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INTRODUCTION

Let k be an algebraically closed field. By algebra A, we mean a finite dimensional
associative k-algebra, which we assume moreover to be basic and connected. For such
an algebra A, there exists a (uniquely determined) connected quiver @4, and (at least)
a surjective algebra morphism v from the path algebra kQ4 of @4 into A, whose kernel
is denoted by I,, see [6]. The algebra A is called triangular if )4 contains no oriented
cycles. For each pair (Qa,I,), called a presentation of A, we can define the fundamental
group 7 (Qa,I,), see [10]. A triangular algebra A is called simply connected if, for every
presentation (Q 4, I,,) of A, the group m (Q a4, I,) is trivial [4], or, equivalently, if and only if
A admits no proper Galois coverings (see [10]). As is well-known, covering techniques allow
to reduce many problems of the representation theory of algebras to problems about simply
connected algebras (see, for instance, [6,10]).

Let A be an algebra, T4 be a tilting module (in the sense of [8]) and B = EndTy4. It
has long been conjectured that, if A is simply connected, then so is B. This is known to
be the case if A is representation-finite [5]. In this paper, we consider the case where A
is hereditary, thus is the path algebra of a quiver ). Then B is called tilted of type Q.
Since a hereditary algebra is simply connected if and only if its quiver is a tree, the above
conjecture reduces to say that a tilted algebra B of type @ is simply connected if and only
if @ is a tree. This is known to be the case if the underlying graph of @ is euclidean [4],
or if B is tame and contains no full convex subcategory which is hereditary of type Aqn, see
[2]. Our objective in this paper is to show that the latter conjecture holds true if B is tame.
In the proof, we shall make an essential use of the first cohomology space H!(B) (of the
algebra B with coefficients in the bimodule g Bg) whose vanishing is known to be related
to the simple connectedness of B. Indeed, it has been shown that a representation-directed
algebra A is simply connected if and only if H'(A) = 0, see [7] (5.5). Similarly, if A is the
Auslander algebra of a representation-finite algebra over a field k of characteristic zero, then
A is simply connected if and only if H!(A) = 0, see [1]. Moreover, for a tilted algebra B of
type @Q, it follows easily from [7] (see also [2] (1.4)) that @ is a tree if and only if H!(B) = 0.
We are now able to state our main result, which answers positively for tilted algebras the
first problem of [11].
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Theorem. Let B be a tame tilted algebra of type QQ. Then B is simply connected if and
only if Q is a tree.

Since the underlying graph of @) coincides with the orbit graph of the connecting com-
ponent of the Auslander-Reiten quiver I'(mod B) of B, the reader may compare this result
with that in [2], where it is shown that, if B is tame and tilted, then B is strongly simply
connected if and only if the orbit graph of each of the directing components of I'(mod B) is
a tree.

1. PRELIMINARIES

1.1. Throughout this paper, an algebra A is equivalently considered as a k-category, whose
object set is denoted by Ay, as in [6]. A full subcategory C of A is called convex if, for
any path ag = a1 = --- = a; in A, with ag,a; € Cp, we have a; € Cy for all i. For an
algebra A, we denote by mod A the category of the finitely generated right A-modules, and
by P, the indecomposable projective module corresponding to € Ay. It is well-known
that, if A = kQ/I is a bound quiver algebra, then mod A is equivalent to the category of
all representations of () bound by I. We thus identify a module M with the corresponding
representation (M (z), M («)), see [6]. The support Supp M of an A-module M is the full
subcategory of A generated by those x € Ag such that M (z) # 0.

1.2. For the fundamental group and simple connectedness, we refer the reader to [3]. We
shall need in particular the following result. Let B = C[M] be a one-point extension algebra,
and z be the extension point. Denote by ~ the smallest equivalence relation on the set of
all arrows with source z such that o &~ § whenever there exists a minimal relation ) A;w;
starting at x, with w; = av; and we = Bvs. Given a presentation (@, I,) of B, let ¢(v)
be the number of equivalence classes [31].,...[B¢)]» of arrows with source z. For each
i, with 1 <7 < t(v), let £(i) be the number of tuples of paths (vi,vs,...v25-1,v25) in @
such that there are minimal relations A\jjajv; + Asasvs + Z)\ljulj from z to y; (say),
iz3
C As1 QU251 + A2 Q125 + Z Asjusj from z to y, (SaY)v with a; = agy1 and ay,... a5
i>3

distinct arrows in [G;],.
Theorem [3] (2.4). Let B = C[M] be a one-point extension of a connected algebra C. Let
(@B, I,) be a presentation of B whose restriction to C is (Qc¢, I.,). For any abelian group
Z, there is an ezact sequence of abelian groups

t(v)
0 — 2'™=" — Hom(m (@p, 1), Z) - Hom(m (Qc, 1), Z) —» [[ 2. O
i=1

1.3. For tilted algebras, we refer the reader to [8,9]. The following result is a particular case
of the main theorem in [4].

Theorem. Let B be a tilted algebra of euclidean type Q. Then B is simply connected if
and only if Q is a tree. [

1.4. Let A be an algebra, and T be a component of its Auslander-Reiten quiver I'(mod A).
The orbit graph O(T') of T has as its points the 7-orbits M™ of the indecomposable A-
modules M in T', and there exists an edge M™— N7 whenever there exist a,b € Z and an
irreducible morphism 7*M — 7°N, or 7’ N — 7%M; moreover, the number of such edges
equals the dimension of the space of irreducible morphisms Irr(7¢ M, 7° N'), or Irr(7° N, 7¢ M),
respectively.



THE SIMPLE CONNECTEDNESS OF A TAME TILTED ALGEBRA 3

If A is representation-finite, then, by [6] (4.2), A is simply connected if and only if
O('mod A)) is a tree. Also, if A is tilted of type @, then the underlying graph of @ equals
the orbit graph of a connecting component of I'(mod A).

2. PROOF OF THE THEOREM

We may clearly assume that B is representation-infinite and not concealed.

We first show the sufficiency. Suppose that the type of B is a tree. As observed before,
this means that H!(B) = 0. We must show that B is simply connected. Assume that this
is not the case, and that B is a counterexample such that the number of objects of By
is minimal. Then there is at least one projective in the connecting component Cg of B :
indeed, if this is not the case, then B is of euclidean type, hence is simply connected by
(1.3), a contradiction. Let thus P, be a projective in Cg. We may assume that = is a source
in the quiver of B, and so we can write B = C[M], where C = Cy x --- x C, with each
C; connected. Since H'(B) = 0 then, by [11] (3.2), the source z is separating. Also, for
each i, the orbit graph O(C¢,) is a subgraph of O(Cg), hence is a tree. By our minimality
assumption, each C; is simply connected. Applying [11] (3.2) (see also [3] (2.5)), we infer
that B is simply connected, a contradiction.

We now show the necessity. Assume that B is simply connected. We must show that
H'(B) = 0. If the connecting component Cp contains no projectives, then B is of euclidean
type and we are done by (1.3). If it does, let P, be a projective in Cg which is maximal
with respect to the order induced by the arrows. In particular, z is a source, so we can
write B = C[M] with M =rad P, and C = C} X --- x C, where each C; is connected. By
[3] (2.6), = is separating. It is then easy to see that O(Cp) is obtained by gluing together
the orbit graphs of the connecting components of the C; as follows.

O(CCI)

O(Ce,)

Therefore, we may assume that t = 1, that is, C' is connected, and hence M is indecompos-
able.

By [7] (5.3), we have an exact sequence
-+ = EndM/k — HY(B) — H'(C) — BExts (M, M) — ---

Since M lies in Cp, we have End M = k and Extj,(M, M) = 0. Hence H'(B) = H'(C). If C
is simply connected, then H!(C') = 0 by induction and we are done. Otherwise, let (Qp,I,)
be a presentation of B. Since C' is not simply connected, we may assume that the restriction
(Qc, 1) of (@B, I,) to C is such that w1 (Qc, I},) # 1. Since m (@B, I,) = 1, applying (1.2)
yields that £(1) # 0. That is, there are distinct arrows ay : & — a1,...a5 : © — as and
paths ve;—1 : a; — b, va; : a1 — by (where 1 < i < s and asy1 = aq1) such that there exist
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minimal relations Ajja1v; + Ai2aavs + E ALjUL s ooy As1 QU251 + Ag21 V26 + E Asjlsj.

Jj=3 j=3
T
N\
Qa2
a A o Qg
{
v1 ) V2 {V2s—1
v3y) v2s )
by by b,

Let D be the convex hull in B of the points ay,...as, b1, ...bs. We claim that D = Supp M,
and that D is hereditary of type A, for some m > 1.

We first notice that D is tame and tilted, because it is a full convex subcategory of the
tame tilted algebra B. This implies in particular that, for each 7,v2;_1 (or vs;) is the unique
path in D from a; to b; (or a;+1 to b;, respectively), where 1 <i < s and asy; = a;. Assume
that this is not the case, and that the convex hull of v; (say) contains a subcategory of the
form

dy —— ——dy
7 Y«
Al ———> e C——=>C] ——> e Ch—1 ——=( ———= e [ b
vy 71 Th vy

where v; = v]7y; ... ypv). Assume first that vjd;...dv} # 0 in B. Since B is tame, there
is a minimal relation linking this path with v;. Let N be the indecomposable D-module of
support the full subcategory generated by all points except ci,...cp—1,d1,-.-de—1 and such
that N(y) = k for all y € (Supp N)o. Then it is easily seen that pd Np > 2 and id Np > 2,
showing that D is not tilted, a contradiction. On the other hand, if v{d; ...d,v{ = 0, then
the tameness of D implies that v]d; = 0 and dpv) = 0. Then, let L be the indecomposable
D-module of support {di,...ds—1} such that L(d;) = k for all ¢, we have pd Lp > 2 and
id Lp > 2, again a contradiction.

The above remark implies that D is a full subcategory of Supp M. Also, the tameness of
B implies that, if there is an arrow y — z, with y € Do and z ¢ Dy, then z ¢ (Supp M)
and, further, Supp P, contains no non-zero path from z to some y ¢ Dy. This completes
the proof of our claim.

Now, we have dimg M (y) < 1 for all y € Dy : for, if this is not the case, and y € Dy is
such that dimy M (y) > 2, then the tame algebra D would contain a wild full subcategory
of the form

bi xw J

and this is a contradiction. Therefore, M is a simple homogeneous D-module. Hence
Ext}, (M, M) # 0, which implies that Extg(M, M) # 0, a contradiction. [
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