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ABSTRACT. We prove that a tame weakly shod algebra A which is not quasi-
tilted is simply connected if and only if the orbit graph of its pip-bounded
component is a tree, or if and only if its first Hochschild cohomology group
H! (A) with coefficients in 4 A4 vanishes. We also show that it is strongly sim-
ply connected if and only if the orbit graph of each of its directed components
is a tree, or if and only if H!(A) = 0 and it contains no full convex subcategory
which is hereditary of type 4, or if and only if it is separated and contains no

full convex subcategory which is hereditary of type A.

1. Introduction

Weakly shod algebras were introduced in [17], as a generalization of the shod
algebras of [15], themselves a generalization of the quasi-tilted algebras [23]. Since
their introduction, they were the subject of many investigations, see, for instance,
1, 2, 9, 16, 18, 27]. Here, we study the tame weakly shod algebras from the
point of view of simple connectedness.

We recall that, following [8], a finite dimensional algebra A over an algebraically
closed field k is simply connected if its quiver @) 4 has no oriented cycles and, for
any presentation A 2 kQ /I of A as a bounded quiver algebra, the fundamental
group of (Qa,I) is trivial (see also [7, 12, 28]). Simply connected algebras have
played an important role in the representation theory of algebras because covering
techniques often allow to reduce many problems to the study of simply connected
algebras. A well-known result, due to Bongartz and Gabriel [12](6.5), states that a
representation-finite algebra is simply connected if and only if the orbit graph of its
Auslander-Reiten quiver (see (4.1) below for the definition) is a tree. On the other
hand, it was shown in [13] that a representation-finite algebra A is simply con-
nected if and only if its first Hochschild cohomology group H!(A) (with coefficients
in the bimodule4 A 4) vanishes. It is natural to ask whether similar results hold for
a representation-infinite algebra. In this case, the Auslander-Reiten quiver is no
longer connected so one should consider the orbit graph of each of its connected
components. However, if one deals with a tilted algebra (in the sense of [22]), then
much information about the algebra is contained in its connecting component(s),
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namely, the one(s) containing the complete slices. Indeed, it was shown in [6] that
a tame tilted algebra A is simply connected if and only if the orbit graph of its con-
nected component is a tree and this, by [21](1.6) or [5](1.4), is equivalent to saying
that H!(A) = 0. This also answered positively (for tilted algebras) Skowroriski’s
question in [28](Problem 1) whether it is true that a tame triangular algebra A is
simply connected if and only if H!(A) = 0. Now, the weakly shod algebras which
are strict, that is, are not quasi-tilted, have a component resembling the connecting
component of a tilted algebra, namely its pip-bounded component [16].

In this paper, we introduce a filtration of a strictly weakly shod algebra as an
iterated one-point extension by projectives lying in the pip-bounded component.
This filtration, which we call maximal filtration, see (3.4), has very nice properties,
among which are preservation of the vanishing of the first Hochschild cohomology
group, see (3.4), tree type of the orbit graph, see (4.2) and, if the algebra is tame,
simple connectedness, see (5.2). Applying these results, we prove our main theorem.

Theorem (A) Let A be a strictly weakly shod algebra. The following conditions
are equivalent:

(a) H'(A4) =0.
(b) The orbit graph of the pip-bounded component of A is a tree.

If, moreover, A is tame, then the above are further equivalent to:
(c) A is simply connected.

Since a similar result was obtained in [3] for the tame quasi-tilted algebras, this
completely characterizes the simple connectednes of a weakly shod tame algebra.
On the other hand, weakly shod algebras have recently been generalized to a larger
class, that of the laura algebras [1, 2, 4, 9, 29, 27] and we conjecture that the
above result holds true as well for (possibly wild) weakly shod or laura algebras
which are not quasi-tilted. While we have no counter-example, our proof here,
however, fails in these cases.

We then turn to one particular subclass, that of the strongly simply connected
algebras, introduced by Skowroniski in [28]. This subclass seems to be the most
accessible and has been the subject of many investigations. Since strongly simply
connected tame quasi-tilted algebras have been characterized in [3] (see also [5]), we
seek a criterion for the strong simple connectedness of a strictly weakly shod tame
algebra, and we prove the following theorem which generalizes the main result of [5]:

Theorem (B) Let A be a strictly weakly shod tame algebra. The following condi-
tions are equivalent:

(a) A is strongly simply connected;

(b) the orbit graph of every directed component of T'(modA) is a tree;
(c) H'(A) =0 and A is strongly A-free;

(d) A is separated and strongly A-free.

The paper is organized as follows. The first two sections 2 and 3 are devoted to
proving the existence of maximal filtrations in strictly weakly shod algebras and to
showing that they preserve the vanishing of the first Hochschild cohomology group.
In the following two sections 4 and 5, we prove that the tree type of the orbit
graph and simple connectedness are also preserved by maximal filtrations. Finally,
sections 6 and 7 are devoted to the proofs of Theorem (A) and (B), respectively.
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These results were proven while the second author was visiting the first, and
was supported by Université de Sherbrooke and Bishop’s University.

2. Maximal extensions

2.1 Notations. Throughout this paper, all algebras are basic and connected
finite dimensional algebras over an algebraically closed field k. For an algebra A,
we denote by modA the category of all finitely generated right A-modules, and by
indA a full subcategory of modA containing exactly one representative from each
isomorphism class of indecomposable A-modules.

For an algebra A, we denote by I'(modA) its Auslander-Reiten quiver, and by
T4 the Auslander-Reiten translation DTr.

Given X,Y € indA, we write X ~» Y in case there exists a path

(%) X=Xo 2 x, L& . 9x, Ihx, -y
(t > 0), from X to Y in indA, that is, f1,---, f; are non-zero non-isomorphisms
and Xy, X1, -+ ,X; are indecomposable modules. In this case, we say that X is

a predecessor of Y and Y is a successor of X. Observe that each indecomposable
module is a predecessor and a successor of itself. A path in indA starting and
ending at the same module is called a cycle. An indecomposable module M which
lies on no cycle in ind A is called a directing module. When each f; in the path (x)
is an irreducible morphism, we say that () is a path of irreducible morphisms or,
simply, a path in I'(modA).

Following [23], we let £4 denote the full subcategory of indA consisting of
those modules X such that, for any predecessor Y of X, the projective dimension
pdaY of Y does not exceed 1. Dually, R 4 is the full subcategory of those modules
X such that, for any successor Z of X, the injective dimension id4Z of Z does not
exceed one.

For the sake of brevity, we refrain from stating the dual of each statement and
leave the primal-dual translation to the reader.

2.2 The following lemma is a special case of [4](1.5). We prove it for the conve-
nience of the reader.

Lemma. Let A be an algebra. If P is an indecomposable projective module in R 4,
then P is directing.
Proof: Assume that P is not directing, then there exists a cycle of non-zero

non-isomorphisms:
P=My—->M —»---—-> M,  -M,=P

in indA. Since P belongs to R4, then so does every M;. It follows from [1](1.5)
that this cycle may be refined to a cycle of irreducible morphisms and that the
latter is sectional. This, however, contradicts [14], [11].0

2.3 Let P(Ra) denote the set of all indecomposable projective modules that lie in
R4. It follows from (2.2) that the successor relation defines a partial order in the
set P(Ra). Since this set is finite, it certainly contains maximal elements. This
leads to the next definition.
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Definition. Let A be an artin algebra, P = eA be a mazimal projective in P(R4)
for the successor relation, B = (1 —e)A(l —e) and M =radP. Then the one point
extension A = B[M] is said to be a mazimal extension.

The following proof is similar to that of [18](2.2)(2.3).

Proposition. Let A = B[M] be a strictly weakly shod algebra that is a mazimal
extension. Then for all i > 1, we have Extiy(M, M) = 0.
Proof: We consider separately the cases i =1 and 7 > 1.

(i=1) Assume Exth(M, M) # 0. Then there exists an indecomposable summand
N of M such that Exth(M,N) # 0. Write M = N & N’ and let P be the
extending projective (that is, M =rad4P). Then N’ is a submodule of P and
L = P/N' is indecomposable. Since Extl (M, N) # 0 it follows for [23](I1L.2.2)(a)
that idaL > 2. Since P belongs to P(R4) and L is a successor of P we get a
contradiction.

(i > 2) Assume now that Exti (M, M) # 0 for some i > 2. Again, there exists
an indecomposable summand N of M such that Ext& (M, N) # 0. Applying the
functor Homy4 (M, —) to the short exact sequence

0+N—->P—+K=P/N—-0
yields an exact sequence:
= ExtT(M,K) = Exty(M,N) = Extly(M,P)—---
Since i > 2 and P € P(Ra), we have Exty (M, P) = 0. Thus, Ext}(M,N) # 0
implies that Ext,'(M,K) # 0. We again consider two cases. If i > 3, then
Ext’ 1 (M, K) # 0implies that id 4 K > 2 and this contradicts the fact that the inde-
composable module K is a successor of P € P(R4). If i = 2, then ExtY (M, K) # 0

and the Auslander-Reiten formula imply that there exists an indecomposable sum-
mand M’ of M such that Hom4 (K, 74 M") # 0. We thus obtain a path in indA:

Po>K—osrmaM' -5x—- M - P
and this contradicts (2.2).0

2.4 The above proposition serves to compare the Hochschild cohomology groups
of A and B. For an algebra A, we denote by H?(A) its i* Hochschild cohomology
group with coefficients in the bimodule 4 A4 (see [21, 24] for details). We recall
that Happel has shown [21](5.3) that, if A = B[M], then there exists a long exact
sequence:

0— H°A) — H°B) — (EndsM)/k — H'(4) —
— HYB) — Exth(M,M) — ---
o — HY(A) — HYB) — Exth(M,M) — -

We refer to this sequence in the sequel as Happel’s sequence.

Corollary. Let A = B[M] be an algebra written as mazimal extension, then:

(a) There erists an exact sequence:

0— H%A) - H°B)— (EndaM)/k - H'(A) - HYB) - 0.
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(b) For all i > 2, we have Hi(A) =H(B).0

2.5 Let x be a source in the quiver ) 4 of an algebra A. We recall that z is said
to be separating if the number of connected components of the full subquiver @) 4
consisting of all points except & equals the number of indecomposables summands
of the radical of the indecomposable projective A-module corresponding to z. We
also recall that a module N is called a brick if EndN = k.

Corollary. Let A = B[M] be an algebra written as mazimal extension, then
H(A) = 0 if and only if HY(B) = 0, the extension point is separating, and M
is a direct sum of bricks.

Proof: By (2.4)(a), H!(A) = 0 if and only if H!(B) = 0, and the sequence:

0— H%A) — H°B) — (EndaM)/k — 0
is exact. We then apply [3](2.2).0

2.6 Corollary. Let A = B[M] be an algebra written as mazimal extension, then
the Hochschild cohomology rings H*(A) and H*(B) are isomorphic if and only if M
is a brick.

Proof: This follows inmediately from (2.4)(2.5) and [20](5.1)(6.2).0

3. Maximal filtrations of weakly shod algebras

3.1 We recall from [17] that an algebra is called weakly shod whenever the length
of any path from an indecomposable injective to an indecomposable projective is
bounded. It is called strictly weakly shod if it is weakly shod but not quasi-tilted.

By [17], the Auslander-Reiten quiver of a strictly weakly shod algebra contains
a unique faithful pip-bounded component I', that is, a non-semiregular component
such that there exists an integer ng with any path in indA from an injective module
in T to a projective module in T' has length at most ng. This component is also
generalized standard and directed (that is, has no oriented cycles). It follows from
[17] that all projectives in R 4 actually lie in the pip-bounded component.

Let A be a weakly shod algebra. We let ’P}; denote the set of all indecom-
posable projective modules P such that there exist an injective module I and a
path I ~» P. Tt follows from [17] that the set 'Pf‘ is also partially ordered by the
successor relation, and hence contains maximal elements.

Lemma. Let A be a weakly shod algebra, then P(Ra) = ¢ implies P£ = ¢.
Proof: Assume Pfl # ¢ and let P; belong to Pfl. Then there exist an indecompos-

able injective I and a path I ~ P; in indA. In particular, P lies in the pip-bounded
component of I'(modA). On the other hand, P(R4) = ¢ implies P; ¢ Ra. That
is, there exist an indecomposable projective P», an indecomposable non-injective
M4 and a path in ind A:

P~ M= x—1,'M = P,.

Since P; is a successor of Py, then P, € ’Pﬁ and then P, lies in the pip-bounded
component of I'(modA). Since, again, P, ¢ R4, we may construct inductively an
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infinite sequence of indecomposable projectives:
Pl'W)PZWPgW"'

all lying in the pip-bounded component of I'(modA), in ’P}: but not in R 4. Since
the pip-bounded component is directed, we get a contradiction to the fact that A
has only finitely many projectives.[]

3.2 Lemma. Let A be a strictly weakly shod algebra, and A = B[M] be a mazimal
extension. Then, if P(Rg) = ¢:

(a) Pﬁ has at most one element, and this element is the unique extending
projective P, and
(b) every connected component of B is tilted.

Proof: (a) Assume there exists @) € P};, such that ) 2 P. Hence @ is a projec-

tive indecomposable B—module. Since P(Rp) = ¢, there exists another projective
@1 € indB and a path @ = Qo ~ @1 in indB. Since, again, P(Rg) = ¢, we get
a projective () and a path @) = Qo ~ @1 ~ (2. Inductively, we reach a cycle of
projectives in the algebra B (because there are only finitely many non-isomorphic
projective indecomposable B—modules). Embedding everything in modA, we ob-
tain a path:

I~»Q=Qo~Q1~ @2~ ---
with I injective (because @ € ’Pﬁ), and a cycle of projectives. This is a contradiction
to A being weakly shod.
(b) Assume first that P € 731{;. Now A weakly shod implies B weakly shod, [17] or
[2]. Then, by Lemma (3.2), P(Rg) = ¢ implies P = ¢. On the other hand, the
maximality of the extending projective P in R 4 implies clearly its maximality in
PJ. Hence the result follows from [17](4.8). Now, if P ¢ P% we have P} = ¢. Let Q
be an indecomposable projective A—module. Then @ has no injective predecessor,
which implies that every predecessor of ) has projective dimension at most one.
In particular, @ € L£4. Therefore, by [23], A is quasi-tilted. This contradicts the
fact that A is strict.O]

3.3 Proposition. Let A be a strictly weakly shod algebra. Then there exist a
sequence of algebras Ag, A1,--- ,Am = A with Ay a product of tilted algebras, and
a sequence of modules M;a,_, such that A; = A;_1[M;] is a mazimal extension, for
each i with 0 <i < m.

Proof: This follows immediately from the preceding discussion and induction.O]

3.4 We use in the sequel the following notation. Let A be a strictly weakly shod
algebra and

B=AyCAI C---CAn_1CA,=A

be a filtration of A as iterated maximal extensions with B tilted, as in the above
proposition. For each ¢ with 0 < i < m, we let M; be the A;_; module such that
A; = A;_1[M;], P; be the extending projective A;—module (thus, M; =rad4P; and
P; is maximal in P(R4,;)) and z; be the extension point associated to P;. Such
a filtration will be called a mazimal filtration of A. Note that, while B is a tilted
algebra, all 4;, with ¢ > 0, are strictly weakly shod. Indeed, it follows from [2] that
each A; is weakly shod, and from [19] (5.2) that it is strict.
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Corollary. Let B= Ay C Ay C---C Ap_1 C Ay, = A, be a maximal filtration of
A. Then H(A) = 0 if and only if:

(a) H'(Ap) =0, and

(b) each x; is separating.
Proof: The pip-bounded component of a strictly weakly shod algebra C' contains
all projectives in P(R¢). Moreover, since it is generalized standard and directed,

all its indecomposables are bricks. Therefore the statement follows from (2.5) and
an obvious descending induction.[]

3.5 Example. Let A = kQ/I be given by the quiver:

bound by 86 =0, 6y =0 and nA = 0.

In this case we have A = A3 = A3[Ms] where M3 = rada, P;. As second step we
get Ay = A1[M>] with My = rada, Ps(= rada,Ps). Finally we have Ay = Ag[Mi]
where M7 = rad4, Ps(= rada,Ps), and B = Ay is a tilted algebra. Then we get a
filtration:

B:A()CAlCAQCAg:A,
because P; is maximal in P(R4,), Ps is maximal in P(R4,) and Ps is maximal in
P(Ra,)-

4. The orbit graph

4.1 Werecall that, if T is a locally finite, directed and connected translation quiver,
then the orbit graph O(T') of ' (see [12](4.2)) is defined as follows. The vertices of
T" are the 7-orbits 27 of the points z in ', and the edges of I' between 2™ and y”
are the g-orbits of arrows 7”2 — 7™y or 7"y — 7"z for some n,m € ZZ.

We now discuss the orbit graph of the pip-bounded component of a weakly shod
algebra. Let A be a strictly weakly shod algebra, not necessarily connected. We
say that A is of tree type whenever, for each connected component C' of A, the orbit
graph of the pip-bounded component of I'¢ is a tree. We then have the following
lemma.

Lemma. Let A = B[M] be a (not necessarily connected) strictly weakly shod
algebra, which is a mazimal extension. Then A is of tree type if and only if B is of
tree type and the extension point is separating.

Proof: Sufficiency. Let x denote the extension point, let B = By x --- X B; where

each of the B; is connected. Since z is separating, there exists s < ¢ such that
radP, = M = M; @ --- ® M, where (changing the order if necessary) for each 1,
M; is an indecomposable B;-module. Moreover, it follows from [17](5.3)(5.4) that
each M; is an indecomposable lying in the pip-bounded component of the weakly
shod algebra B;. Then the orbit graph of the pip-bounded component O(C4) of A
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is obtained from the orbit graphs of the pip-bounded components O(Cp;) of the B;

as follows:
O(CBI) \
O(Cs.)

O(CBs-H )

O(CBt)

where we have added to O(Cp) the point P and at most one edge between P and
each O(Cp,), with 1 <4 < s. Since B is of tree type, this shows that A is of tree
type as well.

Necessity. Assume that A is of tree type. We show that the extension point z is
separating. Assume that this is not the case, let B = B; X --- x By where each
of the B; is connected, and radP, = M = M; & --- ® M, where for each i, M; is
an indecomposable B-module. Since z is not separating, there exist 4, j with ¢ # j
such that both M;, M; lie in the same connected component of B, say B;. Thus
there exists a walk:

K3

Mj — - —M]
in O(Cp,) (since both M; and M; lie in the pip-bounded component Cg,, by
[17](5.3)(5.4)). But then the edges P; — M/ and P — M would give a non

trivial cycle in O(C4), a contradiction. It is now clear that O(Cg) is a (disjoint
union of) tree(s).O

4.2 Corollary. Let B = Ag C Ay C --- C A1 C Ay, = A, be a mazimal
filtration of A. Then A is of tree type if and only if:

(a) each A; is of tree type, and

(b) each x; is separating.

Proof: This follows from (4.1) and induction.O]

5. Simple connectedness

5.1 An algebra A is called simply connected provided its ordinary quiver @4
has no oriented cycles and, for any presentation of A as a bound quiver algebra
A =2 kQ4/I, the fundamental group m1(Qa4, ) is trivial (see [7, 28] for details).
By [7](2.6), if A is simply connected, then every source z in @) 4 is separating.
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Recall moreover that, following [12], we may consider A = kQ4/I as a k-
category having as object class Ag the set of points in @4 and, for any z,y € Ao,
having as morphism set A(z,y) the linear combination of paths from z to y in Q4
modulo the ideal I.

Lemma. Let A = B[M] be a strictly weakly shod algebra, which is a mazimal
extension. Assume that A is tame and simply connected. Then:

(a) B is simply connected, and
(b) the extension point is separating.

Proof: Since (b) follows directly from the simple connectedness of A and [7](2.6),
there remains to prove (a). Assume B is not simply connected. By [6](2.3), there
exist an idempotent e = e € A, and a full convex subcategory C' = eAe of A which
is the convex hull of the following (weak) crown (with 2 < ¢ < 4) topped by the

extension point z: .

\

™~

Let N = Me. Thus N is the radical of the indecomposable projective C—module
P! corresponding to . We claim that N is a submodule of the indecomposable
projective A—module P, corresponding to x.

Firstly, we claim that, if there exists a non-zero path from z to y in A passing
through points of C, then y € Cy. Assume that this is not the case. A straightfor-
ward analysis shows that either A contains a (not necessarily full) wild subcategory
with underlying graph of the form:

In this latter case, since A(z,y) # 0 by hypothesis and E is tame, then
dimgE(x,y) = 1. Since E is full then dim;A(z,y) = 1. Now, the full subcate-
gory E' of E consisting of all objects except z is a tilted algebra which is a one-
point coextension of a hereditary algebra of type 4 by a simple homogeneous S.
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Moreover, the radical N’ of P, in modF is the indecomposable injective E'-module
corresponding to the vertex y, hence lies in the tube of I'(modE’) containing S.
Therefore E = E'[N’] contains a projective-injective in a tube. In particular, by
[17](3.7), E is not weakly shod, a contradiction to [2]. This establishes our claim.

Secondly, we claim that every non-zero path from z to the crown passes through
one of the a;. Assume that there exists a non-zero path w: z ~ z, with z € Cj.
We can assume that z lies between a; and b;. Note that we have dimy A(z, 2) = 1,
otherwise the full subcategory generated by x, a, z, by 1 is wild. We now show that
all paths z ~» 2z ~ b; are non-zero. If this is not the case then there exists (inside
the weak crown) a non-zero path x ~» a; ~ b;. Therefore, the subcategory gener-
ated by z, z, b is a split extension of the algebra given by the quiver:

bound by af = 0, and the latter is a representation-finite algebra which is not
representation-directed, hence not weakly shod. This contradicts [9](Theorem A).
Therefore all such paths £ ~ z ~» by are not zero. We infer that for each path

T~ ap ~ 2~ by

there exists a minimal relation involving the corresponding subpath w'; z ~» a; ~
z with the given path w: x ~» 2. In particular, w contains at least three vertices
w: =~ 2 ~ z, and the induced path 2’ ~ z ~ b; is non-zero (indeed, if it were
zero, then we obtain a contradiction to the statement that all paths z ~» z ~ b,
are non-zero). Then the subcategory generated by z,2',a;,b;, with 1 < ¢ < ¢, is
wild, a contradiction. This completes the proof of our second claim.

Now, the two claims above imply that N is a submodule of P,, as required.

Next, let D be the full subcategory of C' generated by all objects except . Then
C = D[N]. Furthermore, D has a full subcategory H (generated by the objects
ai, b;) which is hereditary of type 4, and by [26](1.2), there exists a full and faithful
embedding modH —modD, which has as its image a subcategory closed under
extensions, and is left inverse to the restriction functor. Now, IV is the image under
this embedding of a simple homogeneous H—module. Consequently, Extl, (N, N) #
0. By Auslander-Reiten’s formula, this implies that Homp (N, 7pN) # 0. It follows
from [25](2.1) that 7¢ N = (Homp(N,7pN),7pN,ev) where ev is the evaluation
morphism. Since Homp (N, 7pN) # 0, this implies the existence in indC' of a non-
zero morphism P, — 7¢ N, from which we deduce the path P, - 7¢N — %+ - N
in indC (hence in indA).

Clearly, Hom 4 (P,, P.) # 0 and we have seen that there is an injection N < P,.
Thus the above path induces a path

P, 5P, 517N —3x—>N-=>P,
in indA, and this contradicts (2.2).0

5.2 Corollary. Let B = Ag C A1 C --- C A1 C A, = A, be a mazimal
filtration of A. If A is tame then A is simply connected if and only if:

(a) each A; is simply connected, and

(b) each x; is separating.
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Proof: This obviously follows from (5.1), [7](2.5) and induction.O

6. Simple connected tame weakly shod algebras

6.1 Proof of Theorem (A): We first show that (a) is equivalent to (b). Let
B=A4, C A C---CAn-1 C A, = A be a maximal filtration of A. Applying
(3.4), we see that H1(A) = 0 if and only if H(B) = 0 and each z; is separating.
Since B is a direct product of tilted algebras, H!(B) = 0 if and only if it is of tree
type (see [21](1.6)). The statement then follows from (4.2). Assume now that A is
tame. If A is simply connected, then, using the same notation as above, it follows
from (5.2) that each A; is simply connected and each z; is separating. In particular,
B is simply connected. Since B is a direct product of tilted tame algebras, this
implies, by [6], that H!(B) = 0. Applying (4.2) yields H!(A) = 0. Conversely, if
H!'(A) = 0, then H'(B) = 0 and each z; is separating. Since B is a direct product
of tilted tame algebras, it follows from [6] that each connected component of B is
simply connected. Since each z; is separating, it follows from [7](2.5) and induction
that A is simply connected.O

6.2 Corollary Let A be a tame strictly weakly shod algebra, and let B = Ay C
Ay C---CAy_1 CA, = A, be a mazimal filtration of A. The following conditions
are equivalent:

(a) H'(4) =0;
(b) HY(A;) = 0, for each i;

(c) A is simply connected;

(d) A; is simply connected, for each i;
(e) A is of tree type;

(f) A; is of tree type, for alli. O

6.3 Examples.
(1) Let A =kQa4/I be given by the quiver:

1 3 8 10
I N I e X

.4—./ \. <+ o

2 4 9 11

bound by a8 = 0 and all commutativity relations.
We get the maximal filtration:

B=A0CA1CA2CA3CA4CA5=A,

with A5 = A4 [radPn]; A4 = Ag [radPlO]; Ag = A2 [radPg]; A2 = A]_ [radPS],
and A; = Ag[radP;]. All extensions are maximal and B = A is tilted.

(2) Consider A as in the Example (3.5). In this case, A is a weakly shod
algebra with a maximal filtration. On the other hand, A is tame but it is
not simply connected.
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7. The strong simple connectedness of a tame weakly shod algebra

7.1 We recall the following definitions. An algebra A is strongly simply connected
provided each full convex subcategory of A is simply connected. It is called strongly

A-free if it contains no full convex subcategory which is hereditary of type A. Fi-
nally, it is called separated if each point y in Q4 (not necessarily a source) is
separating as a source in the full convex subcategory of A with objects all points
of Q4 except those points z such that there exists a path z ~» y of length at least
one in Q4.

Proof of Theorem (B): (a) clearly implies (d).

(d) implies (c). Indeed, if A is separated, then, by [28](2.3), A is simply connected.
Then Theorem (A) gives H'(A) = 0 and we are done.

(c) implies (b). Indeed, if H!(A) = 0, then, by Theorem (A), the orbit graph of the
pip-bounded component is a tree. There only remains to consider the orbit graphs
of the postprojective and the preinjective components. Assume I' to be a postpro-
jective component of I'(modA). Then I is also a postprojective component of the
Auslander-Reiten quiver of a tilted algebra B which is a full convex subcategory of
A. Moreover, B is tame because A is tame, and strongly A-free, because A is. We
then consider two cases. If B is not concealed, then the result follows at once from
[5](2.3). On the other hand, if B is concealed, then B is the support algebra of T,
and being strongly A-free and tilted of euclidean type, must be of type ID or IE.
Then O(T) is a tree.

(b) implies (a). We show that A is strongly simply connected by showing that, for
each full convex subcategory A’ of A, we have H!(A’) = 0. This is true if A’ = A,
by Theorem (A). Indeed, we recall that, since A is weakly shod, then it is triangular
and by an obvious induction on |Ag|, we may assume that A is a one-point extension
of A’ (up to duality). Assume thus A = A’[X]. We claim that H'(A") = 0.

We consider two cases. Assume first that the projective indecomposable A-
module P, corresponding to the extension point x (that is, such that rad P, = X)
is maximal in R4. By (2.3), we have Extl,(X,X) = 0. Since it is known that
H!(A) = 0, Happel’s sequence (2.1)

s HY (A) - HY(A) - BExth (X, X) =

yields HY(A’) = 0. Assume now that P, is not maximal in R4. Then we can
write A = A1[M1], a maximal extension. Clearly, then, P, is a projective inde-
composable Aj-module. If P, is maximal in R4,, then Ext} (X,X) = 0. Hence
ExtY (X, X) = 0 (because A; is a full convex subcategory of A), so Happel’s se-
quence gives again H!(A') = 0. We continue in this fashion by induction on the
terms of a filtration B = A, C --- C A; C Ay = A as in (3.3). If, for any i
such that i < m, P, is a maximal projective in R 4,, then H'(A4') = 0, and, if not,
then it is an indecomposable projective A;;1-module. Thus, by induction, we may
assume that P, is an indecomposable projective B-module. Since A is tame, then
so is B. Moreover, since H!(A) = 0 then, by (3.4), we have H' (B) = 0. Since B is
tilted, then it is of tree type. Moreover, X is a B-module. We wish to show that
Extl, (X, X) = 0.

Now, we can write B in the form B = B'[X]. Since B is of tree type, the orbit
graph of the connecting component of the Auslander-Reiten quiver of (each of the
connected components of) B is a tree. On the other hand, the orbit graph of each
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of the postprojective components of A is a tree, by hypothesis. Then, by [5](2.4),
H'(B') = 0. On the other hand H?(B) = 0, because B is a tilted algebra [21](4.3).
Hence Happel’s sequence

.- > HY(B'") » Exth(X,X) - H*B) > ---

yields Exth (X, X) = 0. As before, this yields Ext! (X, X) = 0 and hence H'(4') =
0.0
Examples.

(1) Let A =kQa4/I be given by the quiver:

NS
NN
’ 6 ‘}5/ \'11
S NS

7 10
bound by a8 = 0 and all possible commutativity relations. Then A
satisfies the equivalent conditions of the Theorem (B).

(2) Consider A as in the Example (6.3). In this case, A is a weakly shod
algebra with a maximal filtration. On the other hand, A is tame simply
connected but not strongly simply connected.
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