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Abstract. The left part LA of the module category of an artin
algebra A consists of all indecomposables whose predecessors have
projective dimension at most one. In this paper, we study the
Auslander-Reiten components of A (and of its left support Aλ)
which intersect LA and also the class E of the indecomposable
Ext-injectives in the addditive subcategory addLA generated by
LA.

Introduction

Let A be an artin algebra and modA denote the category of finitely
generated right A−modules. The class LA, called the left part of modA,
is the full subcategory of modA having as objects all indecomposable
modules whose predecessors have projective dimension at most one.
This class, introduced in [15], was heavily investigated and applied
(see, for instance, the survey [4]).

Our objective in this paper is to study the Auslander-Reiten compo-
nents of an artin algebra which intersect the left part. Some informa-
tion on these components was already obtained in [2, 3]. Here we are
interested in the components which intersect the class E of the indecom-
posable Ext-injectives in the full additive subcategory add LA having
as objects the direct sums of modules in LA. We start by proving the
following theorem.
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Theorem (A). Let A be an artin algebra, and Γ be a component of
the Auslander-Reiten quiver of A. If Γ ∩ E �= ∅, then:

(a) Each τA-orbit of Γ ∩ LA intersects E exactly once.
(b) The number of τA-orbits of Γ∩LA equals the number of modules

in Γ ∩ E.
(c) Γ ∩ LA contains no module lying on a cycle between modules in

Γ.
If, on the other hand, Γ ∩ E = ∅ , then either Γ ∈ LA or else

Γ ∩ LA = ∅.

We recall that, by [3] (3.3), the class E contains only finitely many
non-isomorphic modules (hence only finitely many Auslander-Reiten
components intersect E).

As a consequence, we give a complete description of the Auslander-
Reiten components lying entirely inside the left part.

We then try to describe the intersection of E with a component Γ of
the Auslander-Reiten quiver Γ(modA). We find that, in general, Γ∩E
is not a section in Γ (in the sense of [20, 23]) but is very nearly one. This
leads us to our second theorem, for which we recall that a component
Γ of Γ(modA) is called generalised standard if rad∞

A (X, Y ) = 0 for all
X, Y ∈ Γ, see [23].

Theorem (B). Let A be an artin algebra and Γ be a component of
Γ(modA) such that all projectives in Γ belong to LA. If Γ ∩ E �= ∅,
then:

(a) Γ ∩ E is a section in Γ.
(b) Γ is generalised standard.
(c) A/Ann(Γ ∩ E) is a tilted algebra having Γ as a connecting com-

ponent and Γ ∩ E as a complete slice.

In particular, such a component Γ has only finitely many τA-orbits.

The situation is better if we look instead at the intersection of E with
the Auslander-Reiten components of the left support Aλ of A. We recall
from [3, 24] that the left support Aλ of A is the endomorphism algebra
of the direct sum of the indecomposable projective A-modules lying
in LA. It is shown in [3, 24] that every connected component of Aλ

is a quasi-tilted algebra (in the sense of [15]). We prove the following
theorem.

theorem (C). Let A be an artin algebra and Γ be a component of the
Auslander-Reiten quiver of the left support Aλ of A. If Γ ∩ E �= ∅,
then:

(a) Γ ∩ E is a section in Γ.
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(b) Γ is directed, and generalised standard.
(c) Aλ/Ann(Γ∩ E) is a tilted algebra having Γ as a connecting com-

ponent and Γ ∩ E as a complete slice.

We then apply our results to the study of left supported algebras.
We recall from [3] that an artin algebra A is left supported provided
addLA is contravariantly finite in modA. Several classes of algebras
are left supported, such as all representation-finite algebras, and all
laura algebras which are not quasi-tilted (see [3, 4]). It is shown in [1]
that an artin algebra A is left supported if and only if LA consists of
all the predecessors of the modules in E . We give here a proof of this
fact which, in contrast to the homological nature of the proof in [1],
uses our theorem and the full power of the Auslander-Reiten theory
of quasi-tilted algebras. Our proof also yields a new characterisation:
an algebra A is left supported if and only if every projective A-module
which belongs to LA is a predecessor of E . We end the paper with a
short proof of the theorem of D. Smith [25] (3.8) which characterises
the left supported quasi-tilted algebras.

Clearly, the dual statements about the right part of the module cat-
egory, also hold true. Here, we only concern ourselves with the left
part, leaving the primal-dual translation to the reader.

We now describe the contents of the paper. After a brief preliminary
section 1, the sections 2, 3 and 4 are respectively devoted to the proofs
of our theorems (A), (B) and (C). In our final section 5, we consider
the applications to left supported algebras.

1. Preliminaries.

1.1. Notation. For a basic and connected artin algebra A, let modA
denote its category of finitely generated right modules and indA a full
subcategory consisting of exactly one representative from each isomor-
phism class of indecomposable modules. We sometimes consider A as a
category, with objects a complete set {e1, · · · , en} of primitive orthogo-
nal idempotents, and where eiAej is the set of morphisms from ei to ej.
An algebra B is a full subcategory of A if there is an idempotent e ∈ A,
which is a sum of some of the distinguished idempotents ei, such that
B = eAe. It is convex in A if, for any sequence ei = ei0 , ei1 , · · · , eit = ej

of objects of A such that eil+1
A eil �= 0 (with 0 ≤ l < t) and ei, ej ob-

jects of B, all eil are in B.
Given a full subcategory C of modA, we write M ∈ C to indicate

that M is an object in C, and we denote by addC the full subcategory
with objects the direct sums of summands of modules in C. Given
a module M , let pdM stand for its projective dimension. We also
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denote by Γ(modA) the Auslander-Reiten quiver of A and by τA = DTr,
τ−1
A = TrD the Auslander-Reiten translations. For further notions or

facts needed on modA we refer to [7, 22].

1.2. Paths. Let A be an artin algebra and M, N ∈ indA. A path
M � N is a sequence

(∗) M = M0
f1−→ M1

f2−→ · · · −→ Mt−1
ft−→ Mt = N

where the fi are non-zero morphisms and the Mi lie in indA. We call
M a predecessor of N and N a successor of M . A path from M to M
involving at least one non-isomorphism is a cycle. An indecomposable
module M lying on no cycle is called directed . A path (∗) is called
sectional if each fi is irreducible and τAMi+1 �= Mi−1 for all i. A
refinement of (∗) is a path

M = M ′
0

f ′
1−→ M ′

1

f ′
2−→ · · · −→ M ′

t−1

f ′
t−→ M ′

t = N

such that there exists an order-preserving injection σ : {1, · · · , t −
1} −→ {1, · · · , s − 1} with Mi = M ′

σ(i) for all i. A full subcategory C
of indA is convex if, for any path (∗) with M , N ∈ C, all the Mi lie in
C.

2. Ext-injectives in the left part.

2.1. Let A be an artin algebra. The left part LA of modA is the full
subcategory of indA defined by

LA = {M ∈ indA | pd L ≤ 1 for any predecessor L of M}.
An indecomposable module M ∈ LA is called Ext-projective (or Ext-

injective) in addLA if Ext1
A(M,−)|LA

= 0 (or Ext1
A(−, M)|LA

= 0,
respectively), see [9]. While the Ext-projectives in addLA are the pro-
jective modules lying in LA (see [3] (3.1)), the Ext-injectives are more
interesting. Before stating their characterisations we recall that, by [9]
(3.7), M ∈ LA is Ext-injective in addLA if and only if τ−1

A M /∈ LA.

Lemma [5] (3.2), [3] (3.1). Let M ∈ LA.
(a) The following are equivalent :

(i) There exists an indecomposable injective module I such that
HomA(I, M) �= 0.

(ii) There exist an indecomposable injective module I and a path I �
M .

(iii) There exist an indecomposable injective module I and a sectional
path I � M .
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(b) The following conditions are equivalent for M ∈ LA which does
not satisfy conditions (a):

(i) There exists an indecomposable projective module P /∈ LA such
that HomA(P, τ−1

A M) �= 0.
(ii) There exist an indecomposable projective module P /∈ LA and a

path P � τ−1
A M .

(iii) There exist an indecomposable projective module P /∈ LA and a
sectional path P � τ−1

A M .

Letting E1 (or E2) denote the set of all M ∈ LA verifying (a) (or
(b), respectively), and setting E = E1 ∪ E2, then M is Ext-injective in
addLA if and only if M ∈ E. �

2.2. The following lemma will also be useful.

Lemma [3] (3.2) (3.4). (a) Any path of irreducible morphisms in E
is sectional.

(b) Let M ∈ E and M � N with N ∈ LA. Then this path can be
refined to a sectional path and N ∈ E. In particular, E is convex in
indA. �

2.3. The following immediate corollary will be useful in the proof of
our theorem (A).

Corollary All modules in E are directed.

Proof. Assume M = M0 → M1 → · · · → Ms = M is a cycle in indA,
with M ∈ E . By (2.2) above, such a cycle can be refined to a sectional
cycle with all indecomposables lying in E . Now compose two copies
of this cycle to form a larger cycle in E of irreducible morphisms. By
(2.2), this cycle is also sectional, in contradiction to [11, 12] . �

2.4. Theorem (A). Let A be an artin algebra, and Γ be a component
of the Auslander-Reiten quiver of A. If Γ ∩ E �= ∅, then:

(a) Each τA-orbit of Γ ∩ LA intersects E exactly once.
(b) The number of τA-orbits of Γ∩LA equals the number of modules

in Γ ∩ E.
(c) Γ ∩ LA contains no module lying on a cycle between modules in

Γ.
If, on the other hand, Γ ∩ E = ∅ , then either Γ ∈ LA or else

Γ ∩ LA = ∅.
Proof . Assume first that Γ∩E �= ∅, that is, the component Γ contains
an Ext-injective in addLA.
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(a) If Γ contains an injective module, then the statement follows
from [3] (3.5). We may thus assume that Γ contains no injective. But
then Γ∩E1 = ∅, and therefore Γ∩E2 = Γ∩E �= ∅. Thus, by (2.1), there
exist an indecomposable projective P in Γ such that P /∈ LA, a module
M ∈ Γ ∩ E2 and a sectional path P � τ−1

A M . Now let X ∈ Γ ∩ LA.
Since Γ contains no injective, there exists s > 0 such that τ−s

A X is
a successor of P. Hence τ−s

A X /∈ LA. Since X itself lies in LA, there

exists j ≥ 0 such that τ−j
A X ∈ LA but τ−j−1

A X /∈ LA, so that τ−j
A X

is Ext-injective in add LA. This shows that every τA−orbit of Γ ∩ LA

intersects E at least once.
Furthermore, it intersects it only once: if Y and τ−t

A Y (with t > 0)
both belong to Γ ∩ E then, by (2.2), all the modules on the path

Y → ∗ → τ−1
A Y → · · · → τ−t

A Y

belong to LA. In particular, τ−1
A Y ∈ LA and this contradicts the Ext-

injectivity of Y . This completes the proof of (a).
(b) It follows from (a) that the number of τA-orbits in Γ∩LA does not

exceed the cardinality of Γ ∩ E (note that by [3] (3.3), the cardinality
of E is finite and does not exceed the rank of the Grothendieck group
K0(A) of A). Since clearly, any element of Γ∩E belongs to exactly one
τA-orbit in LA, this establishes (b).

(c) Let (∗) M0
f1−→ M1

f2−→ ...
ft−→ Mt = M0

be a cycle with M0 ∈ Γ∩LA and all Mi in Γ. Clearly, all Mi belong to
Γ∩LA. By (2.2) and (2.3), none of the Mi belongs to E and none of the
fi factors through an injective module. Indeed, if fi factors through
the injective I, then some indecomposable summand of I would belong
to LA and thus Mi would lie in E , contradicting (2.3). Then the cycle
(∗) induces a cycle τ−1

A M0 −→ τ−1
A M1 −→ · · · −→ τ−1

A Mt = τ−1
A M0 ,

and every module in this cycle belongs to Γ ∩ LA. We can iterate this
procedure and deduce that, for any m > 0, the module τ−m

A M0 lies on
a cycle in Γ ∩ LA. However, as shown in (a), there exists s > 0 such
that τ−s

A M0 does not belong to LA, and this contradiction proves (c).
Now assume that the component Γ contains no Ext-injective, that

is, Γ ∩ E = ∅. If Γ contains both a module in LA and a module which
is not in LA, then there exists an irreducible morphism X −→ Y with
X ∈ Γ ∩ LA and Y ∈ Γ \ LA. Since Γ ∩ E = ∅, then τ−1

A X ∈ LA. But
this is a contradiction, because Y /∈ LA and HomA(Y, τ−1

A X) �= 0. This
shows that either Γ ∩ LA = ∅ or Γ ⊆ LA, as required. �

We observe that part (c) of the theorem was already proven in [3]
(1.5) under the additional hypothesis that Γ contains no injective mod-
ule.
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2.5. Corollary [3] (1.6). Let A be a representation-finite artin
algebra. Then LA is directed. �

2.6. We have a good description of the Auslander-Reiten components
which completely lie in LA. We need to recall a definition. The endo-
morphism algebra Aλ of the direct sum of all the projective modules
lying in LA is called the left support of A, see [3, 24]. Clearly, Aλ is
(isomorphic to) a full convex subcategory of A, closed under successors,
and any A-module lying in LA has a natural Aλ-module structure. It
is shown in [3] (2.3), [24] (3.1) that Aλ is a product of connected quasi-
tilted algebras, and that LA ⊆ LAλ

. The following corollary generalises
[3] (5.5).

Corollary. Let A be a representation-infinite artin algebra, and Γ
be a component of Γ(modA) lying entirely in LA. Then Γ is one of the
following: a postprojective component, a regular component (directed,
stable tube or of type ZA∞), a semiregular tube without injectives, or
a ray extension of ZA∞.

Proof. Indeed, the component Γ lies entirely in modAλ and thus is
a component of Γ(modAλ). Since LA ⊆ LAλ

, then Γ is a component
of Γ(modAλ) lying in the left part LAλ

. The statement then follows
from the well-known description of the Auslander-Reiten components
of quasi-tilted algebras, as in [13, 18]. �

3. Ext-injectives as sections in Γ(modA).

3.1. We recall the following notion from [20, 23]. Let A be an artin
algebra and Γ be a component of Γ(modA). A full connected subquiver
Σ of Γ is called a section if it satisfies the following conditions:

(S1) Σ contains no oriented cycle.
(S2) Σ intersects each τA-orbit of Γ exactly once.
(S3) Σ is convex in Γ.
(S4) If X → Y is an arrow in Γ with X ∈ Σ, then Y ∈ Σ or

τAY ∈ Σ.
(S5) If X → Y is an arrow in Γ with Y ∈ Σ, then X ∈ Σ or

τ−1
A X ∈ Σ.

As we show next, the intersection of E with a component of Γ(modA)
satisfies several of these conditions (but generally not all).

Proposition. Assume Γ is a component of Γ(modA) which intersects
E. Then Γ satisties (S1), (S3), (S5) above, and the following conditions

(S ′
2) Γ ∩ E intersects each τA-orbit of Γ at most once.
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(S ′
4) If X → Y is an arrow in Γ with X ∈ Γ ∩ E and Y non-

projective, then Y ∈ E or τAY ∈ E.

Proof. (S1) follows from Theorem (A) (c).
(S ′

2) follows from Theorem (A) (a).
(S3) follows from (2.2).
(S ′

4) If Y ∈ LA, then X ∈ E and (2.2) imply Y ∈ E . Otherwise, since
Y is non-projective, there exists an arrow τAY → X. Since X ∈ E ,
then τAY ∈ LA. Since Y = τ−1

A (τAY ) /∈ LA, we get τAY ∈ E .
(S5) If X is injective then, since it lies in LA (because it precedes Y ),

it belongs to E . So assume it is not and consider the arrow Y → τ−1
A X.

If τ−1
A X /∈ LA then, again, X ∈ E while, if τ−1

A X ∈ LA, then Y ∈ E
and (2.2) imply τ−1

A X ∈ E . �
3.2. Example. Let k be a field and A be the radical square zero
k-algebra given by the quiver

2

1 3

��� ���
�

Here, A is representation finite and E consists of the two indecom-
posable projectives P1 and P2 corresponding to the points 1 and 2,
respectively. Clearly, E = {P1, P2} is not a section in Γ(modA) : in-
deed, there is an arrow P1 → P3 with P3 /∈ E and, moreover, E does
not intersect each τA-orbit of Γ(modA).

3.3. We are now in a position to prove our second main theorem.

Theorem (B). Let A be an artin algebra and Γ be a component of
Γ(modA) such that all projectives in Γ belong to LA. If Γ ∩ E �= ∅,
then:

(a) Γ ∩ E is a section in Γ.
(b) Γ is generalised standard.
(c) A/Ann(Γ ∩ E) is a tilted algebra having Γ as a connecting com-

ponent and Γ ∩ E as a complete slice.

Proof.
(a) We start by observing that, if X → P is an arrow in Γ, with

X ∈ E and P projective then, by hypothesis, P ∈ LA. Thus, (2.2)
implies P ∈ E . This shows that (S4) is satisfied. In view of the lemma,
it suffices to show that Γ ∩ E cuts each τA−orbit of Γ.

We claim that if M ∈ E and N ∈ Γ lie in two neighbouring orbits,
then E intersects the τA-orbit of N . This claim and induction imply the
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statement. We assume that E does not intersect the orbit of N and try
to reach a contradiction. There exist n ∈ Z and an arrow τn

AM → X
or X → τn

AM , with X in the τA-orbit of N , where we may suppose,
without loss of generality, that |n| is minimal.

Suppose first that n < 0. If there exists an arrow X → τn
AM then

there exists an arrow τn+1
A M → X, a contradiction to the minimality

of |n|. If, on the other hand, there exists an arrow τn
AM → X, then

there is a path in Γ of the form M → ∗ → τ−1
A M � X. Since M ∈ E

then τ−1
A M /∈ LA. Hence X /∈ LA. In particular, X is not projective,

so there exists an arrow τn+1
A M → τAX, contrary to the minimality of

|n|.
Suppose now that n > 0. If there exists an arrow τn

AM → X, then
there exists an arrow X → τn−1

A M , a contradiction to the minimality of
|n|. If, on the other hand, there exists an arrow X → τn

AM , then there is
a path in Γ of the form X → τn

AM � M . Hence X ∈ LA. In particular,
X is not injective (otherwise, X ∈ E , a contradiction). Hence there
exists an arrow τ−1

A X → τn−1
A M , contrary to the minimality of |n|.

We have thus shown that necessarily n = 0, that is, there is an arrow
M → X or X → M . If M → X then, by (S4), X ∈ E or τAX ∈ E ,
in any case a contradiction. If X → M , then (3.1) yields X ∈ E or
τ−1
A X ∈ E , again a contradiction in any case. This completes the proof

of (a).
(b) By [23], Theorem 2, it suffices to show that for any X, Y ∈ Γ∩E ,

we have HomA(X, τAY ) = 0. But Y ∈ E implies pdY ≤ 1. Therefore
the Ext-injectivity of X in addLA implies that

HomA(X, τAY ) � D Ext1
A(Y, X) = 0.

(c) This follows directly from [20] (2.2). �

3.4. Example. Let k be a field and A be the radical square zero
algebra given by the quiver

1 2 3 4 5

Let Γ be the component containing the injective I1 corresponding to
the point 1. Clearly, I1 ∈ E , so that Γ ∩ E �= ∅. On the other hand,
the only projective lying in Γ is P3, and it belongs to LA. Thus, the
hypotheses of the theorem apply here. Note that A/Ann(Γ∩E) is equal
to the left support Aλ of A, that is, the full convex subcategory with
objects {1, 2, 3}.
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4. Ext-injectives and the left support

4.1. In this section we study the intersection of E with the compo-
nents of the Auslander-Reiten quiver of the left support Aλ of the artin
algebra A.

We observe first that if Y is an Aλ-module and τAY ∈ LA then
τAY = τAλ

Y . In particular, Y is not projective in modAλ. Indeed,
since modAλ is closed under extensions in modA, then the inclusion
LA ⊆ indAλ implies that the almost split sequence in modA ending at
Y is entirely contained in modAλ (See also [7], p. 187). Similarly, if
τ−1
A Y ∈ LA, then τ−1

A Y = τ−1
Aλ

Y , and Y is not an injective Aλ-module.

Lemma. If an indecomposable injective Aλ-module I is a predecessor
of E, then I ∈ E.

Proof. This is clear if I is an indecomposable injective A-module. So
assume it is not. Since I precedes E , then I ∈ LA. By the above
observation we obtain that τ−1

A I /∈ LA, because I is Aλ-injective. This
proves that I ∈ E , as desired. �
4.2. The following is an easy consequence of (3.1) and the results in
[3].

Lemma. Let E = ⊕X∈EX. Then E is a convex partial tilting Aλ-
module . In particular, |E| ≤ rk K0(Aλ).

Proof. Indeed, since LA ⊆ LAλ
(see [3], (2.1)), E ⊆ LA implies

pdAλ
E ≤ 1. Since Ext1

A(E, E) = 0 and Aλ is a full convex subcat-
egory of A, we also have Ext1

Aλ
(E, E) = 0. Finally, the convexity of E

in indAλ follows from its convexity in indA (see (2.2)). �

4.3. theorem C. Let A be an artin algebra and Γ be a component of
the Auslander-Reiten quiver of the left support Aλ of A. If Γ∩ E �= ∅,
then:

(a) Γ ∩ E is a section in Γ.
(b) Γ is directed, and generalised standard.
(c) A/Ann(Γ ∩ E) is a tilted algebra having Γ as a connecting com-

ponent and Γ ∩ E as a complete slice.

Proof. (a) In order to show that Γ ∩ E is a section in Γ, we just have
to check the conditions of the definition in (3.1). Clearly, (S1) follows
from (2.3) and the observation that any cycle in indAλ induces one in
indA. Also, (S3) follows from (4.2). We start by proving (S4) and (S5).
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(S4) Assume X → Y is an arrow in Γ, with X ∈ E . If Y ∈ LA, then
(2.2) implies Y ∈ E . Assume Y /∈ LA. Then, in particular, Y is not a
projective Aλ-module. Since Y is an Aλ-module, it is not a projective
A-module either, so there is an irreducible morphism τAY → X in
modA. Then τAY precedes X ∈ E and therefore lies in LA. Thus, as
we observed in (4.1), τAY = τAλ

Y . Since τ−1
A (τAλ

Y ) = Y /∈ LA, we
conclude that τAλ

Y ∈ E , as required.
(S5) Assume X → Y is an arrow in Γ, with Y ∈ E . If X /∈ E , then

τ−1
A X ∈ LA and, again by the observation in 4.1, we know that X is

not an injective Aλ-module. Hence τ−1
Aλ

X = τ−1
A X ∈ LA. Since there

is an arrow Y → τ−1
Aλ

X, we conclude that τ−1
Aλ

X ∈ E , as required.
There remains to prove (S2), that is, that E intersects each orbit of

Γ exactly once. We use the same technique as in the proof of Theo-
rem (B). Clearly, the situation is different and so the arguments vary
slightly.

We start by proving that E intersects each orbit of Γ at least once.
We claim that if M ∈ E and N ∈ Γ lie in two neighbouring orbits, then
E intersects the τAλ

-orbit of N . This claim and induction imply the
statement. We assume that E does not intersect the orbit of N and try
to reach a contradiction. There exist n ∈ Z and an arrow τn

Aλ
M → X

or X → τn
Aλ

M , with X in the τAλ
-orbit of N , where we may suppose,

without loss of generality, that |n| is minimal.
Suppose first that n < 0. If there exists an arrow X → τn

Aλ
M then

there exists an arrow τn+1
Aλ

M → X, a contradiction to the minimality
of |n|. If, on the other hand, there exists an arrow τn

Aλ
M → X, then

there is a path in Γ of the form M → ∗ → τ−1
Aλ

M � X. Now, M ∈ E
implies τ−1

A M /∈ LA. By [7] p. 186, there exists an epimorphism
τ−1
A M → τ−1

Aλ
M . Hence τ−1

Aλ
M /∈ LA and so X /∈ LA. In particular, X

is not a projective Aλ-module, so there exists an arrow τn+1
Aλ

M → τAλ
X,

contrary to the minimality of |n|.
Suppose now that n > 0. If there exists an arrow τn

Aλ
M → X, then

there exists an arrow X → τn−1
Aλ

M , a contradiction to the minimality of
|n|. If, on the other hand, there exists an arrow X → τn

Aλ
M , then there

is a path in Γ of the form X → τn
Aλ

M � M , hence X is a predecessor
of E . Since X /∈ E , by hypothesis, then we know by (4.1) that X is
not injective in modAλ. Hence there exists an arrow τ−1

Aλ
X → τn−1

Aλ
M ,

contrary to the minimality of |n|.
This shows that necessarily n = 0, that is, there is an arrow M → X

or X → M . If M → X, then (S4) yields X ∈ E or τAλ
X ∈ E , in any

case a contradiction. If X → M , then (S5) yields X ∈ E or τ−1
Aλ

X ∈ E ,
again a contradiction in any case.
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We proved that E intersects each τAλ
-orbit of Γ. Suppose now that

M ∈ E and τ−t
Aλ

M ∈ E with t > 0. Then the epimorphism τ−1
A M →

τ−1
Aλ

M yields a path τ−1
A M → τ−1

Aλ
M � τ−t

Aλ
M , so that τ−1

A M ∈ LA.
This is a contradiction because M ∈ E . Thus (b) is proven.

(b) Since, by [13], directed components of quasi-tilted algebras are
postprojective, preinjective or connecting, thus always generalised stan-
dard (see [20, 23]), it suffices to show that Γ is directed. If this is not
the case then, by [18] (4.3), Γ is a stable tube, of type ZA∞ or obtained
from one of these by finitely many ray or coray insertions.

We first notice that by (2.3), any E0 ∈ Γ∩E is directed in indA, hence
in indAλ. In particular, Γ is neither a stable tube, nor of type ZA∞.
Therefore Γ is obtained from one of these by ray or coray insertions.

Assume first that Γ is an inserted tube or component of type ZA∞,
and let E0 ∈ Γ ∩ E . We claim that E0 ∈ E2. Indeed, if this is
not the case, then there exists an injective A-module I such that
HomA(I, E0) �= 0, by (2.1). However, I ∈ LA implies that I is an
Aλ-module, so that I is an injective Aλ-module. But this is impossible
because no injective Aλ-module precedes an inserted tube or component
of type ZA∞. This establishes our claim. Thus, there exists an inde-
composable projective module P /∈ LA such that HomA(P, τ−1

A E0) �= 0,
by (2.1). On the other hand, τ−1

Aλ
E0 ∈ Γ, therefore there exist a non-

directed projective P ′ ∈ Γ and a path τ−1
Aλ

E0 � P ′ in Γ. This is clear
if Γ is an inserted tube, and follows from [10, 17] if Γ is an inserted
component of type ZA∞. Hence there exists a path P → τ−1

A E0 →
τ−1
Aλ

E0 � P ′ in indA. Since P /∈ LA, then P ′ /∈ LA. However, P ′ ∈ Γ,
hence P ′ is a projective A-module lying in LA, a contradiction.

Assume next that Γ is a co-inserted tube or component of type ZA∞,
and let E0 ∈ Γ ∩ E . Then, among the predecessors of E0 lies a cycle
M0 → M1 → · · ·Mt = M0 , with all Mi ∈ Γ. Since all Mi precede E0

and, by hypothesis, E0 ∈ E ⊆ LA ⊆ LAλ
, then this cycle lies in LAλ

.
This contradicts Theorem (A) (c) (also [3] (1.5) (b)).

(c) This follows directly from [20] (2.2). �

4.4. Example. It is important to underline that, while the compo-
nents of Γ(mod Aλ) which cut E are directed, the same does not hold
for the components of Γ(modA). Indeed, let k be a field and A be given
by the quiver

1 2 3 4 5δ 

β 

γ α ε 
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bound by βδ = 0, γδ = 0 and αβ = 0. The simple projective S5

corresponding to the point 5 lies in an inserted tube Γ, it is a directed
module and also an Ext-injective in addLA, that is, S5 ∈ Γ ∩ E . On
the other hand, Γ is clearly not directed. Observe that we have an
irreducible morphism S5 → P4 and P4 /∈ LA (compare with (3.1)).

4.5. Lemma. Let Γ be a component of Γ(modAλ).
(a) If Γ is a non-connecting postprojective component, then Γ∩E = ∅.
(b) If Γ is a non-connecting preinjective component, then Γ∩ E = ∅.
(c) If Γ intersects E, then Γ is connecting.
(d) If a connected component B of Aλ is not tilted, then modB∩E =

∅.
Proof. (a) Assume that Γ is a non-connecting postprojective compo-
nent of Γ(modAλ) such that Γ∩E �= ∅. Let B be the (unique) connected
component of Aλ such that Γ consists of B-modules. We claim that Γ
does not contain every indecomposable projective B−module. Indeed,
if this is not the case, then the number of τB−orbits in Γ coincides
with rk K0(B). By Theorem (C) (a), E intersects each τB−orbit of Γ
exactly once. Hence Γ∩E has rk K0(B) elements. From this and (4.2)
we deduce that E0 =

⊕
X∈Γ∩E X is a convex tilting B-module. By [6],

(2.1), Γ ∩ E is a complete slice in modB. But this is a contradiction,
because Γ was assumed to be non-connecting. This establishes our
claim.

Now, let Q /∈ Γ be an indecomposable projective B−module. Since
B is a connected algebra, there exists a walk of projective B−modules
P = P0 − P1 − ... − Ps = Q, with P ∈ Γ. Thus there exists i such that
Pi ∈ Γ and Pi+1 /∈ Γ. Since Γ does not receive morphisms from other
components of Γ(modB), then HomB(Pi, Pi+1) �= 0. By [21] (2.1) there
exists, for each s > 0, a path

Pi = M0
f1−→ M1

f2−→ M2 −→ · · · fs−→ Ms = L
f−→ Pi+1

with fi irreducible. Since s is as large as we want, and E intersects
each τB−orbit of Γ, we may choose s so that L is a proper successor
of Γ ∩ E . On the other hand, Pi+1 is a projective B−module, hence a
projective A−module lying in LA. Thus L ∈ LA. Since L is a successor
of E , by (2.2), L ∈ E , a contradiction which proves (a).

(b) Assume that Γ is a non-connecting preinjective component of
Γ(modAλ) such that Γ ∩ E �= ∅. Using the same reasoning as in (a),
there exist M ∈ Γ, which is a proper predecessor of Γ ∩ E , and an
indecomposable injective Aλ−module I /∈ Γ such that HomAλ

(I, M) �=
0. Since I precedes E then, by (4.1), I ∈ E . The convexity of E yields
the contradiction M ∈ E . This establishes (b).
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(c) It is shown in [3, 24] that every connected component of Aλ is
quasi-tilted. By Theorem (C), E intersects only directed components
of Γ(modAλ). Furthermore, directed components of quasi-tilted alge-
bras are necessarily postprojective, preinjective or connecting. Now
the result follows from (a) and (b).

(d) Is a consequence of (c). �

4.6. Proposition Let B be a connected component of the left support
Aλ, such that modB ∩ E �= ∅. Then:

(a) B is a tilted algebra and modB ∩E is a complete slice in modB.
(b) Let Γ be a component of Γ(modAλ) such that Γ ∩ E �= ∅. Then

B = Aλ /Ann(Γ ∩ E).

Proof. (a) Let Γ be a component of Γ(modAλ) such that Γ∩E �= ∅. By
(c) of the previous lemma, we know that Γ is a connecting component.
Since, on the other hand, E intersects each τB-orbit of Γ exactly once
(by Theorem (C) (a)), we have |Γ ∩ E| = rkK0(B). But by (4.2),
|Γ(modB)∩E| ≤ rkK0(B). Hence Γ∩E = Γ(modB)∩E and the direct
sum of the modules in Γ(modB)∩E is a convex tilting B-module. The
result then follows from [6](2.1).

(b) We need to prove that AnnAλ
(Γ ∩ E) is the product of the con-

nected components of Aλ different from B. Clearly AnnAλ
(Γ∩ E) con-

tains this product. To prove the other inclusion it is enough to see that
AnnB(Γ ∩ E) = 0. But this is again a consequence of (a), since Γ ∩ E
is faithful in modB. �

5. Left supported algebras.

5.1. An artin algebra A is left supported if addLA is contravariantly
finite in modA, in the sense of [8]. It is shown in [3] (5.1) that an artin
algebra A is left supported if and only if each connected component of
Aλ is tilted and the restriction of E to this component is a complete
slice. Several other characterisations of left supported algebras are
given in [1, 3]. In particular, it is shown in [1] that A is left supported
if and only if LA = Pred E , where Pred E denotes the full subcategory
of indA having as objects all the M ∈ indA such that there exists
E0 ∈ E and a path M � E0. Our objective in this section is to give
another proof of this theorem, using the results above. Our proof also
yields a new characterisation of left supported algebras.

Theorem. Let A be an artin algebra. Then the following conditions
are equivalent:

(a) A is left supported.
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(b) LA = Pred E .
(c) Every projective A−module which belongs to LA is a predecessor

of E .

Proof. (a) implies (b). Assume that A is left supported. By [3](4.2),
LA is cogenerated by the direct sum of the modules in E . In particular,
LA ⊆ Pred E . Since the reverse inclusion is obvious, this completes the
proof of (a) implies (b).

Clearly (b) implies (c). To prove that (c) implies (a) we assume that
every projective A−module which belongs to LA is a predecessor of E .
Let B be a connected component of Aλ and P be an indecomposable
projective B-module. Since P ∈ LA, there exist E0 ∈ E and a path
P � E0 in LA, hence in modB. Therefore, modB ∩ E �= ∅. By (4.6),
B is a tilted algebra and modB∩E is a complete slice in modB. Hence
A is left supported. �
5.2. We end this paper with a short proof of a result by D. Smith.

Theorem.([25] (3.8)) Let A be a quasi-tilted algebra. Then A is left
supported if and only if A is tilted having a complete slice containing
an injective module.

Proof. Since A is quasi-tilted, then A = Aλ. Assume that A is left
supported. Then LA = Pred E . By (5.1), A is tilted and E is a com-
plete slice in Γ(modA). Furthermore, since A is quasi-tilted, then all
projective A-modules lie in LA, so that E2 = ∅ and E = E1. Thus E
must contain an injective module.

Conversely, if A has a complete slice containing an injective, then
there exists a complete slice Σ having all its sources injective. By
(2.1), Σ ⊆ E . Since |Σ| = rkK0(A), it follows from [3] (3.3) that A is
left supported. �
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