STRONGLY SIMPLY CONNECTED ALGEBRAS

IBRAHIM ASSEM AND SHIPING LIU

INTRODUCTION

In the representation theory of finite dimensional algebras over an algebraically closed field, the simply
connected representation-finite algebras introduced by Bongartz and Gabriel [6] have played an important
role (see, for instance, [5,7]). The reason for their importance is that, for a representation-finite algebra A,
the indecomposable A-modules can be lifted to indecomposable modules over a simply connected algebra A
(contained inside a certain Galois covering of the standard form of A, see [7]). Thus, covering techniques
allow to reduce many problems of the study of representation-finite algebras to problems about simply
connected representation-finite algebras. Little is known about covering techniques or simply connected
algebras in the representation-infinite case. One class however of simply connected algebras has attracted
much interest lately, this is the class of strongly simply connected algebras, introduced by Skowrorski in
[14]. The representation theory of strongly simply connected algebras seems to be relatively accessible, and
some progress has been made in understanding it in the tame case (see, for instance, [13, 15]).

The purpose of this paper is to provide characterisations and construction techniques for strongly simply
connected algebras. Since we are motivated by the study of coverings, we start by considering locally bounded
k-categories [6] and give an alternative definition for the strong simple connectedness of a locally bounded
category (1.3) which we believe is easier to handle than the one in [14]. We then show the equivalence of
these two definitions and, while doing so, we obtain a handy criterion allowing to verify whether a locally
bounded category is strongly simply connected or not (1.6). We next consider the case of Schurian locally
bounded categories. We recall that the Schurian strongly simply connected algebras were already studied in
[9], under the name of completely separating algebras. Here, we prove that a connected triangular locally
bounded category is Schurian and strongly simply connected if and only if it has a presentation (called normed
presentation, see [4]) such that all cycles are commutative (2.4). We deduce a new necessary and sufficient
condition for a representation-finite algebra to be simply connected (2.5). We then turn our attention to the
construction of strongly simply connected algebras. Since such an algebra is triangular, it can be constructed
by repeated one-point extensions or coextensions. We define in (3.3) a notion of completely co-separated
module, and the dual notion of completely separated module. Our main theorem (3.4) states that an algebra
is strongly simply connected if and only if it is the one-point extension (or coextension) of a strongly simply
connected algebra by a completely co-separated module (or a completely separated module, respectively).
We end the paper with an inductive construction of the Schurian strongly simply connected algebras with a
prescribed number of isomorphism classes of simple modules (4.2).

1. STRONGLY SIMPLY CONNECTED LOCALLY BOUNDED CATEGORIES

1.1. Locally bounded categories. Throughout this paper, k denotes a fixed algebraically closed field.
We recall that a k-category A is a category where, for each pair of objets z,y of A, the set of morphisms
A(z,y) from z to y has a k-vector space structure such that the composition of morphisms is k-bilinear. Let
Ap denote the class of objects of A. A k-category A is called locally bounded [6] if : (a) for each z € Ay,
the endomorphism algebra A(x,z) is local; (b) distinct objects are not isomorphic; and (¢) for each z € Ay,

we have Y dimy A(z,y) < oo and Y. dimy A(y,z) < co.
yEAo yEAp
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Locally bounded categories are realised by locally finite quivers : if A is a locally bounded category, there
exist a locally finite quiver ) 4 and an admissible ideal I of the path category kQ 4 of @ 4 such that we have
an isomorphism A = kQ 4 /1, called a presentation of A. The pair (Q4,1) is then called a bound quiver.
We recall that a quiver (@) is defined by its set of points (g, its set of arrows )1 and two mappings Q1 — Qg
associating to each arrow its source and its target, respectively. If the quiver @ is finite and connected, a
bound quiver category k@ /I can equivalently be viewed as a finite dimensional k-algebra which is moreover
basic and connected. Conversely, any finite dimensional basic and connected k-algebra occurs in this way
[10].

Let A be a locally bounded category, a full subcategory B of A is called convex if, for any path zq —
x1 — -+ — x¢ in (the quiver of ) A with zo,z; € By, we have x; € By for all 1 < i < t. The category A is
called triangular if its quiver () 4 contains no oriented cycle.

By an A-module is meant a finitely generated right A-module. We denote here by mod A their category. It
is well-known that, if A = kQ/I, then mod A is equivalent to the category of all bound (finite dimensional)
representations of (@, I), see [6,10]. For each z € @y, we denote by P(z) the corresponding indecomposable
projective A-module.

1.2. The fundamental group. Let (Q,I) be a connected locally finite bound quiver. A relation from a
m

point z to a point y is an element p = > A\jw; € I(z,y) such that, for each 1 < i < m , A; is a non-zero
i=1

m
scalar and wj; is a path of length at least two from z to y. A relation p = > \w; € I(x,y) is called minimal
i=1
if m > 2 and, for any proper non-empty subset J C {1,2...m} , we have > \jw; ¢ I(z,y).
jeJ

For an arrow a € @1, we denote by a ™! its formal inverse. A walk in @ from z to y is a formal composition
ajtas? .. .aft (where a; € Q1,e; = £1 for all 1 <14 <) starting at « and ending at y. We denote by e, the
trivial path at z. A walk in @ is called reduced if it contains no subwalk of one of the forms aa™"! or a '«
with a € Ql-

Let ~ be the least equivalence relation in the set of all walks in () such that :

1

(a) If a: x — y is an arrow, then aa™ ~ e, and a™'a ~ e,.

(b) If > A;w; is a minimal relation, then w; ~ w; for all 1 <4,j < m.
i=1
(¢) If u ~ v, then wuw' ~ wvw' whenever these compositions are defined.
Let z € Qo be arbitrary. The set 7 (@, I,z) of equivalence classes of all walks starting and ending at
x has a group structure with operation induced from the composition of walks. Since, clearly, the group
m1(Q, I, x) does not depend on the choice of x, we denote it by 71 (Q,I) and call it the fundamental group
of (Q,I), see [11,12].

1.3. Strong simple connectedness. Let () be a locally finite quiver. A full subquiver Q' of @ is called
convex if, for any path oy = 1 = --- = 2 in Q with x¢,2; € Qf, we have z; € Qg for all 1 <i <t A
bound quiver (Q',I') is a full bound subquiver of a bound quiver (@, ) if Q' is a full subquiver of @, and
I' =TINkQ'. We are now ready to define our object of study.

Definition. A connected triangular locally bounded k-category A is called strongly simply connected
if there exists a presentation A = kQa/I4 of A such that, for any connected full convex bound subquiver

(Q,I) of (Qa,la), we have m (Q,I) = 1.

Thus, if B is a full convex subcategory of A, and we denote by @p the full subquiver of ()4 generated
by the set of points in ()4 which correspond to objects in B, and by Ip the ideal Ip = kQp N 14, we have
7T1(QB,IB) =1.

For example, a hereditary (or a monomial) locally bounded category is strongly simply connected if and
only if its quiver is a tree.

We recall that Skowroniski has given in [14] another definition of a strongly simply connected finite
dimensional algebra : a triangular algebra A is called simply connected if, for any presentation A = kQ4/I4,
we have m (Qa,l4) = 1 (see [3]); it is called strongly simply connected if every connected full convex
subcategory of A is simply connected. Our first task is thus to show the equivalence of these two definitions.
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1.4. For our first lemma, we need the following definition, due to Bautista, Larrién and Salmerén [5]. Let A
be a triangular locally bounded k-category (not necessarily connected). An A-module M is called separated
if, for each connected component C of A, the restriction M | of M to C is either zero or indecomposable.
This can be expressed in terms of supports : the support of an A-module M is the full subcategory Supp
M of A generated by all z € Ag such that M, # 0. Thus, an A-module M is separated if and only if the
supports of the distinct indecomposable summands of M lie in distinct connected components of A. For each
x € Ap, let A® denote the full subcategory of A generated by the non-predecessors of z in @) 4. The object
x is called separating if the restriction to A% of rad P(x) 4 is separated as an A*-module. We say that A
satisfies the separation condition if each z € Ay is a separating object. One defines dually co-separating
objects and the co-separation condition.

We also need the following definition. Let ) be a locally finite quiver without oriented cycles. A contour
(p,q) in @ from z to y is a pair of paths p, ¢ of positive length having the same source z and the same target

Y.

Lemma. Let A be a strongly simply connected locally bounded k-category. Then any connected full convex
subcategory of A satisfies the separation condition.

Proof. Let A = kQa/I4 be a presentation of A such that the fundamental group of any connected full
convex bound subquiver of (Q4,I4) is trivial. In order to establish the lemma, it suffices to show that A
itself satisfies the separation condition. Suppose on the contrary that there exists an object x € Ay which is
not separating. Let R(z) = rad P(x)4. The k-vector space R(z) has as basis the residue classes modulo I of
the paths in @ 4 of positive length and source z. Let B be a connected component of A* such that R(z) |g
is decomposable. Assume R(z) |[p= R; ® Rs, with Ry, Ry non-zero. Let (@, I) be the full bound subquiver
of (Qa,I4) generated by B and . Then (Q,I) is clearly connected and convex in (Q4,I4). Denote by K

the Kronecker quiver

y
-~

bo ——
[

oa .

We complete the proof by constructing a group epimorphism from 71 (Q, I) onto 71 (K), and this is a con-
tradiction, because w1 (@, I) = 1 by hypothesis, while clearly 7 (K) = Z.

We define a surjective map ¢ from the set of walks in () onto the set of walks in K as follows. We set
p(ez) = e, and, for all y € Qo such that y # z, we set ¢(e,) = ey. For an arrow a : y = 2z in @, we let
p(a) = ey if y # = and, in the case where y = x, we define () = v if z belongs to Supp R;, and ¢(a) = ¢
if 2 belongs to Supp Ry. The map ¢ is well-defined since Ry N Ry = 0. Define p(a™!) = p(a)™!. For an
arbitrary walk w = af'a35? ... af' in @ from y to z, say, with e; = £1,1 < ¢ < ¢, it is easily shown that

p(w) = p(ar) " pla)™ ... p(ar)™

is a walk in K from the point corresponding to ¢(e,) to the point corresponding to p(e;).

Let now (p1,p=2) be a contour in @ from y to z such that there exists a minimal relation ) \;p;. Write
i=1

P1 = Q1q1, P2 = Q2q2 With ag,as € Q1. If y # x, then ¢(p1) = w(p2) = e since x is a source in (). Assume
that y = x. Then ¢(p1) = p(a1) and @(p2) = @(as). If the target y; of aq lies in Supp Ry, then ¢ lies
entirely in Supp R;. Hence ¢y also lies entirely in Supp R;, because Ry N Ry = 0. This implies that the
target of as lies in Supp R;. Therefore p(p1) = ¢(a1) = p(a2) = p(p2) = 7. Similarly, if y; lies in Supp R,
we have p(p1) = p(a1) = p(az) = p(p2) = 6. This shows that ¢ is compatible with the equivalence relation
defined on (@, I) and thus induces as required a group epimorphism 7 (Q,I) — m (K). O

1.5. We need a few definitions and notations. Let () be a locally finite quiver without oriented cycles. By
cycle, we mean an unoriented simple cycle, that is, a subquiver C' of ) is a cycle if each point in C is
an end-point of exactly two arrows in C and there exists an enumeration {xg,z1,...2p_1, 2Ty = T} of the
points of C' such that there exists an edge between x; 1 and z; on C, for all 1 <i < n.

A contour (p, ¢) in @ from z to y is called interlaced if the paths p and ¢ have a common point other than
x and y. Thus, a contour is a cycle if and only if it is not interlaced. A contour (p, q) is called reducible if
there exist paths p = pg,p1,-.-Pm = ¢ in @ from z to y such that, for each 1 < i < m, the contour (p;—1,p;)
is interlaced. In this case, we say that p is reducible to q. Otherwise, it is called irreducible.
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In the following example, the contour (af7y, Auv) is reducible.
B
O=<—0
e} [e] e} e}
O=<—0O0
w

Let C be a cycle which is not a contour. Denote by ¢(C) the number of sources of C' (which actually equals
the number of sinks of C, by our definition of cycle). Thus o(C) > 1. The cycle C is said to be reducible
if there exist two points z,y in C, and a path p: z — --- — y in @ as follows

1 1

where the cycle C' consists of the walks w; and wsy, such that both wip™ and wsp™" are cycles and
o(wip™t) < o(C),o0(wap~!t) < o(C). We then say that a path such as p reduces the cycle C. A cy-
cle C is said to be irreducible if it is either an irreducible contour, or it is not a contour, but it is not
reducible in the above sense.

A typical example of an irreducible cycle which is not an irreducible contour is as follows.

We also define a partial order on the contours in ) as follows. Let (p1, 1) and (p2, ¢2) be two contours from

z1 to y1 and @3 to yo, respectively. Then (p1,q1) < (p2,¢2) if either (p1,q1) = (P2, ¢2) or (z1,y1) # (%2, ¥2)
and then z; is a successor of x5, and y; is a predecessor of ys.
In the following example, we have (p1,¢1) < (p2,¢2)

o

/ | /< \

Y20 < 0O r10<——— 0X9

\o \O%@ /

o

The above definitions are purely quiver-theoretical. We also need a notion of contractibility of contours. Let
Q@ be, as before, a locally finite quiver without oriented cycles, and I be an admissible ideal of £Q). Two
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paths p, ¢ from z to y in @) are called naturally homotopic in (@, I) if there exists a sequence of paths
P = Po,P1, - --Pm = ¢ in @ such that, for each 0 <1i < m, p; and p;4; have subpaths ¢; and ¢;11, respectively,
which are involved in the same minimal relation in (@), I). A contour (p, q) is called naturally contractible
if the paths p, ¢ are naturally homotopic in (@, I).

The following example illustrates this definition. Let () be the quiver

o
N
o<u—o o
-
A
5 ¥
o

and I be the ideal generated by af — vd,afA — aBu. The paths af, 0 are naturally homotopic in (@, I),
and thus the contour (a/3,~d) is naturally contractible. On the other hand, the paths A, 4 are homotopic in
(Q,I), but not naturally homotopic, hence the contour (A, 1) is not naturally contractible.

1.6. We are now able to state (and prove) the main result of this section, which asserts that our definition of
strong simple connectedness is equivalent to that in [14], and also gives a handy criterion allowing to verify
whether a locally bounded category is strongly simply connected or not.

Theorem. Let A be a connected triangular locally bounded k-category. The following conditions are equiv-
alent:

(a) A is strongly simply connected.

(b) For any presentation A = kQa/l4, the fundamental group of any connected full convex bound sub-
quiver of (Qa,I4) is trivial.

(c) For any presentation A = kQa/Ia, any irreducible cycle in Q4 is an irreducible contour, and any
irreducible contour is naturally contractible.

Proof. Since (b) implies (a) trivially, it suffices to show that (a) implies (c) and that (c) implies (b).

Assume that A is strongly simply connected. By (1.4), A satisfies the separation condition. In order to
show (c), let A = kQ /14 be an arbitrary presentation. Assume that there exists an irreducible cycle w in Q 4
which is not an irreducible contour. Then w is not a contour, and hence is of the form w = pp; Yogqig™!, where
risasourceon w,and p:x —---—=a,py:¢ —>a; — - —aarepaths,v:ci—ecy—--+—ecp1—cy is
a reduced walk with ¢y, ¢, sources on w, and ¢; : ¢, &> by = --- = b,q:x — --- — b are paths

a <~~~ a1 <=—— C1

]
[

7

b=~~~ by =—=¢Cn

Since w is irreducible, there exists no path in Q4 from z to ¢; for each 1 < ¢ < n. If there exist non-trivial
paths po :x — --- = y,p3 :y = --- = a and py : y — --- — b, then the cycle pgp’lvqlpgl also satisfies
the condition that there exists no path in Q4 from y to ¢; for each 1 < i < n. Since @ 4 is locally finite, we
may assume without loss of generality that any path in Q 4 from z to a does not meet the paths from x to b.
Let (Q,I) be the full bound subquiver of (Q4,I4) generated by the points lying on a path between points
of the cycle w. Thus, @ is the convex hull of w in Q4. Let x — --- — z be a non-trivial path in @, then z
cannot be a predecessor of the ¢;. Then z is a predecessor of exactly one of a,b, say of a. Let a : 2 — 2’ be
an arrow in @), then again 2’ is a predecessor of a, and not a predecessor of b. It is now clear that z is not a
separating object in the full convex subcategory k@ /I of A, a contradiction.

Supppose that there exists an irreducible contour (p,q) in Q4 from x to y which is not naturally con-
tractible. We may assume that (p, ¢) is minimal with this property with respect to the partial order defined
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in (1.5). Let (@, I) be the full bound subquiver of (Q4,I4) generated by the points lying on the paths in
Qa4 from z to y, and let B = kQ/I. Then B is a connected full convex subcategory of A. Let P, be the
set of non-trivial paths in ) which start with x and are contained in a path naturally homotopic to p in
(Q,I), and P> be the set of non-trivial paths in ) which start with z and are contained in a path which is
not naturally homotopic to p in (@, ). By the minimality of (p,q), we have P, N P, = ), and each path
in @ which is reducible to p in @ is in P;. Let R(z) = rad P(z)p. Then R(z) = Ry + R» where, for each
i = 1,2, R; is the k-vector space with a basis consisting of the residue classes modulo I of the paths in P;.
Now, by definition, any two paths p; € P;,p> € P> are not involved in any minimal relation simultaneously.
Thus R; N Ry = 0. Moreover, for any two paths p; € Py, p2 € P>, we know that p» is not reducible to p,
thus p1, p2 do not have a common point other than z,y. It follows that, if p' : x — --- — 2z is a path in the
k-basis of R;, for some i = 1,2, and « : z — 2’ is an arrow in @, then p'a = 0 or is in the k-basis of R;.
Therefore, the R; are submodules of R(z). Thus z is not a separating object of B, a contradiction which
completes the proof of (c).

We now show that (c) implies (b). Let A = kQa/I4 be a presentation. It suffices to show that
7m1(Qa,Ia) = 1. It easily follows from the hypothesis that any contour (p, q) in @ 4 is naturally contractible.
Let w be a cyclein Q 4, and, as in (1.5), o(w) be the number of sources of w. If o(w) = 1, then w is a contour,
and hence is naturally contractible. Assume o(w) > 1. Then w is not irreducible by hypothesis. Therefore
w ~ wiwe where wy,wy are cycles with o(w) > o(w),o(w) > o(ws2). Thus w is naturally contractible by
induction. It follows easily that any closed walk in @ is naturally contractible. [

1.7. While proving the above theorem, we have shown that the equivalent conditions of the theorem are
also equivalent to the statement that any connected full convex subcategory of our locally bounded category
satisfies the separation condition. In fact, we have the following theorem of Skowronski [14] (4.1) whose
proof, made for finite dimensional algebras, extends easily to the case of locally bounded categories.

Theorem. Let A be a connected triangular locally bounded k-category. The following conditions are equiv-
alent :

(a) A is strongly simply connected.

(b) For any connected full convex subcategory C of A, we have H'(C') = 0.

(c) Any connected full convex subcategory of A satisfies the separation condition.
(d) Any connected full convex subcategory of A satisfies the co-separation condition.

O

Here, and in the sequel, H'(C) denotes the first Hochschild cohomology group of C' with coefficients in
the bimodule «C¢, see [8].

1.8. Corollary. Let A be a connected triangular locally bounded k-category. The following conditions are
equivalent :

(a) A is strongly simply connected.

(b) There exists a presentation A = kQ a/Ia such that the fundamental group of any finite connected full
convex bound subquiver of (Qa,I4) is trivial.

(c) For any presentation A 2 kQa/I4, the fundamental group of any finite connected full convex bound
subquiver of (Qa,I4) is trivial.

(d) Any connected full conver subcategory of A with finitely many objects satisfies the separation condi-
tion.

(d) Any connected full conver subcategory of A with finitely many objects satisfies the co-separation
condition.

(f) For any connected full conver subcategory C' of A with finitely many objects, we have H*(C) = 0.

Proof. Tt suffices to observe that the conditions stated are of a local nature (for instance, any indecomposable
projective module is finite dimensional). O
2. SCHURIAN STRONGLY SIMPLY CONNECTED LOCALLY BOUNDED CATEGORIES

2.1. A locally bounded k-category A is called Schurian if dimy A(z,y) < 1 for all z,y € Ag. Schurian
strongly simply connected finite dimensional algebras were studied in [9], where they are called completely
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separating algebras. Also, it is shown in [2] that, if A is a Schurian algebra all of whose indecomposable
projective modules are directing, then the following conditions are equivalent, :

(a) A is simply connected.
(b) A is strongly simply connected.
(c) A satisfies the separation condition.

Our aim is to find a criterion allowing to verify whether a Schurian locally bounded k-category is strongly
simply connected or not. We start with the following lemma.

Lemma. Let A be a triangular locally bounded k-category which is Schurian and strongly simply connected,
and let A = kQa/Is be any presentation. Then, for any contour (p,q) in Qa, we have that p € I4 if and
only if ¢ € I4.

Proof. We note that, since A is Schurian, for any contour (u,v) with u,v ¢ I4, there exists a non-zero A € k
such that u = Av. Assume that there exists a contour (p,q) in @ 4 from x to y such that exactly one of p and
q lies in T4. We may assume that (p, ¢) is minimal with respect to the partial order defined in (1.5). Suppose
that p ¢ I4 and that g € I4. If (p,q) is not irreductible, then there exist paths p = po,p1,..-Pm—1,Pm = ¢
from z to y such that (p;—1,p;) is an interlaced contour for each 1 < i < m. It follows from the minimality
of (p,q) that p; ¢ I4 and, inductively, g ¢ I4. This contradiction shows that (p, q) is irreductible. By (1.6),
the contour (p,q) must be naturally contractible, that is, there exist paths p = po,p1,...Pm—1,Pm = ¢ in
Q4 from z to y such that for each 0 < i < m,p; and p;41 contain subpaths ¢; and ¢;41, respectively, which
are involved in the same minimal relation in (Q4,I4). If ¢1 # p1, then (pg,p1) is an interlaced contour and
hence p; ¢ I4 by the minimality of (p,q). If g1 = p1, then p = py and p; are involved in the same minimal
relation, and hence p; ¢ I4. Inductively, ¢ ¢ I4. This contradiction completes the proof. O

2.2. Lemma. Let A be a triangular locally bounded k-category which is Schurian and strongly simply
connected, and let A 22 kQa/Ia be any presentation. Then all irreducible cycles in Q4 are irreducible
contours and, for each irreducible contour (p,q) in Qa, we have p,q ¢ I and p—\g € 14 for some non-zero
A€k

Proof. By (1.6), all irreducible cycles in @) 4 are irreducible contours and each irreducible contour is naturally
contractible. Let (p,¢) be an irreducible contour from z to y. Since A is Schurian, there exists A € k such
that p — A\q¢ € I4. Assume that one of p,q lies in I4 and further assume that (p,q) is minimal with this
property. Let p € I4. Since (p,q) is naturally contractible, there exist paths p = po,p1,...Pm—1,Pm = ¢ in
@ 4 from z to y such that, for each 1 < i < m, p;_1 and p; contain subpaths ¢; 1 and g;, respectively, which
are involved in the same minimal relation. Since (p, q) is irreducible, there exists 0 < ¢ < m such that p; is
reducible to p while p;11 is not. By the minimality of (p, ¢), we may assume that p; € I4. Since pyy1 is not
reducible to p in @ 4, we see that p;, ps+1 have no common point other than z,y. Thus p;, p;11 are involved
in the same minimal relation in (Q4,l4), and this is impossible. Consequently, neither of p,q lies in I4.
O

2.3. Lemma. Let Q be a connected locally finite quiver without oriented cycles. Then there exists an
ascending chain Q(n), with n > 0, of finite connected full convex subquivers of ) such that :

(a) Q(0) consists of exactly one point.
(b) For each n >0, if Q(n — 1) g Q(n), then all except one point x, of Q(n) belong to Q(n — 1), and

Ty 18 either a source or a sink in Q(n).

© @=U Q).

n>0

Proof. Choose any point z¢ in @), and let Q(0) = {zo}. Suppose that, for an even integer n, we have defined
an ascending chain Q(m) with 0 < m < n of finite connected full convex subquivers of @ satisfying (a) and
(b). If there exists no arrow ¢ — b in @ with b in @Q(n) and a not in Q(n), then we define Q(n+ 1) = Q(n).
Otherwise, let 41 — b be an arrow in @ with b in Q(n) and z,4+1 not in Q(n). Note that, since Q(n) is
finite, there exist only finitely many paths in @ starting at x,,41 and ending at a point in Q(n). Therefore,
we may assume that there exists no path in @ of length greater than one starting with z,y; and ending
at a point in @Q(n). Furthermore, we may assume that x,11 is such that its distance to zp (that is, the
least length of all the reduced walks from 11 to o) is minimal. Let @Q(n + 1) be the full subquiver of @
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generated by @Q(n) and x,,11. By our choice of z,,41 and the convexity of @(n), we conclude that Q(n + 1)
is convex and has z,4+1 as a source. We now construct Q(n + 2) from Q(n + 1) in a dual manner so that
either Q(n +2) = Q(n + 1) or Q(n + 2) is generated by Q(n + 1) and an additional point 2 which is a
sink of Q(n + 2). By induction, we have defined an ascending chain Q(n), with n > 0, satisfying (a) and (b).
Suppose that there exists a point z in @ but not in |J Q(n). Clearly, we may assume that there exists an
n>0
edge x — a with a in Q(m) for some m > 0. Assume first that there is an arrow  — a in Q. It follows from
our construction that there will be infinitely many arrows starting with z, which is impossible. A similar

impossibility arises if there is an arrow ¢ — z in Q. O

2.4. The main result of this section characterises the Schurian strongly simply connected locally bounded
categories in terms of their presentations. In particular, it asserts that a connected triangular locally bounded
category is Schurian and strongly simply connected if and only if there exists a presentation such that
all irreducible cycles are commutative contours. This result implies that such a category always has a
multiplicative basis [4]. A presentation of a Schurian strongly simply locally bounded category A such as in
(b) below will be called in the sequel a normed presentation of A.

Theorem. Let A be a connected triangular locally bounded k-category. The following conditions are equiv-
alent :

(a) A is Schurian and strongly simply connected.

(b) There exists a presentation A = kQ a/Ia such that all irreducible cycles in Q4 are irreducible contours
and, for each irreducible contour (p,q), we have p,q ¢ I4 andp—q € I4.

(c) For any presentation A = kQa/I4, all irreducible cycles in Q4 are irreducible contours and, for each
irreducible contour (p,q), we have p,q ¢ Ia and p— Aq € I4 for some non-zero \ € k.

Proof. If follows from (2.2) that (a) implies (¢). Since (b) implies (a), by (1.6) and the definition of Schurian,
it suffices to prove that (c) implies (b), that is, to construct a normed presentation of A. Given two
points z,y in @4, there is at most one arrow a : £ — y to which we must associate an element ¢(a) €
rad A(z,y)\ rad® A(z,y). We say that a path p

mga—ﬁmlgmg—)...&?wm

is non-zero if, for each 1 < i < m, there exists p(a;) € rad A(z;_2;)\rad® A(z;_1,;) such that the
composite p(ar)p(az) ... o(an) (which we write ¢(p) for the sake of brevity) is non-zero. We call a contour
(p, q) non-zero if both p and ¢ are non-zero. Given a contour (p, q) from z to y, we say that (p, ¢) starts with
a pair («, 8) of arrows if a, § are the unique arrows of source x such that p = ap’,q¢ = 8¢’ with p’, ¢’ paths
of target y.

To construct the required normed presentation, we consider an ascending chain Q(n), with n > 0, of finite
connected full convex subquivers of @ 4 satisfying the conditions of (2.3), and construct ¢ by induction on
n. Assume thus that for each arrow a :  — y in Q(n), we have chosen p(a) € rad A(z,y)\ rad® A(z,y)
such that, for any non-zero contour (p,q) in Q(n), we have p(p) = p(¢g). Assume that Q(n + 1) # Q(n).
It suffices, by duality, to consider the case where z,4; is a source of Q(n + 1). Let v; : 41 — y;, with
1 <i <t, be all the arrows in Q(n+ 1) having x,,11 as a source. We may clearly assume the 7; to be ordered
so that, for each 1 < ¢ < ¢, if there is no non-zero contour in Q(n + 1) starting with (-y;,7;,), then there
is no non-zero contour starting with (y;,~y;) for any jo < j < ¢. We define ¢(y;) by induction on i, where
1<i<t

We choose arbitrarily ¢(v;) € rad A(zny1,y1)\rad® A(z,1,91). Let (p,q) be a non-zero contour in
Q(n + 1) starting with (y1,71), that is p = y1p', ¢ = 714’ with (p',¢') a non-zero contour in Q(n). Thus
e(P') = ¢(¢') and hence p(p) = ¢(q). Assume that 1 < s < ¢t and that, for each 1 < i < s, we have
chosen ¢(7y;) € rad A(zni1,:)\rad® A(z,11,y:) such that, for any non-zero contour in Q(n + 1) starting
with (y,7;) with 1 < 4,5 < s, we have p(p) = ¢(¢). We wish to define ¢(ys41). If, for any 1 < i < s,
there is no non-zero contour in Q(n + 1) starting with (v;,vs+1), then we choose arbitrarily ¢(ys+1) €
rad A(Zp41,¥s+1)\ rad® A(Zp41,Ys+1). Otherwise, let (po, go) be a non-zero contour from z,,1 to ap starting
with (v, ¥s4+1) for some 1 < £ < s, which we can assume to be minimal with this property. We choose @(7ys41)
so that ¢(po) = ¢(go). We claim that there exists no non-zero contour (p, q) starting with (vy;,vs+1), where
1< j <s+1,such that p(p) = Ap(q) for some A # 1.
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Indeed, assume on the contrary that such a contour (p,q) exists with source z,4+1 and target a (say).
We may also assume that (p,q) is minimal with this property. By the induction hypothesis, we have that
Jj < s, and that a is neither a predecessor nor a successor of ag in @ 4 since otherwise p(po) = ¢(qo) implies
»(p) = p(q). Thus, there exists a point ¢ on both gg and ¢ distinct from x,,11, ag, a such that the subpath
vo of go from ¢ to ag, and the subpath v of ¢ from ¢ to a have no common point except ¢. Let v', v be the
subpaths of ¢, go from ys11 to ¢ such that ¢ = ys41v'v and go = Ys+1v)v0-

Tn41
I
Vi

Ye Yj Ys+1
!
TN &
e N
; :
? - v
v A
ag a

Suppose that j = £. Then there exists a point b on both py and p other than z,.1, ag, a such that the
subpath ug of py from b to ag and the subpath u of p from b to a have no common points except b. By the
minimality of (po, qo), there is no path from b to ¢ and no path from ¢ to b in Q4. Therefore uvilvgugl is

an irreducible cycle in Q4 which is not a contour, a contradiction to our hypothesis.

Tn41
=N

Yo =Yj Ys+1
184 184
1% vg 000!
X BT
b oc
2 “ ST
éuo - év
Qo HJV a

Suppose now that j # £. By our hypothesis on the enumeration of the ~;, there exists at least one non-zero
contour starting with (v, ;). Thus there exist points d on p and e on py such that there exists a non-zero
contour (p1,¢:1) from x,41 to a; (say) starting with (y¢,;) and containing d,e, and any pair of points
(z,y) # (d,e) such that z is on the subpath of p from d to a, and y is on the subpath of py from e to ao,
does not enjoy this property.

Write p1 = yeuiui, 1 = Y01v1,p = Yu'u, ¢ = Ys410'0, D0 = YeUyUo,go = Ys+1Vyvo where vy, u have
source d; ug,v; have source e and v, vy have source c.

anrl
P

Ye Yj Ys+1

2! ! 0
u' {uy v v v

" " "

[ d c
uos wf‘ﬂv §v

&Ul u’\\
Qo 2/‘”/‘: a1 kfz

We then have four cases, and show that each leads to a contradiction.
(i) Assume d = a and e = ag. Note that p(v') = p(v]) since both paths lie in Q(n). Then ¢(pv;) =
e(pour) = @(gour) = ¢(Vs+1vpvour) = @(Vs410'v01) = @(q)p(v1) = Ap(p)p(vi) = Ap(pv1). By
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(2.1), we have ¢(pv;) # 0 because ¢(p;) # 0. Therefore A = 1, a contradiction.

anrl

AN

Yj Ys+1

~

b

Il <~~~
S

X
Il =<

a

o

a=d

.
Ul \x\ U1
ai

(ii) Assume d = a and e # ag. There is no path from ag to a1, by the choice of e, and no path from a; to
ap, because ag is not a successor of a. Moreover, there are no paths from ¢ to e or from e to ¢ by the
minimality of (pg,qo). Therefore vvlul_lu()vo_ !is an irreducible cycle in Q4 which is not a contour,
a contradiction to our hypothesis.

Tn41
M A
Vi
Ye Yj Ys+1
! !
{
) o
e C
UOS\H‘ vo §’U
v v

(iii) Assume d # a and e = ag. There is no path from a to a;, by the choice of d, and no path from
a1 to a, because a is not a successor of ag. Moreover, there are no paths from e to ¢ or from c to
d since otherwise ¢(p) = p(g) by the minimality of (p,q) and the induction hypothesis. Therefore
vu~tvjuy gt is an irreducible cycle in @ 4 which is not a contour, a contradiction to our hypothesis.

mn+1

TN

Yj Ys+1

0L
% o

vo &

fﬂsv
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d
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(iv) Assume d # a and e # ag. There are no paths from d to ag or from e to a, by the choice of d, e.
If there exists a path w from ¢ to a, then uv = wo; ! is an irreducible cycle which is not a contour
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(because the minimality of (p,q) implies that there is no path from d to ¢ or from ¢ to d, and the
choice of d, e implies that there is no path from a; to a, or from a to a;) and this is a contradiction.
Thus, there is no path from ¢ to a;, and uvilvguglulvfl is an irreducible cycle which is not a
contour, again a contradiction.

The theorem is now established by induction. O

2.5. Let A be a finite dimensional k-algebra which is representation-finite. It is well-known (and easy to see)
that, if A is triangular, then A is Schurian. Hence, for any presentation A & kQ 4/I4 and any contour (p, q)
in Q4 with p,q ¢ I4, there exists a non-zero A € k such that p — A\g € I4. On the other hand, A is simply
connected if and only if it is strongly simply connected (see [7]). Hence (1.6) and (2.4) yield immediately the
following new characterisation, in therms of their bound quivers, of simply connected representation-finite
algebras.

Corollary. Let A be a connected finite dimensional k-algebra which is representation-finite. The following
conditions are equivalent :

(a) A is simply connected.

(b) A is triangular and there exists a presentation A = kQa/Ia such that all irreducible cycles in Q4
are irreducible contours and, for each irreducible contour (p,q), we have p,q ¢ Ix and p —Aq € 14
for some non-zero X € k.

(c) A is triangular and, for any presentation A 22 kQa/Ia, all irreducible cycles in Q4 are irreducible
contours and, for each irreducible contour (p,q), we have p,q ¢ I4 and p—Aq € 14 for some non-zero
A€k, O

3. CONSTRUCTION OF STRONGLY SIMPLY CONNECTED ALGEBRAS

3.1. We recall that the one-point extension of a finite dimensional algebra B by a B-module M is the matrix
algebra
B 0
© = ooy = 2
where the operations are induced from the matrix operations and the module structure of M. The quiver
Q@ a of A then contains the quiver Qg of B as a full convex subquiver and there is an additional (extension)
point which is a source. Dually, one defines the one-point coextension [M]B of B by M.

Let A be a strongly simply connected algebra. Since A is triangular, it can be constructed by repeated
one-point extensions or coextensions. If A = B[M] is strongly simply connected, then B is a full convex
subcategory of A, hence is itself strongly simply connected. We are interested in finding necessary and
sufficient conditions on a module M over a strongly simply connected algebra B so that the one-point
extension B[M], or the one-point coextension [M]B, is also strongly simply connected. This would give an
inductive construction of strongly simply connected algebras. We start however by answering a more general
question.

Theorem. Let B be an algebra (not necessarily connected), and M be a B-module. Then :

(a) A = B[M] satisfies the separation condition if and only if B satisfies the separation condition and
M is a separated B-module.

(b) A =[M]B satisfies the co-separation condition if and only if B satisfies the co-separation condition
and M is a separated B-module.

Proof. We only prove (a), since the proof of (b) is similar. Assume first that A satisfies the separation
condition. Since the extension point a is separating as an object in A, the B-module M is clearly separated.
In order to prove that B satisfies the separation condition, we must show that any « € By is separating.
As usual, we denote by A% (or B¥) the full subcategory of A (or B) generated by the non-predecessors of
xz in A (or B, respectively). Since there is no path from z to a, the indecomposable projective B-module
P(z)p, when considered as an A-module, is equal to P(z)4. If a is a predecessor of z, then B* = A* and
x is separating in B, because it is so in A. If a is not a predecessor of x, then A” is generated by B® and
a. Assume rad P(x)p is not separated. Then there exist two distinct indecomposable summands R;, Ry of
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rad P(z) whose supports lie in the same connected component of B*. But R;, R» lie in distinct connected
components of A*, an impossibility.

Conversely, assume that B satisfies the separation condition and that M is a separated B-module. Since
the extension point a is clearly a separating object in A, we must prove that every x € By such that x # a is
also separating in A. If a is a predecessor of z, then clearly « is separating in A, since (A%)oU{z} = (B”)oU{x}
in this case. Thus, we need only consider the case where a is not a predecessor of z. In this case, again, A®
is generated by B* and a. Assume on the contrary that rad P(z) 4 is not a separated A*-module.

Then there exist two distinct indecomposable summands Ry, R> (say) of rad P(xz) 4 whose supports are
connected in A*. Since they are not connected in B* (because B satisfies the separation condition), there
exist two distinct connected components of B*, say B; and Bs, containing respectively the supports of Ry
and R», and connected in A through the extension point a. In fact, each of B; and Bs is connected to a
by a single arrow : let @ = a; —as—---—ay, with a; in B;, be a walk of least length from a to B; (where
i = 1,2). This hypothesis implies a; # a for all 1 < j <, thus a; belongs to B* for all j, and hence a; lie
in B;. Therefore the restriction of M to each B; is non-zero.

We thus have the following situation

a T

At this point, it is important to observe that B; and Bs belong to the same connected component of B,
since they are connected through x. Moreover, the restriction of M to this component is indecomposable
since M is separated as a B-module. In particular, there exists a walk by —¢; —---—¢.— by in Supp M,
with by in By, b2 in By, and ¢; not in B” for all j (1 < j < r) because Bi, By are disconnected in B”. Thus,
each c; is a predecessor of . On the other hand, since ¢; lies in the support of M, there exists a path from
a to c;. Hence a is a predecessor of x, which is the wanted contradiction. [

Remarks.
(a) The above theorem generalises [2] (2.5).
(b) Let B be an algebra satisfying the separation condition, and M be a separated B-module. Then
[M]B usually does not satisfy the separation condition (even if B also satisfies the co-separation
condition). Indeed, let B be the tame hereditary algebra given by the quiver

o [e]
[e]
o [e]
and H be a simple homogeneous B-module, then [H]|B does not satisfy the separation condition.

3.2. We have the following easy corollary.

Corollary. A triangular algebra A satisfies the separation (or the co-separation) condition if and only if
there exist a sequence of algebras Ag, Ay, ... A, = A with Ay semisimple, and, for each 0 < i < n, a separated
A;-module M; such that A;1 = A;[M;] (or Aip1 = [M;]A;, respectively). O

3.3. Let B be a triangular algebra, and M be a B-module. An enumeration {z1,...z,,} of the points of
the support Supp M of M is called an admissible ordering of sinks (or of sources) if j > i implies
that z; is not a successor (or predecessor, respectively) of ;. The triangularity of B implies that, for each
B-module M, there exists at least one admissible ordering of sinks and one admissible ordering of sources
of the points of Supp M. To each admissible ordering of sinks (or of sources) is associated a filtration of B



STRONGLY SIMPLY CONNECTED ALGEBRAS 13

by a sequence of full convex subcategories : indeed, let {x1,...z,,} be such an admissible ordering of sinks
(or of sources) of the points of Supp M, then we define B(®Y) = B and, for each 0 < i < m, we let B() be
the full subcategory of B generated by the non-successors (or non-predecessors, respectively) of the points
z1,...xz;. Clearly, each B is convex and we have B = B(® D B(1) 5... > Bm=1),

Definition. Let B be a triangular algebra. A B-module M is called completely co-separated (or com-
pletely separated) if, for any admissible ordering of sinks (or of sources, respectively) of the points of
Supp M and, for each 0 < i < m, the restriction M = M |z« of M to B is separated as a B(Y)-module.

Thus, any uniserial module (in particular any simple module) is completely co-separated and completely
separated. In general, however, these two classes do not coincide. Examples are given later.

Clearly, any completely co-separated (or completely separated) module is separated. In particular, if B
is connected, any completely co-separated (or completely separated) B-module is indecomposable.

3.4. We may now state and prove our main result.

Theorem. Let B be a strongly simply connected algebra, and M be a B-module. Then :

(a) A= B[M] is strongly simply connected if and only if M is a completely co-separated B-module.
(b) A =[M]B is strongly simply connected if and only if M is a completely separated B-module.

Proof. We only prove (a), since the proof of (b) is similar. For the necessity, assume that there exists an
admissible ordering of sinks {zi,...x,,} of the points of Supp M with associated filtration B = B(®) D
B o ...o Bm-1)

For any 0 < j < m,let M; = M |gy). Then BU) [M;] is a full convex subcategory of A, and consequently
satisfies the separation condition. By (3.1), M is separated as a BW_-module. This completes the proof of
the necessity.

Conversely, we assume that M is completely co-separated and show that each connected full convex
subcategory C of A satisfies the separation condition. If the extension point a is not in C, then C is a full
convex subcategory of B, hence satisfies the separation condition. We thus assume that a lies in C.

Let D be the full subcategory of B generated by all objects of C except a. Then C is the one-point
extension of D by the restriction M |p of M to D. Moreover, D is a full convex subcategory of B and hence
satisfies the separation condition. Let {1, ...z}, with ¢ > 0, be the points in Supp M which do not lie in C,
and let {z¢y1,...2m} be those lying in C. Thus, all the z; with 1 <1 < m, are successors of the extension
point a. It then follows from the convexity of C that no point in C' is a successor of the z;, with 1 <i <'t.
In particular, z; is not a successor of z; if 1 < ¢ <t < j < m. We may clearly assume further that z; is
not a successor of x; whenever 1 <i < j<tort+1<i<j<m. Therefore {z1,...2¢,T¢41...2n} is an
admissible ordering of sinks of the points of Supp M. Let B =B > BW > ... > B® > ... > B(m=1) he
the associated filtration of B. Then M |p«) is separated as a B®-module. On the other hand, D is a full
subcategory of B®) and M |p= M |g). Thus, M |p is separated as a D-module. It follows from (3.1) that
C satisfies the separation condition. The proof of the theorem is complete. O

3.5. Corollary. Let B be a strongly simply connected algebra and M be a completely co-separated (or a
completely separated) B-module. Then M is a brick (that is, End M = k).

Proof. This follows from our theorem and [14] (4.2). O

3.6. Example.
(a) Let B be the tame hereditary algebra given by the quiver

o [e]

Each of the simple homogeneous B-modules H) (with A € k\{0,1}) is completely co-separated, but
not completely separated. The algebras B[H)| (which are just the canonical tubular algebras of
type (2,2,2,2)) are strongly simply connected. This furnishes an infinite family of strongly simply
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connected algebras with the same dimension and the same number of isomorphism classes of simple

modules.
(b) Let B be given by the quiver
3
N
lo 05
4
[0
ya

20
bound by af = «§. The B-module M given by

k/k
\k

[10]

\k
A
S

k

is indecomposable (and, even, is a brick) but is not completely co-separated. Indeed, if one considers
the shown admissible ordering of sinks for the points of Supp M = B, then B is generated by all
points except 1, it is connected and M) = M |py is decomposable, thus not separated. Note that
B is strongly simply connected, but B[M] is not.

3.7. The following corollary strengthens [2] (5.2) and [13] (2.2).

Corollary. A connected algebra A is strongly simply connected if and only if there exist a sequence of
algebras A, Ay, ... A, = A with Ay = k, and for each 0 < i < n, an A;-module M;, such that either M; is
completely co-separated and A; 11 = A;[M;], or M; is completely separated and A;+1 = [M;]A;.

Proof. Assume indeed that A is strongly simply connected. By (2.3), there exists a connected full convex
subquiver @ of Q4 such that all the points of Q4 belong to @ except one, which is a source or a sink.
Assume the former, and let B be the connected full convex subcategory of A generated by the points of @,
then A is a one-point extension of B by a B-module M, say. Since B is strongly simply connected (because
A is), it follows from our theorem that M is completely co-separated. The proof is completed by induction.
O

4. CONSTRUCTION OF SCHURIAN STRONGLY SIMPLY CONNECTED ALGEBRAS

4.1. Since there exists, so far, no general rule to decide whether a given module is indecomposable or not, we
do not have any practical method to decide whether a given module is completely co-separated, or completely
separated, or not. However, if A is a Schurian and strongly simply connected algebra, we can find all A-
modules M such that A[M], or [M]A, is Schurian and strongly simply connected. The result provides an
inductive process to construct all Schurian and strongly simply connected algebras with a prescribed number
of isomorphism classes of simple modules. In particular, one can obtain in this way all representation-finite
simply connected algebras with a prescribed number of isomorphism classes of simple modules.

Let @ be a finite quiver without oriented cycles, and Q' be a full subquiver of ). An enumeration
{z1,... 2y} of the points of @)’ is called an admissible ordering of sinks (or of sources) if j > ¢ implies
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that «; is not a successor (or predecessor, respectively). To each such admissible ordering, we associate a
filtration of @' by a sequence of full convex subquivers : indeed, let {z1,...z,,} be an admissible ordering
of sinks (or of sources) of the points of Q', then we let Q(®© = Q and, for each 0 < i < m, we let Q1) be
the full subquiver of @) generated by the non-successors (or non-predecessors, respectively) of z1,...x; in Q.
Clearly, each Q9 is convex and we have Q(® > QM D ... D Q(m—1),

Definition. Let @ be a finite quiver without oriented cycle. A full subquiver Q' of () is said to be com-
pletely co-separated (or completely separated) if, for each admissible ordering of sinks (or of sources,
respectively) of the points of @), and each 1 < i < m, the intersection of @' with each of the connected
components of Q) is empty or connected.

Lemma. Let A be a strongly simply connected algebra with ordinary quiver Q 4, and M be an A-module
whose support has quiver (). Then :

(a) If M is completely co-separated, then Q is a completely co-separated subquiver of Q 4.
(b) If M is completely separated, then Q is a completely separated subquiver of Q4.

Proof. We only prove (a), since the proof of (b) is similar. Let {1, ...z} be an admissible ordering of sinks
of the points of @, and let A(®) denote the full subcategory of A generated by the non-successors of {z1, ... z;}.
Then, by definition, ng) is the quiver of A, Since M is completely co-separated, M?) = M | 4, is separated
as an A(-module, that is, its restriction to each connected component of A() is indecomposable or zero.
This implies the statement. [

4.2. Let A be an algebra with a presentation A =2 kQ 4/I4 and let @ be a full subquiver of @ 4. We say that
(@ is zero-relation-free if no path in @ belongs to I4. Given a full subquiver @ of @ 4, we denote by U(Q)
(see [9] (2.8)) the representation of Q)4 defined by :

k if €@
U@ {o if z¢Qo
1 if ae@
U(Q)“_{o if ad¢Q.

We recall that, by (2.4), a Schurian strongly simply connected algebra always has a normed presentation.

Lemma. Let A be a Schurian and strongly simply connected algebra, with normed presentation A = kQa/l4.
Let @) be a connected full conver subquiver of Qa which is zero-relation-free. Then U(Q) has a natural A-
module structure and is indecomposable.

Proof. In order to show that U(Q) is an A-module, is suffices to show that it is annibilated by the ideal 4.
Now, A = kQ 4/14 is a normed presentation, hence all relations are zero-relations or commutativity relations.
Since @) is convex and zero-relation-free, the statement follows from the definition of U(Q). Assume that
UQ) =M®N, with M, N # 0. Since dimy U(Q), < 1 for all points = in @4, every point in @ either
belongs to Supp M or Supp N, and neither support is empty. Assume x € (Supp M)p and y € (Supp N)o.
Since @ is connected, there is a walk from x to y. We may clearly assume, without loss of generality, that
there is an edge x — v, and, even, an arrow « :  — y. But the U(Q), must be equal to zero, a contradiction.
(|

4.3. We may now state, and prove, the main result of this section.
Theorem. Let A be a Schurian and strongly simply connected algebra, with normed presentation A =
kQa/Ia, and M be an A-module. Then :

(a) The algebra A[M] is Schurian and strongly simply connected if and only if M = U(Q), where Q is a
completely co-separated convex subquiver of Q4 which is zero-relation-free.

(b) The algebra [M]A is Schurian and strongly simply connected if and only if M = U(Q), where @ is a
completely separated convex subquiver of (Q 4 which is zero-relation-free.

Proof. We only prove (a), since the proof of (b) is similar. We first prove the sufficiency. Assume that A
satisfies the stated conditions, let {1, ...z} be an admissible ordering of sinks of the points of @, and A
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be the full subcategory of A generated by the non-successors of {z1,...z;}. Then ng) is the quiver of A,

Let C be a connected component of A%, then its quiver Q¢ is a connected component of Q%). Since @ is
a completely co-separated subquiver of @ 4, the intersection Q N Q¢ is empty or is a connected subquiver
of Q¢, and it is also zero-relation-free. By (4.2), U(Q) |c= U(Q N Q¢) is an indecomposable C-module.
This shows that M is a completely co-separated A-module and hence, by (3.4), A[M] is strongly simply
connected. Since, clearly, A[M] is Schurian, we are done.

We now prove the necessity. Assume that B = A[M] is Schurian, strongly simply connected and given a
normed presentation B = kQp/Ip so that (Qa,I4) is a full bound subquiver of (Qp,I5). We denote by
b the extension point of B. By (3.4), the A-module M is completely co-separated. Let ) be the quiver of
Supp M. Since A is Schurian, for any = € Qo, we have dimy M, < 1. By (4.1), the quiver @ is completely
co-separated. We now prove that () is convex and zero-relation-free. Let p : g — 21 — -+ — x4, with £ > 1,
be a path in Q) 4, with zg and z; in (). Then there exist paths p; : b — --- > zgand ps : b — --- = x4 in Qp
such that p1,ps ¢ Ip. By (2.1), we have p1p ¢ Ip. Consequently, p ¢ I4. Therefore () is zero-relation-free.
To prove it is convex, we observe that p;p ¢ Ip implies that, for each 1 < i < ¢, the composite of p; with
the subpath zop — -+ — x; is not in Ig. Hence z; € Q.

Finally, we want to prove that U(Q) and M are isomorphic (for another proof, see [9](2.9)). We let Q
be the full subquiver of @p generated by b and the points of (). Then Q is clearly a connected full convex
subquiver of Q. Moreover, let p: b — y; — -+ — y,, be a path in Q. Then y,, € Qo. Therefore there exists
a path ¢ from b to y,, which is not in Ig. By (2.1), p is not in Ip either. This shows that Q is zero-relation-
free. By (4.2), U(Q) is a B-module. Notice that, since @ is the quiver of Supp P(b), and B is Schurian,
then dimy P(b), = 1 for each = € Q. We construct an isomorphism of B-modules f : U(Q) — P(b) in the
following way. We define f, : U(Q)y — P(b)y to be the identity on k = U(Q), = P(b)s. We now let = € Qo
be arbitrary. There exists a path in Qg

b:mga—ﬁmla—i---iﬁmt:x.

For each 1 < i < t, there exists a non-zero scalar A\,, € k such that P(b),, equals the multiplication by
Aa;- We then define f, : U(Q)s — P(b). to be the multiplication by A;!...A;!. We must show that f, is
well-defined. Assume that

b:yoﬁyl %---@ys:m
is another path in @p from b to . Then Ay, ...Aa, = Ag, ... Ag, because P(b) is a B-module, and B is
given a normed presentation. Hence /\;11 . ../\;t1 = )\511 e A[;sl- Thus fz is well-defined. Clearly f is an

isomorphism of B-modules which restricts to an isomorphism of A-modules f: U(Q) — M = rad P(b).
a

Example. In the non-Schurian case, the support of a completely co-separated module is not necessarily
convex. Indeed, let A be given by the quiver
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4.4. Corollary. Let A be a triangular algebra. Then A is Schurian and strongly simply connected if and only
if there exists a sequence of algebras Ag, Ai1,...A, = A with Ag = k and, for each 0 < i < n, a full convex
zero-relation-free subquiver Q; of Qa, such that either Q; is completely co-separated and A; 11 = A[U(Q;)]
or Q; is completely separated and A;+1 = [U(Q;)]A4;.

Proof. This follows from (2.3) and (4.3). O

4.5. Corollary. For each n > 1, there exist only finitely many non-isomorphic Schurian strongly simply
connected algebras having n isomorphism classes of simple modules.

Proof. This follows from (4.4) and induction. O
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