
THE LEFT AND THE RIGHT PARTS OF A MODULE
CATEGORY
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Abstract. In this paper, we study, for an artin algebra, the class
LA (and RA) which is a full subcategory of the category modA of
finitely generated A-modules, and which consists of all indecom-
posable A-modules whose predecessors (and successors) have pro-
jective dimension (and injective dimension, respectively) at most
one. We consider quotient algebras of A, which contain the infor-
mation on these classes, then define and characterize those algebras
for which the class is LA is contravariantly finite (and RA is co-
variantly finite, respectively).

While defining the class of quasi-tilted algebras in [17], Happel, Re-
iten and Smalø have introduced two classes of modules which turned
out to be very useful in the representation theory of algebras. Let A be
an artin algebra, and modA denote the category of finitely generated
right A-modules, then the class LA (or RA) is the full subcategory of
modA consisting of all indecomposable A-modules whose predecessors
(or successors) have projective dimension (or injective dimension, re-
spectively) at most one. These classes, respectively called the left part
and the right part of the module category modA, were heavily investi-
gated and applied, see, for instance [2, 17, 13, 14, 15, 3, 5, 27, 22, 12, 20].

Our objective in this paper is to give a reasonably good description
of these classes. Following Skowroński [27] (3.1), we consider, for an
arbitrary artin algebra A, an algebra Aλ, which we call the left support
of A, and such that LA embeds nicely inside modAλ. It turns out
that the left support algebra is always a direct product of quasi-tilted
algebras.

Returning to our original aim, and motivated by the belief that a
class which behaves well is likely to afford a good description, we con-
sider those algebras A such that the full subcategory addLA of modA
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having as objects the direct sums of modules in LA is contravariantly
finite (in the sense of Auslander and Smalø [9]) and call such algebras
left supported. Right supported algebras are defined dually by requiring
that addRA be covariantly finite. Contravariantly and covariantly fi-
nite subcategories have been very useful in the representation theory
of algebras, see, for instance, [8, 9, 6]. This paper is mainly devoted to
the study of (left) supported algebras.

As we shall see, there exist many classes of algebras which are left
supported such as, for instance, the laura algebras of [2, 3, 5, 22, 27]
as well as many classes of tilted algebras.

We now state our results. We start with an arbitrary artin algebra
A, and describe explicitly a module E, which we prove to be the direct
sum of a complete set of representatives of the isomorphism classes of
indecomposable Ext-injectives in the subcategory addLA. If we add to
this module the direct sum of a complete set of representatives of the
isomorphism classes of the indecomposable projectives not lying in LA,
we get a partial tilting module T = E ⊕ F . This leads us to our first
main theorem.

Theorem (A). Let A be an artin algebra. The following conditions
are equivalent:

(a) A is left supported.
(b) addLA coincides with the class CogenE of the A-modules cogen-

erated by E.
(c) T = E ⊕ F is a tilting module.

The module T above generalizes the canonical tilting module con-
structed for shod algebras in [12] and thus our theorem can be read as
a generalization of the results in [12].

We next return to our original aim, namely to give a good description
of the modules and the irreducible morphisms in LA, and achieve this
as follows: let Aλ be the left support of A. Then E has a natural
Aλ-module structure, and we have.

Theorem (B). Let A be an artin algebra. Then A is left supported if
and only if each connected component of Aλ is a tilted algebra and the
restriction of E to this component is a slice module.

This paper is organized as follows. After a brief preliminary section,
we look at the left support of an artin algebra in Section 2, then we
study the indecomposable Ext-injectives in LA in Section 3. The next
two sections are respectively devoted to proving our two theorems.
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1. Preliminaries

1.1. Notation. Throughout this paper, all our algebras are artin al-
gebras. For an algebra A, we denote by modA its category of finitely
generated right A-modules. For a full subcategory C of modA, we de-
note by indC a full subcategory of modA having as objects a full set of
representatives of the isomorphism classes of the indecomposable ob-
jects in C, and we abbreviate ind(modA) as indA. Also, we denote by
addC the full subcategory of modA having as objects the direct sums
of indecomposable summands of objects in C, and, if M is a module,
we abbreviate add{M} as addM . We denote by rk(K0(A)) the rank
of the Grothendieck group of A, which equals the number of isomor-
phism classes of simple A-modules. If M is an A-module, we denote
by pdAM (or idAM) its projective dimension (or injective dimension,
respectively). Also, we denote by gl.dim.A the global dimension of A.
An algebra B is called a full subcategory of A if there exists an idem-
potent e ∈ A such that B = eAe. It is called convex in A if, whenever
there exists a sequence ei = ei0 , ei1 , · · · , eit = ej of primitive orthogonal
idempotents such that eil+1

Aeil �= 0 for 0 ≤ l < t, and eei = ei, eej = ej,
then eeil = eil , for each l. Finally, A is called triangular if there exists
no sequence of primitive orthogonal idempotents ei0 , ei1 , · · · , eit = ei0

such that eil+1
Aeil �= 0 for 0 ≤ l < t.

For further definitions or facts needed on modA, its Auslander-Reiten
quiver Γ(modA), and its Auslander-Reiten translations τA = DTr and
τ−1
A = TrD, we refer the reader to [7, 23]. For tilting theory, we refer

to [1].

1.2. Paths. Given two modules M,N in indA, a path from M to N of
length t in indA is a sequence

(∗) M = M0
f1−→ M1 −→ · · · −→ Mt−1

ft−→ Mt = N

(t ≥ 0) where all Mi lie in indA, and all fi are non-zero. We write in
this case M � N , and say that M is a predecessor of N , or that N is a
successor of M . The path (∗) is called a path of irreducible morphims
if each fi is irreducible. A path (∗) is called a cycle if M ∼= N , at least
one of the fi is not an isomorphism, and t > 0. An indecomposable
module M is called directed provided it lies on no cycle in indA, and
a full subcategory C of modA is called directed if each object in C is
directed. A full subcategory C of modA is called convex if, for any path
(∗) from M to N in indA, where M and N lie in C, all the Mi lie in
C as well. A path (∗) of irreducible morphisms is called sectional if
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τAMi+1 �= Mi−1 for all 1 < i < t. A refinement of (∗) is a path

M = M ′
0

f ′
1−→ M ′

1

f ′
2−→ · · ·

f ′
s−1−→ M ′

s−1

f ′
s−→ M ′

s = N

in indA with s ≥ t such that there exists an order-preserving function
σ : {1, · · · , t − 1} −→ {1, · · · , s − 1} such that Mi

∼= M ′
σ(i) for each i

with 1 ≤ i ≤ t − 1. We need the following result.

Proposition. [2](1.4) Let Γ be a component of Γ(modA) and M be
an indecomposable module lying in a cycle in Γ.

(a) If Γ contains projective modules, then there is a path of irre-
ducible morphisms from M to a projective.

(b) If Γ contains injective modules, then there is a path of irre-
ducible morphisms from an injective to M .

1.3. The subcategories LA and RA. For an algebra A, we denote
by LA and RA the following subcategories of indA:

LA = {X ∈ indA : pdAY ≤ 1 for each predecessor Y of X}

RA = {X ∈ indA : idAZ ≤ 1 for each successor Z of X}
Clearly, LA is closed under predecessors, while RA is closed under
successors. These subcategories played an important rôle in the study
of the quasi-tilted algebras [17], the shod algebras [13], the weakly shod
algebras [14, 15] and the laura algebras [2, 3, 5, 27, 22].

Lemma. [2](1.5) Let A be an artin algebra.

(a) If P is an indecomposable projective A-module, then there are
at most finitely many modules M ∈ RA such that there exists
a path M � P . Moreover, any such path is refinable to a
path of irreducible morphisms, and any such path of irreducible
morphisms is sectional.

(b) If I is an indecomposable injective A-module, then there are at
most finitely many modules N ∈ LA such that there exists a path
I � N . Moreover, any such path is refinable to a path of irre-
ducible morphisms, and any such path of irreducible morphisms
is sectional.

1.4. Corollary. [2](1.6) Let A be an artin algebra.

(a) RA consists of the modules M ∈ indA such that, if there exists
a path from M to an indecomposable projective module, then
this path can be refined to a path of irreducible morphisms, and
any such path of irreducible morphisms is sectional.
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(b) LA consists of the modules N ∈ indA such that, if there exists
a path from an indecomposable injective module to N , then this
path can be refined to a path of irreducible morphisms, and any
such path of irreducible morphisms is sectional.

1.5. Lemma. Let A be an artin algebra, and Γ be a component of
Γ(modA).

(a) If Γ contains projective modules, then RA ∩ Γ is directed.
(b) If Γ contains injective modules, then LA ∩ Γ is directed.

Proof. (a) Assume M ∈ RA ∩ Γ, and that M = M0 −→ · · · −→ Mt =
M is a cycle. By (1.2), there exists a path M = N0 −→ · · · −→
Ns = P , where P is projective. By (1.3)(a), the composed path M =
M0 −→ · · · −→ Mt = M = N0 −→ · · · −→ Ns = P is refinable to
a sectional path of irreducible morphisms. But this contradicts the
non-sectionality of cycles [10, 11, 18]. �

1.6. Corollary. Let A be a representation-finite artin algebra. Then
LA and RA are directed.

2. The left and right support algebras.

2.1. Proposition. Let A =

[
B 0
M C

]
be an artin algebra written

in triangular matrix form. Then LA ⊆ LB if and only if, for each
primitive idempotent ec ∈ C, the corresponding projective A-module Pc

does not lie in LA.

Proof. Sufficiency. We first observe that LA ⊆ indB. Indeed, if
X ∈ LA and does not lie in indB, then there exists an idempotent
ec ∈ C such that there exists a non-zero morphism Pc −→ X. How-
ever, Pc /∈ LA and X ∈ LA contradict the fact that LA is closed under
predecessors.
Let now X ∈ LA. We claim that the full subcategories PredAX and
PredBX consisting of the predecessors of X in modA and modB re-
spectively, coincide. It is clear that PredBX ⊆ PredAX. Let Y ∈
PredAX, then there exists a path Y = Y0 −→ Y1 −→ · · · −→ Yt = X
in indA. However, X ∈ LA, hence each Yi ∈ LA. Since LA ⊆ indB,
this means that each Yi is a B-module. Therefore, Y ∈ PredBX. This
establishes our claim.
In order to show that X ∈ LB, we assume that Y is a predecessor of X.
Since Y precedes X in LA, there exists a minimal projective resolution
in modA

0 −→ P1 −→ P0 −→ Y −→ 0
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Since Y ∈ LA, then P0, P1 ∈ addLA. Therefore P0, P1 are projective
B-modules. Hence pdYB ≤ 1 and X ∈ LB. Thus, LA ⊆ LB.

Necessity. Let ec ∈ C be a primitive idempotent such that Pc ∈ LA.
Then LA ⊆ LB yields Pc ∈ LB and in particular is a B-module, an
absurdity. �
2.2. Definition. (see [27] (3.1)) Let A be an artin algebra, and P
denote the direct sum of a full set of representatives of the isomorphism
classes of indecomposable projectives lying in LA. The algebra Aλ =
EndPA is called the left support of A. We define dually the right support
Aρ of A.

Remarks. (a) Aλ is a full convex subcategory of A closed under
successors. Indeed, if Px ∈ LA is projective and Px0 −→ Px1 −→
· · · −→ Pxt = Px is a path in indA between projectives, then Pxi

∈ LA

for each i.

(b) Any indecomposable in LA has a canonical Aλ-module structure
(that is, LA ⊆ indAλ): indeed, if X ∈ LA and Px is an indecomposable
projective module such that HomA(Px, X) �= 0, then Px ∈ LA.

(c) In general, the subcategories Aλ and Aρ may intersect: if A is the
radical square zero algebra given by the quiver

� �

�

���������
1

2

3

then Aλ is the full convex subcategory generated by the points {1, 2}
while Aρ is generated by {2, 3}.
(d) The left support of a tilted (or, more generally, of a laura but not
quasi-tilted) algebra does not coincide with the left end algebra (see
[19] and [2], respectively): indeed, if A is tilted, then A = Aλ = Aρ.

2.3. Corollary. ([27](3.1)) Let A be an artin algebra. Then Aλ and
Aρ are direct products of connected quasi-tilted algebras.

Proof. It follows from Remark (2.2)(a) that A can be written in trian-
gular matrix form

A =

[
Aλ 0
M C

]

By (2.1), LA ⊆ LAλ
. Observe also that the projective Aλ-modules co-

incide with the projective A-modules. Thus, if P is an indecomposable
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Aλ-module, we have P ∈ LAλ
. Applying [17](II.1.14) yields that each

connected component of Aλ is quasi-tilted. �

2.4. Theorem. Let A be a triangular artin algebra. Then there exists
a filtration A0 ⊆ A1 ⊆ · · · ⊆ At = A, with A0 a direct product of
connected quasi-tilted algebras, and modules Mi in modAi such that
Ai+1 = Ai[Mi] and Mi /∈ addLAi+1

, for each i such that 0 ≤ i < t.

Proof. If A is quasitilted, then A = A0 = Aλ. Thus, suppose it is not,
and let Px /∈ LA be indecomposable projective. Since A is triangular,
we may assume that Px has no projective successor. Hence we can
write A = A′[M ]. In particular, M /∈ addLA. �

Remark. It follows from the proof of the theorem that A0 = Aλ and
that LA0 ⊆ LA1 ⊆ · · · ⊆ LA.

3. Ext-injectives in LA.

3.1. Let A be an artin algebra. We define two subclasses of LA:

- E1 = {M ∈ LA : there exists an injective I in indA and a path
I � M}.

- E2 = {M ∈ LA \ E1 : there exists a projective P in indA \ LA

and a sectional path P � τ−1
A M}.

The definition of E2 makes sense: if M ∈ LA \ E1, then M is not
injective, so τ−1

A M exists. Finally, we set E = E1 ∪ E2.
We recall that, if C is a full subcategory of modA, closed under

extensions, then an indecomposable M in C is called an Ext-projective
(or Ext-injective) in C if Ext1

A(M,−)|C = 0 ( or Ext1
A(−,M)|C = 0,

respectively). It is shown in [8](3.4) that, if C is a torsion-free class,
then M is Ext-injective in C if and only if τ−1

A M is not in C. Finally,
note that, since LA is closed under predecessors, addLA is a torsion-free
class.

Theorem. Let A be an artin algebra, and M be an indecomposable
A-module.

(a) M is Ext-projective in addLA if and only if M is projective and
lies in LA.

(b) M is Ext-injective in addLA if and only if M ∈ E.

Proof. (a) Assume M to be Ext-projective in addLA and let f : P −→
M be a projective cover of M . Since LA is closed under predecessors,
then Kerf ∈ addLA, so that Ext1

A(M, Kerf) = 0, and the exact se-

quence 0 −→Kerf −→ P
f−→ M −→ 0 splits. Thus, M is projective.
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Since the converse is clear, the statement is proved.

(b) Necessity. Clearly, M ∈ E implies that M ∈ LA. If M ∈ E1, then
either M is injective (in which case it is automatically Ext-injective
in LA) or, else, there exist an indecomposable injective I and a path
I � M −→ ∗ −→ τ−1

A M in indA. This path is not sectional, hence,
by (1.4), τ−1

A M /∈ LA. If M ∈ E2, there exists a path P � τ−1
A M with

P /∈ LA projective. Hence, τ−1
A M /∈ LA.

Sufficiency. Assume M /∈ E1 to be Ext-injective in addLA. We must
show that M ∈ E2. Since τ−1

A M /∈ LA, then τ−1
A M has a predecessor L

such that pdAL ≥ 2.
Let N1 = τ−1

A M . If pdAN1 ≥ 2, then

HomA(D(A),M) ∼= HomA(D(A), τAN1) �= 0

gives M ∈ E1, a contradiction. Thus, pdAN1 ≤ 1 and there exists a
path L � N1, which factors through one of the middle terms N2 of the
almost split sequence ending with N1.
Since L precedes N2, then N2 /∈ LA. We claim that pdAN2 ≤ 1. Indeed,
if pdAN2 ≥ 2, then HomA(D(A), τAN2) �= 0 gives an injective I and
a path I � τAN2 −→ M in indA, so M ∈ E1, a contradiction which
proves our claim.
Now, if N2 is projective, then M ∈ E2 and we are done. We may thus
assume that N2 is not projective.
Inductively, if N1, · · · , Ni−1 are not projective, we construct in this way
a path

(∗) Ni −→ · · · −→ N2 −→ N1 = τ−1
A M

in indA, with N1, · · · , Ni /∈ LA and pdANj ≤ 1 for all j. We now show
that this path is sectional: indeed, if this is not the case, then there
exists a least index j ≤ i − 1 such that Nj −→ · · · −→ N1 is sectional,
while Nj+1 = τANj−1. But, in this case, we get a path

Nj+1 = τANj−1 −→ · · · −→ τAN2 −→ M = τAN1

in indA, and this yields a contradiction, since M ∈ LA would then
imply Nj+1 ∈ LA.
It follows from [10, 11, 18] and from the sectionality of the path (∗)
that the modules Nj are pairwise non-isomorphic.
Assume now that i ≥ 1+ rk(K0(A)). By [26], there exist p, q such that
HomA(Np, τANq) �= 0. We then get, as above, Np ∈ LA, a contradiction.
Therefore i ≤ rk(K0(A)). This shows that the above construction stops
after at most rk(K0(A)) steps. Thus, there is an index j such that Nj

is a projective module. Since Nj /∈ LA, this implies M ∈ E2. �
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3.2. Corollary. Any path of irreducible morphisms in E is sec-
tional.

Proof. Assume M0 −→ M1 −→ · · · −→ Mt is a path of irreducible
morphisms, with Mi ∈ E for all i. If Mi+1 = τ−1

A Mi−1, then since we
have τ−1

A Mi−1 /∈ LA because of the Ext-injectivity of Mi−1, the fact
that Mi+1 ∈ LA yields a contradiction. �

3.3. We now denote by E the direct sum of all indecomposable A-
modules lying in E , by F the direct sum of a full set of representatives
of the isomorphism classes of indecomposable projective A-modules not
lying in LA, and we set T = E ⊕ F .

Lemma. With the above notations, T = E ⊕ F is a partial tilting
A-module. It is a tilting module if and only if the number of indecom-
posable summands of E equals the number of isomorphism classes of
indecomposable projectives lying in LA.

Proof. Clearly, pdAT ≤ 1. It follows from the Ext-injectivity of E that
Ext1

A(E,E) = 0. In order to prove that T is a partial tilting module
there only remains to show that Ext1

A(E,F ) = 0. Since F /∈ addLA,
we have, for every M ∈ LA, that τAM ∈ LA. Hence

Ext1
A(M,F ) ∼= D HomA(F, τAM) = 0

because pdAM ≤ 1 (see [23]). This implies our statement.
Now, the partial tilting module T is a tilting module if and only if
the number of isomorphism classes of its summands equals the number
of isomorphism classes of indecomposable projective A-modules. The
second statement follows at once. �

3.4. Proposition. Assume that M ∈ E and that there exists a path
M � N , with N ∈ LA. Then this path can be refined to a sectional
path of irreducible morphisms and N ∈ E. In particular, E is convex
in modA.

Proof. There are two cases to consider. Assume first that M ∈ E1.
Hence, there exist an injective I and a path I � M in indA. Since
N ∈ LA, it follows from (1.4) that the path I � M � N is refinable
to a sectional path of irreducible morphisms. Hence N ∈ E1 ⊆ E .
Assume now M ∈ E2. If the given path

(∗) M = M0
f1−→ M1 −→ · · · ft−→ Mt = N

factors through an indecomposable injective I, then the subpath I � N
lies in E1. We may thus assume that none of the Mi is injective and
that none of the morphisms fi factors through an injective. Hence, for
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each i, HomA(Mi,Mi+1) = HomA(Mi,Mi+1). The Auslander-Reiten
formula then yields

HomA(τ−1
A Mi, τ

−1
A Mi+1) ∼= HomA(Mi,Mi+1) �= 0

This yields a path

(∗∗) τ−1
A M0 −→ τ−1

A M1 −→ · · · −→ τ−1
A Mt = τ−1

A N

in indA. Now, all modules on (∗) lie in LA (because N does), while no
module on (∗∗) belongs to LA (because all are successors of a projective
not in LA). Therefore, all Mi are Ext-injective in addLA, that is, all
belong to E . This shows, in particular, that E is convex in modA.
In order to show that the path (∗) can be refined to a sectional path of
irreducible morphisms, it suffices, in view of (3.2), to show that none
of the fi lies in the infinite radical rad∞(modA) of the category modA.
However, if fi ∈ rad∞

A (Mi−1,Mi) then, for any s ≥ 1, the given path
can be refined to a path

M � Mi−1 = L0 −→ L1 −→ · · · −→ Ls = Mi � N

in indA. The above reasoning then gives that all Lj belong to E , and
this contradicts the fact that, by (3.3), the number of indecomposables
in E does not exceed rk(K0(A)). �

3.5. Corollary. Assume that Γ is a component of Γ(modA) which
contains an injective, then the number of elements of E which lie in Γ
is equal to the number of τA-orbits in LA ∩ Γ.

Proof. We recall from (1.5) that LA∩Γ is directed. We first claim that,
if M ∈ LA ∩ Γ, then there exists m > 0 such that τ−m

A M ∈ E . Assume
that, for all m > 0, we have τ−m

A M ∈ LA. The directedness of LA ∩ Γ
implies that M is right stable. We know that Γ contains an injective
hence a walk from this injective to the τA-orbit of M . Among all such
injectives, choose one, denoted by I, such that there is a walk of least
length between I and the orbit of M . This minimality implies that
all modules on this walk except I are right stable. Hence there exists
m > 0 such that there is a path from I to τ−m

A M . Since τ−m
A M ∈ LA,

then I ∈ LA. Hence I ∈ E . By (3.4), τ−m
A M ∈ E , and this is a

contradiction, since m can be taken arbitrarily large. This shows that
there exists m > 0 such that τ−m

A M ∈ LA but τ−m−1
A M /∈ LA. But

then τ−m
A M ∈ E . This establishes our claim (see also [15](3.3)).

We have proven that each τA-orbit in LA∩Γ intersects E . Furthermore
it intersects it only once: if M and τ−t

A M (with t > 0) belong to E
then, by (3.4), all the modules on the path

M −→ ∗ −→ τ−1
A M −→ · · · −→ τ−t

A M
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belong to LA, and τ−1
A M ∈ LA contradicts the Ext-injectivity of M .

Therefore, the number of τA-orbits in LA ∩ Γ does not exceed the car-
dinality of E ∩Γ. Since, clearly, any element in E ∩Γ belongs to exactly
one τA-orbit in LA ∩ Γ, the statement follows. �

4. Left supported algebras

4.1. We recall that a tilting A-module T induces a torsion pair
(T (T ),F(T )) in modA, where T (T ) = GenT is the class of all A-
modules generated by T , and F(T ) = {M ∈ modA : HomA(T,M) =
0}, see [1].

Lemma. With the notations of (3.2), assume that T = E⊕F is a tilting
module. Then F(T ) = add(LA \ E) and T (T ) = add(indA \ F(T )).

Proof. Assume M ∈ LA \ E , we claim that M ∈ F(T ). If this is not
the case, HomA(T,M) �= 0. Since F /∈ LA, we have HomA(F,M) =
0. Consequently, there exists an indecomposable summand E0 of E
such that HomA(E0,M) �= 0 and, since M ∈ LA \ E , this yields a
contradiction to (3.4). This shows that LA \E ⊂ F(T ). Conversely, let
N be an indecomposable A-module in F(T ). Then N is cogenerated
by τAT = τAE (see [1](2.4)). Hence there exist an indecomposable non-
projective summand E0 of E and a path N −→ τAE0 −→ ∗ −→ E0.
Since E0 ∈ LA, then N ∈ LA. On the other hand, N /∈ E since E ⊂
addT ⊂ T (T ). This shows the first equality, and the second follows by
maximality (because LA \ E is closed under predecessors). �

4.2. We recall that a full additive subcategory C of modA is called
contravariantly finite if, for any A-module M , there exists a morphism
fC : MC −→ M such that MC ∈ C and, if f : N −→ M is any morphism
with N ∈ C, then there exists g : N −→ MC such that f = fCg (see
[9]). The dual notion is that of covariantly finite. We observe that,
since the class LA is closed under predecessors, then addLA is trivially
covariantly finite.

Definition. An artin algebra A is called left supported provided the
class addLA is contravariantly finite in modA. We define dually right
supported algebras.

Obviously, any representation-finite algebra is both left and right
supported. We defer to later further remarks and examples, we wish
to prove first our main theorem of this section.

Theorem. Let A be an artin algebra. The following conditions are
equivalent:
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(a) A is left supported.
(b) addLA = CogenE.
(c) T = E ⊕ F is a tilting module.

Proof. (a) implies (b). By [28], there exists a module N in modA
such that addLA = CogenN . We claim that CogenN = CogenE. By
[8](5.3), N is Ext-injective in addLA, so that N ∈ addE. Hence E ∈
addLA implies

addLA = CogenN ⊆ CogenE ⊆ addLA

and (b) follows.

(b) implies (c). By (3.1), the number of isomorphism classes of inde-
composable summands of E equals the number of isomorphism classes
of indecomposable Ext-injectives in addLA. Since addLA = CogenE,
the latter equals the number of isomorphism classes of indecomposable
Ext-projectives in LA (by [8](A.6)) that is, by (3.1) again, the number
of isomorphism classes of indecomposable projective modules in LA.
The result then follows from (3.3).

(c) implies (a). Since T is a tilting module then, by [28], F(T ) is con-
travariantly finite. By (4.1), LA = indF(T ) ∪ E . Therefore, addLA is
contravariantly finite. �

4.3. Remarks and Examples. (a) The tilting module T = E ⊕ F
constructed above is a generalization of the one constructed in [12] in
the context of shod algebras, and our main result is a generalization of
[12](3.1,3.6). For this reason, T is called the canonical tilting module
(see also (5.4) below).

(b) Let A be a tubular algebra [23], then A is not left supported.
Similarly, if A is the endomorphism algebra of a regular tilting module
over a wild hereditary algebra [24], then A is not left supported. On
the other hand, if A is tilted and has an injective in the connecting
component, then it is left supported.

(c) The class of left supported algebras is not closed under tilting: let
A be tubular, then there exists a sequence of tilts so that A tilts to
a representation-finite algebra A′. Then A′ is left supported, but A is
not.

(d) As we shall see in (4.4) below, the classes of laura, weakly shod and
shod algebras which are not quasi-tilted, are all left supported. The
following is an example of a left supported algebra which belongs to
neither of these classes: let A be the radical square zero algebra given
by the quiver
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(e) There exist left supported algebras which are not right supported,
such as the algebra A given by the quiver
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bound by the relations α1α2α3+β1β2β3+γ1γ2γ3 = 0, α3δ = 0, β3δ = 0,
γ3δ = 0, δε = 0, ελ = 0. The same example shows that the class of
left supported algebras is not closed under taking full (even convex!)
subcategories (compare with [3]).

4.4. We recall that an artin algebra A is called a laura algebra [2, 27]
provided that the class LA ∪ RA is cofinite in indA. The following
proposition is contained in the proof of the main theorem of [27]. Our
proof is however different.

Proposition. Let A be a laura algebra which is not quasi-tilted.
Then A is left and right supported.

Proof. Let Γ denote the unique faithful, quasi-directed non-semiregular
component of Γ(modA). Then Γ contains an injective. By (3.5), the
number of τA-orbits of LA ∩ Γ equals the number of elements of E ∩ Γ.
Since all injectives which lie in LA, and all indecomposable projectives
which do not lie in LA, belong to Γ, then E ⊆ Γ, so E ∩ Γ = E . In
view of (3.3), there remains to show that the number of τA-orbits of
LA ∩ Γ equals the number of isomorphism classes of indecomposable
projective modules lying in LA. Since, by (1.5), LA∩Γ is directed, and
since A is a laura not quasi-tilted algebra, the number of τA-orbits of
LA ∩ Γ equals the sum of the number of isomorphism classes of inde-
composable projectives lying in LA ∩ Γ plus the number of τA-orbits
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of the left stable part Γl of Γ. By [2](4.3), the number of τA-orbits
of Γl equals the number of isomorphism classes of the indecomposable
projectives over the left end algebra ∞A of A. Thus, the number of τA-
orbits of LA ∩ Γ equals the sum of the number of isomorphism classes
of indecomposable projectives lying in LA plus the number of isomor-
phism classes of indecomposable projectives over ∞A, and this sum is
indeed equal to the number of isomorphism classes of indecomposable
projective modules in LA, as desired. �

4.5. We recall that an A-module T is called a generalized cotilting
module provided idTA < ∞, Exti

A(T, T ) = 0 for all i ≥ 1, and there
exists an exact sequence

0 −→ Tm −→ · · · −→ T1 −→ T0 −→ D(A) −→ 0

with Tj ∈ addT for all j.

Corollary. Let A be a left supported algebra of finite global dimen-
sion, then T = E ⊕ F is a generalized cotilting module.

Proof. Clearly, gl.dimA < ∞ implies that idTA < ∞. Also, Ext1
A(T, T ) =

0 and pdTA ≤ 1 imply that Exti
A(T, T ) = 0 for all i ≥ 1.

Since T is a tilting module, then D(A) ∈ T (T ). Applying [1](1.8)
repeatedly yields an exact sequence

Tl
fl−→ · · · −→ T1

f1−→ T0
f0−→ D(A) −→ 0

with Tj ∈ addT for all j. Set, for each j, Kj = Kerfj and also
K−1 = D(A). Thus Kj ∈ T (T ) for all j. Let M ∈ T (T ). Ap-
plying HomA(−,M) to the exact sequences 0 −→ Kj −→ Tj −→
Kj−1 −→ 0 yields, for each i ≥ 1, an isomorphism Exti+1

A (Kj−1,M) ∼=
Exti

A(Kj,M). Let now m = pd D(A). Then Extm+1
A (D(A), Km) = 0.

The above isomorphisms yield Ext1
A(Km−1, Km) = 0. Thus, Km−1 ∈

addT and we have the desired sequence. �

5. The left support of a left supported algebra.

5.1. Before proving the main result of this section, we recall the follow-
ing fact from [7]: let C be a quotient algebra of A, and
0 −→ τAX −→ Y −→ X −→ 0 be an almost split sequence in modA,
with both X and τAX indecomposable C-modules. Then this sequence
is also almost split in modC. In particular, τCX = τAX.

Theorem. Let A be an artin algebra. Then A is left supported if
and only if each connected component of its left support Aλ is a tilted
algebra, and the restriction to this component of E is a slice module.
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Proof. We may, without loss of generality, assume that Aλ is connected.
We set B = Aλ for brevity. We first show the necessity, using the Liu-
Skowroński criterion [21, 25]. This is done in the following steps:

(1) E is a faithful B-module: indeed, every indecomposable projec-
tive B-module is a projective A-module lying in LA, hence is cogener-
ated by E (see (4.2)).

(2) Let E0, E1 be two indecomposable summands of E. Thus
pdBE1 ≤ 1 (because pdAE1 ≤ 1 and B is convex in A). Hence
DHomB(E0, τBE1) ∼= Ext1

B(E1, E0) ∼= Ext1
A(E1, E0) = 0, because E0

is Ext-injective in addLA.
(3) E is convex in modB: let M0 −→ M1 −→ · · · −→ Mt be a path

in indB, with M0,Mt ∈ E . Embedding this path in indA, Mt ∈ E
implies that Mi ∈ LA, for all i. Moreover, (3.4) implies Mi ∈ E for all
i (since M0 ∈ E).

(4) E is a subsection in modB: suppose that E0 −→ E1 −→ · · · −→
Et is a path of irreducible morphisms in E and that there exists an i
such that Ei−1 = τBEi+1. By the discussion above, τBEi+1 = τAEi+1.
We then get a contradiction to (3.2).

(5) E intersects at least once each τ -orbit ot the Auslander-Reiten
component of modB where it lies:

(a) Suppose M ∈ E , and L −→ M is an irreducible morphism in
modB. Then L ∈ LA. If L is injective, we are done. Assume
it is not. If τ−1

A L ∈ LA, then, by (3.4), M −→ τ−1
A L yields

τ−1
A L ∈ E . This implies that both L and τ−1

A L are B-modules.
Hence τB(τ−1

A L) = L, so τ−1
B L = τ−1

A L ∈ E . If, on the other
hand, τ−1

A L /∈ LA, then L ∈ E .
(b) Suppose M ∈ E , and M −→ N is an irreducible morphism in

modB. By (3.4), we may assume N /∈ LA. This implies that N
is not projective in modB (if it were, it would be a projective
A-module lying in LA). Let X = τBN . Since M ∈ E , then
X ∈ LA. If X is injective in modA, then X ∈ E . If not, assume
that τ−1

B X ∈ LA, then, as in (a), we get τ−1
A X = τ−1

B X = N
and this contradicts the hypothesis that N /∈ LA. Therefore,
τ−1
A X /∈ LA. But then X ∈ E and we are done.

(6) E intersects each τB-orbit at most once: suppose M, τ−t
B M both

belong to E . Then we have a path M −→ ∗ −→ τ−1
B M −→ · · · −→

τ−t
B M in indB, with t ≥ 1, which induces a path

M −→ ∗ −→ τ−1
A M −→ τ−1

B M −→ · · · −→ τ−t
B M

in indA. Then the convexity of E in modA yields a contradiction to
the Ext-injectivity of M .
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This concludes the proof of necessity.
We now prove the sufficiency. Assume the left support B of A to be
tilted, having E as a slice module. We wish to show that addLA =
CogenE. Since B is tilted, the class C of predecessors of E in modB
equals the class of B-modules cogenerated by E. Let now M ∈ LA.
Then M is a B-module. If M is a successor of E , there exists a path
E0 � M , where E0 ∈ E , in indB. Embedding this path in indA and
using (3.4) yields M ∈ E . This shows that addLA ⊆ C. Since every
A-module cogenerated by E is a B-module, we have C = CogenE.
Hence, addLA ⊂ CogenE. Since the reverse inclusion follows trivially
from E ∈ addLA, the theorem is proven. �

5.2. In the following, we generalize to left supported algebras parts
(b) (c) of [20](2.4).

Corollary. Let A be a left supported algebra, and M ∈ addLA be
such that Ext1A(M,M) = 0. Then C = End MA is a tilted algebra.

Proof. Since M ∈ addLA, then M is a B-module (we again set
B = Aλ). Furthermore, Ext1

B(M,M) = 0 and C = EndMB. By
(5.1), there exist a hereditary algebra H and a tilting module UH such
that B = EndUH . Then there exist a module V ∈ T (U) such that
M = HomH(U, V ). Furthermore, Ext1

H(V, V ) = 0, so that V is a par-
tial tilting module. By [16](III.6.5), EndVH is a tilted algebra. But,
now, C = EndVH . �

5.3. We recall from [4](4.3) that, if E is a partial tilting A-module, the
torsion classes in modA having E as Ext-projective form a complete
lattice under inclusion having as least element the class T0(E) = GenE
of the A-modules generated by E, and as largest element the class
T1(E) = {M ∈ modA : Ext1

A(E,M) = 0} and, furthermore, T1(E) is
the class generated by E ⊕X, where X is the Bongartz complement of
E (see [1](1.7)). The first part of the following corollary shows how to
recuperate the B-modules not in F(T ) inside modA, and the second
gives another reason for the use of the name of canonical tilting module
for T . We again write B = Aλ.

Corollary. Let A be left supported, and T = E ⊕ F . Then:

(a) The B-modules not in F(T ) are precisely the modules in GenE.
(b) F is the Bongartz complement of E.

Proof. (a) This follows easily from the facts that B is tilted with E as
slice module, and the modules generated by E in modB and modA are
the same.
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(b) Let X denote the Bongartz complement of E. Then, since
Ext1

A(E,M) = Ext1
A(E ⊕ F,M), we have Gen(E ⊕ F ) = Gen(E ⊕X).

Since F ∈ Gen(E⊕X) and is projective, then F ∈ add(E⊕X). Hence
F ∈ addX. Looking at the number of isomorphism classes of indecom-
posable summands of E of X finishes the proof. �

5.4. Observe that Theorem (5.1) gives also information on the struc-
ture of the Auslander-Reiten components of a left supported algebra
A.

Corollary. Let A be a representation-infinite left supported con-
nected algebra. Then the following statements are equivalent:

(a) LA is infinite.
(b) There exists a component Γ of Γ(modA) lying entirely in LA.
(c) Γ(modA) has a postprojective component without injectives.

Proof. (c) implies (b). Let Γ be a postprojective component of Γ(modA)
without injectives. Clearly, then, all modules in Γ have projective di-
mension at most one and, since such component is closed under prede-
cessors, we infer that Γ ⊂ LA, which proves (b).

(b) implies (a). Since A is representation infinite and connected, then
each component of Γ(modA) is infinite. The result now follows easily.

(a) implies (c). By (5.1), Aλ is a product of connected tilted algebras.
Since LA is infinite, there exists connected summand B of Aλ such
that LB is infinite. Let Γ be a postprojective component of Γ(modB)
and assume that Γ has an injective module. Then Γ is a connecting
component, it is the unique postprojective component and Γ ∩ LB is
finite. Since LB is infinite, there exists an indecomposable B-module
X ∈ LB not lying in Γ. But then, it is not difficult to get a non-zero
morphism from a module in Γ \ LB to X, a contradiction. So Γ is a
postprojective component without injectives, as required. �

5.5. Corollary. Let A be a representation-infinite left supported
connected algebra which is not hereditary. If Γ is a component of
Γ(modA) lying entirely in LA, then Γ is one of the following: a postpro-
jective component, a semiregular tube without injectives, a component
of the form Z A∞ or a ray extension of Z A∞.
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