THE FUNDAMENTAL GROUPS OF A TRIANGULAR ALGEBRIA
1. Assem and J. A. de la Pena

ABSTRACT. A finite dimensional algebra A (over an algebraically closed field) is
ca‘,llled triangular if its ordinary quiver has no oriented cycles. To each presentation
(Q,I) of A is attached a fundamental group m(Q,I), and A is called simply
connected if 73 (Q, [ ) is trivial for every presenta.t;ion' of A. In this paper, we
provide tools for computations with the fundamental groups, as well as criteria for

simple connectedness. We find relations between the fundamental groups of A and

the Hochschild cohomology HY(A).

Introduction.

Let k be an algebraically closed field. By algebra, we mean a finite dimensional
associative k-algebra with an identity. We are interested in studying the representation
theory of A, that is, in describing the category mod A of finitely generated left A-
modules. For this purpose, we may assume that A is basic and connected. An algebra
A is called triangular if its ordinary quiver Q 4 contains no oriented cycles. It is well-
known that, if kQ 4 denotes the path algebra of 4, there exists a surjective algebra
morphism »: k@4 — A whose kernel will be denoted by I, For cach pair (@4, Iv),
called a presentation of A, one can define the fundamental group 1 (Qa, Iy) (see [18,
14}, or (1.3) below). A triangular algebra A is called simply connected if, for every
presentation (Q 4, Iv) of A, the fundamental group m(Qa,Iy) 18 trivial {1]. Simply
connected algebras have played an important role 11 representation theory. A triangular
algebra is simply connected if and only if 1t admits no proper Galois coverings, (see, for
instance [18, 20, 12, 14]). For any representation-finite algebra B, it is well-known that
the indecomposable B-modules can be lifted to indecomposable modules over a simply-
connected algebra A (contained inside a certain Galois covering of the so-called standard
form of B, see [6]). Thus, covering techniques reduce marny problems of the study
of representation-ﬁnite algebras'to the study of representation-ﬁnite simply connected
algebras, hence the importance of the latter. Representation—ﬁnite simply connected
algebras are by now well-understood (see, for instance {3, 5, 6]). While little 18 known

about the use of covering techniques in the representation—inﬁnite case (see however (2,



8, 9, 13]), many classes of simply connected representation-infinite algebras have been
described (see {1, 2, 10, 22, 26, 271).

The purpdse of this paper is to provide tools for computations with the fun-
damental groups of tﬂangular algebras. Since triangular algebras can be constructed
inductively as one-point extensions, 't is natural to study the relation between the fun-
damental groups of an algebra B and a one-point extension A of B by a B-module.
Then, for any presentation (Q 4, 1y) of A and the corresponding induced presentation
(@B, 9)), of a connected component B; of B, we have a canonical group morphism
ci: (@ B; I,(,i)) — m(Qa,Iy). Inour theorem (2.4), we give an exact sequence allowing
to compute the kernel and the cokernel of ((ﬁ@rﬁ,(/%,Zf)ﬁI\-‘Iom (ei, Z)),:zwhere Z is any

abelian group.

Some applications in representation theory of the Hochschild cohomology groups
Hi(A) (of the algebra A with coefficients in the bimodule 4A4) have been studied in
[14, 26]. In certain cases, it was shown that A is simply connected whenever HY(A) =0,
which suggested the existence of a relation between H'(A) and the fundamental groups
of A. In our theorem (3.2), we show the existence of an injective morphism of abelian
group s: Hom (Trl(QA,I,,),k"') —» H(A), for any presentation (Q@a,1,) of A, where kt
denotes the underlying additive group of the field k.

As consequences of these homological considerations, we recover most of the
known results on simply connected algebras, obtained in [14, 26], as well as some new
criteria. We also get a comstructive procedure allowing to obtain all strongly simply
connected algebras (in the sense of [26]). As a consequence, We show that if A is 2
schurian algebra all of whose indecomposable projective modules are directing (these
a,lgebré,s were studied in [28]), then A is simply connected if and only if it is strongly
simply connected, if and only £ it satisfies the separation property of {3], see (5.4).

The paper is organized as follows. In section 1, we fix the notation and briefly
recall the definitions and results that will be needed in the sequel. Section 2 will be
devoted to the study of the relation between the fundamental groups of a triangular
algebra B and a one-point e}étension A of B. In section 3, we study the relation be-
tween H1(A4) and the fundamental groups of A. In section 4, we consider the one-point
extensions of an algebra by a faithful square-free module. Finally, section b is devoted,

to strongly simply connected algebras.



1. Preliminaries.

1.1. Notation. Throughout this paper, k will denote a fixed algebraically closed field.
By algebra is always meant an associative, finite dimensional k-algebra with an identity,

which we shall moreover assume to be basic.

We recall that a quiver Q is defined by its set of points Qo and 1ts set of arrows
Q.. A relation from a point z to a point y is a linear combination p = Z A;w; where,
for each 1 <1 < m, A; is a non-zero scalar and w; a path of length a,t least two from
ztoy. A set of relations on @ generates an ideal I, said to be admissible, in the path
algebra kQ of Q. The pair (@, 1) is then called a bound quiver. For an algebra A, we
denote by Q4 the ordinary quiver of A. It is well-known that, for every basic algebra
A, there exists a surjective k-algebra morphism »: kQ 4 — A (induced by the choice of
a set of representatives of basis vectors in the k-vector space rad Afrad?A) whose kernel
I, is admissible. We thus have A = kQ /I, The bound quiver (Qa, 1) is called a
presentation of A. An algebra A = kQ/I can equivalently be considered as a k-linear
category, of which the object class is the set Qo, and the set of morphisms from z to
y is the k-vector space kQ(z,y) of all linear combinations of paths in @ from z to ¥
modulo the subspace I(z,y) = INkQ(z,y). A full subcategory B of A is called conves
if any path in A with source and target in B lies entirely in B. An algebra A is called
triangular in Q4 has no oriented cycles. The present work is devoted exclusively to

triangular algebras.

By an A-module is meant a finitely generated left A- module We denote by
mod A their category. It is wellknown that, if A = kQ/I, then mod A is equivalent to
the category of all bound representations of (@, I), we may thus identify a module M
with the corresponding representations (M(z), M(a))zeQo,a€q:- For cach z € (o, we
denote by Sg the corresponding simple A-module, and by Py the progectwe cover of Sg.
The algebra A is called schurian if dimpHom 4(Pe, Py) £ 1 for all z ¥ € (QA)o-

1.2. One-point extensions. Let A be an algebra, and z be a source in @4. The
full convex subcategory B of A consisting of all objects except z has as quiver @ p the
quiver obtained from ) 4 by deleting = and all arrows starting with . Any presentation
(Q 4, 1) yields (by restriction) an induced presentation (Q g, I,/) of B and, clearly, all
presentations of B are obtained in this way. The A-modules M = rad Py has a canonical
B-module structure, and A is isomorphic to the one-point extension algebra

B[M) = [’5 ’Eﬂ
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where the operations are the usual addition of matrices, and the multiplication induced
by the B-module structure of M. Dually, if  is a sink in @4, then A is isomorphic to
the one-point coextension [M]B of a full convex subcategory B by a B-module M.

1.3. Fundamental groups. Let (@,I) be a connected bound quiver. A relation
p= E A el (z,y) is called minimal if 0 > 2 and, for every non-empty proper subset

J G {1,2, ...,m}, we have EJ Ajw; ¢ Iz, y).
j€

For an arrow a € Q, we denote by a™! its formal inverse. A walk in ¢} for z to
y is a formal composition a_fl as?.. .ai,"‘ (where a; € Qq,¢; = +1for 1 <i < k) starting
at 2 and ending at y. We denote by ¢, the trivial path at @.

Let ~ be the smallest equivalence relation on the set of all walks in @ such that:

-1 —1

(a) If a2 — y is an arrow, then o™ 'a ~ ez and aa™" ~ ey,

(b) If p= Z Ajw; is a minimal relation, then w; ~ w; for all 1 <¢,7 < m.
1=1

(¢) If u ~ v, then wuw' ~ wvw', whenever these compositions make sense.
We denote by [u] the equivalence class of a walk u.
Let zo € Qo be arbitrary. The set m(Q, I, zy) of equivalence classes of all the

closed walks starting and ending at zo has a group structure defined by the operation
[u][v) = [uv]. Clearly the group m(@Q, I, o) does not depend on the choice of the base
point zo. We denote it simply by mi(Q, I} and calll it the fundamental group of (@, 1),
see [18, 14]. '

1.4. Simple connectedness. Let A be a triangular algebra, and let (Q4,1,) be a
presentation of A. It follows from the above description that the fundamental group

71(@ 4, I,) depends essentially on I, ~thus it is not an invariant of A.

For example, let A = kQ/I, where @ is the quiver

y\

1T 8 9 7 4

and T is generated by §8a — 6v. Then m(Q,I) = 0. The choice of the presentation
may be modified: indeed, A = kQ/I', where I’ is generated by év. Then 0 # [y 'fa] €
(@, I') and m(Q, ') = Z
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Definition [1]. A connected triangular algebra A is called simply connected if, for any

presentation (Q 4, Iy) of 4, the fundamental group 71(Q 4, Iv) is trivial.

Ezamples: (a) Any tree algebra (that is, an algebra whose quiver is a tree) is simply
connected.

(b) Any algebra satisfying the separation condition of (3] is simply connected,
see [26] (2.3) or (2.5) below. In particular, the good algebras of [21] and the completely
separting algebras of [10] are simply connected.

(c) Let A = kQ/I, where () is the quiver
v 8

€ )

and I is generated by yBa — eéc. Then m(Q4,I) = 0 for every presentation of A, so
that A is simply connected. On the other hand, the full convex subcategory B of A
consisting of all objects except 1 is hereditary with fundamental group Z, thus is not

simply connected.

For more examples, we refer the reader to [1] (1.2) or [26].

1.5. Free connectedness. For our purposes, we shall need the following natural

generalization of the notion of a simply connected algebra.

Definition. A connected triangular algebra A is called freely connected if, for any

presentation (Q 4, I,)) of A, the fundamental group 71(Q 4, I,,) is free.
Ezamples: (a) Clearly, any simply connected algebra is freely connected. .
(b) Any representation-finite algebra is freely connected (18] (4.3) and (4.4).

(c) Any monomial algebra (that is, an algebra A having a presentation (Q 4, Iv'),
where I, is generated by finitely many paths in @ 4) is freely connected. This indeed

follows at once from the definition of the fundamental group.

(d) Let A = kQ/I, where Q is the quiver
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and I is generated by Ba — §v, po, £(. Clearly, A is freely (but not simi)ly) connected.

It is representation-infinite, and not a monomial algebra.

It is important to observe that there exist algebras which are not freely connect-
ed: in fact, for any finitely presented group G, there exists a triangular algebra A and
a presentation {Q 4, I,)) such that m(Q4, 1) = G, see {11} (7).

2. The fundamental groups of a one-point extension.

2.1. Throughout this section, we let A denote a triangular algebra, and @ a source in
@ 4. Let B denote the full convex subcategory of A consisting of all objects except z.

Our first aim is to compute a direct sum decomposition of M = rad Py.

Let (@4, I,) be a presentation of A. We let =~ denote the smallest equivalence

relation on the set 2™ of all arrows stariing at 2z such that o ~ 8 (for o, 8 € z7™)
m

whenever there exist y € (@ 4)o and a minimal relation 3 Aw; € I(z,y) withw, = v1a

=1
and w, = vy8. We denote by [a], the equivalence class of & € 27

Let o € 7, we define an A-module M{a]y as follows. Let Afg, be the quotient
algebra of A obtained by deleting all arrows # € ™ such that § ¢ [a], (thus, Alg, 18
a specialization of A in the sense of [23]). Let Py(qy, be the indecomposable projective
A[a}u—module corresponding to the point #. We then define M), = rad Fyp,),. Since

Afq), 1s @ quotient of A, the A[a]y-module M), can be canonically viewed as an A-

module.

Proposition. Let A be a triangular algebra, = be a source in Q 4 and M = rad Py.
a) For any presentation (Qa,Iv) of A, we have M = @ Myq),-
[e]y

b) There ezists a presentation (Ga,Iy) of A such thei, for each a € a7, the module

Mgy, 13 indecornposable. In particular, M = @ M[a] 18 an i;bdecomposable decompo-
fa)y g '
sition.

Proof: (a): For brevity, we write [a] = [a],. It follows from the well-known description
of the indecomposable projectives over a bound quiver algebra that each M{a] is a

submodule of M = rad P, and that M = ¥ ‘M[a]' We must show that this sum is
‘ [e]

direct. Assume there exist y € (Q4)o \ {2} and 0 # v € My(y) N ([ ]Z: | M[ﬁ]) (y).
Bl#[e

Then there exists a linear combination Pla] = 5 Aga}wgs, where wee 1s a path from
: ecfal '



z to y and /\LQ] € k, such that v, as an element of M[a](y), is induced by pyy)- For each
(8] # [}, there also exists pig = > /\E}B]wga, where wyo is a path from z to y and

o€[5)
)\,[;P] € k, such that —v as an clement of Y= Mjm(y), is induced by 3> aigp( =
i piFa) OV
I a{m,\ﬁf }wga, where ajg) € k. Moreover, we get

[Bl#le] oelf]

Pt 2 ey € (e v)
GE

As an A[a}—module, My} satisfies

0 = Pyiy(prag)(es) = E[jl AN Mg (e )(e) = v
£C|x

a contradiction. Therefore, M = @ M[a].
' (o]
(b): Let M = M1®---®M; be an indecomposable decompositoin of M. We have

L]
@ ka =topM = @ topM;. We can choose representatives {u(e) | @ € 27} of
aer™ i=1
the arrows in ¢~ (as elements in rad A/rad®A) in such a way that, for each 1 <2 < s,

there is a subset 277 of 7 such that topM; = @ ku(a). This selection may be
<t
completed to a surjetion p: kQ 4 — A and therefore to a presentation (Q 4,/ u). For this

presentation, M = @ M[a}#. We shall show that, for each o € 27, the module M[a}“
lo], '

is indecomposable.
Assume that M[a]“ decomposes. There exist non-empty disjoint sets Jy, Jy C

{1,2,...,s} such that Ny = @ M;, No = @ M; and topM[y), = @ ku(f) =
i€y j€J2 Y Belol

top N1 @ top Np. Since M[a]” = rad Pm[a}#, then M[a}# = N; @ N;. On the other hand,

for any i € J; and j € Jp, we have B; & f;. Therefore there exists a minimal relation

p = f Aw;B; € Iy(z,y) such that 1,...,t € Jyand t+1,...,m € J,. Since pisa

i=1
minimal relation, we have

t i i
vy = 2 ANy (wi)(B) = Z: AiMiq), (wi)(Bi) = D Nip(wif;) # 0

i=1

and, similarly, v, = rzn: AjNao(w;i)(By) # 0. But then, in (N1 & No)(y), we obtain the
, j=t+1
contradiction

0# v +vy = Z: MM, (wi)(Bi) = p(p) = 0.



Therefore, J\/I[alu is indecomposable. 0

Tn the example of a non-simply connected algebra. A in (1.4) above, we have two
presentations (@, I) and (@, I') of A. For the first, we have My = M, = rad Py. For
the second, M[a] = P, while f\/f[,ﬂ = 5;.

2.2, Let A be a connected algebra, and z be a source in Q4. Let ¢(z) denote the
number of connected components of @4 \ {z}. Given a presentation (Q4,Iy) of A4,
denote by #(v) the number of equivalence classes [a], in z 7. Finally, we denote by ¢(z)
the number of indecomposable direct summands in the decomposition of rad P;. With

this notation, (2.1) can be restated as follows:

Corollary. Let A be a tridngular algebm, and x be a source in Q4
a) For any preseniation (Qa, L) of A, we have c(z) < v} < t(z).
b) There ezists a presentation (@4, Iu) of A such that H{(p) = t(z). - O

2.3. Let (Q4,I,) be a presentation of A, and recall the following construction from
[20] (1.2).
" Let Z be an arbitrary abelian group, denoted additively.
Let C°(A4,v, Z) be the set of all Z-valued functions on (@ 4)o-
Let Z1(A,v, Z) be the set of all Z-valued functions f on (Q@4h such that
i flag) = ,Vi: f(8;) whenever there exists a minimal relation p = Tzn: Asp such that
:;11 = a0y . .J.;ls and w, = AP ... Pt =

We have an exact sequence of abelian groups .
0 1
0 — 2 & A, 2) L 24,1, Z) L Hom (m(Qa, 1), Z) — O

where d® associates to the integer m the constant function f:(Qa)o — Z with value
m; d! associates to a function f:(Q4)o — Z the function g: (@4 — Z which maps
ary — z to gla) = f(y) — f(z) and finally p maps a function ¢ to the morphism of
groups h: m(Q 4, Iy) — Z defined by (ol ... aff]) = ‘Etjl g;9(a;).

i=

This construction originates from [19] (see also [6]) where it can be read as
construction of a certain cohomology group HY(m(Qa, Iv), Z) with coefficients in Z, in

the case where A is triangular and schurian. We shall not pursue this approach.
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9.4. Assume that A is connected and let B denote the full convex subcategory A
consisting of all objects except the source z. Then A = B[M], where M = rad P;.
Let (Q4,1,) be a presentation of A, and (@p,1,+) be the induced presentation of B.
Let Q(l),...,Q(m) be the connected components of the quiver @p and I,(,j) be the
restriction of I to QU ), For each 1 < j§ < m, the embedding of Q(j ) inside Q4 induces
a canonical group morphism cj-:vrl(Q(j),L(,j)) — m1(Qa,Iy). Our present aim is to

compute the kernel and the cokernel of the induced morphism

= (c}f)j = (Hom(c;, Z));: Hom (71(Qa,1v), Z) — H Hom('frl(Q(j),I,(,j)), zy,

7=1
for any abelian group Z. .

For this purpose, we need some additional notation. Let g be the base point
of the fundamental group mi(Qg4,ly) and for each 1 < j < m, let z; be the base
point of the group WI(Q(j),I,(,.j)). For each point y € (QU))O, we fix a walk wy in @p
from the base point z; to y, agreeing to take wg; = eg;, the trivial walk at z;. Let
Bise -1 By be representatives of the classes {o], of the arrows a € z7. For each
1 < ¢ < #(v), let L(i) denote the set, and £(i) denote the number, of those tuples of
paths (v1,va, . ..,v25—1,2;) such that there are minimal relations /\Sl)vlal + )\gl)vzag +

) )\g-l)ug-l) € Iy(m,y(l)), e A§5)023_1a5+}\§s)v23a3+1+ = Ags)ugs) € Iy(s:,y(s)) with
jz3 j>3

Q1y.. ., 05, Qg1 = 0 Pairwise distinct arrows in (8] In the figure below we illustrate

the case s = 3.

t(ﬁ) 740,

i=1

Finally, let L, =
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Theorem. Let A be connected end Z be any cbelian group. There exisis an eract

sequence of abelian groups

b s 2K s Hom(my(@u,1), 2) <o ] Hom (m(@9,17),2) — Lu.
j=1

Proof It follows from (2.3) tha.t there exists a commutative diagram with exact rows

0— 7 L C%(A,v, Z) LA (A, v, z) -4 Hom(m(Qa Iv),2) —0
Al ol K1l \ el
0 zm &% 0B, 2) L Z(B, AR n Hom (m(QW, 1), 2) - 0

where h® and h! denote the restriction morphisms, and A the diagonal inclusion.

Applying the snake lemma to the commutative diagram with exact rows

0 — Z L C%A,v,Z2) — Cokerd® — 0

Al ro) ROl

10
0 — zm 4 ocuB/,2) — Cokerd'® — 0

(where h° denotes the induced morphism) yields that O is surjective and that there

exists an exact sequence

0— Z — Kerh® — Z™71 = 0.

Since hC,d°, d'® split as morphisms of abelian groups, so does R°. Hence the

Lard

above sequence splits so that Ker h® = Z™. Applymg now the snake lemma to the

commutative diagram with exact rows

0 -— Cokerd® — ZY(A,v,2) £, Hom (m(Qa,Iv), Z) - 0
L rtl et}
0 — Cokerd® — 2ZYB,v,2) £, H Hom(qu(Q (9) I(J)) zy — O

=1

yields an isomorphism Coker h! = Coker ¢* and an exact sequence

0 — ZT 4, Kerh1 — Kerc®* — 0

Now we describe Ker h!. We consider the fixed representatives §;, of the classes
[a]y, with & € @7 For any function ¢ € 7). we define §: (Qa)1 — Z by

{0 #pgaT
“m*{gm it B (6.
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Thus § € Z'(4,v,2) and hi(§) = 0. Hence § € Kerh'. Moreover, any f € Ker hl is
of the form f = § for some ¢ € 7H¥), The map g+ § 1s injective by definition. Thus
Ker hi = 24).

The morphism 4. Z™m — Ker h! is defined as follows. For each Btz — ¥4, the
point y; belongs to the component Q(s(i)) of Qp. Then, for g € 7™, we have that
d(g)(i) = g(s(1)). Clearly, d splits. Hence Ker & = ZHw)=m  Moreover, by definition,
m = c(z).

To complete the proof, since Coker b! = Cokerc*, it suffices to construct an

exact sequence

1
ZY(A,v, Z) 2 4BV, ) 7 Lv.

Let B, - Biw) be as before, and 1 < @ < t(v). Let g € ZYB,v',Z) and

(v1,v2y--- ,v95—1,V2s) € L(#) be such that there exist minimal relations }\gl)vlal +
,\gl)vzag + ¥ )\(.l)u(.l) € Iy(:n,y(l)), ey )\gs)vgs-las + /\;(28)1)230!8+1 + = }\(.s)u(.s) c
i>3 > 7 i>3 > 2

Iy(:c,y(s)) w;th Qy,... a5 € [B;), We set

S .
m(g)(v1, Vs -+ » V251, V25) = S (—1)(g(vai) — 9(vai-1)) € Z-
1=1
Clearly m is a well-defined morphism of abelian groups. Moreover if f € Z'(A,v,Z) and
(v1,v2,- - ,095—1,V28) € L(4) as above, then

b (F) (01, V2, - - - > V25—15 28} = Z(—l)i(f(”ﬁiai+l) — f(vgi—104)) =0

i=1
by definition of Z*(4,v, Z). Thus mh! = 0.

Let ¢ € Z2'(A,v,2) be such that m(g) = 0. We extend grto a function
Ffi(Qahn — Z by setting f(f;) = 0 for every 1 < i < t(v); for an arrow @ € [8:]

(l)u.(?ll) € IV($iy(l))a sy

such that there are minimal relations )\gl)vlal -+ )sgl)wag + 5 )\j
j>3

}.gs)vgs_las + ,\(23)1)23&5“ + g }\S—s)ug—s) € Iy_(rc,y(s)) such that ay = B, ¢sy1 = o and
3

12
flai), . s f(as) have already been defined, then we set fla) = g(vgs_1)—g(1)23)+f(as).
Since m(g) = 0, this yields a well-defined function f € Z'(4,v,2) with A}(f) =g¢. O

9.5. Following [3], we say that a source & in Qg is a separating point if t(z) = ¢(z)-
In general, a point y in Q4 (not necessarily a source) is called a separating point if y is
separating as a source in the full convex subcategory of A with objects all points of Qa

except the points z such that there exists a non-trivial path from z to y in Q4. The
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algebra A is called separaied (or satisfaying the (S)-condition) if all points in Q4 are
separating.

There are close relations between the separation property and simple connected-
ness. For instance, a representation-finite algebra is separated if and only if it is simply
connected (this is essentially shown in [3], the definition of simple connectedness given
there coincides with ours because of {5, 18]). On the other hand, any separated algebra
is simply connected [26] (2.3). Actually we have:

~ Lemma. Let A = B[M], where M = radPr. If B is simply connected and z i3

- separating, then A is simply connected.

Proof: This indeed follows from the proof of [26] (2.3). a

2.6. Corollary. Let A be a trianguler algebra. Assume there exisis ¢ non-triviel a-
belian group Z such that, for every presentaiion (Qa,lv) of A, we have
Hom (m(Qa,Iv), Z) = 0. Then oll sources in Q4 are separating. In pariiculer, if

A is simply connected, all sources in Q4 are separating.

Proof: Let z be a source in Q4. By (2.2), there exists a presentation (@ Ardp) of A
such that t(u) = t(z). By (2.4), there exists an injective group morphism Ztu)—e(z)
Hom (m1(Q4,Iy), Z). Since the latter vanishes, we have (i) = c(z). Consequently,
#(z) = ¢(z) and z is separating. n|

'2.7. Let Py(Q4,I,) denote the abelianisation of the group m(Q 4, 1,). For any abelian

group Z, we have a functorial isomorphism
Hom (m(Q4,1v), Z) = Homy (P (Q 4, L), Z).

Moreover, let A = B{M] (where M = rad P;) be a one-point extension. Consider
“(Qp, L) the induced presentation of B and Q(l), . ,Q(m) be the connected components
of Qp. Then there is a morphism of abelian groups

m

& I1 QW I9) = Pi(Qa, 1)

j:l
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induced from the morphisms c¢;. One can easily compute the cokernel of ¢. Indeed, it
follows from (2.4) that we have an cxact sequence of abelian groups

Home(,2) m . .
0 241=) _, Homg(Py, (Qur In), ) ———— [] Homg(P(QW), 1)), 2)

=1

for any abelian group Z. Consequently, there exists an exact sequence of abelian groups

ﬁ PI(Q(j)}ngj)) N P(Qa, L) — gtW)—c(z) _, ¢
i=1

that is, Cokerc = Ziv)=el=),

Corollary. The following are equivalent for a freely connected algebra A.

a) A is simply connected.

b) For any presentation (Qa,Iv) of A, we have Pi(Qa,1y) = 0.

¢) There is ¢ non-trivial abelian group 7 such that, for any presentation (Qa, L) of 4,
we have Hom (m(Q 4, 1), Z) = 0.

Proof: Let (Q4,I,) be a presentation of A. Assume that m(Q4,fy) i1s the free
group in n generators. Then Py(Qa,ly) = Z™ and Hom (m(Qa,lu),2) =
Homgz (Pi(Q4,Iv), Z) & Z™ for any abelian group Z. Consequently, m(Qa, L) = 0 if
and only if m = 0, if and only if Pi(Q4,Iy) =0, if and only if Hom (m(Q4,1v), Z2) =0

for some non-trivial abelian group Z. O

2.8. Ezample: Consider the algebra A = kQ/I,, where Q is the quiver

and I, is generated by y1ay — €102, 1203 — €202, Biv1 — Babi, Paya — Pabz. Take Z = Z.
Consider the source 1 and the algebra B such that 4 = B[M], with M =rad P;. The
point 1 is separating and t(v) = 1. Clearly, m(Qpg, I7) & Z. Moreover, it is easy to
see that L, = 0 in this case. Hence m1(Q g, y) & Z. Let now Al = kQ/IL where IL is
generated by I, and the additional relation & aq — 0. We still write A' = B[N] with
N =radP,. As before, the point 1 is separating at(p) = 1. Also m(Qp, IL,) = Z. We
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have that (v1,€1, 2,72, 62, 1) is an element in Ly, Thus L, = Z. Take g € ZY(B,u',Z),

as follows

Then m(g) # 0. Thus m:Z — 7 is injective and 71 (Q 4, IL) = 0, that is, A’ is simply

connected..

3. The fundamental groups and Hochschild cohomology.

3.1. Given an algebra A and the bimodule 4A4, the Hochschild complez C =
(CP,d');cq is defined as follows: C* = 0, d' = 0 for i <0, C° = 44y, ct =
Homj (A%, A) for i > 0, where A®® denotes the i-fold tensor product A ®j --- Qp 4,
d°: A —» Homy(A, A) with (d°z)(e) = az — za (for a,z € A) and di: ¢t — CH1 with

(dif)(al ®-® C~'»i+1) =aflea® - ® Gi+1)

1 [
+Z(dl)-?f(alqg...@ajaj_l_l®...®ai+1)
=1

+ (1) o ® - © a)aigs
for f € C*and ay,...,ai4; € A. Then Hi(A) = H{C)is the ith Hochschild cohomology
group of A (with coefBeients in the bimodule 4A4), see [7].
The following theorem of Happel [15] (5.3) is useful for the calculation of the

Hochschild cohomology groups for triangular algebras:

+

Theorem. Let A = B[M]. There ezists a long ezact sequence

0 — H%A) — HO(B) — Homp(M, M)/k — H'(A) = H'(B) — Extp(M, M) — -+
. = Extiy(M, M) — HF(4) — HT(B) - Ext'f (M, M) = - 0

3.2. It follows from [15, 26] that there is a close relation between the first Hochschild

cohomology group H*(A) and the fundamental groups 7#1{Q 4, Iv) of A. The following

result makes this relation explicit:
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Theorem. Let A be a triangular algebra, and (Q4,1,) be o presentation of A. There

exists an injective group morphism
s:Hom (m1(Qu, L), k1) — H'Y(A)

(where kT denotes the underlying additive group of the field k).

Proof: Let us fix a base point zo € (Q 4)o for the fundamental group and walks wy from
@ 10 y for each y € (Qa)n, where wgy = €gy. We define s*: Hom (m (@4, Iv), k:"*‘) —
Homy (A, A) as follows: let f € Hom(mi(Qu, L), kT) for a € 4, write a = E ;B

where v; is a path in Q4 from z; to y;, with residual class 7; in A =2 kQ A/IV and
X; € k (1 <14 <s). We then define

(f)(a) = Zj&ﬁu@mmmmneA

m
To check that this indeed defines a function, let p = Y A\w; € Iu(z,y) be

1=1
minimal relation, then [wy vjw,] = [wy lvjwe] in m1(Q4,I,) for any 1 <4 < m. Hence

f(lwy viwg]) = f(lwy jwy]) for any 1 < 4,7 < m, and s!(f) = 0. Clearly, s'(f) €
Homk(A, A).

We now verify that s'(f) € Kerd'. Let a,b € A and write a = i Ajvi, b=

i=1
): jtj; where v; (or u;) is a pa.th in Q4 from z; to y; (or from :c to yj, respectively),
and Aiypj € k. Then

dlsl(f)(a ®b) = Z /\z.ugf([wy, v,th 'Uzuj + Z ’\zﬂgf( W , U'Jw ’])Uzuj
i,j i,j

— Y i f(lwy vzujw .v])'uzuJ

mt_“y
But, whenever z; = y_’i we have
Hwgtvsugo) = Flugvposllogtujun)) = Flug vion]) + £y vrox)

Therefore, dlsl(f)(a ®@b) = 0 and s'(f) € Kerd" The required morphism s:
Hom (m,(Q 4, In), k) = H'(A) is induced from s! by passing to the quotient H'(A4) =
Ker d! /Im d°.

We now show that s is injective. Let f € Hom (m(Qa,1v), k1) be such that
s(f) = 0. Then s*(f) € Imd® and there exists a € A such that s'(f)(b) = ab— ba for all
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b € A. Considering the trivial paths ez, we get 0 = sY(f)(Ez) = exa—aeg. Since Q4 has

no oriented cycles, this easily implies that a = 5  Ageq, for some Ay € k. Hence,
ze(Qzl)O
for any arrow a: — Y, we geb f(lwytawsl]) = Ay — Az This implies f = 0: indeed,

let w= By...0s bea closed walk with ; and arrow or the formal inverse of an arrow
from z; to yj, then 5 = zo = ¥y implies that F(lw]) = f(lwy Brwzy]. .- [w;llﬁswms]) =
8 .

.Z (A:B" - Ay‘-) = Azs - Ayl == 0. D

=1

3.3. As afirst corollary, we obtain the following generalization of [15] (5.5) (where the
result is shown for algebras which have no oriented cycles of non-zero non-isomorphisms
in their module categories, and, in particular, are representation-finite and hence freely

connected, see (1.5)).

Corollary. Let A be a freely connected algebra with H'(A) = 0. Then A is simply

connected.

Proof: By (3.2), Hom (71(Q4, 1), kT) = 0 for any presentation (Qa, L) of A. By
(2.7), A is simply connected.. 0

3.4. Ecample: The converse of this corollary is not true. We now give a procedure for
constructing examples of simply connected algebras A such that H'(A) # 0 (see also
[26] (3.4)). Let B be a simply connected triangular algebra with H YB) =0, and M
be an indecomposable B-module such that EndgM # k. Then A = B{M] is simply
connected and H'(A) # 0. Indeed, the exact sequence ‘

0 — H(A) — H°(B) - EndpM/k — H'(4) —H'(B) =0

already shows that H'(A) # 0. On the other hand, since M is indecomposable, the
extension point z such that M = rad Py is separating. Then (2.5) implies that A is
simply connected.

An explicit version of the example is the algebra A = kQ) /1, where @ is the

quiver
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and I is generated by vBa — eba, yo — €6, vB€ — y0. Taking M = rad Py, we get
A = B[M], with B simply connected and H'(B) = 0. Moreover, dimpEndgM = 2,

3.5. Corollary [26] (3.2). Let A be a iriangular algebra with H'(A) = 0, then oll

sources of Q4 are separating.

Proof: Let = be a source in Q4. By (3.2), HY{A4) = 0 implies that we have

Hom (71(Q 4, L), k) = 0 for any presentation (Qa, 1) of A. By (2.6), « is separating.
1

4. Faithful square-free radicals.

4.1. Let A be a triangular algebra, and x be a source in Q4. Let B denote the full
convex subcategory of A consisting of all objects except z, and M = rad P, so that
A = B[M]. We thus have a surjective algebra morphism m: A — B with kernel the

two-sided ideal {ez) of A generated by e;. We have an exact sequence
HY(A) - HY(B) -4 Exty(M, M)

where the morphisms e and d are as follows. For every f € H 1(A), it is easily seen that
f(lez)) C (ez), thus there exists a unique g:B — B such that gr = «f. It is readily
checked that g € H'(B). We set e(f) = g. Then define d, let b, = 1,...,bs be a k-basis
of B (such that by = ay,...,bs = @s, 8541, % is a k-basis of A). We identify the
m-dimensional B-module M with a k-linear representation B — End k™, thus with the
s-tuple (M(b;) ... M(bs)) of m x m-matrices satisfying the structure equations of the
algebra B. Now for g € H'(B), we let d(g) denote the extension of M by M

0- M- E;—M=—0

where E4(b;) = [JM(()bf) Ng‘ff[q((bl:t)))]

Let now (@4, I,) be a presentation of A. Using (3.2), we have a commutative

diagram with exact rows

Hom (m(Qu, L), k) < 11 Hom (m(QW, 1), k%) —  Cokere* = 0
j=1

SAl 7 sl sz
" HY(A) L, HY(B) 4 Bxtly (M, M)

N AR N e L

R

.

fimeia
Lpett

R R

2

T

- T P ‘/'-.' - A',:‘as": T LI Ay k] T
R il N s

T L L TN . o
R R e

- -,—;;::,'—_;_.'s""»_';" R
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Indeed, we just have to verify that esy = sge*: let f € Hom (mi(Q4,Iv),k7) then
es4(f): B — B satisfies ess(f)m = wsy(f) which clearly implies sgc*(f)r = msy(f),

hence our claim.

4.2. Our present aim is to derive a sufficient condition for the map s» to be a monomor-
phism. We need the following definition. Let A be an algebra, an A-module M is called
séuare-ﬁ"ee if dimpM(y) < 1forally € (Qq)o. It is called locally faithful if, for any
arrow a:y — z in @ such that M(y) # 0 and M(z) # 0, then M(«) is a non-zero map.

If, for instance, A is schurian, then, for any y € (Q4)o, the radical Py is square-

free. On the other hand, any faithful module (over an arbitrary algebra) is clearly
locally faithful.

Proposition. Let A = B{M] be a triangular algebra such that M = rad Py for some
source ¢ in Q4. Assume that M is ¢ square-free locally foithful B-module. Then sz s

& monomorphism.

Proof: We need to consider the explicit description of s5. Let ¢ € Z'(B,//, kt) where
(Qp,I,) is the presentation of B induced from a presentation (@4,Iy) of A. For a
g € H'(B), then sz(g) is an extension

Ow~+M—>Eg—->M,—>0

such that, for any arrow a:y — z in @ g, we have

Eq(a) = J\/I((]oz). g(rjx\}l(\/i()a)

this definition being independent of the class of g in Coker ¢*.

Assume s3(g) = 0. There exists an isomorphism of A-modules f: M & M — Eq
such that for each y € (Q4)

ny

L) ™ }-M -
0"ty () @ M(y) — Ey(y).

Since M is square-free, ny € k for each y € (Q4)o. Since f is a morphism of

A-modules, for each arrow a:y — z in @ 4, we have
gla)M(a) = (m, — my)M (o).

Hence, if y, 2 € Supp M, then g{a) = m; — my € k.
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We now extend ¢ to f € Z'{A, v, k) as follows: let 3y,..., 5 be representatives
of the equivalence classes [y, for @ € 27 and, for each 1 < ¢ < ¢, let y; denote the
target of ;. Then, for any B:z — y with 8 € [8;], we set f(8) = my ~ my,. First, we
show that f € Z1(4,v, k). Indeed, we may assume that there exists a minimal relation
Ao + dgvaB + 3 Ajuj € I(z,2) with vy = ayy...05p and v = ;... a3y Then
M(vy) #0, M(UQ)J?O and

- P 14
f(B)+ E flags) = My = My; T 2_: g{aq) = (my — my,-) + (m; ~ my)
q q
=My — My, = Z g(alj) = f(B;) + E f(alj')
J=1 =1

Moreover, p(f) € Hom (m1(Q 4, I), kT satisfies ¢*p(f) = p'h'(f) = p'(g) (notation as
in (2.4)). Hence the image in Cokerc* of p'(g) € Hom (m(Qp, I,1), k) is zero, and sy

is injective. O

4.3. Recall that a cycle in mod A is a sequence of non-zero non-isomorphic between
indecomposable A-modules My — M; — -+ — My = M;. An indecomposable A-
module M is called directing if there is no cycle passing through M.

Lemma. Let M be an indecomposable directing module. Then M s locally fasthful.

Proof: Let B be the full subcategory of A with vertices {y € (Q4)o | M(y) # 0} (=the
support of M). It follows the well-known convexity argument of Bongartz (4] (3.2) that
B is a full convex subcategory of A. Then M is a sincere indecomposable directing
B-module and therefore, B is a tilted algebra [24]. By the same argument as in the
proof of [16] M is faithful as a B-module, hence is locally faithful as an A-module. O

Corollary. Assume that M is an indecomposable square-free directing module and that
A = B[M)] is a trianguler algebra. For any preseniation (Qa, Iy) we have a group iso-
morphism Hom (71(Q 4, Ip), k™) & Hom (m(Qp, Is), k7). In particular, if B is freely

connected, then A is simply connected if and only of B is sumply connected.

Proof: Since M is square-free and locally faithful, sy is a monomorphism by (4.2).
Moreover, M directing implies that Extl (M, M) = 0. Hence Cokerc® = 0, so that c*
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is surjective. On the other hand, since M is indecomposable, the extension point z is

separating. By (2.4), ¢* is injective and hence it is an isornorphism.

If B is simply connected, (2.5) implies that A is simply connected. Assume that
B is freely connected and A is simply connected. Then Hom (m(Qpg, ), k") = 0 for
any presentation (@ g, I) of B. By (2.7), B is simply connected. 0

5. Strongly simply connected algebras.

5.1. Following {26], we say that a connected triangular algebra is strongly stmply con-

nected if every full convex subcategory of 4 is simply connected. We recall the following:

Theorem [26] (4.1). The following are equivalent for a connected triangular algebra
A:

a) A i3 strongly simply connected.

b) Every full conver subcategory of A 1s separated.

c) For every full convez subcategory C of A, we have HY(C) = 0. O

5.2. We now provide a simple method allowing to construct all strongly simply con-

nected algebras.

Proposition. A triangular elgebre A is strongly simply connected if and only if there
exist o sequence of connected algebras A = Ap, Av,...,As = k and of indecomposable
modules 4 My,..., o, Ms such that either A;_; = A;[M;] or A;_y = [M;]A; for ol
i <.

Proof: The necessity follows immediately form [22} (2.2). For the sufficiency, assume
that we have sequences as in the statement, and let B = A;. We may assume that B
is strongly simply connected. Let My = M = rad P;. Since M is indecomposable, « is
separating. By (2.5), A is simply connected.

Let C be any full convex subcategory of A. We must prove that C is simply
. connected.  We may assume that C is a proper subcategory of A and that C contains z
(otherwise, C' = A or C is contained in B: in either case, we are done). Let D be the
full convex subcategory of C consisting of all objects except . Since D is contained
in B, it is simply connected. Since x is separating in C, another application of (2.5)

completes the proof. 0
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5.3. We now consider a class of schurian algebras for which simple connectedness and
strong simple connectedness are equivalent: this is the class of schurian algebras all of

whose indecomposable projective modules are directing, (such algebras are studied in

[28]).

Proposition. Let A = B[M] be a simply connected schurian algebra oll of whose
mdecomposable projective modules are directing. For any presentation (@Qa,1y) of A,

we have Hom (m1(Qp, L), k) = 0. Consequently, all sources in Qg are separating.

Proof: Let z be an extension point of A = B[M}, and M = rad Py = M, ®---® M; be
an indecomposable decomposition. Since Py is directing, it follows from [17], theorem
1, that rad P, is directing, that is, there are no chains of non-zero non-isomorphisms

between indecomposable modules
M;— = 7TN— o _"N_’"""'Mj

for all 1 < 4,5 < n. In particular, ExtY (M, M) =0 and End M; = k for all i. Moreover,
the existence of a non-zero morphism M; — M; for : £ § would imply that top M; N
top M; # 0, contradicting the assumption that A is schurian. Therefore Endg M = k°.
On the other hand, by (2.5), z is separating. Since H U(B) = k*, the sequence

0 — H°(A) - H(B) — End M/k — 0

is exact. Therefore the morphism e in (3.1} is injective, and hence so is c*. Since P,
is locally faithful, so is M. Since A is schurian, M is square-free as well. By (4.2),
sz is a monomorphism and hence ¢* is surjective. Thus ¢* is an isomorphism and
Hom (71(Qp5, L), kT) = Hom (71(Q4,Iv), kT) = 0. The last statement follows from
(2.6). : ) 0

5.4. The following corollary generalizes results obtained in [3, 6, 15] for representation-

finite algebras:

Corollary. Let A be a schurian algebra all of whese indecomposable projective modules
are directing. The following are equivalent:

a) A is smply connected.

b) A is strongly simply connected.

c) A is separated.
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Proof: Clearly (b) implies (c). By (2.5), (¢) implies (a). Assume that A is simply
connected and let €' be any full convex subcategory of 4. By (5.3) and induction
Hom (m(Qc, 1), k) 2 Hom (m(Qa, ), k1) = 0 and hence, by (2.6), all sources in
Qc are separating. Now we may clearly assume by induction that any proper full convex
subcategory of C is simply connected. Hence, by (2.5), C itself is simply connected.
Thus (a) implies (b). Note that, in applying induction, we used the obvious observation
that any full convex subcategory of A is itself schurian with directing indecomposable

projé'ctive modules. W
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