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ABSTRACT. Let A be a tilted algebra. We prove that, if A is styongly simply connected, and Cis a full
convex subcategory of A, then the orbit graph of each of the directed components of the Austander-Reiten
quiver of ¢ is o tree and, if A is tame, thell the converse also holds. We furthes prove that, if Aisan iterated

titted algebra of Euclidean type, then A is strongly simply connected if and only if the orbit graph of each
of the directed components of its Auslander-Reiten quiver is a tree.

RisumA. Soit A une algdbre inclinée. On montre que, st A est fortement simplement connexe, et O est une
sous-catégorie pleine et convexe de A, alors le graphe orbital de chague composante acyclique du carguois
d’Auslander—Reiten de C est un arbre et, si A est docile, alors 1a véciproque est yraie. En outre, g A est
pré—incl'mée de type Euclidien, alors A est fortement gimplement connexe si et geulement st le graphe orbital
de chaque composante acyclique de son carquois d’Auslander—Reiteu est un arbre.

INTRODUCTION

Among the well-known results of the yepresentation theory of finite dimensional algebras over an alge-
braically closed field is the theorem, due to Bongartz and Gabriel [8]; which states that a representation—ﬁnite
algebra is stmply connected if and only if the orbit graph of its Austander-Reiten quiver is a tree. Tt is natural
to ask whether & similar result holds for a representation— infinite algebra. n this case, the Auslandes-Reiten
quiver is 10 longer connected so one should consider the orbit graph of each of its connected components.
On the other hand, we are particulaﬂy interested in one clags of simply connected representation—inﬁnite
algebras, namely the clags of strongly gimply connected algebras introduced by Skowronski in 118]. This
subclass seems O be the most accessible and has been the gubject of many recent investigations @ S€&, for
instance {1, % 20j

In this papet, W seck a criterion for the strong simple connectedness of a tilted algebra. We prove the
following theorem.

Theoremn. Let A be o tilted algebra. IFAis strongly simply connected, and C is @ full conve® subcategoTy
of A, then the orbit graph of each of the directed components of the Auslander-Reitern quiver of ¢ is o tree.
If A is tame, then the comnverse also holds.

As a consequence of our proof, we also show that, ifAisa representation—inﬁnite sterated tilted algebra
of Buclidean type, then A is strongly simply connnected if and only if the orbit graph of each of the divected
components of its Auslander-Reiten quiver is a tree, ot if and only if it does not contain Ay a8 8 full convex
subcategory-

Notice that if follows from [15] that the orbit graphs of the non-divected components of an arbitrary tilted
algebra are of the form Aocos Ay with m 2 2, Ag or B loop-

This paper consists of three gections @ I the first, we give the relevant definitions and prove SOMS
preliminary results, in the second, we consider the Fuclidean case, and in the third, we prove out main
results.
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1. PRELIMINARY RESULTS

1.1. Notation and definitions. Throughout this paper, k denotes a fixed algebraically closed field, By
algebra is meant & basic, connected, associative finite dimensional k-algebra with an identity, and by module
o finitely generated right module. We sometimes consider an algebra A as a k-category, whose object set is
denoted by Ap, see [8]. A full subcategory C of A is called convez if for any path ap — a1 = "+ 77 a; in
A, with ag,at € Cl, we have a; € ¢y for all 4. ¥or an algebra A, we denote by mod A its module category
~and by P(a) (or I (@), or S (a)) the indecomposable projective (or injective, or simple, respectively) module
corresponding to a € Ag. We use freely and without further reference properties of mod A, the Auslander-
Reiten translations 74 = DTr and 7, = 1D, and the Auslander-Reiten quiver ['(mod A) of A, as can
be found, for instance, in |7, 17} For tilted algebras, we refer the reader to (16,14 and for iterated titted
algebras, to {3, 4, 5, 6.

Tollowing [18], we say that an algebra A is strongly simply connected if it satisfies the following equivalent

conditions:
(a) Any full convex subcategory of A is simply connected.
(b) Any full convex subcategory of A satisfies the separation condition.
. {¢) For any full convex subcategory C of A, the first Hochschild cohomology space HY(C) of € with
coefficients 1 oC¢ vanishes.

For instance, a straightforward analysis of the lists in [13] shows that a tame concealed algebra is gtrongly
simply connected if and only if it is simply connected, or if and only if it is not hereditary of type A There
exist however simply connected (tilted) algebras which are not strongly simply connected (see (2.4) below
or [181)

We need the following definitions and results from [2}. Let A= kQ/I be a bound quiver presentation of
an algebra A. A contour {p,q) in @ from ¢ to y 8 a non-oriented cycle consisting of a pair of non-trivial
paths p,q from T to y. A contour (p,q) 18 interlaced if p and ¢ have a common point besides its end-points.
1t is drreducible if there does 1ot exist a sequence of paths p = Po, P1---Pm =g from z to ¥ such that each
of the contours (p,;,p,;+1) is interlaced. A (simple, unoriented) cycle Cin Qis irreducible if either C is an
irreducible contout OF (' is not a contour, but satisfies the following condition and its dual : for each source
o in ¢, no proper successor of ¢ in @ is also a sOUTCe in C, and exactly two proper successors of T In ( are
ginks in C. Finally, 2 contour (p,g) from z t0 Y is naturally contractible in (@, T ) if there exists a sequence
of paths p = Po, Pl P =g in Q such that, for each 0 <4 <M, the paths p; and pip1 have subpaths
gi and gitis respectively, which are involved in the same minimal relation in (@, T). We have the following
characterisation of strongly simply connected algebras (see [2} (1.6)).

Theorem. An algebra A is strongly simply connected if and only if, for any presentation A= kQ/, any
irreducible cycle in @ is an irreducible contour, and any irreducible contour in @ 48 naturally contractible in

@10 o

1.2, The orbit graph. Let A be an algebra and T be a connected component of T(mod A). The orbit graph
Gr(T)of I'is defined as follows : the points of Gr(T) are the r-orbits way of the A-modules M € Ty, and there
exists an edge WM wy if there exist m,n € 7, and an irreducible morphisn of the form 7™M — 7N,
or "N — TM @ in this case, the number of edges between Wi and wy equals dimg Try(r™M , TN ),
or dimy, Irr(7" N ,TM), respectively (here, Trr(X,Y) denotes the space of irreducible morphisms from the
A-module X to the A-module ¥).

By (8] (4.2), it s Ymown that a representa.tion-ﬁnite algebra is (strongly) simply connected if and only if the
orbit graph of its Auslander-Reiten quiver ig » tree. Here, we are mainly interested in representation—inﬁnite
algebras. We then consider the directed components of the Auslander-Reiten quiver. Let A be an algebra,
a component I' of I'(mod &) is called directed if, for each My in T, there exists no sequence of NON-ZErO
non-isomorphisms in mod A between indecomposable modules of the form Mg — My — M = M.

We conjecture that a tilted algebra is strongly simply connected if and only if for any full convex subcat-
egory C of 4, the orbit graph of each directed component of T'{mod C) is a tree. We start by showing that
the necessity part holds true.

1.3. Lemma. Lel A be a tilted algebra. If A is strongly simply connected, then the orbit graph of each
directed component of T{mod A) is o tree.

Proof. We may assmine that Ais 1‘ep1‘esentat'10n-'mﬁnite. Let T be a directed component of I(mod A). We first
claim that it suffices to prove the statement in case T ig a connecting component of T{mod A). Tndeed the
directed components of T'(mod A) are the conuecting component(s), the postprojective and preinjective
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components. Assume thus that T' is & postproject'we (or & preinject'we) component but is not connecting.
Then Uis & gtandard component without injective (or projective, respectively) modules. Let Amn T be the
‘ntersection of the annihilators of all mmodules in T’ BY 116} (2.4) [19] (3.1), we have that B = Af AT is a
tilted algebra, and I' is a conmecting component of T'(mod B). On the other hand, it is easily seen that, since
B is in fact the support algebra of T, then it is & full convex subcategory of A, Hence B is itself strongly
simply connected. This establishes oul claim.

Assume now that T i a conuecting component in T(mod A) and that ¥ s a complete slice i T. The
underlying graph 3 of ¥ is equal to Gr(I). We thus need to show that 3 is a tree. Now, there exists a tilting
| S-modute T' such that A = FudT. By [12] (4.2), we have Hi(4) =2 H' (k). Since A 18 strongly simply
connected, H'(4) = 0. By [12} (1.6), I 1(kD) = 0 implies that T is a tree. O

1.4, Corollary. Let A be o strongly simply connected tilted algebra, and C be a full conveT subcategory of
A. Then the orbit graph. of each directed component of T(mod O\ is a tree.

Proof. This follows from the facts that (' is itself strongly simply connected and, by 111 (111.6.5), is & tilted
algebra. (i

2. THE BEUCLIDEAN CASE

9.1, Tn this section, W ghow that the converse of (1.4) holds if A is a tilted algebra of Fuclidean type. We
first need some remarks about the Euler quadratic form of an iterated tilted algebra of type K. Let C bean
iterated tilted algebra of type A,y whose quiver is a (non—orlented) cycle. By (3], C'is bound by gero-relations
of length two, with as many relations in the clockwise sense as in the counterclockwise sense. Also, the Buler
quadratic form xc of € 18 positive semidefinite of corank one. We wigh to construct & radical vector Yo for
xo. We need to recall & result on the Ext-spaces of C, see [10,91.

Proposition. Ifi,j € Co and m > 2, then Extgr (S(i),S(j)) 40 if and only if there exists a path i == %0 =
i dm = i and, for each 0 <t <m, there ezists o relation from it—1 to ip1 with madpoint it. Moreouver,
in this case, dimy ExtT(S3), S()) equals the number of such paths. 0

One case of interest is the following ¢ if, it the situation of the lemnma, there is no relation with midpoint
4 and target i1, OF with midpoint 7 and source i1, then we say that the path from ito jisan {m- 1)-fold
relation from & 0 7.

‘We now proceed to define ve. Leb us fix a sink T € Cy and put val(z) = L Given a point ¥ € Cy, We
congider the walle w ¢rom = to y in the counterclockwise sense, and let piiy) (ot p— (1)) be the number of
relations in the clockwise (or the counterclockwise, respect'wely) gense having their midpoint on W between
» and y. We then set voly) =0 if  is the midpoint of & relation and vc (y) = (—1)P+(y)“l" {#) gtherwise.
Since p+(E) = P- (z), the vector V¢ is well-defined.

Lemma. With the above notation, the vector vg 18 @ radical vector for Xc-

Proof. Letting Co=1{L2 .n} and vo = (01,2 ), We have

volve) = v 2 S (~ 1) dim Ext (S (), S(7)):
i=1

mz0 4,31

Since the conclusion is rivial if C 8 hereditary, we may assume that this is not the case. We may also,
without loss of generality, assume that, for each arvow i — jof Cytor 7 is the midpoint of a relation.
For, if this is not the case, then, since Ui == v; and Ext (S(1), S(j)) =0= Ext®{(5(3):5 (1)) for all ™ > 2,
the contribution of the arrow to Xc(’Uc) is v + 'U? — Y = 1, that is, a8 much as the sole point - This
agsumption jmphies that the total number of points of ¢ which are not midpoints of relations equals the

total number of m-fold relations on ¢, as m varies over all non-negative integers.
ki
Now, the first term in xolveh namely Y 17, equals the pumber of poiuts of € which are not midpoints
3==1

of relations.

On the other hand, if wyv; # 0, then neither 4 nox j is the midpoint of a relation. Also, ExtT(S(E) 5 (N #0
implies that there exists a path i = e im = J and, for each 0 <t <M, & relation on this path
with midpoint bz Thus v;v; dimy Ext%(S(1), 5 Gy #0 jmplies that there is an {m — 1)-fold relation from

kil
i to i, consequently 3, dimg ExtB{9(1), S (5)) equals (Hl)m'l times the number of (m — 1)-fold relations
1

‘i’}jﬂ
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ki3

on C. Finally 3 > vivjdimk ExtB(5(8),5(5)) equals (—1) times the number of (m — 1)-fold relations,
m=0i,5=1

as m varies over all positive integers. This implies that volve) =0 ]

2.9. Proposition. Let A be an iterated tilted algebra of Euclidean type. If the orbit graph of each directed
component of I'(mod A) 4s o tree, then A is strongly simply connected.

Proof. We may assuine that A is representation«inﬁnite. Suppose that the orbit graph of each divected
component of T'(mod A} is a tree, but that A is not strongly simply connected. Then the bound quiver
of A containg an irreducible cycle which is not a contour, or an irreducible contour which is not naturally
contractible. Let €' be the convex hull of the full subcategory of A generated by this cycle. By (6] (5.2), C'is
iterated tilted of Dynkin or Euclidean type. On the other hand, since the cycle defining ¢ is not contractible
(in C itself), then C is nob simply connected. By [, C'is iterated tilted of type Am. By (2.1), the Fuler
quadratic form of € has a radical vector vc such that, if ¢ € Co, then vole) # 0 if and only if ¢ is not the
midpoint of & sero-relation on C. We consider v as a vector in 7140l extending by zeros where necessary.

By [5] (2.5), A contains a unique tame concealed full convex subcategory B, and is an enlargement of
B by branches, each of which is attached to B by a single point (the root). Also, the postprojective {or
preinjective) component of A is a finite enlargement of the postprojective (or preinjective, vespectively)
component of B. In particular, B is tame concealed of type # Ay and hence is strongly simply conuected.
This implies that B cannot contain C as a full subcategory. Since ( is clearly not contained entirely inside
any individual branch and since each walk between two distinct branches passes through B, it follows that
there exists at least one of the roots of the branches that belongs to C. Let a be such a root. We claim that
a is either a source or & sink in C. If this is not the case, then there exist two points @', g'' € ¢y and arrows
o — a— a on C. Since a root is either an extension or a coextension point for B, we have that either o
or o is contained in B, and the other in the branch K rooted at a. Since C is a cycle, there exists another
beanch L, rooted at b, say, such that b € Co, and this contradicts the fact that there is no walk between K
and L not passing through B. This shows our claim which impties, in particular, that o is not a midpoint of
a gero-relation on C, 80 that vo(a) # 0. Let now vs be a radical vector of the Euler form of B, considered
as a vector In 740l extending by zeros where necessary. Since vp(r) # 0 if and ouly if « € By, the vectors
vg and v are linearly independent. Yince both are clearly radical vectors for the FEuler form of A, which is
positive semidefinite of corank one, we have reached a contradiction. |

9.3, We recall that an algebra A is called A — free if there exists no full convex subcategory of A which is
hereditary of type Am-

Corollary. Let A be o Tepresentation—inﬁmite tilted algebra of Euclidean type having @ complete stice in s
preinjective component. The following conditions are equivalent :

(a) Ais strongly simply connpected.

(b) The orbit graph of each directed component of D(mod A) is a tree.

(c) The orbit graph of the postprojective component is @ tree.

{dy Ais A-free.

Proof. The equivalence of (a) and {b) readily follows from (1.4) and (2.2), and it is trivial that (b) implies
(c). If (c) Lolds, then the unique tame concealed full convex subcategory of A (which is the support algebra
of the postprojective component) cannob be hereditary of type A, thus showing (d). Finally, if {d) holds,
then A itself has af least three non-homogeneous tubes and consequently neither A nor its unique full convex
subcategory B is titted of type A, By [4], both A and B are simply connected so that the orbit graph of each

of the postprojective component of T'(mod A) (which coincides with that of I'(mod B)) and the preinjective
component, of ['(mod A) is also a tree. We have thus shown (b). W

9.4, Example. Let A be given by the quiver

(%]
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bound by af =0, 36 = ge, ve = 0. Then A is simply connected but not strongly simply connected : indeed,
the orbit graph of its postprojective component is Ay. The same example shows that the clags of strongly
simply cgnnected algebras is not closed under tilting : indeed, A is tilted of type 4 and a hereditary algebra
of type Dy is always strongly simply connected.

3. THE RESULTS

3.1. In order to prove our main theorem, we use essentially Kernex’s description of the module category of
a tilted algebra (see 14}). In particular, we start by showing that each of the left, and the right end algebra
of tame a tilted algebra may be used to define & natural labelling of the points in the orbit graph of the
connecting component. Let indeed A be a tame tilted algebra, B be the left end algebra of A, and I" be a
connecting component of I'(mod A). Then the underlying graph of a complete stice & in I’ ig equal to Gr(D).
In particular, the number of points in 33 is equal to the aumber of objects in Ag. For a point M e g, one
of the following two cases holds:

(a) There exists a € A such that P(a) € Lo and M =2 7, P{a) for some ¢ > 0. In this case, we label the
point in Gr(1) corresponding to M as Wa.

(b) M is left stable, that is, 7h M # 0 for all ¢ > 0, but in this case, there exists ¢ > 0 large enough so that
TiMisa B-module, and hence there exists a unigue component B' of B, and a unique indecomposable
injective B'-module (b} such that 7% M, considered as a B'-module, lies in the rg-orbit of I'(b). Tn
this case, we label the point in Gr{I") corresponding to M as wp.

This natural bijection between the points in A and in Gr(I) is called the left label of Gr(T). We may
construct similarly its right label using the right end algebra.

3.2, Our main theorem shows that the converse of (1.4) holds in the tame case.

Theorem. Let A be a tame tilted algebra. Then A is strongly simply connected if and onky if for each full
convex subcategory C of A, the orbit graph of each directed component of ['(mod C) is a tree.

Proof. Since the necessity of the condition follows from (1.4), we merely have to prove the sufficiency. We
proceed by induction on the number of isomorphisim classes of simple A-modules. We may again assuiie
that A is representation—iuﬁnite. Since the statement is clear if A is tame concealed, we may asswme that
this is not the case. By duality, we may suppose that the left end algebra B of A is not equal to A. Since
A is tame, B is a direct product of tilted algebras of Fuclidean type each having a complete slice in its
preinjective component.

Assume that for each full convex subcategory C of A, the orbit graph of each directed component of
T'(mod C} is a tree, but that A is not strongly simply conmected. Then the bound quiver of A contains an
srreducible cycle which is not a contour, or an irreducible contour which is not naturalty contractible. The
Liypothesis implies that, for each connected component B ! of B, the orbit graph of each directed component
of I(mod B') is a tree. Consequently, B’ is strongly simply counected by {2.3). Thus the cycle in question
cannot lie completely inside any of these connected components. We now show that it cannot actually
intersect any of these components.

Let thus B’ be a connected component of B such that the given cycle intersects B'. Since A is an iterated
one-point extension of B, we have the following situation

where A’ is the full subcategory of A generated by all objects except those lying in B’ and we have, on the
given cycle, aryows ¢ — band ¢ — d, witha,c € Al and b, d € Bf. Clearly, A’ is convex. Since A’ contains the
part of the cycle which does not lie inside B ! this part lies completely in one of the connected components of
A’. By {11} (JIL.6.5), each of the conneeted components of A (thus in particular the one containing that part
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of the cycle) is a tilted algebra. Let 3. be a complete slice in the connecting component I' of I'(mod A), and
assume that Gr(T') = I is given its left label. Further, let 5/ = {w, € £y | = ¢ Bj}. Since, by hypothesis,
3 is a tree, then £’ is a disjoint union of trees, which (by [14] (4.1), Remark (1)) can be identified with the
underlying graphs of complete slices in the connecting components of the Auslander-Reiten quiver of each
of the connected components of A’. Since a and ¢ belong to the same connected component of A’, then w,
and w, belong to the same tree in T Coensequently, there exists a unique (reduced) walk w, — - -+ —w, in
3’. On the other hand, B’ is tilted of Euclidean type and strongly simply connected so that there exists a
complete slice ¥ in the preinjective component of I'(mod B') whose underlying graph is identified to the
orbit graph of this component.

Since rad P(a) and rad P(c) have indecomposable summands which are preinjective B’-modules, there
exist 2,y € B such that we have edges w, —w, and wy—w, in 5. Now 5 s a tree, hence there exists in
5 a unique (reduced) walk wy— -+ —w,. Embedding &" and ¥’ inside ¥, we obtain a cycle in 3, namely
Wy == Wy =+ + == Wy — W — -+ — Wq. 'L'his contradiction shows our claim that the cycle cannot intersect B.
It therefore lies completely inside one of the connected components C of the full convex subcategory of 4
generated by all objects except those lying in B. The conclusion now follows at once from the hypothesis
and induction. ]

3.3. Proposition. Let A be a representation-infinite iterated tilted algebra of Fuclidean type. The following
conditions are equivalent :

(a) A is strongly simply connected.

(b) The orbit graph of each directed component of T{mod A) is o tree.

(c) A is A-free.

Proof. By (2.2), (b) implies (a). We now show that, conversely, (a) implies (b). For an iterated tilted
algebra of Euclidean type, the divected components are just the postprojective and preinjective components.
Further, it follows from {5} (2.5) that the support algebra B of, say, the preinjective component is a finite
enlargement of a representation-infinite tilted algebra ¢ having a complete slice in its preinjective component
by branches rooted in the prehujective component of €. By duality, it suffices to show that the orbit graph
of the preinjective component of I'{mod B} is a tree. We may [urther agsume that B # C.

We first claim that, for each extension point ¢ of C inside B, the C-module M = rad P(a} is indecom-
posable. Indeed, since A is strongly simply connected, its two full convex subcategories C' and C]A] satisfy
the separation condition. The indecomposability of M¢ then follows directly from [2] (3.1).

Let now K be a branch of B, rooted at a to the tame concealed algebra €. We claim that the orbit graph
of the preinjective component I' of I'(mod C[M, K]) is a tree. Let wy, denote the orbit of M in Gr(I"). Then
there is an edge war —wp(q) in Gr(I"). Since K is a branch and, for each point b € Kj, we have that rad P(b)
is indecomposable or zero, then Gr(T") is indeed a tree. Inductively, and since there is no walk between two
distinct branches, this completes the proof that (a) implies (b).

Clearly, if A is not A-free then it cannot be strongly simply connected so that (a) implies {¢). Conversely,
if A is not strongly simply connected, then it contains a full convex subcategory C' which is not simply
connected. Since, by 6] (5.2), ' is itself iterated tilted of Dynkin or Euclidean type, it must, by [4], be of
type Ay, By [3], either C' contains a hereditary algebra of type Ay, as its unique tame concealed full convex
subcategory, or else C' contains as a full convex subcategory a representation-finite iterated tilted algebra of
type A,, whose quiver is a cycle. But then, as in the proof of {2.2), we obtain a contradiction to the fact
that the quadratic form of A is positive semidefinite of corank one. a

RESUME SUBSTANTIEL

Soit A une algdhre de dimension finie sur un corps algébriquement clos. Un théordme dii 4 Bongartz et
CGabriel {8] dit que, si A est de représentation finie, elle est simplement connexe si et seulement si le graphe
orbital de son carquois d’Auslander-Retten est un arbre, Dans cet article, nous considérons une généralisation
possible de cet énoncé en cherchant un critére permettant de vérifier si une algébre inclinée de représentation
infinie est fortement simplement connexe au sens de {18]. Dans ce cas, le carquois d’Auslander-Reiten n’étant
pas connexe, il faut considérer le graphe orbital de chacune de ses composantes connexes. Les composantes
contenant des cycles orientés étant caractérisées dans {15], il reste & étudier les composantes acycliques. Nous
prouvons le théoréme suivant,
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Theorem. Soit A une algébre inclinée. Si A est fortement simplement conneze et €' est une sous-catégorie
pleine et conveze de A, alors le graphe orbital de chacune des composantes acycligues du carguois d'Auslander-
Reiten de C' est un arbre. Si A est docile, la réciproque est aussi vraie.

Il suit de notre preuve que, si A est pré-inclinée de type Euclidien et de représentation infinie, alors 4 est
fortement simplement connexe si et seulement si le graphe orbital de chacune des composantes acycliques
de son carquois d’Auslander-Reiten est un arbre, ou si et seulement si elle ne contient pas de sous-catégorie
pleine et convexe qui est héréditaire de type A,

Ll el
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