Strongly simply connected schurian algebras and
multiplicative bases

I. Assem, D. Castonguay, E.N. Marcos and S. Trepode

ABsTrRACT. In this paper, we define concepts of crowns and quasi-crowns,
valid in an arbitrary schurian algebra, and which generalise the corresponding
concept in an incidence algebra. We show first that a triangular schurian
algebra is strongly simply connected if and only if it is simply connected and
contains no quasi-crown. We then prove that the absence of quasi-crowns in a
triangular schurian algebra implies the existence of a multiplicative basis.

1. Introduction.

The aim of this paper is to explore some of the relations between the existence
of a multiplicative basis in a schurian algebra and its strong simple connectedness.
Indeed, it is known since [4] that a schurian strongly simply connected algebra
admits a normed presentation, hence a multiplicative basis. Our starting point,
however, is the criterion for the strong simple connectedness of an incidence algebra,
that of the absence of crowns [20]. We then notice that Bongartz’ well-known
example of an algebra not admitting a multiplicative basis [14] contains a full
convex subcategory isomorphic to a crown. Here, we define more general notions
of crowns and quasi-crowns, valid in an arbitrary schurian algebra. We investigate
how the absence of quasi-crowns implies the strong simple connectedness of the
algebra, and show that this absence implies the existence of a multiplicative basis.

Our motivation comes from the representation theory of finite dimensional al-
gebras over an algebraically closed field k. For such an algebra A, there exists
a (uniquely determined) quiver Q4 and (at least) a surjective algebra morphism
from the path algebra kQ 4 of Q4 onto A, whose kernel is denoted by I, see, for
instance, [13]. The algebra A is called triangular if Q4 has no oriented cycles.
For each pair (Q 4, I,), called a presentation of A, one can define the fundamental
group m (Qa, I,), see [23, 25]. A triangular algebra A is called simply connected
if, for every presentation (Q 4, I,), the group m1(Qa, I,) is trivial [8], and strongly
simply connected if every full convex subcategory of A is simply connected [33]. If
A is a schurian algebra (that is, if, for each pair of primitive idempotents e, f of A,
we have dimy(eAf) < 1), then all its presentations yield isomorphic fundamental
groups [10], and A is simply connected if and only if so is the associated chain
complex [16, 17, 29]. Simply connected algebras have played an important role in
representation theory: indeed, covering techniques allow to reduce many problems
to problems about simply connected algebras. While finding criteria for the simple
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connectedness of an algebra is an undecidable problem (because it can be reduced
to a word problem), it is known (see [33]) that, if an algebra is separated in the
sense of [11], then it is simply connected (but the converse is not true). On the
other hand, the class of strongly simply connected algebras seems much easier to
handle. Indeed, characterisations of strong simple connectedness were obtained,
for instance, in [4], and the representation theory of the tame strongly simply con-
nected algebras is largely known, see [31, 32, 28]. In particular, a question was
asked by Skowronski in [33] whether it is true that a simply connected algebra
is strongly simply connected if and only if it contains no full convex subcategory
which is hereditary of type A. While the answer to this question is negative, even
for incidence algebras (see example 1 in 3.1 below) there are many classes for which
this statement holds true (see, for instance, [1]). In this paper, we return to the
general case.

It was shown by Drixler [20] that an incidence algebra is strongly simply
connected if and only if its quiver contains no crowns. Crowns are well-known
in the combinatorics of posets, and are associated to their dismantlability (see,
for instance, [19, 21]). In this paper, we define a notion of dismantlability in an
arbitrary schurian algebra.

On the other hand, we relate the strong simple connectedness to the vanishing
of some of its (co) homology groups, namely, the Hochschild cohomology groups
HH*(A) of A with coefficients in the bimodule 4 A4 (see [18]) and the simplicial
homology (and cohomology with coefficient in an abelian group G) groups SH,e(A)
(and SH*(A,G), respectively) of the simplicial complex associated with A.

We are now able to state our first main theorem.

THEOREM. (A) Let A be a schurian triangular algebra. The following conditions
are equivalent:

(a) A is strongly simply connected.

(b) A is dismantlable.

(c) A is separated and contains no quasi-crowns.

(d) A is simply connected and contains no quasi-crowns.

(e) SH1(A) =0 and A contains no quasi-crowns.

(f) SHY(A,G) = 0 for every abelian group G, and A contains no quasi-
crowns.

(g) A is a quotient of an incidence algebra, HH'(A) =0, and A contains no
crowns.

As a consequence of the equivalence of (a) and (b) we give an algorithm allowing
to check whether a schurian triangular algebra is strongly simply connected or
not (thus, in particular, verifying the strong simple connectedness of a schurian
triangular algebra is a decidable problem).

Also, we answer in the negative the conjecture saying that the presence of a by-
pass in the quiver of a schurian algebra prevents it from being simply connected. We
show, on the other hand, that the presence of such a bypass in a simply connected
schurian algebra implies the existence of a quasi-crown.

Our second main theorem is the following.

THEOREM. (B) Let A be a schurian triangular algebra containing no quasi-
crowns. Then A admits a multiplicative basis.
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This clearly generalises the main result of [14], which states the existence of a
multiplicative basis in a triangular representation-finite algebra. As an easy conse-
quence of our result, only finitely many non-isomorphic schurian algebras of a given
dimension do not contain quasi-crowns.

Our proofs rely heavily on the use of a Mayer-Vietoris sequence for a one-point
extension, as in [15, 26]. We also obtain as consequences some of the results of
[20, 22].

The paper is organised as follows. After a preliminary section 2, we introduce
our notions of crown and quasi-crown in section 3, and our notion of dismantlability
in section 4. Section 5 is devoted to the proof of theorem (A) and section 6 to the
proof of theorem (B).

2. Preliminaries.

2.1. Notation. In this paper, by algebra, we always mean a basic and con-
nected finite dimensional algebra over an algebraically closed field k. Given a quiver
@, we denote by @ its set of points and by @ its set of arrows. A relation in Q

m

from a point z to a point y is a linear combination p = Y A\;w; where, for each 1,
Ai € k is non-zero and w; is a path of length at least twlo 1from z to y. A relation
in @) is called a monomial if it equals a path, and a commutativity relation if it
equals the difference of two paths. We denote by kQ the path algebra of Q and by
kQ(z, y) the k-vector space generated by all paths in @ from z to y. For an algebra
A, we denote by @ 4 its quiver. For every algebra A, there exists an ideal I in kQ) 4,
generated by a set of relations, such that A = kQ4/I. The pair (Q4, I) is called
a presentation of A. An algebra A = kQ/I can equivalently be considered as a k-
category of which the object class Ag is o, and the set of morphisms A(z, y) from
x to y is the quotient of kQ(z, y) by the subspace I(z, y) = I NkQ(z, y), see [13].
A full subcategory B of A is called convez if any path in A with source and target
in B lies entirely in B. An algebra A is called triangular if Q4 has no oriented
cycles, and it is called schurian if, for all z, y € Ag, we have dimy A(z, y) < 1. In
this paper, we deal exclusively with schurian triangular algebras. For a point x in
the quiver @4, we denote by e, the corresponding primitive idempotent, and by
P, and I, the corresponding indecomposable projective and injective A-module,
respectively.

2.2. Simple connectedness. Let ) be a connected quiver without oriented

cycles and I be an ideal of k@ generated by relations. A relation p = Z Ajw; €

I(z, y) is called minimal if m > 2 and, for every non-empty proper subset J C
{1,2, ..., m}, we have ) A\w; ¢ I(z, y) For an arrow a, we denote by a™! its
jeJ

formal inverse. A walk in Q from z to y is a formal composition a*as?---af'
(where a; € Q1 and ¢; € {1, —1} for all i) from x to y. The homotopy relation is
the least equivalence on the set of all walks in @) such that:

(a) For each arrow a: z — y, we have aa™! ~ e, and o 'a ~ e,.
(b) For each minimal relation ) A\;w;, we have w; ~ wj; for all 4, j.

(c) If u ~ v, then wuw' ~ wvw', whenever these products are defined.

The set of all equivalence classes of walks starting and ending at a fixed base
point g is a group, called the fundamental group of (Q, I) and denoted by 71 (Q, I).
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A triangular algebra A is called simply connected if, for any presentation (Q 4, I) of
A, the group m (Q 4, I) is trivial [8]. It is called strongly simply connected if every
full convex subcategory of A is simply connected [33].

It is shown in [10] that, if an algebra A = kQ4/I is schurian and triangular,
then the fundamental group 71 (Q 4, I) does not depend on the presentation (Q 4, I)
of A. We may thus use the unambiguous notation 71 (A) to stand for w1 (Q 4, I).

Moreover, it is known that, for every connected bound quiver (Q, I), there ex-
ists a CW-complex B = B(Q, I), called its classifying space, such that m (Q, I) =
m1(B), see [17]. If kQ/I is schurian and triangular, then the classifying space
B(Q, I) is a simplicial complex, see [16, 29|, which coincides with the one con-
sidered in [15]. It is contructed as follows: an i-simplex is a set of ¢ + 1-distinct
objects {xg, 21, -+ ,2;} in Ag such that, for any j with 1 < j <4, then there exists
a; € A(zj_1,z;) such that a;a;—1 ---a1 # 0. We denote by Ce(A) the correspond-
ing chain complex.

For concepts and results from algebraic topology, we refer the reader to [30].

We need the following concept. Let B be a non-necessarily connected algebra,
a B-module M is called separated if the supports of the distinct indecomposable
summands of M lie in distinct connected components of B. For an algebra A,
and for x € Ay, let A* denote the full subcategory of A generated by the non-
predecessors of = in (J4. Then z is called separating if the restriction to A* of
rad P, is separated as an A®-module. The algebra A is called separated if each
x € Ap is separating. It is shown in [33] that any separated algebra is simply
connected.

2.3. Strong simple connectedness. Let ) be a connected quiver without
oriented cycles. A contour (p, q¢) in @ from z to y is a pair of parallel paths of
positive length from z to y. A contour (p, q) is called interlaced if p and g have a
common point besides x and y. It is called irreducible if there exists no sequence
of paths p = po, p1, ..., Pm = ¢ from z to y such that, for each i, the contour
(pi, pi+1) is interlaced. A cycle C in @ is called irreducible if, either C' is an
irreducible contour, or C is not a contour, but satisfies the following condition and
its dual: for each source z in C, no proper successor of z in (Q is also a source of C,
and exactly two proper successors of z in @) are sinks of C. This is equivalent to
the definition of irreducibility given in [4] 1.5. It is proven in [4] 2.4 that an algebra
A is schurian and strongly simply connected if and only if:

(a) all irreducible cycles are irreducible contours, and
(b) there exists a presentation A 2 kQ4/I such that for each irreducible
contour (p, q), we have p, ¢ ¢ I but p—q € I.

Such a presentation is a normed presentation, in the sense of [12]. Its existence
implies that such an algebra admits a multiplicative basis.

2.4. Incidence algebras and their quotients. Let (X, <) be a finite poset
(partially ordered set) with n elements. The incidence algebra k¥ is the subalgebra
of the algebra M, (k) of all n x n matrices over k consisting of the matrices [a;;]
satisfying a;; = 0if j £ i. The quiver Qs of kX is the (oriented) Hasse diagram of
Y, and k¥ = kQx/Is, where I is generated by all differences p — ¢, with (p, q) a
contour in @x. The quiver Qs has no bypass, that is, no subquiver of the form
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and, conversely, for any quiver () having no bypass, there exists a poset X such that
Q = Qs.

In many places, we consider quotients of incidence algebras. For such a quotient
A~ EkQa/I, there exists a poset ¥ with Qy, = Q4 and, furthermore, I = Iy, + J,
where J is an ideal of kQ)y, generated by monomials. It is well-known that, if A is
schurian strongly simply connected, then it is a quotient of an incidence algebra,
see [20] 2.7, [4] 2.4.

3. Crowns

3.1. Before our main definitions, we give some motivating examples. We
recall that in [33], Skowronski stated the following problem. Let A be a simply
connected algebra. Is it true that A is strongly simply connected if and only if A
contains no full convex subcategory which is hereditary of type A (we then say that
A is strongly &-free)? The answer to this question is negative in general, and even
for incidence algebras.

EXAMPLE 1. Let indeed ¥ be the poset with quiver

O/O\O
/]
N

Clearly, the incidence algebra kX is not strongly simply connected, but is simply
connected and strongly A-free.

o

One could think of replacing the requirement that A be strongly A-free by the
one that A contains no full subcategory which is hereditary of type A (we then say
that A is A-free). This, however, is not true, even if one assumes (as we do) that
A is schurian, as is shown by the incidence algebra of the following poset (called a
"cross")

EXAMPLE 2.
[e] [e]
e}
[e] [e]
it is strongly simply connected, but not A-free.

However, it was shown in [20] 3.3 that an incidence algebra is strongly sim-
ply connected if and only if it contains no crown as full subcategory. We shall
define here a concept of quasi-crown which makes sense for any schurian algebra,
and reformulate Skowronski question as follows: let A be a schurian and simply
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connected, is it true that A is strongly simply connected if and only if it contains
no quasi-crown as a full subcategory? Our first main result answers this question
positively. In case that A is a quotient of an incidence algebra we may replace
“quasi-crown” by “crown” in this reformulation.

We notice that, in case A is not a quotient of an incidence algebra, the require-
ment that A is simply connected does not necessarily imply that A contains no
crown, as is shown by the following example.

EXAMPLE 3.

ST

[P e
|

oO=<—2o0O

NS

with all squares commutative except the upper left one, where we have the relation
af = 0. Here A is simply connected even though it contains a crown. This example
is called the “box”, because its geometric realisation is a cubic box with all faces
closed, except the upper one, which is half-open. Note that A is a tame quasi-
tilted algebra. It is actually a semiregular branch enlargement of a tame concealed
algebra (but is not iterated tilted of type A), see [3].

3.2. We now recall a few notions and results from the theory of split-by
nilpotent extensions (see, for instance, [5, 9]). Let A and B be two algebras,
we say that B is a split extension of A by the two sided nilpotent ideal T if there
exists a split surjective algebra morphism 7 : B — A whose kernel W is a nilpotent
ideal of B. In this case, W is generated by arrows of the quiver of B. Indeed, let
B = kQp/I, then a set S of generators of W is special if, for each p + T € S, we
have:

(a) If p is a path in @p then, for each proper subpath p’ of p, we have
pr+I¢w.

(b) If p = Y1 | Ajw; is a relation with m > 2, then for each non empty proper
subset J C {1,2---,m}, we have E].GJ Ajw;j +1¢W.

It is shown in [9] 1.3 that, if B = Qp/I is a split extension of A by W, then W
has a special set of generators and any such set consists of the classes modulo I of
arrows in Q. We now give a criterion allowing to verify whether a bound quiver
is a split extension or not.

LEMMA. Let B = kQp/I be a schurian triangular algebra and W be an ideal
in B generated by classes modulo I of a set of arrows. Then B is a split extension
of B/W by W if and only if, for every pair of non-zero paths v = 172+, and
Y =YY -v's bound by a minimal relation Ay + py' in B, if there exists an i
(with 1 < i < 1) such that v; € S, then there exists a j (with 1 < j < s) such that
v; €S.

Proof. Necessity.Assume B is a split extension of B/WW by W. Then the sub-
algebra B generated by the classes of arrows which are not in S is isomorphic to
B/W, so we can assume that for any arrow 8 ¢ S, the lifting of 8 + W € B/W to
Bis 3 =B+ 1. Assume v and 7' are as stated, and that v; ¢ S for all j. Then
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Y AW =y, + W)---(y. + W) #0in B/W, hence v =~} ---7" ¢ W in B. On
the other hand, ¥ = y+ 1 € W and Ay + py' € I imply 7' € W (because p # 0), a
contradiction.

Sufficiency. We need only observe that our hypothesis implies that the sub-
algebra of B generated by all arrows not in S is isomorphic to B/W. Since it is
obviously a subspace, it suffices to prove that, if 7, § are paths in Qp and 5 = v+ 1,
0 = 6+ I, then the product (F+W)(6 + W) = 7d + W yields the same value for all
representatives of the classes 7 and 6. However, if this is not the case, then there
exist paths 7',6’ such that § — 7/ € W, § —§ € W and 7§ € W, while v/’ ¢ W.
Now, v6 and +'é’ being parallel paths are bound by a minimal relation, and we get
a contradiction to our hypothesis. O

3.3. In this section, all algebras are schurian triangular algebras. Let A be
an algebra. We define the interval [z, y]a, or more briefly [z, y] between = and y
(with z, y € Ap) to be the full subcategory of A generated by all points z € Ag
which lie on a non-zero path from z to y, that is, such that

Az, 2)A(z, y) # 0.

Clearly, if all paths from z to y in A are non-zero, then [z, y] coincides with
the full subcategory (z, y) of A generated by the convex hull of z and y. This is
the case, for instance, whenever A is an incidence algebra.

3.4. The notion of crown is well-known in the combinatorics of posets, see
for instance, [20, 21] . We generalise it to schurian algebras as follows. Let C be

a full subcategory of A consisting of 2n objects {x1, ..., Zn, Y1, ..., Yn} and 2n
non-zero morphisms {uy, ..., Uy, v1, ..., vy} with n > 2, and of the form:
T To . Tn
U1 U2 Un
U1\L U \Lun
yl y2 e yn

We say that C is a crown (of width n) in A if:
(a) [xi; yj]m[l’h, yl] # 0 if and only if j = i and (hv l) € {(Zv i): (i_1> i): (ia i+
}orj=i+1land (h,1)e{(i,i+1),(4),E+1,i+1)}
(b) The intersection of three distinct [z, y;] is empty.
(C) For each ’i, [a:i, yz] N [ZUZ', yi—H] = {CEZ} and [ZUZ', yi] N [mi_l, yz] = {yz}
We agree to set z9 =z, Tnt1 = 1, Yo = Yns Yn+1 = Y1-
We now generalise this notion. Let C be a full subcategory of A = Q4/I. Then
C is a quasi-crown if there exists a set of arrows {1, as, ..., @, } in Q4 such that,
if R denote the ideal of A generated by the arrows «; + I (with 1 < < r), then:

(a) C is a split extension of C' = C/C N R, and
(b) C"is a crown in A/R.
In this case, we say that the points of C' induce a quasi-crown in A.
Intuitively, a quasi-crown C' may be thought of as consisting of a crown C'
together with some additional paths between the points of C’, and these paths
make C a split extension of C’.
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Quasi-crowns already appeared implicity in Bongartz’ proof [14] (see the proof
of lemma 3) and as we shall see in 3.8 below, also in [6] 2.4.

ExampPLE 4. The following is an example of a quasi-crown taking R =< € >.
Let C be given by the quiver

bound by ae =0, ye = 0.

ExXAMPLE 5. Clearly, in incidence algebras, quasi-crowns are crowns. But the
two notions do not coincide even for quotients of incidence algebras, as is shown by
the algebra given by the quiver

bound by a8 = 0 and ay =0

3.5. Recall that [20] 3.3 says that an incidence algebra is strongly simply
connected if and only if contains no crowns. We have the following:

LEMMA. Let A be a schurian strongly simply connected algebra, then A contains
no quasi-crown.

Proof. Assume that A = kQ4/I contains a quasi-crown C. Thus, there exists an

ideal R of A generated by the classes modulo I of a set of arrows {aq, as, ..., a,}
of @4 such that C is a split extension of C' = C/C N R, and C' is a crown in A/R.
Therefore, there exist 2n objects {z1, ..., Zn, Y1, -.., Yn} of C and 2n non-zero
morphisms {uy, ..., Up, V1, ..., Uy} of A/R with n > 2. Let I be the cycle given
by
il T2 s Tn
v1 v Un
U1\L U \Lun

Clearly, I is not a contour. Since A is schurian strongly simply connected, we
obtain by [4] 1.3 or 2.4, that [ is reducible. Hence, there exists a path in Q4 from
x; to y; (with j # 4,4+ 1) or from z; to z; (with j # i) or dually from y; to y;
(with j # ). We can assume that j > ¢ and that j — ¢ is minimal for this property.
Let us first suppose that j —i > 1. If we have a path w from z; to z;, then
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w
"L’i [L’i+1 PR .’IfJ
Uit1 Uj
v;
Yi+1 Yj

defines a cycle which must be irreducible by the minimality of j — ¢. This yields a
contradiction to [4] 1.3 since A is schurian strongly simply connected. The other
cases are similar.

Therefore, 7 =i+ 1 and we can assume up to duality that there is a path from
x; to x;y1, say w. We thus have a contour given by (v;, wu;41). Since A is schurian
strongly simply connected, there exists a binomial relation involving those paths.
Now, A is a quotient of an incidence algebra and v; is non-zero, we get that w4
is also non-zero. Since C' = C/C'N R is a crown, then wu;;1 must be zero in A/R,
otherwise ;11 € [%;,Yi+1]N[Tit1, Yit1]. On the other hand, since wu;41 is not zero
in A, we can assume that there exists an arrow a € R which is a subpath of wu;11.
The binomial relation of A involving v; and wu;4; forces v; to be zero in A/R (by
3.2), a contradiction. Hence, there is no quasi-crown contained in A. a

EXAMPLE 6. Assume A = kX¥/J is a quotient of an incidence algebra. If ¥
contains a (quasi) crown this does not necessarily implies that A contains a (quasi)
crown. Let, for instance, A be the quotient of the incidence algebra of the poset
with quiver

by the ideal generated by af.

3.6. We recall that we always assume our algebras to be schurian and tri-
angular. The following construction, due to Bretscher and Gabriel [15] is needed
essentially in the sequel. Let s be a source in an algebra A. We define the following
two sets of objects of A:

Ys ={zx € Ao|A(s, ) #0}
(that is, X4 consists of the objects in the support of the corresponding indecompos-

able projective A-module Py), and

¥, =3\ {s}
(that is, X! consists of the objects in the support of the radical of Ps). We partially
order each of these sets by setting

x <y if and only if A(s, y)A(y, x) #0
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(that is, there exist non-zero paths from s to y and from y to x with non-zero compo-

sition). The incidence categories kX5 and kX! can be identified with subcategories
of A, usually not full.

EXAMPLE 7. Let A be given by the quiver
S
N
e} [e]
NS
e}

bound by af = 0. Then £, and X! are respectively given by the posets

s
o o and o o
[e] e}
LEMMA. Let s be a source in A. If the points {z1, ..., Tn, Y1, - .., Yn} induce

a crown I' in kX, then the same points induce a quasi-crown in A.

Proof. By hypothesis, there exists a full subcategory of kX of the form

S
[e7] Qn
% \
"L’l " "L’z o v o l‘n
ul l u lun

Y1 Y2 S Yn

Let C' denote the full subcategory generated by the x; and y;. Also let R be
the ideal of A generated by the classes of all the arrows which are not in £X;. We
show that the full subcategory C of A generated by C' induces a quasi-crown of
A. Clearly, C" = C/C N R. Thus, it suffices to verify that C is a split extension
of C'. Let x and y be points of C' and thus of C’ such that there exists a path v
from z to y in kX;. We have to show that the class of no path from z to y in A lies
in R. Suppose thus that there exists a non-zero path w from z to y in R. Since x
is in C', it is also in kX, and there exists a path v from s to z in A such that vy
is a non-zero path. Since w belongs to R, this means that vw = 0. On the other
hand, A is a schurian algebra, thus there exists a scalar A, such that v = Aw in
A. Therefore, vy = AMvw) = 0 a contradiction which proves that no such path w
exists. This shows that C is a split extension of C". a

EXAMPLE 8. In general the quasi-crown induced as in the lemma is not a crown
in A, as is shown by the algebra given by the quiver
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S

[e] [e]
| >
[e] B [e]
\_/
bound by all possible commutativity relations and a8 = 0, v5 = 0.

3.7.  We have better results for quotients of incidence algebras.

LEMMA. Let A be a quotient of an incidence algebra and assume that kX
contains a crown. Then A contains a crown.

Proof. By 3.6, A contains a quasi-crown I'; induced by one of £¥;. We first claim
that the interval from = to y in kX, coincides with the one of A. Let z € [z,y]a4,
that is, there exist paths p :  ~ z and ¢ : z ~ y such that pq is not zero in A.
Since z and y belong to kX, there exist non-zero paths u : s ~ x and v : s ~ y.
Since A is a quotient of an incidence algebra and (v, upq) is a contour, then upq is
non-zero in A. Thus pg corresponds also to a non-zero path in kX;. This proves
that z € [z,y]ks,. The other inclusion being obvious, this establishes our claim.
Now, in order to show that I' must be a crown in A, assume that this is not the
case. In the notation of 3.4 this means that there exists a path from z; to z; (with
j # 1), from y; to y; (with j # ©), or from z; to y; (with j # 4,4+ 1). In each of
these cases, we find a zero path parallel to a non-zero one, a contradiction to the
fact that A is a quotient of an incidence algebra. O

3.8. As a consequence of 3.6, we connect the notion of quasi-crown with
the results of [6] 2.4. Let A = B[M] be a one-point extension algebra, and s
denote the extension point. Since all presentations of A give rise to isomorphic
fundamental groups, we fix a presentation of A, and consider the induced pre-
sentation of B. Let = be the least equivalence relation on the set of arrows of
source s such that a; = as whenever there exists a minimal relation of the form
Ar(a1v1) + A2(agvs). Let t be the number of equivalence classes [31],--- ,[6t]
of arrows with source s. For each i, with 1 < i < ¢, let I(i) be the number
of tuples of paths (u1,v1,-+ ,un,v,) such that there are relations A} ,(aivi) +
X! 5(@212), =+ s Ny (@ 1Vn1) + Moy o (@nttn), Ny () + X2y (@gur) with
ai,qs, -, ap distinet arrows in [3;].

Let further, B = By X ---X B, where By, --- , B, are connected, then for each j,
the embedding of B; inside A induces a canonical group morphism ¢; : m (B;) —
71 (A), hence a morphism ¢ : [Tj_, m1(B;) — m1(4).

COROLLARY. With the above notation.

(a) Assume that for some i with 1 <i < t, we have l(i) # 0, then A contains
a qUasi-crown.
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(b) Assume A contains no quasi-crown, then, for each abelian group G, we
have a short exact sequence of abelian groups

0 — G'"° — Hom(m(4),Q) oo H Hom(m(B;),G) — 0

=1

(c) If A is simply connected, but one of the B; is not, then A contains a
quasi-crown.

Proof. (a) Assume [(i) # 0 for some ¢, and (u1,v1, - ,un, V) be a tuple as above,
the A contains a subcategory of the form

S
[e7] Qn
% \
xr1 " T2 v e . Ty
ul l u lun

Y1 Y2 s Yn

It suffices, in view of 3.6, to show that kX contains a crown. We may clearly,
without loss of generality, assume that n is minimal. This implies immediately that
the points z; and y; satisfy conditions (a) and (b) of the definition of crown, see
3.4. In the terminology of [7], these points induce a weak crown in k¥;. By [7]
3.2, the convex hull of these points (in kX;) contains a crown. By 3.6, A contains
a quasi-crown.

(b), (¢) It is shown in [6] 2.4 that, for each abelian group G, there is an exact
sequence of abelian groups

c t
0 — G — Hom(mi(4),6) "8 T Hom(m(B,),G) — [[ '@
j=1 i+1

Both (b) and (¢) then follow immediately from (a). O

4. Dismantlability.

4.1. Let A be a schurian algebra. A point x € Ay is called a doubly irreducible
(see [21]) if there is at most one arrow of target z, and at most one arrow of source
x.

Given a doubly irreducible z in A, we define a new category B = A(x) such
that By = Ap\{z} as follows.

Assume first that y = « B, .. We consider if af # 0, we let B be the full
subcategory of consisting of all its objects except x. If, on the other hand af = 0,
we let B be the category whose object class is By = Ap\{z} and whose arrows are
the same as those of A, except for the arrows a and # which are replaced by a new
arrow o :y — z. Finally, the relations of B are exactly those of A, except the
relation a8 = 0 which disappears.

We define similarly B if « By orif y 5.
Note that B is generally not schurian: if A is given by the quiver
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bound by a8 = 0, then B is given by ¥y a:; z.
vy

As will be seen, the statement and proof of the following lemma hold true even if
A(x) is not schurian, by taking the fundamental group of the induced presentation.

LEMMA. Let A be a schurian algebra, and x be a doubly irreducible in A such
that A(z) is schurian. Then m (A) = 7 (A(z)).

Proof. Since we are only interested in the homotopy relations in A and A(z), we
may, and shall, assume without loss of generality that all binomial relations are
commutativity relations.

Assume first that y = z B, 4. We have two cases: af # 0 and af = 0. We
show that the second case may be reduced to the first. Indeed, suppose af = 0.
It is known that the homotopy ignores the monomial relations. We let A’ be the
algebra (not necessarily schurian) given by the same quiver as A, and the same
relations except a8 = 0, which disappears. Then the identity morphisms clearly
induce an isomorphism between the fundamental groups of A and A'.

Replacing A by A’ if necessary, we may thus assume from the start that A
is a not necessarily schurian algebra, and that z is a doubly irreducible such that

y Sz By 4 and aff # 0. Moreover, A is only bound by monomial relations
or commutativity relations. Then the full subcategory B = A(x) of A such that
By = Ap\{z} is also bound by monomial relations and commutativity relations.
We assume first that there is no relation of the form a8 = 7, ...7. Thus, the
arrows «, 3 are replaced in B by a new arrow o' : y — z. We define a map ¢ from
the set Wpg of all walks in B to the set Wy of all walks in A by setting

@(2’') =2 for all 2’ € By

@(y) = v for any arrow v # o in B and

p(af) = af.

We extend ¢ to any walk in Wg by the formula

PE - ) = (&)™ p(&r)

(here, & is an arrow in B, and ¢; € {1,—1} for each 7). This map is surjective:
indeed, any irreducible closed walk in A involving a¢, or g¢ (with ¢ € {1,-1}
involves («f3)¢ because the point x is doubly irreducible. Since @ clearly respects
the minimal relations, it induces a group epimorphism ¢ : w1 (B) — w1 (A).

We now define ¢ : W4 — Wg as follows

P(z) = 2

(') =2’ for all 2’ # 2 in Ay

Y(a) = o

$(B) = z and

¥(vy) =~ for any arrow v # a, 8 in A.
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We extend ¢ to any walk as above. Since ¢ respects the minimal relations, it
induces a morphism 1) : 7 (A) — m1(B). On the other hand, we have Y@ = 1y,
so that ¢ = 1, () and so ¢ is a group isomorphism.

Assume now that there exists a minimal relation of the form af =7, ...%. In
this case, the arrows a and 3 are simply deleted in B.

We define ¢ : Wp — Wy to be the inclusion. Clearly, it induces a group
morphism ¢ : 71 (A4) = 71 (B). We now define ¢ : W4 — Wg as follows.

)(x) =z

Y(z') = ' for all 2’ # x in Ay
Pl@)=m...m

P(B) = z and

Y(7) = 7 for any arrow v # a, 3 in A.

We extend ¢ to walks in the usual way. Clearly, ¢ is surjective. Also, it respects
the minimal relations, hence it induces a group epimorphism ¢ : 71 (A) — 71 (B).
To finish the proof, it suffices to show that oy = 1, (4). In order to do it, we
prove that for every closed walk w in A, we have @i)(w) ~ w (where ~ denotes the
homotopy relation). Clearly, we may consider only the case where w = wjafw,
(or, dually, w = wif'a"'w,), and then we have @(w) = @(wyy1 ... vews) =
WYy ... Yews ~ w (or Gh(w) = wlyt_l .. .71_111)2 ~ w, respectively).

Finally, the cases where x By 5 and y = x are similar. a

4.2. We deduce that this construction preserves the strong simple connect-
edness of the algebra.

COROLLARY. Assume A to be schurian strongly simply connected and that
x € Ag is doubly irreducible. Then B = A(x) is strongly simply connected.

Proof. Let C be a full convex subcategory of B. Assume again that y — z LNy
(the other cases being similar). If y and z do not both lie in C, then C' is (isomor-
phic to) a full convex subcategory of A, and hence is simply connected. Otherwise,
there exists a full convex subcategory C’ of A such that C = C'(z). Since C' is
simply connected, and 1 (C") = 71 (C), then C is simply connected. O

4.3. A schurian algebra A is said to be dismantlable (by doubly irreducibles)

if there exists an ordering {x1, z2,...,x,} of all objects of A such that z; is doubly
irreducible in A and, for eachi > 1, A(zy,...,z;) = A(z1,--- ,z;—1)(2;) is schurian
and the object z;4; is doubly irreducible in A(zq,...,z;).

REMARK. Let A be a schurian algebra whose quiver contains no bypass. There
exists a unique poset ¥ such that Qy = Q4. We show in 4.6 below that, if A is
dismantlable then so is k¥. The converse, however, is not true.

ExaMPLE 9. Let ¥ be the poset given by the quiver



STRONGLY SIMPLY CONNECTED SCHURIAN ALGEBRAS AND MULTIPLICATIVE BASES35

N
NP

and J be the ideal of kX generated by af (= ), then A = kX/J is not dismant-
lable, even though kX clearly is.

PROPOSITION. Let A be dismantlable. Then A is simply connected.

Proof. By induction on |4g|. For |4g| = 1, there is nothing to show. Assume
the statement holds for all dismantlable algebras A’ such that |Ap| < |Ao|, and let
A be dismantlable. Let {zi,...,z,} be an ordering of the objects of A as in the
above definition. By 4.1, 1 (A(z1)) = m1(A4). By the induction hypothesis, A(z;)
is simply connected. Hence so is A. a

4.4. We now show that dismantlability implies strong simple connectedness.

LEMMA. Let A be a schurian dismantlable algebra, and let C' be a full convex
subcategory of A. Then C is dismantlable.

Proof. By induction on |4g|.The statement being clear for |4g| = 1, assume that
|Ap| > 1 and that A contains a full convex subcategory C' which is not dismant-
lable. In particular, C' # A. Since C is convex in A, there exists a source or a
sink a € Ap\Cp. We may then, up to duality, write A = B[M], where B is the full
convex subcategory of A with By = Ao\{a}. We have C C B, and C'is convex in B.
Since |Bg| = |Ao| — 1, the induction hypothesis implies that B is not dismantlable.
Since, however, A itself is dismantlable, there exists an ordering {z1,...,z,} of the
objects of A as in the definition 4.3. In particular, 1y # a because otherwise B
would be dismantlable. If z; ¢ Cj, then C is (isomorphic to) a full convex sub-
category of A(z1), and A(z;) is dismantlable with one object less that A, then the
induction hypothesis yields a contradiction to the non-dismantlability of C'. There-
fore z; € Cy. This implies that C(z1) is a full convex subcategory of A(z1). But
then the induction hypothesis yields that C'(z1) is dismantlable. Therefore C' itself
is dismantlable, another contradiction. a

4.5. This lemma and 4.3 imply immediately the following.

COROLLARY . Let A be a schurian dismantlable algebra, then A is strongly
simply connected.

4.6. As promised, we prove that dismantlability of a schurian algebra implies
that of a corresponding incidence algebra.

PROPOSITION. Let A be a schurian dismantlable algebra, then there exist a
unique poset o such that Qs = Q4 and kX is also dismantlable.

Proof. By the above corollary and [2] 4.4 there exist a unique poset ¥ such that
Qs = Q4 and kY is strongly simply connected. By [21], kX is dismantlable. O
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4.7. We end this section by proving the converse of 4.5

PROPOSITION. Let A be a schurian strongly simply connected algebra. Then A
s dismantlable.

Proof. By [2] 4.4, since A is strongly simply connected, there exist a strongly sim-
ply connected incidence algebra kX such that A = kX\J. By [20] 3.3, kX contains
no crown. By [21] 2.3, kX is dismantlable. In particular, k¥ contains a doubly irre-
ducible z which is also doubly irreducible in A. Now, notice that A(x) is schurian.
This is clear if A(z) is a full subcategory of A. Otherwise, there exist two arrows
a:y — xand f:x — z such that af = 0 in A. If 2 does not belong to a cycle,
then the statement is clear. However, if it does, then we can clearly assume that
there exists an irreducible cycle containing a and , and this contradicts [4] 2.4.
By 4.2 above, B = A(z) is strongly simply connected. Since |Bp| < |4p|, induction
says that B is dismantlable. Hence so is A. O

5. The proof of Theorem (A).

5.1. This section is devoted to the proof of our first main theorem. Let s be
a source in a schurian triangular algebra A. Then we can write A = B[M] where
B is the full convex subcategory of A such that By = Ag\{s}. We define ¥; and
X! asin 3.6. By [15] 2.6, we have a short exact sequence of complexes

0 k3 Zh coesy) @ oud) s 0u4) = 0
where u, v, i, j are induced by the inclusions. Passing to (simplicial) homology
yields the Mayer-Vietoris sequence

oo SHy(A) S SHy(kS) — SHy(kS,) & SHy(B) — SHy(A)

% SHo(kS') % SHo(kX,) & SHo(B) — SHo(A)
and it is shown in [15] p.34 that the morphism ¢ is injective if and only if the point s
is separating. On the other hand, the poset ¥; admits a maximal element s, hence

the corresponding chain complex is contractible (because it is homeomorphic to a
cone, see [16] 3.4), therefore SH,(k¥,) =0 for all n > 1.

LEMMA. Let A be a schurian algebra, and s be a source in A.
(a) If kXY contains no crowns, then there exists a monomorphism SH;(B) —
SHy(A). Thus, SH,(A) =0 implies SH,(B) = 0.
(b) If s is separating, then there exists an epimorphism SHy(B) — SH;(A).
Thus, SH1(B) = 0 implies SH{(A) = 0.
(c) If kX! contains no crowns and s is separating, then we have an isomor-
phism SH,(B) = SH;(A).

Proof. Since SHy(kX¥;) = 0, we have an exact sequence

o Y SHY(KX!) — SHi(B) — SH1(A) 5 SHo(kS') % -+
If the incidence algebra kX' contains no crown, then it is strongly simply con-
nected. In particular, 1 (kX)) is trivial, and hence SHy(kX.) = 0 (because, by the
Hurewicz-Poincaré theorem, SH (kX)) is the abelianisation of 71 (kX})). Hence (a)
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follows. If s is separating, then ¢ is injective, thus giving (b). Finally, (c) follows
trivially. O

5.2. It is well-known that, if A is a simply connected algebra (or, else, if
HH'(A) = 0) then every source in A is separating, see [6](or [33], respectively).
In the schurian case, we can say more.

COROLLARY. Let A be a schurian algebra. If SH (A) = 0, then every source
in A is separating.

Proof. Indeed, it follows from the Mayer-Vietoris sequence that the morphism ¢ is
injective. a

5.3. The following lemma is part of the proof of our Theorem A.

LEMMA. Let A be a schurian algebra, not containing quasi-crowns and such
that SH1(A) = 0. Then A is strongly simply connected.

Proof. By induction on |A4y|. Since the statement is clear for [Ay| = 1, assume it
holds for all schurian algebras B without quasi-crowns such that |By| < |Ag| and
SH;(B) =0.

Let s be a source in A, and B be the full convex subcategory of A defined by
By = Ao\{s}. We claim that kX! contains no crowns. If this is not the case, and T’
is a crown in kX!, then I' is a crown in kX, hence by 3.6 there exists a quasi-crown
in A which must lie in B (because s ¢ T'g) and this yields a contradiction which
establishes our claim. Therefore SH; (kX)) = 0.

Since, as pointed out above, SH;(kX;) is zero, the Mayer-Vietoris sequence
gives

0= SH,(kY,) — SH,(B) — SH;(A) =0.

Hence, SH; (B) = 0. Furthermore, B contains no quasi-crown. Therefore, B is
strongly simply connected, by the induction hypothesis. Since, on the other hand,
s is separating (by the above corollary), A is simply connected.

In order to show that A is strongly simply connected, we need to show that
every proper full convex subcategory C' of A is simply connected. But, since C' is
proper, there exists a source s (up to duality) of A such that s ¢ Cp. Letting, as
above, By = Ap\{s}, and B be the full subcategory it generates, we get that B is
strongly simply connected, and C C B. Therefore, C' is simply connected. O

4. i-crow A% i W i i
5.4. We may replace “quasi-crowns” by “crowns” in case where A is a quotient
of an incidence algebra.

COROLLARY. Let A be a quotient of an incidence algebra, not containing crowns
and such that SHy(A) = 0. Then A is strongly simply connected.

ProOF. This follows from 5.4 and the proof of 5.3 above. O
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5.5. We also deduce from 5.3 an alternative proof of 3.8 (c).

COROLLARY. Let A = B[M] be a schurian simply connected algebra such that
B is not simply connected. Then B contains a quasi-crown.

Proof. Let s denote the extension point. We suppose that B contains no quasi-
crowns and reach a contradiction. By the proof of 5.3, kX! contains no crowns
and so SHy(kX!) = 0. On the other hand, the simple connectedness of A yields
SH,(A) = 0. By 5.1, SH1(B) = 0. Since B has no quasi-crown, thus no crown,
and satisfies SHy(B) = 0, it follows from 5.3 that B is strongly simply connected,
a contradiction to our hypothesis. O

5.6. It is a general problem to determine for which classes of algebras is simple
connectedness equivalent to the vanishing of the first Hochschild cohomology group
(see for instance [24, 33]).

PROPOSITION. Let A be a connected quotient of an incidence algebra, containing
no crowns, then A is simply connected if and only if HH*(A) = 0.

Proof. Assume A is simply connected. Since A is schurian, it follows from [27]
that HH'(A) = Hom(m;(A), k™). Therefore HH'(A) = 0.

Conversely, assume that HH'(A) = 0. We prove that A is simply connected
by induction on |Ag| = n. Since the statement is clear for n = 1, assume that n > 1
and that the statement holds for any algebra B such that |By| < n and satisfying
our hypothesis.

Let A be as above. It is well-known and easy to prove that, up to duality, there
exists a source s in A such that A = B[M], with M = rad P; and B connected.
Since A is a quotient of an incidence algebra, then so is B.

On the other hand, since HH'(A) = 0 by hypothesis, and B is connected, then
Happel’s sequence (see [24])

0 HH°(A) - HH°(B) - EndM/k - HH'(A) =0
yields End M = k. In particular, M is indecomposable.

Let C be the full subcategory of A generated by the support of the module M.
Then C' is convex in A: indeed, let © = ©g — 1 — --- = x¢ = y be a path in A,
with z, y € Cy then, since A is a quotient of an incidence algebra, A(s,z) # 0 and
A(s,y) # 0 imply that A(s,z;) # 0 for any ¢ with 0 <1i <.

We now claim that C is an incidence algebra. We first notice that C is a
quotient of an incidence algebra. But, also, assume a, b, ¢ € Cy are such that
A(a,b) # 0 and A(b,c) # 0. Then the existence of the indecomposable module M
guarantees that A(a,c) # 0. Thus, the partial order defined on C by a < b whenever
A(a,b) # 0 makes C an incidence algebra (actually, in this case, C' = kX¥). This
establishes our claim.

Since A contains no crown, neither does C, so that C is strongly simply con-
nected. Applying [22] 2.2, we get Ext (M, M) = 0. Since C is a full convex
subcategory of B, we infer that Ext L (M, M) = 0. Again, Happel’s sequence

0= HH'(A) > HH'(B) — Ext 4(M, M) =0
yields HH'(B) = 0. On the other hand, B is a quotient of an incidence algebra
(because A is) and contains no crowns (because A does not). By the induction



STRONGLY SIMPLY CONNECTED SCHURIAN ALGEBRAS AND MULTIPLICATIVE BASES39

hypothesis, B is simply connected. Since HH'(A) = 0, the extension point s is
separating. Applying [6] 2.5 yields that A is simply connected, as required. O

5.7. We are now able to prove our Theorem A.

THEOREM. Let A be a schurian triangular algebra. The following conditions
are equivalent.

(a) A is strongly simply connected.

(b) A is dismantlable.

(c) A is separated and contains no quasi-crowns.

(d) A is simply connected and contains no quasi-crowns.

(e) SH1(A) =0 and A contains no quasi-crowns.

(f) SHY(A,G) = 0 for every abelian group G, and A contains no quasi-
crowns.

(g) A is a quotient of an incidence algebra, HH'(A) = 0 and A contains no
crowns.

Proof. (a) implies (b). By 4.7

(b) implies (a). By 4.5

(a) implies (c). By [33] 4.1, every strongly simply connected algebra is sepa-
rated. We also apply 3.5.

(c) implies (d). By [33] 2.2, every separated algebra is simply connected.

(d) implies (e). Follows from the Hurewicz-Poincaré theorem.

(e) implies (a). By 5.3.

(e) is equivalent to (f). By the Dual Universal Coefficients Theorem, we have,
for any abelian group G.

SH'(A,G) = Homz(SH; (A),G) ® ExtL(SHy(A), G).

Since A is connected, SHy(A) = Z so that SH'(A,G) = Hom 7(SH;(A),G).
Thus (e) implies (f). The converse follows upon taking G = SHy(A).

(a) implies (g) By [2] 4.5 (see also [20, 4]), A is a quotient of an incidence
algebra. Moreover, HH'(A) = 0 and by 3.5, A contains no quasi-crown, then A
contains no crowns.

(g) implies (c). By 5.6. O

As a direct consequence of the equivalence between the strong simple connected-
ness and the dismantlability of a schurian algebra, we have the following algorithm
which allows us to verify the strong simple connectedness of a schurian algebra.

INPUT: A (which is a schurian algebra)

Check if there exists an x € Ag which is a doubly irreducible
If there exists no doubly irreducible

OUTPUT: A is not strongly simply connected.

If there exists a doubly irreducible z

Check if A(z) is schurian

If A(z) is not schurian

OUTPUT: A is not strongly simply connected.

If A(z) is schurian, then set A := A(x)
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If Ap is a singleton
OUTPUT: A is strongly simply connected.
If Ap is not a singleton, return to input.

EXAMPLE 10. The following is an example of a simply connected algebra con-
taining a quasi-crown, and which is evidently not strongly simply connected. Let

A be given by the quiver
\\B

A
bound by uyad = 0, oug =0, ovs = 0, uy@ = v18 = 07, usfd = V2 A,70 = uzA =
vslt, Ugpt = vgad. Indeed, let B be a full convex subcategory of A with object class
By = Ay \ {s}, then B is obviously a simply connected incidence algebra (because
it has a minimal point) and the extension module M = rad P; is indecomposable.

Hence, by [6] 2.5, A = B[M] is simply connected. Observe also that A is a quotient
of an incidence algebra and contains a crown.

o

5.8. We may replace “quasi-crowns” by “crowns” in conditions (c),(d),(e),(f)
of Theorem A in the case of quotients of incidence algebras.

PROPOSITION. Let A be a quotient of an incidence algebra. The following
conditions are equivalent.

(a) A is strongly simply connected.

(b) A is dismantlable.

(c) A is separated and contains no crowns.

(d) A is simply connected and contains no crowns.

(e) SH1(A) =0 and A contains no crowns.

(f) SHY(A,G) = 0 for every abelian group G, and A contains no crowns.
(g) HHY(A) =0 and A contains no crowns.

Proof. This follows from 5.7, 3.6 and 5.4. O

5.9. Remarks. We recall that, if A is an incidence algebra, then the following

conditions are equivalent:

(a) A is strongly simply connected.

(b) A has no crown

(c) A is dismantlable.
(by [20] 3.3 and [21] 2.3). These conditions imply each of the following

(d) HH'(A) = 0.

(e) A is simply connected.

(f) A is separated.
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(by [33]). However, the latter conditions are not equivalent and, while (f) implies
(e), which implies (d), the other implications are not true. Let A be the incidence

algebra of the poset with quiver
e}
e} [e]
e} >< [e]
Then A is simply connected but not separated, thus (e) does not imply (f).
Finally, it is well-known that (d) does not imply (e) (see, for instance, [16] 3.10).

5.10. We also get the following obvious corollary.

COROLLARY . Let A be a schurian triangular algebra containing no quasi-
crowns. The following conditions are equivalent.

A is simply connected.

SH,(A) =0.

SHY(A,G) =0.

g) A is a quotient of an incidence algebra, and HH*(A) = 0.

)
(b)
(c) A is separated.
(d)

)

)

5.11. The question has arisen whether the presence of a bypass in the bound
quiver of a schurian algebra may prevent this algebra from being simply connected.
We now answer this question in the negative: the following is an example of schurian
simply connected algebra containing a bypass.

EXAMPLE 11. Let A be given by the quiver

SO
x
§ o
aq \
a2
as
e} e} e}
V1 v \L
Ul U us
v2
e} e} e}
B3
B2
B1

bound by ajv; = 0, yva; = 0, dvy = yagus, yag = 0, du; = 0 and all other
squares are commutatives. Then the full convex subcategory B of A with objects
class By = Ao \ {s} is the “box” of Example 3 of 3.1 above and, in particular is
simply connected. The extension module M = rad P; is indecomposable, so that
A = B[M] is simply connected. However, we notice that A contains a (quasi)
crown: this is a general fact.
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COROLLARY. Let A be a simply connected schurian algebra containing a bypass.
Then A contains a quasi-crown.

Proof. Assume A is a simply connected algebra containg a bypass but not quasi-
crown. By Theorem (A), it is strongly simply connected. Hence there exists an
incidence algebra k¥ such that Q@4 = Qx (see, for instance [2]). But then A con-
tains no bypass, a contradiction. a

5.12. The following is an easy consequence of the previous corollary.

COROLLARY. Let A be a simply connected representation-finite algebra. Then
A contains no bypass.

6. Schurian algebras not containing quasi-crowns.

6.1. We now turn to the proof of our second main theorem. Let A be a
schurian algebra. Following [12] 1.2, we call B a multiplicative basis of A if:
(a) ey € B for each z € Ao,
(b) BNegy(rad™A)e, is a basis of e, (rad”A)e, for all z,y € Ag and all n € N,
(c) be BNne,Ae, and ¢ € BNeyAe, imply be € B or be = 0.
The following is an example of an algebra having no multiplicative basis.

EXAMPLE 12. Let A be given by a quiver
]
@
Q2
e} [e]
| e
ul uz
2
e} [e]

bound by aju; + asvy, a1v; = s, U1y = V172, V21 = Cu2Y2, w18 =0, v18 =0,
By2 = 0 and rad®A = 0 (where ¢ is a constant different from 0 and 1). We
notice that A contains a quasi-crown. Also, A is a split extension of the algebra in
Bongartz’ example [14], the latter being obtained by deleting the arrow 3.

6.2. In the following lemma, we show that a schurian algebra A, not contain-
ing quasi-crowns, has only low-dimensional simplicial homology and cohomology
groups. For our purpose, the key statement is that SH2(A) = 0, all other state-
ments follow easily from [26] 3.1.

LEMMA. Let A be a schurian algebra not containing quasi-crowns. Then
(a) SH,(A) =0 for alln > 2.
(b) SH™(A,G) =0 for all n > 3 and all abelian groups G.

Proof. We first prove the case n > 3. Let x, y € Ap be such that A(z,y) # 0.
Denoting, as in 3.6, by kX! the incidence algebra induced by the support of the
radical of P, and, dually, by k€2 the incidence algebra induced by the support of
I, /soc 1y, it follows from the hypothesis that kX} N kQ; contains no crown (using
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3.7), hence is strongly simply connected. Applying [26] 3.1 yields SH,(A) =0 for
all n >3 and SH"(A,G) =0 for all n > 3 and all abelian groups G.

There remains to show that SHz(A) = 0, and we do this by induction on |Ag].
This being clear if |Ag| = 1, assume it holds for all schurian algebra B such that
|Bo| < |Ap| and B does not contain quasi-crowns. Let s be a source in A, and
B be the full subcategory with By = Ag\{s}. Then B is schurian and contains
no quasi-crowns. Hence, by induction, SHy(B) = 0. Applying the Mayer-Vietoris
sequence

SHQ(kZS) D SHQ(B) — SHQ(A) — SHl(kEIS)

and using that SHy(kX;) = 0, and that SH;(kX!) = 0 (because the poset ¥’ con-
tains no crowns) yields that SH>(A) = 0, as required. O

6.3. We are now able to prove our second main theorem

THEOREM. (Multiplicative basis). Let A be a schurian algebra not containing
quasi-crowns. Then A admits a multiplicative basis.

Proof. Let £* denote the multiplicative group of the non-zero scalars. Applying
6.2, the Dual Universal Coefficients Theorem yields

SH2(A, k*) = Hom 7(SHa(A), k) @ Ext L(SHy (A), £¥)

>~ Ext 4 (SHi(A),k*) =0

since k* is a divisible abelian group (because k is an algebraically closed field). By
[15] 2.2, this implies that A has a multiplicative basis. a

REMARK. In [26] 3.2, Martins and de la Pefia prove the existence of a mul-
tiplicative basis in an algebra A such that gl.dim A < 2 and HH?(A) = 0. We
replace both of these hypotheses by the one of the absence of quasi-crowns. Our
result may thus be applied, for instance, to algebras of an arbitrarily large global
dimension.

6.4. The next corollary follows immediately from our Theorem B.

COROLLARY. For each natural number d, there exist only finitely many iso-
morphism classes of schurian algebras, not containing quasi-crowns, of dimension

d.

Proof. Indeed, this follows, from the facts that, for such an algebra, the number
of points, the number of arrows and hence the number of paths are bounded, and
a basis consists of classes of paths modulo the ideal. a

6.5. As another corollary of our two main theorems (A) and (B), we obtain
a new proof of [4] 2.4.

COROLLARY. Let A be a schurian strongly simply connected algebra, then A
admits a multiplicative basis.



24 I. ASSEM, D. CASTONGUAY, E.N. MARCOS AND S. TREPODE

6.6. The following corollary is a direct consequence of [15] 2.2 and the fact
that, if A is a schurian triangular algebra having no quasi-crowns, then SH?(A, k*) =
0. We recall that B(A) denotes the classifying space of A, see [17].

COROLLARY . Let A, A" be schurian triangular algebras such that A has no
quasi-crowns and B(A) = B(A"), then there exists an isomorphism of k-categories
A= A" which is the identity on the objects.

6.7. To end this paper, we illustrate our methods by obtaining short proofs
of some well-known results about strongly simply connected algebras.

COROLLARY. [20] 2.4 A schurian algebra A is strongly simply connected if and
only if, for every full convex subcategory C of A, we have SH,(C) = 0.

Proof. Necessity. Assume that A is strongly simply connected. Then any full
convex subcategory C' of A is also strongly simply connected. By Theorem A,
SH,(C)=0.

Sufficiency. Let C be a full convex subcategory of A. By hypothesis, SH;(C)
0. Since A is schurian, it follows from [27] that HH'(C) = Hom (7 (C), k™)
Hom (SH;(C),k™) = 0. By [33] 4.1 , A is strongly simply connected.

O mn

6.8. The next corollary is expressed by saying that a schurian strongly simply
connected algebra (or, more precisely, its classifying space) is acyclic.

COROLLARY. [20] 2.6. Let A be a schurian strongly simply connected algebra,
then
(a) SH,(A) =0 for alln > 1.
(b) SH"(A,G) =0 for all n > 1 and all abelian groups G.

Proof. (a) By 6.2, this is clear if n > 2. For n = 1, this is granted by the simple
connectedness of A.

(b) We recall that the strong simple connectedness of A implies that SH*(4,G) =
0 for all abelian groups G, see 5.7. Moreover, SH?(A,G) = Hom 7(SH>(A),G) @
Ext L(SH;(4),G) = 0. Finally, for n > 3, this follows from 6.2. ad

6.9. We end this paper with a short proof of the following result of [22].

COROLLARY. [22] Let A be a schurian strongly simply connected algebra, then
the Hochschild cohomology ring HH*(A) of A is k.

Proof. It follows from [17](6.5) that, for alln > 1, we have HH™(A) = SH™(A, k™).
By 6.8(b), the latter vanishes. O

Observe that, in this case, if A = B[M] is written as one-point extension, then
we clearly have Ext %5 (M, M) = 0.
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