R is such that (f ® 1g) o h is an epimorphism. Then so is
fopperoh =puero(f ® 1g)oh. Since f and ppgr are minimal, h is an epimorphism. O

Corollary. If P, EiN Py LS Vg 0 ¢s a projective presentation, then so is

1 1
ProaR—22"  po R—" M@ R— .

Further, if the first is minimal, so is the second.

Proof. The first statement is obvious. Assume that the first presentation is minimal. By
the lemma, fo ® 1 is a projective cover. Also, since f; : P — f1(P1) is a projective cover,
thensois fi ® 1g : P ®a R = fi(P1) ®4 R. Since fi(P1) ®4 Rr = (fi ® 1g)(PL ®4 R) =
Ker(fo ® 1), we are done. [

2. EXTENSION OF (PARTIAL) TILTING MODULES

2.1. Lemma. For an A-module M, we have

TR (M ®4 R) = Homy (gRa,7aM) .
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Proof. (see [9]). Let P, - Py - M — 0 be a minimal projective presentation of M 4. By
(1.3) and a well-known functorial isomorphism, we have a commutative diagram with exact
TOWS

Hompg(Py ®4 R, R) —— Hompg(P, ®4 R,R) —— Trg(M ®4 R) ——=0

: | |

R®4 Homa(Py,A) —= R®4 Homy(P;,A) ——= R4 Tra M ——0
where f and g are isomorphisms. So, the induced morphism A is also an isomorphism, and

TR(M @4 R)=2D(R®4 Tra M)
= Homy (rRa,Homy (Try M, k)) =2 Homa (gRa,7aAM) .

O

2.2. Lemma. For an A-module M, we have pd (M ®4 Rgr) <1 if and only if pd M4 <1
and Hom 4 (D (4Q),7aM) = 0.

Proof. We have pd (M ®4 Rg) < 1if and only if Homg (D R,7r (M ®4 R)) = 0 and sim-
ilarly pd M4 < 1 if and only if Homa (D A,74M) = 0 (see, for instance, (2.4) (1)). The
statement follows from the sequence of vector space isomorphisms:

Homp (DR, 7r (M ®4 R)) = Hompg (D R,Hom (rRa,TaM)) =

Homa (DR ®Rr Ra,7aM) = Homyg (D (4A) ®D (4Q), 74 M) =

Hom 4 (DA,TAM) @ Hom 4 (D (AQ) ,TAM) .

O

2.3 Proof of Theorem (A). By (1.2), the number of non-isomorphic indecomposable sum-
mands of T4 equals the number of non-isomorphic indecomposable summands of T'® 4 Rp.
Also, the Grothendieck groups Ky(A) of A and Ko(R) of R have equal ranks. Consequently,
it suffices to prove the statement for partial tilting modules. Let T" be an A-module, we
have vector space isomorphisms:

Homp(T ®4 R, 7TR(T ®4 R)) = Hompg(T ®4 R,Homu(grRa,74T)) =
Homa(T ®4 R®p Ra,7aT) 2 Homa(T ® 4 Ra,74T) =
Hom (T @4 (A® Q)a,7AT) 2 Hom (T, 74T) ® Homa (T ®4 Q,74T).
Let now T4 be a partial tilting A-module. Since pdT4 < 1, we have Hom4 (T, 74T) =

D Ext! (T, T) = 0. Further, if Hom4(T ®4 Q,74T) = 0, we have Homg(T ®4 R, Tr(T ®4
R)) = 0 and consequently

Exth(T @4 R, T ®4 R) 2 DHomg(T ®4 T,7r(T ®4 R)) = 0.

Finally, Hom4(D @, 74T) = 0 implies, by (2.2), that pd(T ® 4 R)r < 1. This shows the
sufficiency.

Conversely, let T ®4 R be a partial tilting R-module. By (2.2) we have pd T4 < 1 and
HOmA(D Q, TAT) =0. AISO,

Homp(T ® 4 R, TR(T ®4 R)) 2 DExth(T ®4 R,T @4 R) =0

yields Homg(T ®4 Q,74T) = 0 and Hom (T, 74T) = 0. Since the latter equality implies
Ext!(T,T) = 0, this completes the proof. [
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2.4. We say that a (partial) tilting A-module T is extendable whenever it satisfies the two
conditions Hom 4 (T®4Q, 74T) = 0 and Hom 4 (D Q, 74T) = 0 or, equivalently, ExtY (T, T® 4
Q) = 0 and Ext!,(T,D Q) = 0). As a first application, we determine the torsion pair asso-
ciated to an extended tilting module. Recall that a tilting module T determines a torsion
pair, also called torsion theory, (7(T'), F(T)) in mod A, where 7 (T') (or F(T)) is the full
subcategory of those modules M such that Ext', (T, M) = 0 (or such that Hom (T, M) = 0,
respectively), see [1], [5]). If T4 is extendable it turns out that the torsion pair (7 (T'), F(T))
in mod A entirely determines the torsion pair (7(T ®4 R), F(T ®4 R)) in mod R.

Corollary. For an R-module X, denote by X s the underlying A-module. Let T4 be an
extendable tilting A-module, then
Xr € T(T®aR) if and only if X4 € T(T)

and
Xr € F(T®4R) if and only if X4 € F(T).

Proof. (see [9]). This follows from the isomorphisms

HOInR(X, TR(T XA R)) = HOHIR(X, HOInA(RRA,TAT)) = HOIIIA(X R RA,TAT),
HOHIR(T ®A R,X) = HOHIA(T, HOHIR(ARR,X))

and the observation that — ® g R4 and Hompg (4 Rg, —) are two expressions for the forgetful
functor mod R - mod A. 0O

2.5. Proposition. If T4 is an extendable tilting module, then E = End(T ®4 R) is the
split extension of B = End T by the nilpotent bimodule gWp = Hom (8T a,8Ta @4 Qa).

Proof. The vector space isomorphisms

E = Homy (T,Hompr(4aRr, T ®4 RR)) = Homs (T, T ®4 Ry) =
Hom (T, T) ® Homa (T, T ®4 Q).

yield a split short exact sequence

0—>W—>E£>B—>0

where ¢ : E — B is an algebra morphism, and the ideal structure of W is induced from
its canonical B — B-bimodule structure. There remains to show that W is nilpotent. Now,
the multiplication in W is induced from that in E, and, for any w € W, the image of w is
contained in T ®4 . Since @ is nilpotent, there exists s > 0 such that, for any sequence
wy, Wa, ... ws of elements of W, we have Im(wyws ... ws) CT ®4 Q° = 0. Thus W* = 0.
O

Remark. This proof shows that the degree of nilpotency of W does not exceed that of Q.
In particular, if R is the trivial extension of A by @, then FE is the trivial extension of B by
w.

3. EXTENSION TO A QUOTIENT OF THE SPLIT EXTENSION

3.1. Let T4 be a tilting module which generates Q4. The module T'® 4 R is generally not
faithful (see example 4.2). This leads to consider its annihilator.
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Lemma. Anng(T ®4 R) ={(0,9) € A® Q| Tq=0}.
Proof. Let (2,> y; ®¢;) ETR®4AR=2T & (T®4 Q) and (a,q9) € R=2 A® Q. Then

(ﬂf,zyi@)qz') (a,q) = (fa,zyi®Qia+$Q+Zyi®qz'Q)-

If a = 0 and T'q = 0, this product equals ) y; ® ¢iq. Since @ is generated by T', then
Tq = 0 also implies g;g = 0. Consequently, (0,q) € Anng(T ®4 R). Conversely, if (a,q) €
Anng(T ®4 R), then a = 0 (since T is faithful). Letting all ¢; equal zero, we get xq = 0 for
any ¢ € R. Therefore T¢q=0. O

This shows that Anng(T ®4 R) can be identified with the subbimodule Q' = {q € @ |
Tq =0} of . We then set
R=(A®Q)/Amr(T®s1R) = A3 Q
where Q = Q/Q" with the induced multiplication. Since @ is nilpotent in R, so is Q in R.
Hence R is a split extension of A by the nilpotent bimodule Q.

3.2 Proof of theorem (B). Since Q 4 is generated by T, sois Q = Q/Q’. Hence Hom 4 (Q, 74T) =
D Exti,(T, @) = 0 and consequently

Hom 4 (T XA Q,TAT) =~ Homy (T, Hom 4 (Q,TAT)) =0

Next we claim that Hom 4 (D (AQ) ,TAT) = 0, or equivalently that D Q is generated by T'.

By definition, T'® A~R is a faithful R-module. Hence there exists an R-linear epimorphism
(T ®a4 R)N(”) — D R, which induces an A-linear epimorphism [(T'® A) & (T’ ® QN —
DAPDQ. Since T ®4 @ is generated by T', we have a sequence of A-linear epimorphisms

T a1 5T g (TeQ)™ - DA®DQ - DQ.
Hence D Q is generated by T. Applying theorem (A), we see that T4 is extendable to a
tilting R-module. O
Remark. TIf follows from the proof and (2.5) that £ = End(T ®4 ]53) is the split extension
of B=EndT by the nilpotent bimodule W5 = Hom4 (T, T ®4 Q).
4. EXAMPLES

In the following examples, algebras are given by their bound quivers, indecomposables
by their Loewy series, and the idempotent corresponding to a point ¢ in the quiver of the
algebra is denoted by e;.

4.1. Let A be a hereditary algebra given by the quiver
B a

1 2 3
O<——0=<—0

and R be given by the quiver

bound by fnafn = 0. Then R is the split extension of A by the nilpotent bimodule @
generated by 7. A k-basis of @ is the set
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{n, na, naB, naBn, naBna, naBnaf, Bn, fna, fnaf, afn, apne, afnaf}

so that
3\ @ 3\ @
Qa=|2 and D(4Q) = | 2 @ (3)®.
1 1
3
Consider in mod A the tilting module T = (1) & (3) ® | 2 |. Then B = EndT is given by
1

the quiver

1 I 2 A
O<——O0<—

ow

bound by Au = 0. First, D(4Q) is clearly generated by T'. To compute T'® 4 (), we consider
the projective resolution of T4

3

0= esAd e Ad (esA)? s B)aM)a 2] =0
1

Applying — ®4 Q, we get
2Q = eQ ® (:Q)® = T©4Q — 0.

()

3 3 3\ @ 3
Now, es@Q = | 2], e1Q = | 2 |,e3Q = | 2 ,sothat T®4 Q = | 2 which is
1 1 1 1

generated by T'. Thus T is extendable.
To compute T'®4 R, we apply — ®4 R to each of the projective resolutions for the
3
summands of T, obtaining ey R = (1) ®4 R,e3R = | 2 | ®4 R and an exact sequence
1

esR — e3R— (3) ®4 R — 0.

Therefore, T ®4 R = ® (3).

N W N W
b
- W N W

Then E = End(T ® 4 R) is given by the quiver

1.* 2 A 3
o o [¢]
B

bound by Ay = 0,vAvA = 0. Thus FE is the split extension of B by the bimodule generated
by v.
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4.2. Let A,T4 and B be as in (4.1), and R be given by the quiver

1B

<% 3
[0 [¢]

3\0[\3

bound by afn = 0. Then R is the split extension of A by the nilpotent bimodule @) generated
by n. A k-basis of @ is the set {n,na,nag, sn, fna, BnaB} so that

5\ @

5\ @)
QA: 2 and D(AQ):<1> .
1

Now, clearly, Hom4(D(4@Q),74T) # 0 so that T is not extendable. On the other hand, Q4
is generated by T'. A k-basis for Q' = {q € Q|T'q = 0} is easily found to be {fn, fna, Bnaf}
(that is, @' is the subbimodule generated by (7). Therefore a k-basis of Q Q/Q' is the
set {n,na,naB}. The split extension R of A by the nilpotent bimodule Q is given by the
same quiver as above bound by fn = 0. To compute T'® 4 R we apply —®4 R to each of the

3
projective resolutions for the summands of T4, obtaining e; R = (1)@ 4 R,esR = | 2 | ®4 R
1
and an exact sequence R } }
eaR —»e3R— (3) @4 R—0
(3 (3 ~ ~
Therefore T ®4 R = 5 | ® 2 | ®(3) and E = End(T ®4 R) is given by the quiver
1 1
w A
N Pt
bound by Ap = 0,vA =0.
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