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Given a cluster-tilted algebra B we study its first Hochschild cohomology group HH1(B)
with coefficients in the B–B-bimodule B. If C is a tilted algebra such that B is the
relation extension of C by E = Ext2C(DC, C), then we prove that HH1(B) is isomorphic,
as a vector space, to the direct sum of HH1(C) with HH1(B, E). This yields homological
interpretations for results of the first and the fourth authors with M.J. Redondo.
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Introduction

This paper is the third of a series devoted to studying the first Hochschild coho-
mology group of a cluster-tilted algebra [6, 5]. Cluster-tilted algebras appeared
naturally during the study of the cluster algebras of Fomin and Zelevinsky [16].
They were introduced in [10] and independently in [11] for the type A and, since
then, have been the subject of several investigations. In particular, it was proved
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in [2] that if C is a tilted algebra, then the trivial extension of C by the C–C-
bimodule E = Ext2C(DC, C), called the relation-extension of C, is cluster-tilted
and, conversely, every cluster-tilted algebra arises in this way.

The Hochschild cohomology groups of an algebra were defined by Hochschild in
1945, see [19]. These are subtle homological invariants, not only of the algebra, but
also of its derived category [17, 20]. In [24], the vanishing of the first Hochschild
cohomology group was related to the simple connectedness of the algebra. Further
connections between the first Hochschild cohomology group and the fundamental
groups of an algebra were obtained in [4, 14]. It was then a natural question to
try to relate the first Hochschild cohomology group HH1(C) of a tilted algebra C

with coefficients in the C–C-bimodule C to the corresponding group HH1(B) of
the relation-extension B. For this purpose, a first observation is that, because B

is a trivial extension of C, then there exists a canonical morphism ϕ : HH1(B) →
HH1(C), see [6]. Next, an equivalence relation was defined in [6] between the arrows
in the quiver of B which are not in the quiver of C. The number of equivalence
classes is then denoted by nB,C . It was shown in [6] that if C is a tilted algebra
over an algebraically closed field k such that the relation-extension B is Schurian,
then there exists a short exact sequence of vector spaces

0 �� k
nB,C �� HH1(B)

ϕ
�� HH1(C) �� 0.

This result was generalized in [5] to the cases where C is constricted (in the sense
of [9]) or B is tame. The proofs of these two results were combinatorial. In the case
of representation-finite cluster tilted-algebras, the Hochschild cohomology has also
been computed by Ladkani using different methods see [22].

Our objective in this note is to provide a homological interpretation of this short
exact sequence, removing all assumptions on B or C. Our main theorem may be
stated as follows.

Theorem. Let k be an algebraically closed field, C be a tilted k-algebra and B

be the trivial extension of C by E = Ext2C(DC, C). Then there exists a short exact
sequence of vector spaces

0 �� HH1(B, E) �� HH1(B)
ϕ

�� HH1(C) �� 0.

The proof of this theorem is largely homological and different from those in [6, 5].
We also prove that dimkHH1(B, E) ≥ nB,C and equality holds if and only if the
indecomposable summands of the C–C-bimodule E are orthogonal bricks. Combin-
ing this with the results of [6, 5] we obtain, under the hypotheses therein, that, as
a C–C-bimodule, E is a direct sum of exactly nB,C orthogonal bricks.

Our paper is organized as follows. After a short preliminary section (Sec. 1), we
start the proof of our theorem in Sec. 2 by proving the left exactness of the required
sequence. It is next shown in Sec. 3 to be right exact and we study the kernel of
the map ϕ in Sec. 4. We end the paper with an example in Sec. 5.
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1. Preliminaries

1.1. Quivers and relations

While we briefly recall some concepts concerning bound quivers and algebras, we
refer the reader to [7] or [8], for instance, for unexplained notions.

Let k be a commutative field. A quiver Q is the data of two sets, Q0 (the
vertices) and Q1 (the arrows) and two maps s, t : Q1 → Q0 that assign to each
arrow α its source s(α) and its target t(α). We write α : s(α) → t(α). If β ∈ Q1 is
such that t(α) = s(β) then the composition of α and β is the path αβ. This extends
naturally to paths of arbitrary positive length. The path algebra kQ is the k-algebra
whose basis is the set of all paths in Q, including one stationary path ex at each
vertex x ∈ Q0, endowed with the multiplication induced from the composition of
paths. If |Q0| is finite, the sum of the stationary paths is the identity.

In case k is algebraically closed, then any finite-dimensional basic and connected
algebra A can be obtained as a quotient of a path algebra A � kQ/I. In this case,
the pair (Q, I) is called a bound quiver. Given two vertices x, y ∈ Q0, a relation
from x to y is a k-linear combination r =

∑m
i=1 λiwi ∈ exIey of paths wi of

length at least two from x to y. The relation r is minimal if none of the scalars
λi is zero, and for any proper subset J ⊂ {1, . . . , m} one has

∑
j∈J λjwj �∈ exIey.

The relation r is said to be strongly minimal if, as before, λj �= 0 and for any
proper subset J ⊂ {1, . . . , m} there is no family of non-zero scalars µj such that∑

j∈J µjwj ∈ exIey.
Given an algebra A � kQ/I, a system of relations for an algebra A is a subset

R of
⋃

x,y∈Q0
exIey that generates I as a two-sided ideal, but such that no proper

subset of R does. It is shown in [5, 2.2] that one may assume R to be a system of
strongly minimal relations.

1.2. Cluster-tilted algebras

Let H be a finite-dimensional hereditary k-algebra, mod-H the category of finite-
dimensional right H-modules and Db(mod-H) the corresponding bounded derived
category. It is a triangulated category with shift functor denoted by [1], and it has
an Auslander–Reiten translation τ . The cluster category of H is the orbit category
CH := Db(mod-H)/τ−1 ◦ [1]. Again, it is a triangulated category having almost
split triangles. An object T in CH is a (basic) tilting object if Ext1CH

(T, T ) = 0
and T is the sum of rk K0(H) indecomposable objects which in addition are
pairwise non-isomorphic. The endomorphism algebra EndCH(T ) is a cluster-tilted
algebra.

Consider a tilting module U over a hereditary algebra H , so that the algebra C =
EndH(U) is a tilted algebra [18] and denote by D the standard duality Homk(−, k)
between mod-H and mod-Hop. Let E be the C–C-bimodule E = Ext2C(DC, C) with
the natural actions. The trivial extension C � E of C by E, called the relation-
extension of C, is the algebra whose underlying vector space is C ⊕ E, endowed
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with the multiplication induced by the bimodule structure of E, namely

(c1, e1) · (c2, e2) = (c1c2, c1e2 + e1c2).

It was shown in [2] that B = C �E is a cluster-tilted algebra, and, conversely, every
cluster-tilted algebra arises in this way, though not uniquely.

Also, the natural projection p : B → C is a morphism of algebras, and so is its
right inverse q : C → B. We have a short exact sequence of B–B-bimodules

0 → E
i→ B

p→ C → 0. (1.1)

Also, it was shown in [2] that once the bound quiver (Q, I) of C is known then
that of B, say (Q̃, Ĩ), is obtained as follows:

• Q̃0 = Q0.
• For x, y ∈ Q0, the set of arrows in Q̃ from x to y equals the set of arrows in Q

from x to y (which we call old arrows) plus |R∩ eyIex| additional arrows (which
we call new arrows).

The relations defining Ĩ are given by the partial cyclic derivatives of the poten-
tial W =

∑
r∈R γrr, where γr is the new arrow associated to the relation r

(see [21]). Potentials are considered up to cyclic permutations: two potentials are
cyclically equivalent if their difference lies in the linear span of all elements of the
form α1α2 · · ·αj − αjα1 · · ·αj−1, where α1α2 · · ·αj is an oriented cycle. We recall
from [15] that, for a given arrow β the cyclic partial derivative ∂β of W is defined
on each cyclic summand β1 · · ·βs by ∂β(β1 · · ·βs) =

∑
i:β=βi

βi+1 · · ·βsβ1 · · ·βi−1.
In particular, the cyclic derivative is invariant under cyclic permutation.

1.3. Hochschild cohomology

We recall some notions concerning Hochschild cohomology, but for unexplained
ones, we refer to [17, 23] for instance. Given a k-algebra A, let Ae = A ⊗k Aop

be its enveloping algebra. It is well known that the category of A–A-bimodules is
equivalent to that of Ae-modules. If AXA is a bimodule, then the Hochschild coho-
mology groups of A with coefficients in X are the extension groups HHi(A, X) =
ExtiAe(A, X). In case X = A, we simply write HHi(A).

We are interested in computing the Hochschild cohomology groups of cluster-
tilted algebras, which are given by quivers and relations. In this context we can
use a convenient resolution for computing the Ext groups, see [12, 1.1 and 1.2]. Let
A = kQ/I and r be its Jacobson radical. Then A0 = A/r is the semisimple algebra
generated by the vertices of Q, and as A0-bimodules one has A = A0 ⊕ r. The
following result will be used in the sequel.

Proposition 1.1 (1.2 in [12]). Given an Ae-module X, the Hochschild cohomol-
ogy groups HHi(A, X) are the cohomology groups of the complex

0 �� XA0
d1

�� HomAe
0
(r, X) d2

�� HomAe
0
(r ⊗ r, X) d3

�� HomAe
0
(r⊗

3
, X) �� · · · ,
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where the tensor products are taken over A0, XA0 = {x ∈ X |sx = xs, for all s ∈
A0} =

⊕
s∈Q0

esXes, the differentials are given by (d1x)(r) = xr − rx, and, in
general for i ≥ 2

dif(r1 ⊗ · · · ⊗ ri) = r1f(r2 ⊗ · · · ⊗ ri) +
i−1∑
j=1

(−1)jf(r1 ⊗ · · · ⊗ rjrj+1 ⊗ · · · ⊗ ri)

+ (−1)if(r1 ⊗ · · · ⊗ ri−1)ri.

From this, one sees that HH0(A, X) = {x ∈ X | ax = xa, for all a ∈ A}, so
in particular HH0(A) is the center of A. The kernel of the map d2 is the set of
A0-bilinear maps f : r → X such that f(a1a2) = a1f(a2) + f(a1)a2 for a1, a2 ∈ r,
that is, the derivations of r in X . If we extend such a derivation f to A0 by letting
f(A0) = 0, we obtain the derivations of A in X (see [13, 23]). Also, for a fixed
x ∈ X the map d1x = [x,−] : a �→ ax − xa is a derivation, and Im d1 is the set of
inner derivations.

A useful feature of the complex above is that we only need to deal with maps
that are A0-bilinear. Thus, if r ∈ eirej , then f(r) = f(eirej) = eif(r)ej ∈ eiXej.

Remark 1.2. Alternatively, derivations can be described as follows. Let kQ1 be the
A0-bimodule generated by the set of arrows of Q. A kQ0-bilinear map δ : kQ1 → kQ

can be extended to a kQ0-bilinear map kQ → kQ using the Leibniz rule, so it
becomes a derivation of kQ. Then, the map induces a unique derivation of A if and
only if δ(I) ⊆ I.

2. A Left Exact Sequence of Cohomology Groups

Let C be a tilted algebra, E = Ext2C(DC, C) and B = C � E the corresponding
cluster-tilted algebra. Upon applying the functor HomBe(B,−) to the short exact
sequence (1.1) of Sec. 1.2 we obtain a long exact sequence of cohomology groups

0 �� HomBe(B, E) �� HomBe(B, B) �� HomBe(B, C) ����
����

�� Ext1Be(B, E)
ι

�� Ext1Be(B, B)
p

�� Ext1Be(B, C) �� · · ·

Our first task is to compare the cohomology groups of C, that is HHi(C), to
those of B with coefficients in C, that is HHi(B, C) = ExtiBe(B, C). The following
lemma will be useful in the sequel.

Lemma 2.1. (a) There is an isomorphism HH0(C) � HH0(B, C).
(b) For every n ≥ 1, there is a monomorphism HHn(C) ↪→ HHn(B, C).

Proof. We use Proposition 1.1. Let rC and rB be the radicals of C and B, respec-
tively. Because B = C�E is a trivial extension, we have rB = rC ⊕E. In particular,
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the projection p : B → C restricts to a natural retraction rB → rC which we
still denote by p. Further, we let q : rC → rB be its right inverse (section), and
−∗ = HomCe

0
(−, C).

Note that we have B0 = C0. The groups ExtiCe(C, C) are the cohomology groups
of the upper complex in the diagram below, whereas ExtiBe(B, C) are those of the
lower one:

0 �� CC0
d1

C
�� HomCe

0
(rC , C)

p∗

��

d2
C

�� HomCe
0
(rC ⊗ rC , C) ��

(p⊗p)∗

��

· · ·

0 �� CC0
d1

B
�� HomCe

0
(rB , C)

d2
B

�� HomCe
0
(rB ⊗ rB , C) �� · · ·

A direct computation shows that (p⊗•)∗ defines a morphism of complexes which
is in fact a section admitting (q⊗•)∗ as retraction. This shows statement (b). For
the isomorphism of statement (a) use the fact that p∗ is injective and we have

HH0(C) = Ext0Ce(C, C) = Ker d1
C = Ker p∗d1

C = Ker d1
B = Ext0Be(B, C)

= HH0(B, C)

and we are done.

Let us denote by Hn(p) and by Hn(q) the maps induced in cohomology by (p⊗•)∗

and (q⊗•)∗, respectively. The next step is to extract a left exact sequence from the
long exact cohomology sequence involving only the degree one terms. For this sake,
we define ϕ to be the composition

HH1(B) = Ext1Be(B, B)
p

�� Ext1Be(B, C)
H1(q)

�� Ext1Ce(C, C) = HH1(C) .

Remark 2.2. Note that ϕ : HH1(B) → HH1(C) is the map that sends the class
of a map δ from B to B to that of the map pδq from C to C. A straightforward
computation, as done in [6], shows that if δ is a derivation (or an inner derivation),
then so is pδq. Thus, our map ϕ is exactly the map HH1(B) → HH1(C) considered
in [6, 5].

In order to obtain the desired 3-term sequence we need the following.

Lemma 2.3. Kerϕ = Ker p.

Proof. Clearly ϕ = H1(q)p implies immediately that Ker p ⊆ Kerϕ. Let thus δ be
a derivation whose class belongs to Kerϕ. Thus pδq is an inner derivation of C, that
is there exists c ∈ C such that pδq = [c,−]. Write δc = [c,−]. Replacing δ by δ − δc

we can assume that pδq = 0, that is f = pδ equals zero when restricted to C. Now
f being a derivation on B which is zero on C, is a morphism of C–C-bimodules
f : E → C. Indeed, let e ∈ E and c ∈ C then f(ec) = ef(c) + f(e)c = f(e)c, and
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similarly f(ce) = cf(e). Let now γ : i → j be a new arrow (thus, a generator of E

as C–C-bimodule), then f sends γ ∈ eiEej into eiCej which is zero, because C is
triangular. Therefore, f = 0 on E, so Kerϕ = Ker p.

Corollary 2.4. There is an exact sequence

0 �� HH1(B, E)
ι

�� HH1(B)
ϕ

�� HH1(C)

with ϕ = H1(q)p.

Proof. Because C is connected and triangular, its center is isomorphic to k.
Lemma 2.1 then gives HomBe(B, C) � k. In addition, the map HomBe(B, p) :
HomBe(B, B) → HomBe(B, C) appearing in the long exact sequence of cohomol-
ogy groups is not zero, because the identity (on C) belongs to its image. Thus,
this map is surjective, and hence ι = Ext1Be(B, q) is injective. Using the notation of
Lemma 2.3, we have an exact sequence

0 �� HH1(B, E)
ι

�� HH1(B)
p

�� HH1(B, C)

and a map H1(q) : HH1(B, C) → HH1(C) such that ϕ = H1(q)p. Invoking
Lemma 2.3 completes the proof.

3. The Surjectivity of ϕ

Our next step is to show that ϕ is surjective (as was shown in [6, 5] under some
additional hypotheses). Thus given a derivation δ of C, we want to extend it to a
derivation δ̃ of B. We proceed in two steps:

(1) First of all, we consider δ as a kQ0-bilinear derivation from kQ to itself that
sends each relation r ∈ R to I. We extend δ to a map δ̃ : kQ̃ → kQ̃ by
defining it on the new arrows. Extending it by using the Leibniz rule we obtain
a derivation of kQ̃. We then show that δ̃ vanishes (up to cyclic permutation)
on the potential W .

(2) Finally we show that in fact δ̃(Ĩ) ⊆ Ĩ so that in fact δ̃ is a derivation of B.

We recall that two paths u, v in a quiver are said to be parallel if s(u) = s(v)
and t(u) = t(v), and anti-parallel if s(u) = t(v) and t(u) = s(v).

We need to define δ on the new arrows, which, as already observed, are in
bijection with the elements of R. Let ri ∈ R be a relation from x to y in kQ. Since
δ(ri) ∈ exIey, there exist scalars bik, paths uik, vik and relations rjk

such that

δ(ri) =
m∑

k=1

bikuikrjk
vik. (3.1)
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Since ri is parallel to uikrjk
vik, and ri is anti-parallel to the corresponding new

arrow γi, then each vikγiuik is a path anti-parallel to rjk
:

x

uik ��

ri

�� y
γi

��

rjk

��

γjk

�� vik

��
.

For a given arrow γj we want to collect all the terms vikriuik where γj = γjk
with

rjk
appearing in the expression of δ(ri) (Eq. (3.1), above). More precisely, for a

fixed new arrow γj define

Ej = {(i, k)| rjk
= rj in the expression of δ(ri)}.

Lemma 3.1. Let δ : kQ → kQ be a derivation such that δ(I) ⊆ I. Then the map
δ̃ : kQ̃ → kQ̃ defined on the arrows of Q̃ by

δ̃(α) =


δ(α) if α is an old arrow,

−
∑

(i,k)∈Ej

bikvikγiuik if α = γj

and extended by the Leibniz rule is a derivation of kQ̃, satisfying δ̃(W ) = 0 up to
cyclic permutation.

Proof. The only thing we have to prove is that δ̃(W ) is zero up to cyclic permu-
tation, but this follows readily from:

δ̃(W ) =
n∑

i=1

δ̃(riγi)

=
n∑

i=1

δ(ri)γi +
n∑

j=1

rj δ̃(γj)

=
n∑

i=1

m∑
k=1

bikuikrjk
vikγi +

n∑
j=1

rj

∑
(i,k)∈Ej

−bikvikγiuik

=
n∑

j=1

rj

∑
(i,k)∈Ej

(bikuikrjvikγi − bikrjvikγiuik)

which is zero up to cyclic permutation.

Let us now show that δ̃(Ĩ) ⊆ Ĩ. The ideal Ĩ is generated by the partial derivatives
∂αW of the potential W with respect to the arrows of Q̃. If γ is a new arrow, then
∂γ(W ) is an old relation (thus an element of I), and then δ̃(∂γW ) = δ(∂γW ) ∈ I ⊆
Ĩ, since δ is a derivation of C. Thus we only need to look at the partial derivatives
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with respect to the old arrows, or, equivalently, we only need to look at the new
relations. Before proving the desired result we need some preliminary observations.

For any vertex i in Q define:

W1 = sum of all terms in W that pass through i

=
∑

γ:s(γ)=i

γ∂γW ;

W2 = sum of all terms in W that do not pass through i and contain an arrow

β such that δ̃(β) passes through i;

W3 = sum of all other terms in W.

Since the quiver Q has no oriented cycles, we can number its vertices in such a
way that for every arrow α ∈ Q1 we have s(α) < t(α). We fix such a numbering in
the sequel.

Lemma 3.2. Let Θ be the set of all the arrows β appearing in W2 such that δ̃(β)
passes through i. Then W2 =

∑
β∈Θ β∂βW.

Proof. We show that a cycle w appearing in W2 contains exactly one arrow β such
that δ̃(β) passes through the vertex i. Assume the contrary, that is, there are two
such arrows, say β and β′. By [6, 2.1] one of them must be an old arrow, say β.

It then follows from the definition of δ̃ that δ̃(β) = δ(β) is a linear combination of
paths containing only old arrows, which go from s(β) to t(β), and at least one of
them passes through i, so that s(β) < i < t(β). We now show that the cycle w can
contain at most one old arrow having this property. Assume to the contrary that,
up to cyclic permutation, w = βuβ′u′ with u, u′ paths in Q, and β, β′ two arrows
such that δ̃(β) = b1b2 + other terms, δ̃(β′) = b′1b

′
2 + other terms, with b1, b

′
1 paths

ending at i:

β

		

b1




��
��

��
��

u

��
��
��
��
��
��
��
��
��

i
b2

���������

b′2

����
��

��
�

u′


��
��
��
��
��
��
��
��

β′��

b′1
����������

Suppose first that β′ is an old arrow. Then b′1 and b′2 are paths in Q. Since
w = βuβ′u′ is a summand of the potential, it contains exactly one new arrow. If
this new arrow occurs in u′, then b2ub′1 is a cycle in Q̃ consisting of old arrows, a
contradiction. If the new arrow appears in u, a similar argument works. Thus β′ is
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a new arrow and we have by definition,

δ̃(β′) = −
∑

j

bjvjγjuj ,

where γj are new arrows, vj , uj are old paths and vjγjuj is a path from s(β′) to
t(β′). But

t(β′) ≤ s(β) < i < t(β) ≤ s(β′)

so vjγjuj cannot pass through i, a contradiction.
We can thus write W2 =

∑
β∈Θ βwβ , where each wβ is a linear combination

of paths. By definition of W2, wβ cannot pass through i, hence all the terms of
W which contain an arrow β ∈ Θ appear exactly once in this sum. Therefore
wβ = ∂βW .

We are now able to show that for every old arrow α we have δ̃(∂αW ) ∈ Ĩ. We
do so in two steps.

For a fixed vertex i ∈ Q0 let Ĩ�=i be the ideal of kQ̃ generated by all the partial
derivatives ∂εW such that ε does not end at i.

Lemma 3.3. If
∑

γ:s(γ)=i γwγ is a linear combination of cycles which belongs to

Ĩ�=i, then wγ ∈ Ĩ�=i for every γ such that s(γ) = i.

Proof. Write
∑

γ:s(γ)=i γwγ =
∑

j bjujrjvj with bj scalars, rj generators of Ĩ�=i

and uj, vj paths. Note that by definition the first arrow of the uj is one of the
arrows γ starting at i, thus uj = γju

′
j . Then∑

γ:s(γ)=i

γwγ =
∑

j

bjγju
′
jrjvj

and, upon comparing the terms, we obtain

wγ =
∑

j:γ=γj

bju
′
jrjvj ∈ Ĩ�=i.

We can now prove the required statement.

Lemma 3.4. Let α be an old arrow, and δ̃ defined as before. Then δ̃(∂αW ) ∈ Ĩ .

Proof. We showed in Lemma 3.1 that up to cyclic permutation δ̃(W ) = 0. Take
any α ∈ Q1 and let i = s(α). Then by construction we have W = W1 + W2 + W3.
Thus using the Leibniz rule, we obtain (up to cyclic permutations):

0 =
∑

γ:s(γ)=i

δ̃(γ)∂γW +
∑

γ:s(γ)=i

γδ̃(∂γW ) +
∑
β∈Θ

δ̃(β)∂βW

+
∑
β∈Θ

βδ̃(∂βW ) + δ̃(W3). (3.2)

By definition, the terms ∂γW and ∂βW appearing in the expression above belong
to Ĩ�=i. Moreover, the terms in the first two sums involve paths passing through i,



June 11, 2013 11:2 WSPC/S0218-1967 132-IJAC 1340006

HH1 for Cluster-Tilted Algebras 739

and the last term, as well as the fourth sum consist of paths not passing through i.
Concerning the third sum, each δ̃(β) is a linear combination of paths, some of them
(at least one) passing through i, and some (may be none) not passing through
i. Accordingly, for each β collect the terms passing through i together, and call
the result δ̃i(β). Collect the remaining terms to obtain δ̃0(β). Thus the third sum
above is ∑

β∈Θ

(δ̃i(β) + δ̃0(β))∂βW.

Altogether δ̃(W ) splits into the sum of terms passing through i and the sum of
terms not passing through i; and both sums are equal to zero. Therefore we have
the following equation of cyclic words:

0 =
∑

γ:s(γ)=i

δ̃(γ)∂γW +
∑

γ:s(γ)=i

γδ̃(∂γW ) +
∑
β∈Θ

δ̃i(β)∂βW. (3.3)

Furthermore, we can view these cyclic words as paths starting at the vertex i. Then,
the sum of these paths equals 0. Since each term ∂γW and ∂βW belongs to Ĩ�=i, so
does

∑
γ:s(γ)=i γδ̃(∂γW ). By Lemma 3.3 this implies that δ̃(∂γW ) ∈ Ĩ for each γ

with s(γ) = i. So, δ̃(∂αW ) ∈ Ĩ .

The preceding lemmata show that ϕ(δ̃) = δ. Thus ϕ is surjective, completing
the proof of the main theorem.

Theorem 3.5. With the notations of Sec. 2 there is an exact sequence

0 �� HH1(B, E)
ι

�� HH1(B)
ϕ

�� HH1(C) �� 0 .

We have an immediate consequence of this theorem. We recall first that if B

is the relation extension of C, then C is not uniquely determined by B (see, for
instance, [1]).

Corollary 3.6. Let C, C′ be tilted algebras and E = Ext2C(DC, C), E′ =
Ext2C′(DC′, C′). If B = C�E � C′

�E′, then HH1(C) � HH1(C′) and HH1(B, E) �
HH1(B, E′).

Proof. Under the stated hypothesis, C and C′ are tilted algebras of the same type
(see [1]). Because of [17, 4.2] we have HH1(C) � HH1(C′). The theorem then implies
immediately that we also have HH1(B, E) � HH1(B, E′).

4. Interpretation of the Kernel

In this section we proceed to relate our result to those of [6, 5]. There, under some
hypotheses on B or C, the kernel of the map ϕ : HH1(B) → HH1(C) was computed
by means of an equivalence relation on the set of new arrows which we now describe.
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Given a strongly minimal relation
∑m

i=1 aiwi in Ĩ, either it is a relation of
I, or there exist exactly m new arrows γ1, . . . , γm and old paths ui, vi such that
wi = uiγivi (see [6, 3.1] or [5, 3.1]). We let ≈ be the smallest equivalence relation
on the set of new arrows such that γ ≈ γ′ whenever γ and γ′ are two new arrows
appearing in a strongly minimal relation. Finally, we let n = nB,C be the number
of equivalence classes for ≈.

Corollary 4.1. Let B = C � E be such that B is tame or C is constricted. Then
we have HH1(B, E) � k

n.

Proof. This follows immediately from Theorem 3.5 and the main result of [5].

We now prove that EndCe(E) is always a subspace of HH1(B, E). We recall that
HH1(B, E) is Ker d2/Im d1 in the complex below

0 �� EB0
d1

�� HomBe
0
(rB, E) d2

�� HomBe
0
(rB ⊗ rB, E) �� · · · .

Lemma 4.2. We have inclusions of vector spaces

EndCe(E) ⊆ HH1(B, E) ⊆ EndCe(E) ⊕ HomCe
0
(rC , E)

Im d1
.

Proof. Because B = C � E, we have rB = rC ⊕ E. Also, B0 = C0 so that

HomBe
0
(rB , E) = HomCe

0
(rC , E) ⊕ EndCe

0
(E).

Thus, any f ∈ HomBe
0
(rB , E) can be written uniquely as f = f1 + f2 with f1 ∈

HomCe
0
(rC , E) and f2 ∈ EndCe

0
(E). Let b = c + e ∈ rB , where c ∈ rC and e ∈ E.

Then

f(b) = f1(c) + f2(e).

The statement of the lemma will follow easily from the next three claims.

(1) We first claim that Im d1 ⊆ HomCe
0
(rC , E). Indeed, let f ∈ Im d1. There exists

e0 ∈ EB0 such that f = [e0,−]. But then, for every b = c + e ∈ rB (with c ∈ rC

and e ∈ E) we have f(b) = [e0, c] + [e0, e]. Now [e0, e] = e0e − ee0 = 0 because
E2 = 0. Therefore f(b) = [e0, c] = f1(c), that is, f = f1.

(2) Next, we see that EndCe(E) ⊆ Ker d2. Let indeed g ∈ EndCe(E). In particular
g ∈ EndCe

0
(E) so g induces f ∈ HomBe

0
(rB , E) by f(c + e) = g(e) (for c ∈ rC

and e ∈ E). We want to prove that f is a derivation. Let b, b′ ∈ rB be such that
b = c + e, b′ = c′ + e′ (with c, c′ ∈ rC and e, e′ ∈ E). Then

f(bb′) = f((c + e)(c′ + e′)) = g(ec′ + ce′) = g(e)c′ + cg(e′) = f(b)c′ + cf(b′)

but since f(b)e′ = ef(b′) = 0, this equals f(b)b′ + bf(b′).



June 11, 2013 11:2 WSPC/S0218-1967 132-IJAC 1340006

HH1 for Cluster-Tilted Algebras 741

(3) Finally, we prove that Kerd2 ⊆ HomCe
0
(rC , E) ⊕ EndCe(E). Write f ∈ Kerd2 as

before in the form f = f1 + f2 with f1 ∈ HomCe
0
(rC , E) and f2 ∈ EndCe

0
(E). We

claim that in fact f2 is a morphism of C–C-bimodules. Let c ∈ C and e ∈ E,
then ce ∈ E so that f2(ce) = f(ce). Now, f is a derivation, hence

f2(ce) = f(ce) = f(c)e + cf(e) = f1(c)e + cf2(e) = cf2(e)

because f1(c)e ∈ E2 = 0. Similarly, f2(ec) = f2(e)c. This proves that
Ker d2 ⊆ HomCe

0
(rC , E) + EndCe(E). Because EndCe(E) ⊆ EndCe

0
(E), the sum is

direct.

We now see that, in general, HH1(B, E) depends on the direct decompositions
of E as C–C-bimodule. We recall first that, as C–C-bimodule, E is generated by
the new arrows. If two new arrows occur in a strongly minimal relation, this means
that they are somehow yoked together in E. Direct decompositions of E as C–C-
bimodule are studied in [3] from which we import the following result. We include
a proof for the benefit of the reader.

Lemma 4.3. As C–C-bimodule, E decomposes as the direct sum of n non-zero
summands.

Proof. Let S1, . . . ,Sn be the equivalence classes of new arrows, with Sj =
{γj1, . . . , γjsj}. Further, let Ej be the C–C-bimodule generated by the arrows of
Sj , so its elements are of the form xj =

∑sj

k=1 bjkujkγjkvjk where, as before, the
bjk are scalars while ujk and vjk are (classes of) paths. We thus have a natural
epimorphism η :

⊕n
j=1 Ej → E given by η(x1, . . . , xn) =

∑n
j=1 xj . We show that

it is also a monomorphism. Let (x1, . . . , xn) be a non-zero element of the kernel of
η with the additional property that the number of non-zero elements among the xj

is minimal. Thus, we have a relation

n∑
j=1

sj∑
k=1

bjkujkγjkvjk = 0.

If n = 1 there is nothing to show, so assume there are at least two classes occur-
ring in the relation (that is two values of j). By definition, this relation is not
strongly minimal, so there must be a strongly minimal relation involving the same
paths

n∑
j=1

sj∑
k=1

b′jkujkγjkvjk = 0.

By definition of the equivalence relation ≈ only one class appears in the second
relation. By subtracting a multiple of this second relation from the first one, we can
reduce the number of non-zero terms in the original one, still getting an element of
Ker η, a contradiction.
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Assume E = E1 ⊕ · · · ⊕ En, with the Ei non-zero. Then the identity on each
Ei induces clearly an endomorphism of E as C–C-bimodule. Since these endomor-
phisms are linearly independent, we get the following corollary.

Corollary 4.4. We have dimkHH1(B, E) ≥ n, and if equality holds, then

HomCe(Ei, Ej) =

{
k if i = j,

0 otherwise.

Proof. Write E =
⊕n

j=1 Ej so that, as vector spaces, we have EndCe(E) =⊕n
i,j=1 HomCe(Ei, Ej). The identity maps on each Ej provide n linearly independent

elements in EndCe(E) which, by Lemma 4.2, is contained in HH1(B, E). This proves
the first statement. If in addition equality holds, we must have n = dimkEndCe(E),
and the conclusion follows.

We know that equality occurs under the hypothesis of [5], so we get the following
corollary.

Corollary 4.5. Assume B = C � E is such that B is tame or C is constricted,

then the indecomposable summands of E as C–C-bimodule are pairwise orthogonal
bricks.

Actually, we state the following conjecture.

Conjecture 4.6. Let C be a tilted algebra, and E = Ext2C(DC, C). Then the inde-
composable summands of E as C–C-bimodule are pairwise orthogonal bricks.

5. An Example

Let k be a field of characteristic different from 2. Consider the tilted algebra C

given by the bound quiver of Fig. 1(a). The relations for C form a strongly minimal
set of relations. The corresponding cluster-tilted algebra is B, given by the quiver
of Fig. 1(b) with potential W = (α1β1 + α2β1)γ1 + (α1β2 − α2β2)γ2. In this case,

2

1
α1

��

α2

�� 4

β1
�������

β2 ��
��

��
�

3

2γ1

��

1
α1

��

α2

�� 4
β1

�������

β2

��
��

��
�

3γ2

��

2γ1

��

1 4
β1

�������

β2

��
��

��
�

3γ2

��

(a) The quiver of C, the rela-
tions are α1β1 + α2β1 = 0,
and α1β2 − α2β2 = 0.

(b) The quiver of B, and
the potential W = (α1β1 +
α2β1)γ1 + (α1β2 − α2β2)γ2.

(c) The quiver C′, the rela-
tions are β1γ1 and β2γ2.

Fig. 1. The cluster-tilted algebra B as relation extension of two tilted algebras C and C′.
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the partial derivatives with respect to the old arrows are

∂α1W = β1γ1 + β2γ2, ∂α2W = β1γ1 − β2γ2,

∂β1W = γ1α1 + γ1α2, ∂β2W = γ2α1 − γ2α2.

However, these relations do not form a system of strongly minimal relations, since
∂α1W + ∂α2W = 2β1γ1, and this leads to a monomial relation β1γ1. In a similar
way we obtain a monomial relation β2γ2. This shows that γ1 �≈ γ2, hence there are
two equivalence classes. Here the extension bimodule E decomposes as E1 ⊕ E2,
with E1 = Cγ1C and E2 = Cγ2C. Assume f ∈ HomCe(E1, E2). Since f(γ1) =
f(e2γ1e1) = e2f(γ1)e1 and this lies in E2, we have f = 0. Using similar arguments
one gets that E1 and E2 are orthogonal bricks.

On the other hand, let C′ be the algebra given by the bound quiver of Fig. 1(c).
Then B is the relation extension C′

� E′. In this case the two new arrows are α1

and α2, so that E′ = E′
1 ⊕ E′

2 with E′
1 = C′α1C

′ and E′
2 = C′α2C

′. As vector
spaces, we have

E′
1 = 〈α1, α1β2, γ2α1, γ2α1β2〉 and E′

2 = 〈α2, α1β1, γ1α2, γ1α2β1〉.
Assume f ∈ HomCe(E′

1, E
′
2). Since f(α1) = f(e1γ1e4) = e1f(α1)e4 lies in E′

2, there
exists a scalar λ such that f(α1) = λα2. Now, we have

0 = f(α1β1) = f(α1)β1 = λα2β2 (5.1)

and this forces λ = 0 so that HomCe(E′
1, E

′
2) = 0. Using similar arguments one can

get that E′
1 and E′

2 are orthogonal bricks.
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