COMMUNICATIONS IN ALGEBRA, 10(19), 2121-2139 (1982)

TILTED ALGEBRAS OF TYPE An

Ibrahim Assem

Department of Mathematics and Statistics Carleton University, Ottawa, Ontario KlS 5B6, Canada

Let A be a finite-dimensional algebra (associative, with an identity) over a perfect field k. All our A-modules will be finite-dimensional right A-modules. Following [9], we shall call a module $\mathbf{T}_{\mathbf{A}}$ a tilting module if the following properties are satisfied:

- (T1) pd $T_A \leq 1$,
- (T2) $Ext_{A}^{1}(T,T) = 0$,
- (T3) there is a short exact sequence $0\to A_{\hbox{$A$}}\to T_{\hbox{$A$}}'\to T_{\hbox{$A$}}''\to 0 \ \ \mbox{with} \ \ T',\ T'' \ \ \mbox{direct sums of summands of} \ \ T_{\hbox{A}} \ .$
- If A is hereditary, the endomorphism ring B = End T_A of a tilting module is called a tilted algebra [9]. The aim of this paper is to characterize those tilted algebras which are of type A_n (that is, which are endomorphism rings of tilting modules over tensor algebras $T(\Sigma)$, where the valued graph of the species Σ is A_n). In fact, we shall prove:

Theorem: A connected basic finite-dimensional algebra over a perfect field k is tilted of type A_n if and only if it is given by a k-species $\Sigma = (F_i, i^M_j)_{i,j \in I}$ with relation ideal $R = G_i$ i^R_j such that:

- (α_1) The graph G of E is a tree.
- (α_2) For each vertex i of G , F_i = E , where E is a skew field, finite-dimensional over k , and, for each arrow i + j, i^M_j = E^E_E .
 - (α_3) All relations are zero-relations of length two.
 - (a_4) Each vertex has at most four neighbours.
- (α_5) If a vertex ℓ of G has four neighbours then we have a full connected subgraph of G of the form:

 (α_6) If a vertex ℓ of G has three neighbours, then we have a full connected subgraph of G of the form:

 (α_7) There is no full connected subgraph of the form G_t :

$$i_1 \leftarrow i_2 \leftarrow i_3 - i_4 - i_5 - \cdots i_{t-2} \leftarrow i_{t-1} \leftarrow i_t$$

where $t \ge 4$, and there is no other relation between i_2 and i_{t-1} .

(Here, dotted lines denote zero-relations, and non-oriented edges can be oriented arbitrarily).

The particular case of a lower-triangular matrix ring was already considered in [10]. In [2], the generalized tilted algebras of type A_n (now called iterated tilted) were defined and classified, namely, these are the algebras satisfying the above conditions (α_1) through (α_6) . The necessity part of the present result was already proved by the author in [1].

1. Preliminaries:

(1.1) <u>Definition</u>: Let $\Sigma = (F_i, M_j)_{i,j \in I}$ be a k-species (cf. [6] or [7]), and $T(\Sigma)$ its tensor algebra. An ideal R of $T(\Sigma)$ is called a *relation ideal* whenever it is contained in rad² $T(\Sigma)$. The factor algebra $A = T(\Sigma)/R$ is then said to be given by the *bounden k-species* (Σ, R) .

For a perfect field k, every finite-dimensional basic k-algebra is given by a bounden species [1].

Given a pair (i,j) ϵ I \times I , the relation ideal R defines an F_i - F_j subbimodule i^Rj = F_i RF $_j$ of i^Mj = F_i T(Σ) F_j . Each i^Rj is called a relation on Σ . Clearly, R = $\bigoplus_{i,j} i^Rj$. A relation i^Rj is of length ℓ if $i^Rj \subseteq rad^{\ell}T(\Sigma)$ but $i^Rj \not \subseteq rad^{\ell}T(\Sigma)$

 $rad^{\ell+1}T(\Sigma)$. It is called a zero-relation if $R_{ij} = iM_{ij}$.

A representation of Σ (cf. [6]) is said to be bound by R if the associated $T(\Sigma)$ -module is annihilated by the ideal R. Thus, we have an equivalence between the category $\operatorname{mod}(T(\Sigma)/R)$ of (right,finite-dimensional) $T(\Sigma)/R$ -modules, and the category of all representations of Σ bound by R.

Let G_{Σ} be the valued graph of the species Σ [6], and $A = T(\Sigma)/R$. We shall use small letters i,j,.... to denote the vertices. The simple A-module corresponding to the vertex i of G_{Σ} will be denoted by S(i), and its projective cover (respectively, its injective hull) by P(i) (respectively, I(i)). We shall use freely properties of the Auslander-Reiten sequences of mod A and of the Auslander-Reiten graph Γ_{A} of A such as can be found in [3] or [8].

(1.2) We now summarize briefly the results of [2]:

Definition: A finite-dimensional k-algebra B is iterated
tilted if:

- 1) there exists a sequence of algebras A_0 , A_1 , $A_m = B$ with A_0 hereditary,
- 2) there exists a sequence of tilting modules $T_{A_{\hat{1}}}^{(i)}$ ($0 \le i \le m-1$) such that End $T_{A_{\hat{1}}}^{(i)} = A_{i+1}$ and, for every indecomposable A_{i+1} -module M, we have either M O $T^{(i)} = 0$, or $T_{A_{\hat{1}+1}}^{A_{\hat{1}+1}}(M, T^{(i)}) = 0$.

B is said to be of type Δ , for a given valued graph Δ ,

if ${\tt A}_0$ is the tensor algebra of a species whose valued graph is ${\tt \Delta}.$ We have the following theorem:

Theorem: Let k be a perfect field. A connected basic finite-dimensional k-algebra is iterated tilted of type A_n if and only if it is given by a k-species $\Sigma = (F_i, i^Mj)_{i,j \in I}$ with relation ideal $R = \bigoplus_{i,j} i^Rj$ such that:

- (α_1) The graph G of Σ is a tree.
- (α_2) For each vertex i of G , F_i = E , where E is a skew field, finite dimensional over k , and, for each arrow i \rightarrow j, $i^M_j = {}_E^E_E \ .$
 - $(\alpha_{_{\boldsymbol{2}}})$ All relations are zero-relations of length two.
 - $(\alpha_{\underline{A}})$ Each vertex has at most four neighbours.

 $(4\alpha_5) l. \ \ \text{If a vertex} \quad l \quad \text{has four neighbours, then} \quad G \quad \text{has a}$ full connected subgraph of the form

with the zero-relations $i_2^{M} \ell \stackrel{\otimes}{\circ} \ell^{M} i_1$ and $i_4^{M} \ell \stackrel{\otimes}{\circ} \ell^{M} i_3$.

 $(\alpha_{\vec{b}})$ If a vertex $\,\ell\,$ has three neighbours, then $\,G\,$ has a full connected subgraph of one of the forms:

$$i_1 \leftarrow i_3$$
 or $i_1 \leftarrow i_3$

with the zero-relation $i_3^{M_2} \otimes i_1^{M_1}$.

Let A be an iterated tilted algebra of type \mathbf{A}_n , then:

- (1.2.1) The Auslander-Reiten graph Γ_A of A has no oriented cycles, thus every indecomposable A-module can be written in the form $\tau^{-r}P$, with $r \geq 0$ and P_A indecomposable projective (or τ^SI , with $s \geq 0$ and I_A indecomposable injective), where τ denotes the Auslander-Reiten translation τ = DTr. Also, modules are uniquely determined by their dimension-vectors [9].
- (1.2.2) There are at most two arrows in Γ_{A} with a prescribed source or target. If M, N are two indecomposable A-modules, then:

$$\left| \text{Irr } (M,N)_{\text{End }M} \right| \leq 1 \text{ ,}$$
 and
$$\left| \sum_{\text{End }N} \text{Irr}(M,N) \right| \leq 1 \text{ ,}$$

where Irr(M,N) is the bimodule of irreducible maps [11].

Also, if $P_{\mathbf{A}}$ is projective, with indecomposable radical R, then there is at most one arrow of $\Gamma_{\mathbf{A}}$ of target [R]. Dually, if $\mathbf{I}_{\mathbf{A}}$ is injective with I/soc I indecomposable, then there is at most one arrow of $\Gamma_{\mathbf{A}}$ of source [I/soc I].

- (1.2.3) Given an indecomposable A-module $\,M\,$ and a vertex i of G , we have $\,\dim\,M_{\stackrel{.}{i}} \le 1\,.\,$ Thus, any two paths with the same extremities in $\,\Gamma_{\stackrel{.}{A}}\,$ define the same map.
- (1.2.4) Recall that a path $x_0 \to x_1 \to \dots \to x_m$ in the Auslander-Reiten graph Γ_A is sectional provided $x_{i-1} \not\subset \tau x_{i+1}$

for $1 \le i \le m-1$. Also, a connected subgraph S of Γ_A is a subsection if each path in S is sectional [4]. Then, for every indecomposable projective P_A , the set of those indecomposables M such that Hom_A $(M,P) \ne 0$ is the set of vertices lying on the two maximal sectional paths of Γ_A ending at [P].

- (1.3) Let now B be a finite-dimensional k-algebra. A complete slice S [9] is a set of indecomposable B-modules with the following properties:
- (S1) There is no chain of irreducible maps $S_0 \to S_1 \to \dots \to S_m \to S_0$ with all the $S_i \in S$.
- (S2) If $X_O \to X_1 \to \dots \to X_m$ is a chain of irreducible maps between indecomposable modules, and X_O , $X_m \in S$, then $X_i \in S$ for all $0 \le i \le m$.
- (S3) Given any indecomposable module X, S contains precisely one module from the orbit $\{\tau^Z \mid z \in Z\}$.

Then we have the following:

Theorem [9]: A finite-dimensional k-algebra B of finite representation type is tilted if and only if its Auslander-Reiten graph $\Gamma_{\rm B}$ contains a complete slice.

2. Proof of the theorem:

Observe that, by Theorem (1.2), the wanted result can be restated as:

Theorem: An iterated tilted algebra of type A is a tilted

algebra if and only if its bounden graph contains no full connected subgraph of the form G_{μ} :

with the indicated zero-relations, where $t \ge 4$, all edges between 3 and t-2 can be oriented arbitrarily, and there are no other zero-relations between 2 and t-1.

(2.1) <u>Proof of the necessity</u>: Let A be an iterated tilted algebra of type \mathbf{A}_n , and \mathbf{G}_A be its graph. We shall suppose that \mathbf{G}_A contains a \mathbf{G}_t as above as a full connected subgraph and show that this implies that $\mathbf{\Gamma}_A$ contains no complete slice.

Let us first introduce some notation. For a vertex i of G_A , we define the set of successors of i, Σ_i , to be the set of those vertices j of G_A such that there exists a non-zero path of non-negative length from i to j. Dually, the set Π_i of predecessors of i will be the set of those vertices h of G_A such that there exists a non-zero path of non-negative length from h to i.

Thus, P(i) is the representation defined by the fact that its support Supp P(i) (that is, the set of those vertices j of G such that P(i) $j \neq 0$) is equal to Σ_i . Similarly, I(i) is given by Supp I(i) = Π_i .

Let $j \leftarrow i$ be a given arrow. Then $G_{\stackrel{}{A}}$ has the form:

we define $P_j(i)$ by $Supp P_j(i) = \Sigma_i \cap \Sigma_j$. Clearly, $P_j(i)$ is an indecomposable submodule of rad P(i). Dually, one can define $I^i(j)$ by $Supp I^i(j) = \Pi_i \cap \Pi_j$, this is an indecomposable image of I(j)/soc I(j).

(i) [I(1)] lies on the left of the sectional path P from[P(t-1)] to [P(t)]:

We start by constructing a sequence of non-zero maps defining an oriented path from [I(1)] to [P(t)]. Recall that, by the argument above, we have an epimorphism $I(1) \rightarrow I^2(1)$ and a monomorphism $P_{t-1}(t) \rightarrow P(t)$. We shall now construct a representation M such that:

- a) M is indecomposable,
- b) I²(1) is a subrepresentation of M,
- c) $P_{t-1}(t)$ is an epimorphic image of M .

Indeed, let us put $M_j = E$ (where E is the skew field defined in (α_2)) if and only if j satisfies one of the following three conditions:

- 1) $2 \le j \le t-1$,
- 2) $j \in \Pi_1 \cap \Pi_2$,
- 3) $j \in \Sigma_t \cap \Sigma_{t-1}$.

This, together with the obvious maps between the coordinate vector spaces, defines clearly the wanted representation M . We thus have an oriented path in $\Gamma_{\bf a}$:

$$[\mathtt{I}(\mathtt{l})] + [\mathtt{I}^2(\mathtt{l})] + [\mathtt{M}] + [\mathtt{P}_{\mathsf{t}-\mathsf{l}}(\mathsf{t})] + [\mathtt{P}(\mathsf{t})] \;.$$

Let us remark that $M_{t-1} \neq 0$, and $I(1)_{t-1} = 0$ imply that $M \not\supset I(1)$. Finally, $\operatorname{Hom}_A(P(t-1), P(t)) \neq 0$ shows that there is a unique oriented path P in Γ_A from [P(t-1)] to [P(t)] which moreover is sectional. Consequently, the fact that the map $P(t-1) \rightarrow P(t)$ factors through M implies that [M] lies on P and [I(1)] on its left.

(ii) $\Gamma_{\mathbf{A}}$ contains no complete slice:

If S is a complete slice in Γ_A , it cannot contain modules lying on the left of P. For, let $[N] \in S$ lie on the left of P, we thus have an oriented path in $\Gamma_A : [N] \to \ldots \to [L]$ with $[L] \in P$. We may assume that [L] is chosen such that, for every $[L^i]$ between [N] and [L] on this path, we have $[L^i] \notin P$.

Since S is a complete slice, it must contain a module of the form $\tau^{-m}P(t)$ (with $m\geq 0$). We thus have a chain of irreducible maps:

$$N + \dots + L_{-1} + L + L_1 + \dots + P(t) + \dots + \tau^{-m} P(t)$$
.

Since [N] and $[\tau^{-m}P(t)]$ belong to S, all the intermediate modules are on S. In particular, we necessarily have m=0. Now $[L] \in P$ and $[P(t)] \in P$, therefore $[L_1] \in P$. However, we also have $[L_{-1}] \notin P$, hence, by the property (1.2.2) of Γ_A , $L_{-1} = \tau L_1$, and this contradicts the fact that S is a complete slice.

(2.2) The following lemma is needed for the proof of the sufficiency:

Lemma: Let A' be an iterated tilted algebra of type A_n given by a graph G_A' of one of the forms:

$$(II) \ \, \underbrace{i_0} \cdots \cdots \underbrace{i_1} \cdots \cdots \underbrace{i_2} \cdots \cdots \underbrace{i_r} \cdots \underbrace{i_{r+1}} \cdots \underbrace{i_{r+1}} \cdots \underbrace{i_{r+1}} \cdots \underbrace{i_r} \cdots$$

(where dotted lines represent zero-relations) such that:

- (i) there is no zero-relation between i and i j+1 $(0 \leq j \leq r) \ ,$
- (ii) non-oriented arrows, and the last zero-relation can be oriented arbitrarily,
- (iii) no two consecutive zero-relations are oriented in the same direction.

Then, either $\operatorname{Hom}_{\mathbf{A}^{1}}(\mathtt{I(i_{0})}, \mathtt{P(i_{r+1})}) \neq 0$, or there is no oriented path in $\Gamma_{\mathbf{A}^{1}}$ from $[\mathtt{I(i_{0})}]$ to $[\mathtt{P(i_{r+1})}]$.

<u>Proof:</u> We can write $G_A' = \bigcup_{j=0}^r G_j$, where G_j is the full connected subgraph of G_A' given by $i_j = \cdots = i_{j+1}$. Thus, the graph of G_j is A_n for an appropriate n, and its tensor algebra A_j is hereditary. The existence of the zero-relations implies that an indecomposable (bound) representation of G_A' (thus an indecomposable A'-module) is in fact an indecomposable representation of G_j for some j (thus an A_j -module). Conversely, any indecomposable A_j -module is indecomposable as an A'-module.

We claim that Γ_{A} , has the following shape:

where $\Gamma_j = \Gamma_{A_j}$, and $\Gamma_j \cap \Gamma_{j+1} = \{ [s(i_{j+1})] \}$.

We shall only prove (I), since the proof of (II) is similar. Let L be an indecomposable A_0 -module, and M an indecomposable A_1 -module. If $\operatorname{Hom}_{A_1}(L,M) \neq 0$, then $\operatorname{Supp} L \cap \operatorname{Supp} M \neq \emptyset$. Now $\operatorname{Supp} L \subseteq G_0$, $\operatorname{Supp} M \subseteq G_1$ and $\operatorname{G}_0 \cap G_1 = \{i_1\}$, hence $\operatorname{Supp} L \cap \operatorname{Supp} M = \{i_1\}$. Observe that $\operatorname{S}(i_1)$ is injective as an A_0 -module, and projective as an A_1 -module. Therefore $\operatorname{Li}_1 \neq 0$ and $\operatorname{Mi}_1 \neq 0$ imply that $\operatorname{Hom}_{A_1}(L, \operatorname{S}(i_1)) \neq 0$ and $\operatorname{Hom}_{A_1}(\operatorname{S}(i_1), M) \neq 0$. So any map from L to M must factor through $\operatorname{S}(i_1)$. Also, $\operatorname{Hom}_{A_1}(\bar{M}, \bar{L}) = 0$ for any indecomposable A_0 -module \bar{L} , and A_1 -module \bar{M} . For, again, the existence of such a map implies that $\operatorname{Supp} \bar{L} \cap \operatorname{Supp} \bar{M} = \{i_1\}$, hence $\operatorname{Hom}_{A_1}(\bar{L}, \operatorname{S}(i_1)) \neq 0$ and $\operatorname{Hom}_{A_1}(\operatorname{S}(i_1), \bar{M}) \neq 0$.

Therefore, we would have an oriented cycle $[\tilde{L}] \rightarrow [S(i_1)] \rightarrow [\tilde{M}] \rightarrow [\tilde{L}]$ in $\Gamma_{\underline{a}}$, and this is impossible.

Next, let M be an indecomposable A_1 -module, and N an indecomposable A_2 -module. If $\operatorname{Hom}_{A'}(M,N) \neq 0$, then $\operatorname{Supp} M \cap \operatorname{Supp} N = \{i_2\}$, hence $\operatorname{Hom}_{A'}(N,S(i_2)) \neq 0$, and $\operatorname{Hom}_{A'}(S(i_2),M) \neq 0$. We thus have an oriented cycle in $\Gamma_{A'} \colon [M] + [N] + [S(i_2)] + [M]$, a contradiction which shows that $\operatorname{Hom}_{A'}(M,N) = 0$. By the same argument, a non-zero map from an indecomposable A_2 -module \overline{N} to an indecomposable A_1 -module \overline{M} must factor through $S(i_2)$.

An obvious induction completes the proof of our claim.

Let us now suppose that there is an oriented path in $\Gamma_{A'}$ from $[I(i_0)]$ to $[P(i_{r+1})]$. It is clear that $r \geq 1$, for, if not, A' is hereditary and there is no such path. Also, G_A' cannot be of type (II), for, $I(i_0)$ is an A_0 -module, and the previous argument shows that there is no oriented path from an A_0 -module to an A_j -module, for $j \geq 1$. Similarly, if G_A' is of type (I) and $r \geq 2$, the previous argument shows that an oriented path from $[I(i_0)]$ to $[P(i_{r+1})]$ must factor through an A_1 -module and an A_2 -module, and this is impossible.

Therefore there only remains to consider the case of an iterated tilted algebra given by a graph of the form:

$$i_0$$
 \cdots i_1 \cdots i_2

Let us define the indecomposable A'-modules L and M to be the

unique ones such that Supp L = G_{0} , Supp M = G_{1} . Now $L_{i_{0}} \neq 0$, $L_{i_{1}} \neq 0$ imply that we have non-zero maps $L + I(i_{0})$, $L + S(i_{1})$ and the second map is clearly surjective. Similarly, we have non-zero maps $P(i_{2}) + M$ and $S(i_{1}) + M$, and the second map is injective. Thus Hom_{A} , $(L,M) \neq 0$. On the other hand, the oriented path from $[I(i_{0})]$ to $[P(i_{2})]$ must factor through $[S(i_{1})]$, and we have thus a composite path in Γ_{A} , given by:

$$[L] \rightarrow [I(i_0)] \rightarrow \dots \rightarrow [S(i_1)] \rightarrow \dots \rightarrow [P(i_2)] \rightarrow [M]$$

and $\operatorname{Hom}_{A^1}(\mathtt{L},\mathtt{M}) \neq 0$ implies that the composition of the above maps is non-zero. In particular $\operatorname{Hom}_{A^1}(\mathtt{I}(\mathtt{i}_0), \mathtt{P}(\mathtt{i}_2)) \neq 0$, and this completes the proof of the lemma.

(2.3) Proof of the sufficiency: We shall construct a complete slice in Γ_A . We already know that Γ_A has no oriented cycles. Let $s_1,\ldots s_t$ be the sources of G_A , and $P(s_1),\ldots P(s_t)$ the corresponding indecomposable projective A-modules.

Let $\mathcal Q$ be the full connected subgraph of Γ_A consisting of the vertices [M] such that there is an oriented path [M] $\rightarrow \ldots \rightarrow [P(s_1)]$ for some source s_i , and S be the right border of $\mathcal Q$: that is to say, S is the full connected subgraph of $\mathcal Q$ consisting of those vertices [M] such that, whenever there is an oriented path from [M] to $[P(s_1)]$, for some i, then such a path is sectional. Thus S is, by definition, a subsection in Γ_A :

We claim that S is a complete slice in $\Gamma_{\mathbf{A}}$. Let us observe that, by construction, any vertex [M] of $\Gamma_{\mathbf{A}}$ which is not on S is either on the left or on the right of S (in other words, if $[M] \not\in S$, then either there exists an oriented path from [M] to S or from S to [M]).

(i) No indecomposable projective A-module lies on the right of ${\sf S}$:

Let P(i) be an indecomposable projective. If i is a source, it is clear by the construction of S that [P(i)] does not lie on the right of S. If i is not a source, there exists a source s_i and an oriented path in G_A (unique, since G_A is a tree) from s_i to i which gives an oriented path from [P(i)] to $[P(s_i)]$. Thus, [P(i)] does not lie on the right of S.

 $\hbox{ \begin{tabular}{ll} (ii) No indecomposable injective A-module lies on the left } \\ \hbox{ of $S:$ } \\ \end{tabular}$

Let us assume that the indecomposable injective [I(i)] lies on the left of S. Thus there is an oriented path from [I(i)] to $[P(s_i)]$ for some source s_i . G_A is a tree, hence there is a unique (non-oriented) path joining the vertices i and s_i and

defining a full connected subgraph G_A' of G_A which is of one of the types (I) or (II) of Lemma (2.2). Let A' be the algebra given by the graph G_A' , and let I'(i) and P'(j) denote respectively the indecomposable injective A'-module corresponding to the vertex i, and the indecomposable projective A'-module corresponding to the vertex \mathbf{s}_i . It is known [12] that there is a full, faithful and exact embedding ϕ : mod A' \rightarrow mod A which is the unique such that $\phi \phi = 1$, where ϕ is the restriction functor. Thus ϕ I'(i) ϕ , and hence there exists a non-zero map ϕ I'(i) ϕ I'(i) . Similarly, we have a non-zero map ϕ I'(i) ϕ I'(i) implies the existence of an oriented path from [I(i)] to ϕ I'(i) implies the existence of an oriented path in ϕ I'(i) ϕ I

$$\phi \text{I'(i)} \rightarrow \text{I(i)} \rightarrow \text{M}_{1} \rightarrow \text{M}_{2} \rightarrow \cdots \rightarrow \text{M}_{m} \rightarrow \text{P(s}_{\underline{i}}) \rightarrow \phi \text{P'(s}_{\underline{i}}) \ .$$

We claim that, by applying the restriction functor ρ , this gives an oriented path in $\Gamma_{\!\!\!A}$, from [I'(i)] to [P'(s_i)]. Indeed, since $\rho\phi=1$, this is the case of Supp M_j \cap G_A' \neq φ for all $1\leq j\leq m$.

Let us denote by $\mbox{\bf G}_{\bf a}$ the branch of the tree $\mbox{\bf G}_{\bf A}$ attached .t the vertex $\mbox{\bf a}$ of $\mbox{\bf G}_{\bf A}'$:

Suppose that Supp M $_{j}$ n $G_{A}^{^{t}}$ = φ for some $~1 \leq j \leq m$, then, since Supp I(i) \cap $\textbf{G}_{A}^{'}\neq \phi$ and Supp $\textbf{P(s}_{i})$ \cap $\textbf{G}_{A}^{'}\neq \phi$, there exist $t_1 < t_2$ such that all M_t ($t_1 \le t < t_2$) have their supports not intersecting $G_A^{'}$, while both M_{t_1-1} and M_{t_2} have their supports intersecting $G_{A}^{'}$. Now, since $M_{t_{1}}^{'}$ is indecomposable, and its support does not intersect $G_{A}^{'}$, there exists a vertex a in $\mbox{ $G_A^{'}$}$ such that Supp $\mbox{M}_{\mbox{t}_{\mbox{\scriptsize η}}} \buildrel \subseteq \mbox{ G}$. For the same reason $\mbox{ M}_{\mbox{\scriptsize t}}$ $(t_1 \le t < t_2)$ has its support contained in the same G_a . However, $\operatorname{Hom}_{A}(M_{t_1-1}, M_{t_1}) \neq 0$ and $\operatorname{Hom}_{A}(M_{t_2-1}, M_{t_2}) \neq 0$ imply that Therefore a ϵ Supp $M_{t_1}-1$ and a ϵ Supp M_{t_2} , which imply the existence of non-zero maps $f_1: P(a) \rightarrow M_{t_1-1}$ and $f_2: P(a) \rightarrow M_{t_1-1}$ M_{t_a} . But all paths in Γ_A give rise to the same map, hence f_2 is equal to the composition of f_1 with the map $f_1 = f_1 + f_2$... $+ M_{t_2-1} + M_{t_2}$. However, $a \not\in \text{Supp M}_{t_1}$ so $\text{Hom}_{A}(P(a), M_{t_1}) = 0$ and the composition of f_1 with the map $M_{t_1}-1 \xrightarrow{+} M_{t_1}$ is zero. This contradicts the fact that $f_2 \neq 0$. We have thus proved the existence of an oriented path in $\Gamma_{A'}$ from [I'(i)] to [P'(s_i)].

By Lemma (2.2), this implies that $\operatorname{Hom}_{A^1}(I^!(i), P^!(s_i)) \neq 0$ and hence that $\operatorname{Hom}_{A^1}(\phi I^!(i), \phi P^!(s_i)) \neq 0$, which yields that $\operatorname{Hom}_{A^1}(I(i), P(s_i)) \neq 0$. Thus [I(i)] lies on one of the sectional paths on $[P(s_i)]$ (for any source s_i such that there is an oriented path from [I(i)] to $[P(s_i)]$). But this means precisely that $[I(i)] \in S$, and hence cannot lie on the left of S.

(iii) S is a complete slice:

(i) and (ii) imply that S contains at least one indecomposable from each τ -orbit. In fact, S contains at most one (and hence exactly one), since it is a subsection of Γ_A . Finally, conditions (S1) and (S2) for a complete slice are trivially satisfied.

Note: After the completion of this paper, the author learned that K. Bongartz and P. Gabriel had also characterized the tilted algebras of type \mathbf{A}_n in [5]. However, their motivations and methods are quite different from the ones used here.

ACKNOWLEDGEMENTS

I would like to express my thanks to 0. Roldán for the discussions we held on the subject. I am also indebted to V. Dlab and C. M. Ringel for their helpful remarks made during the preparation of this article.

REFERENCES

- [1] I. ASSEM: Iterated tilted algebras, Ph.D. thesis, Carleton University, July 1981.
- [2] I. ASSEM and D. HAPPEL: Generalized tilted algebras of type A_n, Comm. Algebra 9 (1981), 2101-2125; Erratum, Comm. Algebra 10 (1982),1475.
- [3] M. AUSLANDER and I. REITEN: Representation theory of Artin algebras III and IV, Comm. Algebra $\underline{3}$ (1975), 239-294 and $\underline{5}$ (1977), 443-518.

[4] R. BAUTISTA: Sections in Auslander-Reiten quivers, Proc. ICRA II 1979, Springer Lecture Notes No. 832 (1980), 74-96.

- [5] K. BONGARTZ and P. GABRIEL: Covering spaces in Representation theory, preprint.
- [6] V. DLAB: Representations of valued graphs. Séminaire de Mathématiques Supérieures, 1979, Presses de l'Université de Montréal (1980).
- [7] P. GABRIEL: Indecomposable representations II, Symposia Math. Ist. Naz. Alta. Mat. <u>11</u> (1973), 81-104.
- [8] P. GABRIEL: Auslander-Reiten sequences and representationfinite algebras, Proc. ICRA II 1979, Springer Lecture Notes No. 831 (1980), 1-71.
- [9] D. HAPPEL and C.M. RINGEL: Tilted Algebras. To appear in Trans. Amer. Math. Soc.
- [10] D: HAPPEL and C.M. RINGEL: Construction of tilted algebras. Preprint.
- [11] C.M. RINGEL: Report on the Brauer-Thrall conjectures, Proc. ICRA II, 1979, Springer Lecture Notes No. 831 (1980), 104-136.
- [12] C.M. RINGEL: Tame algebras, Proc. ICRA II, Springer Lecture Notes No. 831 (1980), 137-287.

Received: September 1981