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Abstract. In this paper, we derive a necessary and sufficient con-
dition on a set of arrows in the quiver of an algebra A so that A
is a split extension of A/M , where M is the ideal of A generated
by the classes of these arrows. We also compare the notion of split
extension with that of semiconvex extension of algebras.

Let A and B be two finite dimensional algebras over an algebraically
closed field such that there exists a split surjective algebra morphism
A −→ B whose kernel is a nilpotent ideal of A. We then say that
A is a split extension of B. This situation has been studied, for in-
stance, in [5, 8, 9, 17, 18, 19]. Examples of split extensions abound,
the most important being that of the trivial extension algebras such
as, for instance, the cluster-tilted algebras [2, 12].

Assume A is a split extension of B. It is reasonable to ask what is
the relation between the bound quivers of A and B. It was shown in
[9](1.3) that the quiver of B is obtained from that of A by deleting
some arrows but, as pointed out there, these arrows cannot be taken
arbitrarily. Our main result (2.4) gives an easily verified necessary and
sufficient condition on a set S of arrows in the quiver of A so that A
is a split extension of A/M , where M is the ideal of A generated by
the classes of these arrows. This condition is expressed by saying that,
if an arrow belonging to a minimal relation lies in this set S, then on
each path of this minimal relation, there must be an arrow from S.
This was already proven in the schurian triangular case in [3](3.2), but
our proof here is completely different.

We then apply our result to compare the notion of split extension
with that of semiconvex subcategories, introduced in [15]. We show
in (3.3) that any semiconvex subcategory is a split extension, but the
converse is not true. However, we characterise there the semiconvex
subcategories in terms of a special kind of split extension, called ele-
mentary.
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This work consists of three sections. The first is devoted to prelimi-
naries on split extensions, the second to the proof of our main theorem
and the last to the connection with semiconvex subcategories.

1. Preliminaries on split extensions

1.1. Notation. Let k be an algebraically closed field. By algebra is
meant a basic associative finite dimensional k-algebra with an identity.
A quiver Q is a quadruple (Q0, Q1, s, t) where Q0 is the set of points
of Q, Q1 is the set of arrows of Q, and s, t are functions from Q1 to
Q0 which give, respectively, the source s(α) and the target t(α) of a
given arrow α. By a well-known result of Gabriel, given an algebra
A, there exists a (unique) finite quiver QA and (at least) a surjective
algebra morphism η : kQA −→ A, where kQA denotes the path algebra
of QA. Setting I = Ker(η), we then have A ∼= kQA/I. The morphism
η is called a presentation of A, and A is said to be given by the bound
quiver (QA, I), see [7]. The ideal I is admissible, that is, there exists
an n ≥ 2 such that kQ+n

A ⊂ I ⊂ kQ+2
A , where kQ+l

A is the ideal of
kQA generated by the paths of length at least l in QA. Moreover,
I is generated by a finite set of relations: a relation in QA from a

point x to a point y is a linear combination ρ =
m∑

i=1
ciwi, where the

ci ∈ k are non-zero, and the wi are paths of length at least two from

x to y. A relation ρ =
m∑

i=1
ciwi is monomial if m = 1 and minimal if

m ≥ 2 and, for every non-empty and proper subset J of {1, · · · ,m}, we
have

∑
j∈J

cjwj /∈ I. Following [11], we sometimes consider equivalently

the algebra A = kQA/I as a k-category, of which the object class
is the set (QA)0 and where the set of morphisms from x to y is the
quotient of the k-vector space kQA(x, y) of all linear combinations of
paths from x to y by the subspace I(x, y) = I∩kQA(x, y). The algebra
A is triangular if QA is acyclic. For x ∈ (QA)0, we let εx denote
the corresponding stationary path, and ex = εx + I the corresponding
primitive idempotent of A. We also denote by Sx, Px, respectively,
the corresponding simple and indecomposable projective A-modules
associated to x.

1.2. Let A,B be two algebras, we say that A is a split extension of B
by the nilpotent ideal M , or briefly a split extension of B if there exists
a split surjective algebra morphism π : A −→ B whose kernel M is a
nilpotent ideal. This means that there exists a short exact sequence of
abelian groups
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- - - -0 M A B 0
ι π

�

σ

where ι denotes the inclusion and σ is an algebra morphism such that
πσ = 1B. In particular, σ identifies B with a subalgebra of A. Since
M is nilpotent, we have M ⊂ radA.

Lemma. Let A be a split extension of B by the nilpotent ideal M. The
quiver QA of A is constructed as follows:

(a) (QA)0 = (QB)0.
(b) For x, y ∈ (QA)0, the set of arrows in QA from x to y equals

the set of arrows in QB from x to y plus

dimk ex
M

M · radB + radB ·M +M2
ey

additional arrows.

Proof. Since M ⊂ radA, the quivers of A and B have the same points.
The arrows in QA correspond to a k-basis of the vector space
radA/rad2A. Now, radA = radB ⊕M as a vector space, and hence

rad2A = rad2B ⊕ [M · radB + radB ·M +M2].

Since rad2B ⊂ radB, and M · radB+ radB ·M +M2 ⊂ M , and since
the arrows of QB correspond to a basis of radB/rad2B, the additional
arrows of QA correspond to a basis of M/[M · radB+ radB ·M +M2].
The arrows from x to y are obtained by multiplying by ex on the left
and by ey on the right. �

1.3. By (1.2), QB is a (non-full) subquiver of QA. We now show that,
if they are equal, then M = 0.

Lemma. Let A be a split extension of B by the nilpotent ideal M . If
QA = QB, then A ∼= B.

Proof. Set Q = QA = QB. There exists presentations A ∼= kQA/J and
B ∼= kQB/I such that J ⊆ I. Here, J and I are admissible ideals of
kQ, which we may assume to be generated by monomial and minimal
relations. Let now ρ be the preimage in kQ of a generator of I. If ρ is
monomial, then ρ is a path

ρ = α1α2 · · ·αm with αi ∈ Q1 for all i = 1, · · ·m.
Thus, in B,

0 = ρ+ I = (α1 + I)(α2 + I) · · · (αm + I).
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On the other hand, B is a subalgebra of A. Hence

0 = ρ+ J = (α1 + J)(α2 + J) · · · (αm + J),

so that ρ ∈ J . If ρ is minimal, then ρ is a linear combination of paths
wi of length at least two

ρ =
m∑

i=1

λiwi, with λi ∈ k∗ for all i.

Thus, in B,

0 = ρ+ I =
m∑

i=1

λi(wi + I).

Again, B being a subalgebra of A, we have

0 = ρ+ J =
m∑

i=1

λi(wi + J)

and so, again, ρ ∈ J . This shows that I = J and hence A ∼= B. �

1.4. As a consequence, we show that, if M 6= 0, then A admits a
presentation such that M is generated by arrows.

Corollary. Let A be a split extension of B by M such that A 6∼= B.
Then there exists a presentation of A such that M is generated by the
classes of arrows of QA which are not in QB.

Proof. By (1.3), we have QA 6= QB. Hence, using (1.2), we get
(QB)1 6= (QA)1. Let A ∼= kQA/I be any presentation of A, and let
{ρ1, · · · , ρs} be the preimage modulo I of any finite set of generators
of M . Left and right-multiplying, if necessary, by stationary paths, we
may assume that each ρi is a linear combination of paths having the
same source and the same target in QA, and all the paths involved in
these linear combinations have length at least one. As is clear from
the proof of (1.3) above, we may assume that ρi + I ∈ radA/rad2A for
each i with 1 ≤ i ≤ s. Thus, we can write

ρi = αi +
∑
j

λ′jw
′
j

where αi ∈ (QA)1 and
∑
j
λ′jw

′
j a linear combination of paths of length

at least one. Since all ρi + I are linearly independent, we define a new
presentation by replacing the arrow αi by

α′i = αi +
∑
j

λ′jw
′
j.

With this definition, we indeed get M =< α′1, · · · , α′s >. �
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1.5. As a consequence of the above remarks, any presentation of B
can be extended to a ”nice” presentation of A.

Corollary. Let A be a split extension of B by M. Given a presen-
tation ηB : kQB −→ B, there exists a presentation ηA : kQA −→ A
such that M is an ideal of A generated by classes of arrows of QA and
there is a commutative diagram of abelian groups with exact rows and
columns

- - - -0 M̃ ∩ IA IA IB 0

- - - -0 M̃ kQA kQB 0
π̃

�
σ̃

- - - -0 M A B 0
π

�
σ

?

?

?

?

?

?

?

?

?

?

?

?

0 0

0 0

0

0

ηA ηB

where σ̃, π̃ are algebra morphisms such that π̃σ̃ = 1kQB
and ηAσ̃ = σηB.

In particular, σ̃(IB) ⊂ IA.

Proof. As in (1.2), we identify B with a subalgebra of A via σ. This
identifies QB to a subquiver of QA. Therefore, the inclusion QB ↪→ QA

induces an algebra morphism σ̃ : kQB −→ kQA by setting σ̃(εx) = εx
for every x ∈ (QB)0 and σ̃(α) = α for every α ∈ (QB)1. Letting
ηA : kQA −→ A be a presentation constructed as in (1.2) and (1.4),
we then have ηAσ̃ = σηB. By (1.4), there exists a set of arrows S
in QA such that M is the ideal generated by the classes α + I, with
α ∈ S. Let M̃ be the ideal of kQA generated by all arrows in S,
and let π̃ : kQA −→ kQB be the algebra morphism defined by setting
π̃(εx) = εx, for every x ∈ (QA)0 and π̃(β) = β, for every β ∈ (QA)1 \S,
while π̃(α) = 0, for every α ∈ S. We then have a short exact sequence
of abelian groups

0 −→ M̃ −→ kQA
π̃−→ kQB −→ 0
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and moreover, ηBπ̃ = πηA. This yields the required commutative di-
agram. Clearly, π̃σ̃ = 1kQB

. The last statement follows by passing to
the kernels. �

1.6. We finish this section by showing that taking split extensions is
a transitive operation. We need this fact in section 3.

Lemma. If A is a split extension of B, and B is a split extension of
C, then A is a split extension of C.

Proof. There exist short exact sequences of abelian groups

0 −→M −→ A
π−→ B −→ 0

0 −→M ′ −→ B
π′
−→ C −→ 0

with π, π′ algebra morphisms such that there exist algebra morphisms
σ : B −→ A and σ′ : C −→ B satisfying πσ = 1B and π′σ′ = 1C .
Moreover, there exist m,n > 0 such that M ′m = 0 and Mn = 0.

We thus get a short exact sequence of abelian groups

0 −→ π−1(M ′) −→ A
π′π−→ C −→ 0.

We claim that π−1(M ′)mn = 0. Let then xi
j ∈ π−1(M ′),

with 1 ≤ i ≤ n, 1 ≤ j ≤ m. Observe that
n∏

i=1

(xi
1x

i
2 · · ·xi

m) = 0

Indeed, we have π(xi
j) ∈M ′ for all i, j, and hence

π(xi
1x

i
2 · · ·xi

m) = π(xi
1)π(xi

2) · · ·π(xi
m) ∈M ′m = 0.

So xi
1x

i
2 · · ·xi

m ∈ Kerπ = M , for each i. Therefore,
n∏

i=1

(xi
1x

i
2 · · ·xi

m) ∈Mn = 0,

and this establishes our claim. Since (π′π)(σσ′) = 1C , the statement
follows. �

2. The main results

2.1. We start by showing that if M is an ideal of A ∼= kQA/IA gener-
ated by a set of classes of arrows in QA, then we can deduce a ”nice”
presentation of B = A/M .

Proposition. Let ηA : kQA −→ A be a presentation of A, let M
be an ideal of A generated by the classes modulo IA = Ker(ηA) of a
set S of arrows, and let B = A/M . Then there exists a presentation
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ηB : kQB −→ B such that we have a commutative diagram of abelian
groups with exact rows and columns

- - - -0 M̃ ∩ IA IA IB 0

- - - -0 M̃ kQA kQB 0
π̃

�
σ̃

- - - -0 M A B 0
π

?

?

?

?

?

?

?

?

?

?

?

?

0 0

0 0

0

0

ηA ηB

where π̃, σ̃ are algebra morphisms such that π̃σ̃ = 1kQB
.

Proof. Let Q be the quiver defined by Q0 = (QA)0 and Q1 = (QA)1 \S.
We first construct a surjective algebra morphism ηB : kQ −→ B. We
obviously have a surjective algebra morphism π̃ : kQA −→ kQ given
by π̃(εx) = εx for every x ∈ (QA)0 and π̃(β) = β for β ∈ (QA)1 \ S
while π̃(α) = 0 for all α ∈ S. Now, let b ∈ B and let π : A −→ B
be the canonical projection with kernel M . There exists a ∈ A such
that b = π(a). Since A ∼= kQA/IA, there exists w ∈ kQA such that

b = πηA(w). On the other hand, let M̃ be the ideal of kQA gen-

erated by the arrows in S (thus, clearly, M̃ = Kerπ̃), then we have

πηA(M̃) = π(M) = 0. Hence πηA : kQA −→ B factors uniquely
through π̃, that is, there exists a unique algebra morphism
ηB : kQ −→ B such that ηBπ̃ = πηA.

We now claim that IB = Ker(ηB) is an admissible ideal of kQ
(see [7]). Let kQ+n be the ideal of kQ generated by the paths of
length at least n. We must prove that there exists an n such that
kQ+n ⊂ IB ⊂ kQ+2. We first show that IB ⊂ kQ+2. If not, let
γ ∈ IB\kQ+2. There exist arrows β1, · · · , βt, non-zero scalars c1, · · · , ct
(with t ≥ 2) and ρ ∈ kQ+2 such that γ =

t∑
j=1

cjβj + ρ. Considering γ
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as an element of kQA, we have

πηA(γ) = ηBπ̃(γ) = ηB(γ) = 0.

Hence, ηA(γ) = γ + IA ∈ Kerπ = M . Therefore, there exist scalars
d1, · · · , dm not all zero, and arrows α1, · · · , αm ∈ S, such that

γ + IA =
m∑

i=1
diαi + IA. Since IA is an admissible ideal and ρ ∈ kQ+2,

the equation
t∑

j=1

cjβj + ρ+ IA =
m∑

i=1

diαi + IA

yields, by reasons of grading,
t∑

j=1
cjβj =

m∑
i=1

diαi and this is impossible,

because the arrows αi do not belong to Q. Thus, IB ⊂ kQ+2. On
the other hand, there exists n such that kQ+n

A ⊂ IA. Because Q is
a subquiver of QA, we have kQ+n ⊂ kQ+n

A whence kQ+n ⊂ IA. By
definition of ηA, this implies that kQ+n ⊂ IB. This establishes our
claim and hence that ηB : kQ −→ B is a presentation of B.

Since the quiver of an algebra is uniquely determined, we have that
Q = QB and we deduce the exactness of the two right columns of
the required diagram. Since ηBπ̃ = πηA, and M, M̃ are the respective
kernels of π, π̃, the diagram is indeed commutative with exact rows
and columns. Finally, the inclusion QB ↪→ QA induces an algebra
morphism σ̃ : kQB −→ kQA by setting σ̃(εx) = εx for any x ∈ (QB)0

and σ̃(α) = α for any α ∈ (QB)1. Clearly, π̃σ̃ = 1kQB
. �

2.2. The algebra morphisms π̃ : kQA −→ kQB and σ̃ : kQB −→ kQA

defined above are called respectively the morphism induced by the pro-
jection and the morphism induced by the inclusion. We have the fol-
lowing corollary.

Corollary. Under the hypothesis of (2.1), if A is triangular, then

kQA is a split extension of kQB by M̃ .

Proof. In this case, kQA and hence kQB are finite dimensional. �

2.3. Corollary. Let A be a split extension of B by M . Then
there exists a bijection between presentations ηA : kQA −→ A of A
such that M is generated by classes of arrows of QA and presentations
ηB : kQB −→ B of B such that we have a commutative diagram of
abelian groups with exact rows and columns
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- - - -0 M̃ ∩ IA IA IB 0

- - - -0 M̃ kQA kQB 0
π̃

�
σ̃

- - - -0 M A B 0
π

�
σ

?

?

?

?

?

?

?

?

?

?

?

?

0 0

0 0

0

0

ηA ηB

where M̃ is generated by arrows, and π̃, σ̃, π, σ are algebra morphisms
such that π̃σ̃ = 1kQB

and πσ = 1B.

Proof. This follows from (1.5) and (2.1). �

2.4. Before stating and proving our main theorem, we need a notation:
let w be a path in QA and α be an arrow such that there exists subpaths
w1, w2 of w satisfying w = w1αw2, we then write α|w. Also, when we
speak about a relation, we assume, as may be done without loss of
generality, that it is either monomial or minimal.

Theorem. Let ηA : kQA −→ A be a presentation of A, let M be an
ideal of A generated by the classes modulo IA = Ker(ηA) of a set S of
arrows, and let π : A −→ B = A/M be the projection. The following
conditions are equivalent:

(a) The exact sequence 0 −→ M −→ A
π−→ B −→ 0 realises A as

a split extension of B by M .
(b) Let σ̃ : kQB −→ kQA be the morphism induced by the inclusion,

and IB be the kernel of the induced presentation
ηB : kQB −→ B, then σ̃(IB) ⊂ IA.

(c) Let π̃ : kQA −→ kQB be the morphism induced by the projection.
Then, for every relation ρ ∈ IA, we have either π̃(ρ) = ρ or
π̃(ρ) = 0.
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(d) If ρ =
m∑

i=1
ciwi is a minimal relation in IA such that there exist

i and αi|wi satisfying αi ∈ S then, for any j 6= i, there exists
αj|wj satisfying αj ∈ S.

Proof. We first observe that, by (2.1), there exists a commutative dia-
gram of abelian groups with exact rows and columns

- - - -0 M̃ ∩ IA IA IB 0

- - - -0 M̃ kQA kQB 0
π̃

�
σ̃

- - - -0 M A B 0
π

�
σ

?

?

?

?

?

?

?

?

?

?

?

?

0 0

0 0

0

0

λA λB

ηA ηB

(a) implies (b) is the last statement of (1.5).
(b) implies (a). By hypothesis, σ̃ restricts to a morphism

σ′ : IB −→ IA such that σ̃λB = λAσ
′. Hence there exists a morphism

σ : B −→ A of abelian groups such that σηB = ηAσ̃. Since M ⊂ radA,
it suffices to prove that σ is an algebra morphism and πσ = 1B. Let
w,w′ be paths in QB, then

σ((w + IB)(w′ + IB)) = σ(ηB(w)ηB(w′)) = σηB(ww′) = ηAσ̃(ww′) =

= ηAσ̃(w)ηAσ̃(w′) = σηB(w)σηB(w′) = σ(w + IB)σ(w′ + IB)

On the other hand, because π̃σ̃ = 1kQB
, we have

πσηB = πηAσ̃ = ηBπ̃σ̃ = ηB.

The surjectivity of ηB yields πσ = 1B.

(b) implies (d). Let ρ =
m∑

i=1
ciwi be a minimal relation in IA such

that there exist i ∈ {1, · · · ,m} and αi|wi satisfying αi ∈ S. Assume
that the proper subset J ⊂ {1, 2, · · · ,m} of those j such that there is
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no αj|wjsatisfying αj ∈ S, is non-empty. Then, considering

ρ =
∑
i/∈J

ciwi +
∑
j∈J

cjwj

as an element of kQA and using the commutative diagram of (2.1) yield

π̃(ρ) =
∑
j∈J

cjwj

in kQB. Since ρ ∈ IA, we have ηBπ̃(ρ) = πηA(ρ) = 0. Hence
π̃(ρ) =

∑
j∈J

cjwj belongs to IB. Applying σ̃(IB) ⊂ IA, we get∑
j∈J

cjwj ∈ IA, a contradiction to the minimality of the relation ρ.

(d) implies (c). Let ρ =
m∑

i=1
ciwi be a minimal relation in IA. Our

hypothesis can be expressed by saying that if there exists i such that
π̃(wi) = 0 then, for all j 6= i, we have π̃(wj) = 0 and so π̃(ρ) = 0. This
proves that either π̃(ρ) = 0 or π̃(ρ) = ρ. Since this is clearly true for
monomial relations, our statement is proven.

(c) implies (b). Let γ ∈ IB be a non-zero element. We may suppose,
without loss of generality, that γ is a relation. Since the restriction
of π′ to IA gives a surjective map π′ : IA −→ IB, there exists ρ ∈ IA
such that π′(ρ) = γ. The element ρ ∈ IA can be written in the form
ρ = ϕ+ψ where ϕ =

∑
i
ϕi is a sum of monomial relations and ψ =

∑
j
ψj

is a sum of minimal relations. By hypothesis, we have, for each i,
either π′(ϕi) = ϕi or π′(ϕi) = 0 and, for each j, either π′(ψj) = ψj or
π′(ψj) = 0. We consider two cases.

Assume first that γ is a monomial relation. Since each π′(ϕi) and
each π′(ψj) is a summand of γ = π′(ρ), then π′(ψj) = 0 for all j and
there exists a unique i such that γ = π′(ϕi) = ϕi. We then have
π′(γ) = γ and so σ′(γ) = γ ∈ IA.

Assume next that γ is a minimal relation. For each i, we must
have π′(ϕi) = 0: indeed, if π′(ϕi) = ϕi, then it would be a summand
of the minimal relation γ, a contradiction. Similarly, if j1 6= j2 are
such that π′(ψj1) = ψj1 and π′(ψj2) = ψj2 , then ψj1 + ψj2 would be a
summand of γ, which yields another contradiction. Hence, there exists
a unique j such that γ = π′(ψj) = ψj. We again have π′(γ) = γ and
σ′(γ) = γ ∈ IA. �

2.5. Corollary. Assume that the equivalent conditions of the theo-
rem (2.4) are satisfied, then IB = IA ∩ kQB.

2.6. Condition (d) of the theorem is very easy to apply. If an arrow
belongs to (only) a monomial relation, then there is no restriction at
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all. If, on the other hand, it belongs to a path wi in a minimal relation∑
ciwi then, when cutting it, one has to cut as well at least an arrow

from each of the other paths wj (j 6= i). We now recall that an algebra
A is called monomial if there is a bound quiver presentation A ∼= kQA/I
with I generated by monomial relations. A very useful and heavily
investigated class of monomial algebras is that of string algebras, see
[14], an important subclass of which is the class of gentle algebras, see
[7](Chapter IX) or [20]. Finally, the class of special biserial algebras
is very close to the string algebras: they are no longer monomial, but
the relations which are not monomial are commutativity relations [21].
The next corollary follows immediately from the above observations.

Corollary. Let A be a split extension of B by M . If A is a special
biserial (or monomial, or string, or gentle) algebra, then so is B.

2.7. We now apply our results to cluster-tilted algebras. We recall
that cluster-tilted algebras were defined in [12] as a by-product of the
Fomin-Zelevinsky theory of cluster algebras [16]. In particular, it is
shown in [2] that any cluster-tilted algebra is a trivial extension, hence
a split extension, of a tilted algebra. For tilted and iterated tilted
algebras, we refer the reader to [7, 4]. The following is a special case
of a result obtained independently in [10].

Corollary. Let A be a split extension of B by M . If A is cluster-
tilted of type A and B is triangular, then B is iterated tilted of type
A.

Proof. By the classification of the cluster-tilted algebras of type A (see
[1, 13]), A is gentle and all relations are contained in 3-cycles. Since B
is triangular, then it is a gentle tree. Hence, using the classification in
[4], it is iterated tilted of type A. �

2.8. Examples. (a) Let C be the algebra given by the quiver

r r r r r- - � �

1 2 3 4 5

δ γ β α

bound by δγ = 0, αβ = 0. By [7](Theorem IX.6.11), C is tilted of
type A5. Its relation-extension (see [2]) is the cluster-tilted algebra A
of type A5 given by the quiver

r r rr r- - � �
� -

1 2 3 4 5δ γ β α

λ µ
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bound by λδ = 0, δγ = 0, γλ = 0, µα = 0, αβ = 0, βµ = 0. Applying
(2.4)(d), we see that A is a split extension of the algebra B given by
the quiver

r r r r r- - - -

1 2 3 5 4

δ γ µ α

bound by δγ = 0, µα = 0. Thus, applying [4] and [7](Theorem
IX.6.11), we get that B is iterated tilted, but not tilted, of type A5.

(b) Let A be the (cluster-tilted) algebra given by the quiver

r r
r

r
�����

HHHHY

HHHHY

�����

-ε
αβ

γδ

and IA be the ideal generated by αβ−γδ, εα, εγ, βε, δε. A set of arrows
S satisfying (d) must either contain none of the four arrows α, β, γ, δ
or, if it contains at least one of α, β (or γ, δ) then it must contain at
least one of γ, δ (or, α, β, respectively). Let, for instance, M be the
ideal generated by α+ IA, γ + IA, ε+ IA, then A is a split extension of
A/M by M . On the other hand, if M ′ is generated by α + IA, ε + IA,
then A is not a split extension of A/M ′ by M ′.

3. Split extensions and semiconvex extensions

3.1. Let C be an algebra and L be a C-module. The one-point exten-
sion of C by L is the matrix algebra

C[L] =

(
C 0
L k

)
with the usual addition and the multiplication induced from the module
structure of LC . The quiver of C[L] contains then QC as a full sub-
quiver and there is an additional (extension) point x which is a source.
Observe also that radPx = L. The dual notion is that of a one-point
coextension. We recall the following from [6](2.1). Let x denote the
extension point of the one-point extension algebra A = C[L] and sup-
pose A ∼= kQA/IA. We denote by ≈ the least equivalence relation on
the set x→ of all arrows starting at x such that α ≈ β (for α, β ∈ x→)

whenever there exist y ∈ (QA)0 and a minimal relation
m∑

i=1
ciwi from x

to y such that w1 = αv1, w2 = βv2 for some subpaths v1 and v2.
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Lemma. Assume that A = C[L′ ⊕ L′′] and let x denote the extension
point. If α : x −→ x′, β : x −→ x′′ are arrows in x→ such that Sx′ is
a summand of the top of L′, while Sx′′ is a summand of the top of L′′,
then α 6≈ β.

Proof. This follows easily from the definition above. �

3.2. Let A be an algebra and {e1, e2, · · · , en} be a set of primitive
orthogonal idempotents of A (which are in one-to-one correspondence
with the points of the quiver QA). An algebra C is a full subcategory
of A if there exists an idempotent e ∈ A, sum of (some of) the distin-
guished idempotents ei, such that C = eAe. A full subcategory C of
A is convex if whenever there exists a sequence ei0 , ei1 , . . . , eit of prim-
itive orthogonal idempotents such that eil+1

Aeil 6= 0 for 0 ≤ l < t and
eei0 = ei0 , eeit = eit , then eeil = eil for each l. Also, if B is another
algebra, then we say that A is a semiconvex extension of B if there
exists a full convex subcategory C of both A and B and a C-module
L = L′ ⊕ L′′ with L′′ 6= 0 such that A = C[L] = C[L′ ⊕ L′′] while
B = C[L′], see [15]. If x is the extension point, we sometimes denote
this situation by A = B{L′′, x}. Dually, one can define the semiconvex
co-extension of an algebra using the notion of one-point co-extension.
We want here to relate the notion of split extensions to the one of semi-
convex (co)-extensions. Although semiconvex (co)-extensions are split
extensions (see result below), the converse is not true as shown by the
following example.

Example. Let A be the algebra given by the commutative quiver

r r
r

r
�

����

HH
HHY

HH
HHY

�����

αβ

γδ

By (2.4), A is a split extension of the algebra given by the two arrows

r r
r

rH
HHHY

HHHHY α

δ

but the latter is neither a semiconvex (co)-extension nor a semiconvex
subategory, in the sense of (3.4) below, of the former.
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3.3. Definition. A split extension A of B is called elementary pro-
vided (QA)1 \ (QB)1 consists of arrows either leaving a unique source
or else targeting a unique sink of A.

Theorem. An algebra A is an elementary split extension of B if and
only if A is either a semiconvex extension or a semiconvex co-extension
of B.

Proof. Necessity. Let {α1, · · · , αt} be all the arrows in (QA)1 \ (QB)1.
Assume first that there exists a source x such that s(αi) = x, for each
i = 1, · · · , t. Now, if Px denotes the indecomposable projective A-
module at x, then we have radPx = M ⊕N , where the arrows αi have
targets y such that Sy is a direct summand of topM and those arrows
in (QB)1 with source x have targets z such that Sz is a direct summand
of topN , by (3.1). We then have A = B{M,x}. The case where there
exists a unique sink y such that t(αi) = y, for each i = 1, · · · , t, is dual
and its proof is left to the reader.
Sufficiency. Assume first that A is a semiconvex extension of B. Then
there exists a full convex subcategory C of both A and B and a C-
module L = L′ ⊕ L′′ with L′′ 6= 0 such that A = C[L] and B = C[L′].
Let A ∼= kQA/IA and M be the two-sided ideal of A generated by the
classes (modulo IA) of the arrows α : x −→ x′′ where x denotes the
extension point and x′′ is such that Sx′′ is a summand of the top of L′′.
By (3.1), the condition (d) of (2.4) is satisfied, and therefore A is a split
extension of B = A/M by M . Clearly, the point x is a source and so
the result is proven in this case. If now A is a semiconvex co-extension
of B, a dual argument yields the result. �

3.4. Following [15], we say that an algebra B is a semiconvex subcat-
egory of A provided there exists a sequence of subcategories

B = Bs ⊂ Bs−1 ⊂ · · · ⊂ B0 = A

such that, for each i, Bi is either a semiconvex extension or a semicon-
vex co-extension of Bi+1.

Corollary. If B is a semiconvex subcategory of A, then A is a split
extension of B.

Proof. This follows from (3.3) and (1.6). �

3.5. The next result is also an easy consequence of (3.3).

Corollary. An algebra B is a semiconvex subcategory of A if and
only if there exists a sequence of algebras B = B0 ⊂ B1 ⊂ · · · ⊂ Bt =
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A such that, for each i with 0 ≤ i < t, Bi+1 is an elementary split
extension of Bi.

3.6. Example. Let A be given by the quiver

r r r
r r

r
r

r

�
��	

�
��	

�
��	

�
��	

�
��	

@
@@R

@
@@R

@
@@R

@
@@R

@
@

@
@

@
@R

1

2 3

4 5

6

7

8

α

β

γ

δ

ε

λ

µ

ν

ρ

σ

bound by αβ = 0, δε = µν, νλ = σρ. Using (2.4), we see easily that A
is a split extension of the algebra B given by the quiver

r r r
r r

r
r

r

�
��	

�
��	

@
@@R

@
@@R

@
@

@
@

@
@R

1

2 3

4 5

6

7

8

α

βε
ν σ

with αβ = 0. A possible sequence of algebras as in Corollary (3.5)
can be constructed as follows. We denote relations by dotted lines and
modules by the corresponding representations. Set B0 = B.
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B1 = {L1, 1}B0

r r r
r r

r
r

r

�
��	

�
��	

�
��	
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@@R
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@
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@
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@Rpppppppp

pppp
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2 3

4 5

6

7

8

α

βε

λ

ν

ρ

σ

L1 given by

k k k

k k

0

0

0

�
��	

�
��	
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@@R
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@@R
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@@R

@
@

@
@

@
@R

0

11
1 1

B2 = B1{L2, 6}

r r r
r r

r
r

r

�
��	

�
��	

�
��	

�
��	

@
@@R

@
@@R

@
@@R

@
@@R

@
@

@
@

@
@Rpppppppp

pppppppp
pppp

1

2 3

4 5

6

7

8

α

β

δ

ε

λ

µ

ν

ρ

σ

L2 given by

k k 0

k k

k

0

0

�
��	

�
��	

�
��	

@
@@R

@
@@R

@
@@R

@
@

@
@

@
@R

0

01

1

1

1

1
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B3 = B2{L3, 8} = A

r r r
r r

r
r

r
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µ

ν

ρ
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L3 given by

k k 0

k k
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k

0
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1

1
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