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ABSTRACT. We classify the strongly simply connected one-point extensions of tame hereditary
algebras (over an algebraically closed field) by classifying the completely coseparating modules
over an algebra whose quiver is a Dynkin or an Euclidean tree. We also obtain a complete
classification of the completely coseparating modules over an algebra whose quiver is a star
with three branches.

INTRODUCTION

Covering techniques allow to reduce the representation theory of a (basic and connected)
finite dimensional algebra to the representation theory of a simply connected algebra. While
simply connected representation-finite algebras are now well-understood, little is known in
the representation-infinite case. There exists however a subclass of the class of simply
connected that seems more accessible, namely the strongly simply connected algebras intro-
duced by Skowroriski in [8]. The representation theory of strongly simply connected algebras
was heavily investigated recently, and one of the most striking results states that a strongly
simply connected algebra is of polynomial growth if and only if it is a multicoil algebra [9]. It
was thus natural to look for explicit construction procedures for strongly simply connected
algebras. Since the quiver of a strongly simply connected algebra has no oriented cycles,
one can construct such an algebra by a sequence of one-point extensions (or coextensions).
This point of view was taken in [1], where it is shown that, if A is an algebra and M is an
A-module, then the one-point extension A[M] is strongly simply connected if and only if A
is strongly simply connected and M is completely coseparating in the sense of [1] (3.3).

The purpose of this paper is to classify the strongly simply connected one-point extensions
of a tame hereditary algebra, that is, of a hereditary algebra whose quiver is a Dynkin or
an Euclidean quiver. Applying the above characterisation, this amounts to computing all
the completely coseparating modules over the tame hereditary algebras of type not equal to
Am, that is, whose quiver is a tree.

The paper is organised as follows : in section 1, we recall the needed definitions and
results of [1]; in section 2, we consider the Schurian one-point extensions of tame hereditary
algebras; section 3 is devoted to preparatory lemmata; in section 4, we classify all the
completely coseparating modules over the hereditary algebras whose quivers are stars with
three branches. This class contains many wild hereditary algebras, but also all the algebras
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whose quiver is a Dynkin or an Euclidean tree distinct from D,,. This last case is solved in
section 5.

Clearly, the duals of the results obtained here, with one-point coextensions and completely
separating modules, hold. They are omitted for the sake of brevity. For all notions and
results not explicitly recalled here, we refer the reader to [2] and [7].

1. PRELIMINARIES

1.1 Notation. Throughout this paper, k& denotes a fixed algebraically closed field. By
algebra is meant an associative, finite dimensional k-algebra with an identity, assumed
moreover to be basic.

We recall that a quiver @ is defined by its set of points QJp and its set of arrows Q.
For an algebra A, we denote by Q4 the quiver of A. It is well-known that there exists an
admissible ideal I of the path algebra kQ 4 such that A = kQ4/I : the pair (Qa4,I) is then
called a presentation of A. An algebra A = kQ/I can equivalently be considered as a
k-category, of which the object class Ag is Qo, and the set A(x,y) of morphisms from z to y
is the k-vector space kQ(z,y) of linear combinations of paths in ) from z to y modulo the
subspace I(z,y) = I N kQ(z,y), see [4]. A full subcategory B of A is called convex if any
path in A with source and target in B lies entirely in B. An algebra A is called triangular
if Q4 has no oriented cycles.

By A-module is meant a finitely generated right A-module. We denote by mod A their
category. If A = kQ/I, then mod A is equivalent to the category of all bound representa-
tions of (Q,I), we may thus identify a module M with the corresponding representation
(Mg, My)zeQq,0cQ,> see [4]. For z € Qp, we denote by S(z) the corresponding simple
A-module, and by P(z) the projective cover of S(z).

1.2 Strong simple connectedness. Let A be a triangular algebra. The support Supp M
of an A-module M is the full subcategory of A with object class {z € Ay | M, # 0}. We
shall sometimes identify Supp M to its quiver. A module M is called separated if the sup-
ports of the distinct indecomposable summands of M lie in distinct connected components
of A. For x € Ay, let A* be the full subcategory of A with objects all non-predecessors of
x in @4, then z is called separating if the restriction to A* of rad P(z)4 is a separated
A%-module. We say that A satisfies the separation condition if each x € Ay is separating,
see [3].

A connected triangular algebra A is called strongly simply connected if each connected
full convex subcategory of A satisfies the separation condition [8]. For other equivalent
definitions, we refer the reader to [8] (4.1) and [1] (1.6).

Let A be a triangular algebra and M be an A-module. An ordering {z1,...,z,,} of the
objects of Supp M is an admissible order if j > ¢ implies that z; is not a successor of
z;. For such an admissible order, let A©®) = A and let, for each 1 < i < m, A® be the full
subcategory of A with objects the non-successors of 1, . ..,z;. Clearly, each A9 is convex
in A. An A-module M is called completely coseparated if, for each admissible order
{x1,...,2,} of the points of Supp M and each 0 < i < m, the restriction M) = M | 4¢) is
a separated A(Y-module. We may now state the criterion for the strong simple connectedness
of the one-point extention A[M] of A by M.

Theorem [1] (3.4). Let A be an algebra and M be an A-module. Then A[M] is strongly
simply connected if and only if A is strongly simply connected and M is completely cosepa-
rated. O

It follows from this theorem and [8](4.2) that any completely coseparated module is a
brick (that is, End M 2 k), see [1] (3.4).
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1.3 Schurian strongly simply connected algebras. An algebra A is called Schurian
if dimy A(z,y) <1 for all z,y € Ap. A Schurian strongly simply connected algebra has, by
[1](2.4), a normed presentation (in fact, all algebras considered in this paper have normed
presentations). We now describe all A-modules M such that A[M] is Schurian and strongly
simply connected. Let @) be a quiver without oriented cycles, and Q' be a full subquiver of
Q. An ordering {z1,...,z,,} of the point of @' is an admissible order if j > i implies
that z; is not a successor of x;. For such an admissible order, let Q©® = @ and let, for
each 1 < i < m, Q¥ be the full subquiver of Q with points the non-successors of z1, . .., z;.
Clearly, each Q) is convex in @ (that is, each path in Q with source and target in Q* lies
entirely in Q(i)). We say that Q' is completely coseparated if, for any admissible order
{z1,... 2y} of the points of @', and each 1 < i < m, the intersection of ' with each of
the connected components of Q(¥) is empty or connected. If A is strongly simply connected
and M is completely coseparated, then the quiver of Supp M is a completely coseparated
subquiver of Q4, see [1] (4.1).

Let A=kQa/I. A full subquiver @ of Q4 is zero-relation-free if no path in @) lies in
I. Given a full subquiver @ of @4, we denote by U(Q) the representation of @4 defined
by :
k if © €Qo

U(Q)xz{o o

and
1 if a €@
0 if a ¢

If A is Schurian strongly simply connected with normed presentation A = kQ4/I, and @ is
a zero-relation-free connected full convex subquiver of @ 4, then U(Q) is an indecomposable
A-module [1] (4.2). In fact, we have the following.

U@.={

Theorem [1] (4.3). Let A be Schurian strongly simply connected with normed presentation
A =kQa/I and M be an A-module. Then A[M] is Schurian strongly simply connected if
and only if M = U(Q) where Q is a zero-relation-free completely coseparated connected full
convez subquiver of Q4. O

2. THE SCHURIAN CASE

In the case of tree algebras, one is able to make more precise the statement of (1.3) above.
Observe that all tree algebras are Schurian and strongly simply connected.

Lemma 2.1. Let A = kQa/I be a tree algebra and M be an A-module. Then A[M] is
Schurian and strongly simply connected if and only if M = U(Q), where Q(= Supp M) is a
zero-relation-free connected full subquiver of Q4.

Proof. Since necessity follows trivially from Theorem (1.3), let us show the sufficiency. Since
A is a tree algebra, it is Schurian, strongly simply connected and A 2 kQ4/I is a normed
presentation. Let M be as given, and ) = Supp M. Since the intersection of two connected
subquivers of a tree is empty or connected, then () is a completely coseparating subquiver
of Q4. Also, @ is convex : let zg = ©1 — --+ — x4 be a path in Q 4 with z¢,z; € Qo, then
this path coincides with the unique reduced walk joining x( to x; in the tree @ 4, and hence
lies in @, since @ is connected. We then apply Theorem (1.3). O

Corollary 2.2. Let A be a hereditary algebra of type A, and M be an A-module. The
following conditions are equivalent :

(a) M is indecomposable.
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(b) M is completely coseparating.
(c) M =2U(Q), where Q is a connected full subquiver of Q4.

Proof. (c) implies (b) by (2.1), (b) implies (a) trivially, and (a) implies (c) by a well-known
property of hereditary algebras of type A,,. O

Remark 2.3. Let A be a tree algebra, and M be an indecomposable A-module such that
dimy M, < 1 for each € (Qa)o. Then M = U(Supp M). This follows from the proof of
[1] (4.3) or from [6] (2.9).

3. PREPARATORY RESULTS

Lemma 3.1. Let A be a triangular algebra and M be an A-module. Then M is completely
coseparating if and only if M is separated and, for every sink x in Supp M, the A®) -module
M®) s completely coseparated.

Proof. This follows immediately from the definition. O

Lemma 3.2. Let A be a hereditary tree algebra, x be a sink in Q4 having n > 2 neighbours
Y1,---,Yn and M4 be an indecomposable module such that dimy, M, = 1 for every 1 < i < n.
Then dimy M, <n —1.

Proof. Since @ 4 is a tree then, for each ¢, there exists a unique arrow «; : y; — x. We first
n
note that M, = > Im M,, : indeed, if this is not the case, then S(z) is a proper direct

i=1
summand of M, and this contradicts the indecomposability of M. Moreover,

n n n
dimy M, = dimy, (Z Im Mm.> < dimg (Tm My,) < dimg My, =n.

i=1 i=1 i=1

Assume that dimy M, = n. Then M,,,...,M,, : k — k™ are linearly independent, hence
n

the vectors My, (1),..., My, (1) form a basis of M, = k™. Consequently, M, = €D Im M,,
i=1

and M is decomposable, a contradiction. O

Lemma 3.3. Let A be an algebra and M be an A-module such that the intersection of the
support B of M with each connected component of A is empty or connected. Then M is
separated as an A-module if and only if M is separated as a B-module.

Proof. Let C be a connected component of B = Supp M, and C’ be the unique connected
component of A that contains C'. Then C' N B = C. Indeed, it is clear that C' C C' N B.
Conversely, let z € (C' N B)g and y € Cy. Since C' N B is connected, there exists a walk
from z to y in C' N B. Since C is a connected component of B, this implies that x € Cj.
Hence C'N B =C.

Conversely, let C' be a connected component of A such that C' N B # . By hypothesis
C' N B is connected so let C be the unique connected component of B that contains it. By
the same reasoning as above, C' N B = C.

By definition, M is separated as an A-module if and only if, for every connected compo-
nent C' of A, we have that M |¢- is indecomposable or zero. The previous argument shows
that this is the case if and only if, for every connected component C' of B, we have that
M |¢ is indecomposable or zero, that is, if and only if M is separated as a B-module. O
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Proposition 3.4. Let A be a tree algebra, and M be an A-module such that the intersection
of the support B of M with each connected component of A is empty or connected. Then M
is completely coseparating as an A-module if and only if M is completely coseparating as a
B-module.

Proof. Let {x1,...,2zn} be an admissible order of the objects of B(see (1.2)). Let 1 <i < m
and C be a connected component of A®. We claim that C' N B® is connected. Let z,y
be two objets in C' N B, Then there exists a unique connected component C’ of A that
contains C. We have C N B4) C ¢"'N B and C' N B is connected by hypothesis. Hence
there exists a reduced walk w joining z to y in C' N B. On the other hand, C is connected,
hence there exists a reduced walk w' joining = to y in C. But A is a tree algebra, hence
w = w' and liesin CNB =CNA® NB = Cn B, This establishes our claim. Since
Supp M | 4iy= BW, it follows from (3.3) that M | 4 is a separated A?-module if and only
if M |ge) is a separated B®_module. The conclusion follows. O

Remark 3.5.

(a) We shall apply this proposition to the case where A is a tree algebra and M is an
indecomposable A-module : it allows us to assume that M is sincere.

(b) Proposition (3.4) is not true if the quiver of A is not a tree : let indeed A be the
tame hereditary algebra with quiver

then the indecomposable A-module defined by
k
/ \
0
\ /
k

is completely coseparated over its support algebra, but clearly not over A.

k

4. STARS WITH THREE BRANCHES

The aim of this section is to classify the completely coseparating modules over the hered-
itary algebras A whose quiver @ 4 has for underlying graph @ 4 a star with three branches
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Tnlyn27n3 where ni,n2,N3 Z 1.
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The unique point a with three neighbours will be called the node of the quiver. In the
sequel, we shall always use the notation of the above figure.

Definition 4.1. Let A be a hereditary algebra of type Ty, n,.n, Whose node is a sink. Let
@ be a connected full subquiver of ()4 containing both the node and its neighbours. We
define the A-module V(Q) by :

k2 r=a
V(Q)x = k T € QO\{G}
0 z ¢ Qo

a € Ql\{ﬂ:’y’(‘;}
adQr

. .. .. .
O === O O
L L 1L ;

\

Lemma 4.2. Let A be a hereditary algebra of type Ty, nons whose node is a sink. Let Q be
a connected full subquiver of Q4 containing both the node and its neighbours. Then V(Q)
1s completely coseparating.

Proof. First, V(Q) is clearly indecomposable. We show the statement by induction on

n =| Qo |- If n = 4, the only sink in Q is the node a. Also, Q@ = Q,JQ.UQq
where @ (or Q., Qq4) is connected and contains as unique point by (or ¢, di, respectively).
Then @, = Q. = Q4 = A and V(@) = U(Qy) DU(Q.) DU(Qa) = kD kD k (by
(2.2)) which is completely coseparating. By (3.1), V(Q) is completely coseparating over its
support algebra hence, by (3.4), over A.
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Inductively, we assume that the statement holds for ¢ < n. Let z be a sink in . If
z = a, then Q) = QU Q. JQq, where Qp (or Q., Qg) is connected and contains b; (or
c1,dy, respectively) is completely coseparating. Then Q, = A,,,, Q. = A,,, @, = A,, and
V(Q)® =U(Qy) DU(Q.) PU(Qq) is completely coseparating. If = # a, then z is not a
neighbour of a, hence Q*) = Q' U Q" where Q" is empty or @” = Ay (for some £), while
Q' is a star with three branches and | Q) |<| Qo |- By the induction hypothesis, V (Q)®) =
V(Q") P U(Q") is completely coseparating. The statement follows upon applying (3.1) and
(34). O

Theorem (4.3). Let A be a hereditary algebra of type Ty, nyns and M be an A-module
with Q = Supp M connected. Then M is completely coseparating if and only if M = U(Q),
or the node of Q 4 is a sink contained in Q) together with its neighbours and M =V (Q).

Proof. Since the sufficiency follows from (2.1) and (4.2), let us show the necessity. Assume
M 2 U(Q). Then the node a of Q4 and its neighbours by, ¢1,d; necessarily lie in @: for, if
this is not the case, then Q@ = A, (for some ¢) and, by (2.2), M = U(Q), a contradiction.
We now claim that a is a sink in ). Assume that this is not the case, we show by induction
on n =| Qo | that M =2 U(Q).

If n =4, let x be a sink in @, then z is a neighbour of a. Moreover, Q(x) = A,, and, by
(2.2), M® = U(Q™). Since M is an indecomposable module over a hereditary algebra of
type Dy, we have M =2 U(Q). Inductively, assume that n > 4 and that the statement holds
for t < n. Let © € Qo be a sink. Then z # a. Moreover, Q*) = Q'|J Q" where Q' is empty
or @' = Ay and Q" is a star with three branches and | Q |< n or @" = A,,. Since M®) is
completely coseparating, the induction hypothesis and (2.2) yield M®) =~ U(Q") P U(Q").
Since M is indecomposable, then dimy M, < 1 by (3.2). By (2.3), we get M =2 U(Q). This
establishes our claim that a is a sink in Q).

There remains to show that, if a is a sink contained in @ together with by, ¢y,d; and M 2

U(Q), then M = V(Q). Since M(® is completely coseparating and Q(® = Q, Q. Qu
where Q, (or Q., Qg) is connected and contains b; (or ci,d;, respectively) then @, =
Any, Q. = Ay, Qg = Ay, and (2.2) yield M@ = U(Qy) D U(Q.) P U(Qq). Since M is
indecomposable, then dimy M, < 2 by (3.2). The hypothesis that M 2 U(Q) and (2.3)
yield dimy M, = 2. Let A’ be the full subcategory of A with objects {a,by,c1,d1}. Then
A’ is hereditary of type D, and its node is a sink. Since the restriction M’ = M |4 is an
indecomposable A’-module, it is isomorphic to V(Q ar). Therefore, M = V(Q). O

Corollary 4.4. Let A be a tame hereditary algebra such that Q 4, # A,,,D, and M be an A-
module with Q = Supp M connected. Then M is completely coseparating if and only if either
M =2 U(Q) or else Q contains a sink and three neighbours of this sink, and M 2V (Q). O

Remark 4.5.

(a) If Ais hereditary, and M is a completely coseparating postprojective (or preinjective)
A-module, then A[M] is a tilted algebra having a complete slice in the postprojective
(or the preinjective, respectively) component. This is the case, for instance, if M is a
completely coseparating module over a hereditary algebra of Dynkin type. We note
that A[M] may be representation-finite, tame, or even wild (assume indeed that Q 4
has at least five sources, and that M is sincere).

(b) Assume that A is hereditary of Euclidean type Ee¢,E; or Eg, that the node of Q4
is a sink, and that @ is a connected full subquiver of @4 containing the node and
its three neighbours. An easy calculation, using the defect function of A, as in [5],
shows that V(Q) is regular if and only if Q = Q 4 and the node of @ 4 is its only sink,
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and this is the case if and only if A[V(Q)] is tubular canonical (and of type (3,3,3),
(2,4,4) or (2,3,6) according as A is of type K¢, E; or Eg, respectively). Otherwise,
V(Q) is postprojective.

On the other hand, U(Q) may be postprojective, preinjective, or regular. For
example, the algebra given by the fully commutative quiver

o]

e
P

NS
AN

o]

)

(which is tubular of type (3,3,3)) is of the form A[U(Q)], with A hereditary of type

Es.

5.THE CASE D,

Assume first that n > 5. The ordinary quiver () of a hereditary algebra of type D, has
two points with three neighbours (also called nodes). We use the following notation for the

underlying graph Q = I, of Q

lo on
ag B3
O ——— O —_—— - o o
n-2 n—1
A x
20 on+1

This allows to define three types of sincere modules according to whether or not 3 and / or
n — 1 are sinks in Q.

Definition 5.1. Let A be a hereditary algebra of type Q@ = ID,,, with n > 5.
(i) If 3 is a sink in @), we define the sincere A-module V3(Q) by

k? =3
n.={y 123

;11

V%(Q)oz =

. .. ..
= = = O O
L L 1L

a € @Qi\{a1,as,as}



(ii) If n — 1 is a sink in @, we define the sincere A-module V,,_;(Q) by

k2 r=n-—1

;T

a=f

anl(Q)a = { «=h

a=f33

(1 a € Q1\{B1, B2, B3}
(iii) If both 3 and n — 1 are sinks in (), we define the sincere A-module V3 ,,_1(Q) by

. .. ..
—_ = O O =
\ L 1L ,

k> ze{3,n-1}

Van-1(Qe = {k z ¢ {3,n—1}

;T

a € {a, B}

Vo 1(Q)a = a € {as, B2}

a € {as, B3}
a € Qi\{a,az, a3, 61,02, 03}

Lemma 5.2. Let A = kQ, with Q =D, and n > 5. Then the modules V3(Q),V,_1(Q) and
V3.n—1(Q) are completely coseparating (when they are defined).

Proof. Clearly, the modules V3(Q), Vy—1(Q) and V3 ,_1(Q) are indecomposable (when they
are defined).

We assume that 3 is a sink and show that V3(@Q) is completely coseparating. Let z be a
sink in Q. If z = 3, then Q®) = Q(1 )U Q2 )U Q(4) where Q(z) is connected and contains
i, with i € {1,2,4}. Then Q(1) = Q(2) = A; and Q(4) = D,,_» (except if n = 5, in which
case Q(4) = Ag), and V3(Q)™) = U(Q(L)BUQ2)DUQM) = kDkDUQM)) is
completely coseparating. If z = n — 1, then Q®) = Q(n —2)|J Q(n) U Q(n + 1) where Q(i)
is connected and contains i, with i € {n — 2,n,n + 1}. Then Q(n) = Q(n +1) = Ay and
Q(n — 2) = D, » (indeed, n > 5 because both 3 and n — 1 are sinks ) and V3(Q)(®) =
V(Q(n—2) Pk @ k is completely coseparatlng If z has two neighbours, then 4 < z <n-— 2
and Q) = Q’UQ” where 3 € QO,Q = Dy (for some ¢) and n — 1 € Qf, Q =D,
(except if # = n — 2, in which case Q" = Ag). We have V3(Q)® = V(Q") @ U(Q") which
is completely coseparating. Finally, if z has just one neighbour, then =z € {n,n + 1} and
Q@) is connected with Q(w) =D, so that V3(Q)®) = V(Q®) is completely coseparating.
Since V3(Q) is indecomposable, applying (3.1) yields the statement. One shows similarly
that V,,—1(Q) is completely coseparating.

The remains to show that, if both 3 and n — 1 are sinks, then V5 ,_1(Q) is completely
coseparating. Let z be a sink in ). Either & € {3,n — 1} or = has two neighbours. In



