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Abstract. Let A be a special biserial algebra over an algebraically closed �eld. We show that
the �rst Hohchshild cohomology group of A with coe�cients in the bimodule A vanishes if and
only if A is representation-�nite and simply connected (in the sense of Bongartz and Gabriel),
if and only if the Euler characteristic of Q equals the number of indecomposable non-uniserial
projective-injective A-modules (up to isomorphism). Moreover, if this is the case, then all the
higher Hochschild cohomology groups of A vanish.

Introduction

Let k be an algebraically closed �eld and A a �nite-dimensional k−algebra. It is a reasonable
question to try to relate the Hochschild cohomology groups of A with the representation theory of
A, that is, with properties of the category mod A of �nitely generated right A−modules.

We are here interested in the vanishing of the �rst Hochschild cohomology group HH
1(A) of A

with coe�cients in the bimodule AAA. In [22], Skowro«ski raised the question for which triangular
algebras A do we have HH

1(A) = 0 if and only if A has no proper Galois covering.
Since then, this problem has been investigated by several authors due to its connection with the

notion of simple connectedness. In [9], Bongartz and Gabriel de�ne a representation-�nite algebra
to be simply connected if its Auslander�Reiten quiver is simply connected as a two-dimensional
simplicial complex. In [6] the �rst author and Skowro«ski call a triangular algebra simply connected
if for every presentation kQ/I ' A of A as a bound quiver algebra, the fundamental group of (Q, I) is
trivial, see [18]. This de�nition restricts to that of Bongartz and Gabriel in the representation-�nite
case. In [21], Skowro«ski proved that a triangular algebra (or even a triangular locally bounded
category) is simply connected if and only if it has no proper Galois covering. Skowro«ski's question
(Problem 1 in [22]) was originally stated as follows : Let A be a tame triangular algebra, is it
true that A is simply connected if and only if HH1(A) = 0? This statement was shown to hold
true for several classes of algebras, in particular for representation-�nite algebras [11], but there
are known examples of simply connected algebras A with HH

1(A) 6= 0 (see [22, 3.4], for instance).
Note also that another de�nition of simple connectedness, which does not assume triangularity is
used in [1, 17]. Our objective in this paper is to study this problem in case A is special biserial
(not necessarily triangular). Throughout, we use simply connected only for representation-�nite
algebras, that is, in the sense of Bongartz and Gabriel.

The class of special biserial algebras, which are always tame, was introduced by Skowro«ski and
Waschbüsch in [23]. It has played an important rôle in the study of self-injective algebras. Special
biserial algebras have a well-understood representation theory. In fact, if A is special biserial, then
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it has a two-sided ideal S such that the quotient A/S is a monomial algebra, and actually a string
algebra in the sense of Butler and Ringel [13]. In this paper, we prove the following theorem.

Theorem. Let A ' kQ/I be a special biserial algebra. The following conditions are equivalent:

(a) The fundamental group of the bound quiver (Q, I) is trivial,
(b) A is representation-�nite and simply connected,

(c) HH
1(A) = 0,

(d) HH
j(A) = 0, for every j > 1,

(e) χ(Q) = dimkS.

Thus, in particular, if A satis�es the equivalent conditions of the theorem then it is necessarily
triangular. Moreover, it is constrained in the sense of Bardzell and Marcos [7], therefore, the
fundamental group of any bound quiver presentation of A is trivial, or, equivalently, A has no
proper Galois covering.

The paper is organised as follows. In section 1, we brie�y recall the necessary de�nitions. Sec-
tions 2 and 3 are technical: in section 2 we study the cycles involved in binomial relations for
special biserial bound quivers (Q, I), and in section 3 we relate the number of projective - injective
indecomposable non-uniserial kQ/I−modules to the Euler characteristic of Q, then we prove the
key Proposition 3.3. Section 4 studies the relations between simple connectedness, triangularity
and derivations. In it, we prove some lemmata used in the proof of the main Theorem, in section 5.

1. Algebras and quivers

Throughout this paper, k denotes an algebraically closed �eld and all algebras are �nite-dimensional
associative k-algebras with identity.

Given a �nite quiver Q = (Q0, Q1, s, t), we denote by kQ its path algebra. Two paths sharing
source and target are parallel. A bypass is a pair (α, p), where α is an arrow, and p 6= α is a path
parallel to α. Given two points x, y ∈ Q0, a relation from x to y is a linear combination

∑r
i=1 λiwi,

where λi ∈ k\{0}, and the wi are distinct paths from x to y. If r = 1, the relation is monomial,
whereas if r = 2 the relation is binomial. Let kQ+ be the two-sided ideal of kQ generated by Q1.
An ideal I of kQ is admissible if there exists an integer m > 2 such that (kQ+)m ⊆ I ⊆ (kQ+)2. In
this case, the pair (Q, I) is called a bound quiver. The algebra kQ/I is basic, connected if so is Q,
and �nite-dimensional since Q is �nite. Given a path u in Q, its class modulo I is denoted by u.

Conversely, for every �nite-dimensional, connected and basic algebra A over an algebraically
closed �eld k, there exists a unique connected quiver Q and at least one surjective map ν : kQ→ A
with I = Ker ν admissible, see [9]. The pair (Q, I) is called a presentation of A by a bound quiver.

For more details concerning the use of bound quivers in the representation theory of algebras we
refer to [5], for instance.

A bound quiver (Q, I) is special biserial [23] if it satis�es the following conditions:

(i) Every point in Q is the source of at most two arrows and the target of at most two arrows;
(ii) Given an arrow α : x → y in Q, there is at most one arrow β starting from y such that

αβ 6∈ I and there is at most one arrow γ arriving at x such that γα 6∈ I.
If, moreover, the ideal I is monomial, that is, I is generated by monomial relations, then (Q, I) is
a string bound quiver [13].

A special biserial algebra (or a string algebra) is an algebra admitting a presentation by a special
biserial bound quiver (or a string bound quiver, respectively). If (Q, I) is special biserial, then I is
generated by a collection of paths and a collection R of binomial relations (that is relations of the
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form u− λv, with u, v parallel paths not in I, λ ∈ k\{0}) in bijection with the isomorphism classes
of non-uniserial indecomposable projective-injective modules. For every such module, we arbitrarily
�x a path u in Q such that there is a binomial relation u− λv (the relation is �xed once the path
u is �xed). It can be seen that a non-trivial path cannot be pre�x nor su�x of more than one path
appearing in a binomial relation in R, and that two binomial relations associated to non-isomorphic
projective-injective modules have distinct starting points and distinct ending points. In the sequel,
A = kQ/I denotes a special biserial algebra, unless otherwise speci�ed.

We recall some basic facts on special biserial algebras (see [24, 13]).
Let A = kQ/I be special biserial. Let S be the socle of the direct sum of the indecomposable

non-uniserial projective - injective A modules. Hence, as subspace of A (considered as a vector
space) S is generated by the classes u (= λv) of paths appearing in a binomial relation u−λv ∈ R.
Since (radA)S = S(radA) = 0, S is a two-sided ideal of A and, in fact, a semisimple subbimodule
of AAA. In particular, given points x, y in Q, we have exSey 6= 0 if and only if there is a binomial
relation u − λv from x to y. Moreover, in this case, we have exSey = ku = kv. Note that dimkS
equals the cardinality |R| of R.

Given a special biserial algebra A, the quotient algebra A/S is a string algebra. If A = kQ/I with
(Q, I) special biserial, then A/S ' kQ/J where J is the two-sided monomial ideal of kQ generated
by I ∪ {u, v | u− λv a binomial relation}.

2. Cycles in binomial relations

A cycle in Q is a path a from a point x to itself, and it is a simple cycle if x occurs only at the
beginning and at the end of a. Given an arrow α : x→ y, its formal inverse is the arrow α−1 : y → x.
A walk in Q is a composition of arrows and formal inverses of arrows of Q, w = αε11 α

ε2
2 · · ·αεrr ,

εi ∈ {±1}, such that s(αεii ) = t(a
εi−1

i−1 ). The walk w is reduced if contains no subwalk of the form

αα−1 or α−1α, with α ∈ Q1, and it is closed if the source of the �rst arrow coincides with the
target of the last one. A closed walk is simple if each point appears at most once in it, except of
course its starting and ending point. In the sequel by closed walk we mean closed reduced walk.

The conditions in the de�nition of a special biserial bound quiver impose that binomial relations
involving oriented cycles are very particular, and can be described precisely, as follows:

2.1. Lemma. Let u − λv be a binomial relation from x to y. If u starts with a simple cycle
a = α1 · · ·αr at x then:

(a) If x 6= y, then
(1) If u and v share at least an arrow, then there exists a path p from x to y and a cycle b at

y such that u = ap and v = pb,
(2) If u and v have no arrow in common, then there exists a decomposition a = a1a2 with a1,

a2 non-trivial paths such that u = ana1, for some natural number n > 1.
(b) If x = y, then there exists a simple cycle b = β1 · · ·βs at x such that the relations involving the

simple cycles a and b, and the arrows incident to x are of one of the following forms:
(3) an − λbm, αrβ1, βsα1, for some natural numbers n, m, and a scalar λ ∈ k\{0},
(4) (ab)m − λ(ba)m, αrα1, βsβ1, for some natural number m, and a scalar λ ∈ k\{0},
(5) (ab)ma− λ(ba)mb, αrα1, βsβ1, for some natural number m, and a scalar λ ∈ k\{0}.

Proof. Let u = ap, with a : x
α1

//x1
α2

// · · · αr
//x a simple cycle at x, and p be a path such that

u = ap.
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(a) Assume �rst that x 6= y, and that u and v share an arrow. Since (Q, I) is special biserial, no
path can be a common pre�x (nor su�x) of two paths appearing in a binomial relation. Thus,
v does not start with α1. If p starts with α1, then since ap 6∈ I, the point y must lie in the
support of the cycle a, so that p = ana1 for some n and some su�x a1 of a. But then, since
v does not start with α1, it cannot have a common arrow with u. Thus we must have that p
starts with the �rst arrow of v (and αrα1 ∈ I), so that v = pb with b a cycle at y. If the cycle
b were stationary, we would have a relation of the form ap− λp, but this would contradict the
fact that a is nilpotent.

Now, if u and v do not share an arrow, then p must start with α1, and, as before, p = ana1
for some n and some su�x a1 of a.
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case (1) : ap− λpb, αrα1, βsβ1 ∈ I case (2) : ana1 − λv ∈ I

(b) Assume that a = α1 · · ·αr and b = β1 · · ·βs are simple cycles at x, such that u begins with a,
and v begins with b. Note that the cycles a and b have no arrow in common. We distinguish
two cases, according to whether αrα1 belongs to I or not.

x

α1pp β1 ..

αr

AA

βn

]]

cases (3)− (4)− (5)

Assume �rst that αrα1 6∈ I. Then we must have αrβ1 ∈ I, so that u = am for some natural
number m. Using the same argument, we see that v = bn, and thus the relation is of the form
am − λbn. Of course, we must also have βsβ1 6∈ I, whereas βsα1 ∈ I.

Assume now that arα1 ∈ I. Then αrβ1 6∈ I, βsβ1 ∈ I, and βsα1 6∈ I. Thus, there are
natural numbers n, m such that either u = (ab)n and v = (ba)m, or u = (ab)nb and v = (ba)nb.
Assume the �rst case. If m > n then there exists ε > 0 such that m− 1 = n+ ε we would have
(ba)m = b(ab)m−1a = b(ab)n+εa = b(ab)n(ab)εa = λb(ba)m(ab)εa ∈ I, a contradiction. Thus
m 6 n, and using the same argument we obtain that in fact n = m, and the relation is of the
form (ab)m − λ(ba)m. The second case is treated in the same way.

�

Given a cycle a = α1 · · ·αr, de�ne σ(a) to be the cycle α2α3 · · ·αrα1. A cyclic permutation
of a is a cycle of the form σj(a) with j a positive integer, and ã will denote the set of all cyclic
permutations of a. Note that two simple cycles not in I have a common arrow if and only if they
are equal up to cyclic permutation. The following remarks will be useful.

2.2. Remarks.

(a) Note that in case 2.1, (1) above, there can be a path q from y to a point z (which might be x)
at which there is a cycle c (which must be a in case z = x), and a minimal relation of the form
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bq − λqc. However, since any cyclic permutation of a and b belongs to I, no other cycle of ã
nor b̃ can be involved in any other binomial relation.

(b) If there is a relation of types 2.1 (4) or (5) involving two cycles a and b, then any cyclic
permutation of these cycles belongs to the ideal I. Therefore, there cannot exist another
binomial relation involving cycles of ã and b̃.

(c) In case 2.1, (2), the path v may contain a subpath that is a non-trivial cycle, say b. There can

be relations of type (2) involving other cycles of ã or b̃. Moreover, if v starts with a cycle, then
it also ends with a cycle b at y and there exists a decomposition b = b1b2 such that v = b1b

m for
some natural number m. A cyclic permutation of b may itself be involved in another minimal
relation, necessarily of type (2) (see example 2.3, (b)).

(d) In case 2.1, (3), cyclic permutations of a or b can be involved in several other minimal relations,
either between them, or involving another cycle (see example 2.3, (a)). All such relations must
be of type (3).

2.3. Example. Consider the following quiver:

1
β1 ((

α1
66 2

β2 ((

α2
66 3

β3 ((

α3
66 4

β4





α4

TT

De�ne a = α1α2α3α4 and b = β1β2β3β4.

(a) Let I be the ideal generated by σi(a)− σi(b), αiβi+1, βiαi+1, where 1 6 i 6 4, and indices are
to be read modulo 4. In this case the supports of the cycles a and b are involved in 4 minimal
relations of type (3).

(b) Let I1 be the ideal generated by σi(a)αi+1 − σi(b)βi+1, αiβi+1, βiαi+1, where 1 6 i 6 4 and
indices are to be read modulo 4. In this case, the cycles a and b are involved in 4 relations of
type (2).

It follows from the preceding lemma that the set R can be partitioned as R = R1

∐
R2, where

R1 is the set of binomial relations u − λv such that one of the paths starts or ends with a cycle,
and R2 = R\R1.

The following section is technical. We establish the key result 3.3.

3. The cycle graph of (Q, I)

Following [16], given a quiver Q, with N connected components, the Euler characteristic of Q is
χ(Q) = |Q1| − |Q0| + N . This number equals the rank of the �rst homology group H1(Q) of the
underlying graph of Q, which is free abelian. In order to compare dimkS and χ(Q) we introduce an
auxiliary graph Γ, de�ned as follows:

- Γ0 is the set of simple oriented cycles in Q, considered up to cyclic permutation, which are
pre�x or su�x of a path appearing in a binomial relation in R1.

- Given two points ã and b̃ in Γ, we attach edges between them according to the following
rules (see 2.1):

· For each relation ap− λpb of type (1), we attach an edge p : ã � b̃.

· For each relation ana1 − λb1bm of type (2), we attach an edge p′ : ã � b̃.
· In case the cycles a and b share a point x and are involved in a relation of one of the
forms (3), (4), or (5) we attach an edge x : ã � b̃.
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3.1. Remarks.

(a) Note that we may have Γ0 = ∅, but still have oriented cycles in Q. However, this would mean
that R = R2.

(b) By construction |Γ1| = |R1|, this will be very useful later. Also, note that Γ can have multiple
edges, but no loops: in case there are two (classes of) cycles a and b in Q having n common
points with relations of the type (3) there are exactly n arrows between them. For instance,
the quiver Γ corresponding to the bound quiver given in 2.3 is:

ã b̃

(c) The set of simple oriented cycles of Q (up to cyclic permutation) which are pre�xes or su�xes
of a path appearing in a binomial relation gives rise to a linearly independent set in H1(Q).
Thus, we have a map ϕ0 : Γ0 → H1(Q) whose image is linearly independent. Note however that
this does not mean that we have a natural map R1 → H1(Q) with the same property. Indeed
we may have several binomial relations involving di�erent cycles of a class ã (see example 2.3).
Denote by C0 the the subgroup of H1(Q) generated by Im ϕ0.

(d) In general Γ is disconnected. In light of 2.2 it has 5 types of edges, each given by the type of
relation that gives rise to it. Moreover, the type of an edge is an invariant for all the edges in
the same connected component of Γ. The latter can be described as follows.

- If two cycles a = α1 · · ·αr and b = β1 · · ·βs are linked by a relation of type 2.1, (4)
or (5), then since αrα1, βsβ1 ∈ I, no cyclic permutation of a or b can be involved in
another binomial relation. Thus, points corresponding to relations of type 2.1 (4) and (5)

determine a connected component of the form ã b̃ ,

- Each point corresponding to binomial relations of type 2.1 (1) gives rise to a connected

component of type A or Ã,
- Edges corresponding to relations of types 2.1 (2), appear in a separate component with no
loops. The same holds for edges coming from relations of type 2.1 (3). See 2.2.

3.2. Lemma. There exists an injective homomorphism of groups ϕ1 : H1(Γ)→ H1(Q) whose image
C1 satis�es C1 ∩ C0 = 0.

Proof. First of all, note that each edge p of Γ determines a point of Q, that is the starting point of
the binomial relation in Q giving rise to the edge p. We now proceed by induction on χ(Γ).

Assume χ(Γ) = 1 so that there is a simple closed walk w = c̃1
p1
c̃2

p2 · · ·
pr

c̃1 in Γ.

� Assume �rst that this cycle lies in a component of type (1). That means that there are
relations of type (1) in Q: a1p1− p1a2, a2p2− p2a3, . . . , arpr− pra1. Set ϕ1(w) =

∑r
j=1 pj ,

as element of H1(Q).
� In light of 3.1, (d) we can assume that w lies in a component given by relations of type (2)
or else by relations of type (3). Let xi be the point determined by the edge c̃i c̃i+1 of
w, see 2.2, (c) and (d). We build a simple cycle at x1 as follows. Start at x1, then:

. If the edge in Γ comes from a relation of type (3), go to x2 following c2,

. If the edge in Γ comes from a relation (2), go from x to the ending point of the binomial
relation following c1, then go to to x2 following c2.

and continue in that way. The obtained cycle is not necessarily simple, but by eliminating
each proper subpath which is a non trivial cycle, we obtain a simple cycle.

The constructed cycle does not lie in C0 because it does not contain all the arrows of any cycle
of Q it passes through.
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Assume now that the statement holds true for bound quivers such that χ(Γ) = k − 1, and let
(Q, I) be such that χ(Γ) = k > 2. Since χ(Γ) > 0, there exists an edge p in Γ such that the graph
Γ′ obtained from G by deleting p has the same number of connected components of Γ, and hence
χ(Γ′) = χ(Γ)−1. The graph Γ′ corresponds to the bound quiver (Q, I ′) where I ′ is generated by one
less binomial relation than I. Note that the vertices of Γ coincide with those of Γ′, so that ϕ0 = ϕ′0.
In addition, H1(Γ′) can be regarded as a subgroup of H1(Γ), and by the induction hypothesis there
exists an injective map ϕ′1 : H1(Γ′)→ H1(Q) whose image C′1 does not intersect C0.

We now extend ϕ′1 to H1(Γ). There exists a cycle in Γ involving the edge p, thus, not belonging
to H1(Γ′). We construct a cycle in Q in the same way as we did, and it only remains to show that
no integer multiple of this cycle belongs to C0 + C′1. Using the edge p in Γ corresponds to changing
from one cycle to another in Q, say from a to b, at a point x which is uniquely determined by p.
Let α1 and α2, (respectively β1, and β2) be the arrows of a (respectively of b) entering and leaving
x.

x

α2pp β2 ..

α1

AA

β1

]]

These arrows may have appeared in a previously constructed cycle of Q. However, since we have
never before used the point x to change from a to b, each time α1 appeared in the cycles of C0 +C′1,
the arrow α2 also appeared. Thus, in every element of C0 + C′1, the coe�cient of α1 is the same as
that of α2, and this is not the case for the cycle we have just constructed. �

3.3. Proposition. Let (Q, I) be a special biserial bound quiver. Then dimkS 6 χ(Q). Moreover, if
equality holds, then Q is acyclic.

Proof. Let u − λv ∈ R2 be a relation from x to y. Note that neither u nor v starts with a cycle,
and they have at least the point y in common. Let z be the �rst point which is common to u and
v and di�erent from x, thus u = u′u′′ and v = v′v′′, where u′ and v′ go from x to z. Moreover, let
u1 be the path constructed from u′ by deleting every occurrence of a cycle, if there is one, and v1
constructed in an analogous way. Since u− λv ∈ R2 we have that u1v

−1
1 is a reduced non-oriented

cycle of Q. De�ne ϕ2 : R2 → H1(Q) by ϕ2(u− λv) = u1 − v1. The paths u and u1 have their �rst
arrow in common, and since no path in Q can be a pre�x (nor a su�x) of more than one path
appearing in some binomial relation, the image of this map is a linearly independent set. Let C2 be
subgroup of H1(Q) generated by Im ϕ2.

In 3.2 we constructed an injection ϕ1 : H1(Γ)→ H1(Q), whose image C1 satis�es C1 ∩C0 = 0. By
construction, any cycle C0 + C1 has only arrows belonging to cycles which are pre�xes or su�xes of
paths appearing in binomial relations. Since the �rst arrow of a path of a relation from R2 cannot
appear in any such cycle, we have C2∩ (C0 + C1) = 0. Thus C0 +C1 +C2 = C0⊕C1⊕C2 is a subgroup
of H1(Q), and thus
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dimkS = |R|
= |R1|+ |R2|
= |Γ1|+ rk C2
6 N + |Γ1|+ rk C2
= χ(Γ) + |Γ0|+ rk C2
= rk C0 + rk C1 + rk C2
6 rk H1(Q)

= χ(Q).

Assume now that χ(Q) = dimkS. Then all the inequalities must be equalities, in particular N = 0.
Therefore Γ is empty, and so is R1. Moreover, we must have that C2 = H1(Q), which is only formed
by non-oriented cycles. �

3.4. Corollary. Let (Q, I) be a special biserial bound quiver such that dimkS = χ(Q). If u, v are
distinct parallel paths, then u and v are proportional. In particular, Q has no bypasses.

Proof. The hypothesis dimkS = χ(Q) implies that Q has no oriented cycles and R = R2.
Let u, v be parallel paths. Consider the shortest non-trivial pre�xes u′ v′ of u and v, respectively,

such that u′ and v′ are parallel. Then u′v′−1 is a simple closed walk in Q. Therefore, u′ and v′ are
bound by a binomial relation. Moreover, if we write u = u′u′′ and v = v′v′′, then u′′ is trivial if and
only if v′′ is trivial, because Q has no oriented cycles. Thus, u and v are bound by a binomial relation
or both lie in I according to whether u′′ and v′′ are both trivial or both non-trivial, respectively.

The second statement follows directly, since I is admissible. �

We refer the reader to [18] for the de�nition of the fundamental group of a bound quiver. See
also [22, 3, 15] for relations with Hochschild cohomology. Recall from [7] that an algebra A ' kQ/I
is called constrained if for each arrow α : x→ y in Q we have dimkexAey 6 1. It is shown in [7] that
if A is constrained, then the fundamental groups of any two presentations of A are isomorphic.

3.5. Corollary. Let (Q, I) be a special biserial bound quiver with χ(Q) = dimkS. If kQ/I ' kQ/I ′,
then π1(Q, I) ' π1(Q, I ′),

Proof. This follows from [7], and the absence of bypasses in Q. �

4. Derivations, triangularity and fundamental groups

4.1. Lemma. Let (Q, I) be a special biserial bound quiver. If Hom(π1(Q, I), k+) = 0, then dimkS =
χ(Q). In particular, Q is acyclic.

Proof. Recall from the description of π1(Q, I) given in [18] for instance, that this group is generated

by χ(Q) elements satisfying dimkS relations. Therefore, Hom(π1(Q, I), k+) is isomorphic, as a k-

vector space, to a subspace of kχ(Q) given by dimkS relations. Therefore, Hom(π1(Q, I), k+) = 0
implies that dimkS > χ(Q). The conclusion then follows from 3.3. �

4.2. Proposition. Let A be a special biserial algebra such that HH1(A) = 0 or else such that there
exists a special biserial presentation A ' kQ/I such that π1(Q, I) = 1. Then dimkS = χ(Q). In
particular, Q is acyclic.



SPECIAL BISERIAL ALGEBRAS WITH HH
1(A) = 0. 9

Proof. If HH
1(A) = 0, then it follows from [3, 3.2] that Hom(π1(Q, I), k+) = 0. Similarly, if

π1(Q, I) = 1, then Hom(π1(Q, I), k+) = 0. We conclude using 4.1. �

Recall that string algebras are tame, and have two kinds of indecomposable modules, the so-
called band modules and the string modules. Moreover, with our notations every A-module is either
projective-injective or an A/S-module. See [24, 13], for more details.

4.3. Lemma. If χ(Q) = dimkS, then the string algebra A/S has no band module. Therefore, A and
A/S are representation-�nite.

Proof. Let A ' kQ/I be a special biserial presentation and let J be the ideal of kQ generated by
I and the paths in Q appearing in a binomial relation in I. Hence, A/S ' kQ/J . It follows from
3.4 that every simple cycle in Q contains a path or a formal inverse of a path in Q that lies in J .
Thus, there is no band in (Q, J) and, therefore, no band module over A/S. This shows that A/S
and, therefore, A are both representation-�nite. �

We now need to give a precise description of the fundamental group π1(Q, I), in case (Q, I) is a
triangular special biserial bound quiver. In order to do so, we recall some terminology and results
from [3, 14].

Following [14], given a presentation ν : kQ → A, the algebra A is said to be of the �rst kind
with respect to ν if for every point x and associated indecomposable projective A module Px, every
indecomposable summand of radPx is of the �rst kind with respect to the universal Galois covering
associated to ν. The main result of [14] states that if A is a triangular algebra of the �rst kind with
respect to a presentation ν : kQ→ A, then the fundamental group π1(Q,Ker ν) is free.

Now, following [3], let (Q, I) be a bound quiver with Q acyclic, ν : kQ → A a presentation of
A, with kernel I, and x be a source in Q. Let x+ be the set of arrows starting at x, and let ≈
be the smallest equivalence relation on x+ such that α ≈ β whenever there exist y ∈ Q0 and a
minimal relation

∑r
i=1 λiwi ∈ I, from x to y, such that w1 = αw′1 and w2 = βw′2. Further, denote

by tx(ν) = t(ν) the number of equivalence classes of ≈. Let Q′ be the quiver obtained from Q by
deleting x, I ′ = I ∩ kQ′, and A′ = kQ′/I ′, so that A is a one-point extension of A′. Then [14, 2.2]
asserts that π1(Q, I) is the free product of the fundamental groups of the connected components
of(Q′, I ′) and the free group in t(ν)− 1 generators.

4.4. Lemma. Let (Q, I) be a triangular special biserial bound quiver. Then π1(Q, I) is free of rank
χ(Q)− dimkS.

Proof. First, note that if p : (Q̃, Ĩ) → (Q, I) is a Galois covering, then (Q̃, Ĩ) is also special bis-

erial. In addition, if w is a string (or a band) in (Q, I), then there exists a string w̃ in (Q̃, Ĩ)
such that p(w̃) = w. Furthermore, if M(w) denotes the string module corresponding to w, then
M(w) = pλM(w̃), where pλ denotes the push-down functor associated to p (see [10]). Because in-
decomposable summands of the radicals of indecomposable projectives are string modules, special
biserial algebras are of the �rst kind. In light of the main Theorem of [14] cited above, this shows
that π1(Q, I) is free.

Now, if x is a source in Q, then t(ν) is 1 or 2, according to whether the projective Px is also
injective or not. The result then follows by induction on the number of points in Q, using [14, 2.2].

�

The following example shows that the statement does not hold true if one drops the triangularity
hypothesis.
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4.5. Example. Let A be the algebra given by the quiver

2 β

%%KKKKKK 5
δ

%%KKKKKK 8 η

&&LLLLLL

1

α
99ssssss

ζ %%KKKKKK 4

γ 99ssssss

λ %%KKKKKK 7

ε
99ssssss

ν %%KKKKKK 1 ,

3
ξ

99ssssss
6

µ

99ssssss
9

ρ

88rrrrrr

where the two copies of the point 1 are identi�ed, bound by the relations

βλ = ξγ = δν = µε = ηζ = ρα = 0, αβγδ = ζξλµ, γδεη = λµνρ, εηαβ = νρζξ .

Then A is a non-triangular special biserial algebra and π1(Q, I) ' Z× Z.

5. The main result

We recall that a representation-�nite algebra A is called simply connected if its Auslander -
Reiten quiver is simply connected as a two-dimensional simplicial complex, see [9]. For triangular
algebras this is equivalent to saying that A has no proper Galois covering, see [6, 21]. As promised,
we now establish a relationship between the simple connectedness of a special biserial algebra, the
vanishing of its Hochschild cohomology groups and the dimension of S. Note that, by de�nition,
simple connectedness implies representation - �niteness.

5.1. Theorem. Let A = kQ/I be a special biserial algebra. Then, the following conditions are
equivalent:

(a) π1(Q, I) = 1,
(b) A simply connected,

(c) HH
1(A) = 0,

(d) HH
j(A) = 0, for every j > 1,

(e) χ(Q) = dimkS.

Proof.
(a) implies (b) : If π1(Q, I) = 1 then 4.2 implies that Q is acyclic, and that χ(Q) = dimkS. Then

3.5 implies that the fundamental group of every presentation of A is trivial. Finally, 4.3 gives the
remaining part.

(b) implies (c) : If π1(Q, I) = 1 then 4.2 implies that Q is acyclic, and, since A is representation-
�nite, Theorem (4.3) in [11] gives HH1(A) = 0.

(c) and (d) are equivalent : If HH1(A) = 0, then by 4.3 the algebra A is representation-�nite.

Corollary 4.4 in [11] then yields that HHi(A) = 0 for i > 2. It is trivial that (d) implies (c).
(d) implies (e) : Since HH

1(A) = 0, then 4.2 implies that Q is acyclic and χ(Q) = dimkS. The
result follows from 4.4.

(d) implies (e) : This follows from 3.3 and 4.4.
�

Notice that the fact that all the Hochschild cohomology groups of positive degree of a simply
connected representation-�nite algebra vanish has been established by Happel, see [16, 5.4, 5.5].

Also, because of 3.5, and the fact that an algebra A has no proper Galois covering if and only
if the fundamental group of any presentation is trivial, it follows from 5.1 (a) that the conditions
of the theorem are further equivalent to saying that A is representation-�nite and has no proper
Galois covering.
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We now derive some consequences, the �rst of which deals with the Lie algebra structure of
HH

1(A).

5.2. Theorem. Let A = kQ/I be a special biserial algebra without bypass. Then there is a short
exact sequence of k-vector spaces

0 // HH
1(A)

p∗
// HH

1(A/S) //
k
dimkS // 0

where the map p∗ is a morphism of Lie algebras.

Proof. Recall that A/S ' kQ/J , and that J is a monomial ideal, so that π1(Q, J) is the free group on
χ(Q) generators. Thus, there is a natural surjective group homomorphism p : π1(Q, J)→ π1(Q, I)
obtained by factoring out the binomial relations. Since Q has no bypasses, we have, from [15], that

HH
1(A) ' Hom(π1(Q, I), k+) and HH

1(A/S) ' Hom(π1(Q, J), k+). Moreover, the derivations of
A and those of A/S are diagonalisable, see [3, 15], that is, for every arrow α, and every derivation ∂
of A or A/S, the image of α under ∂ is a scalar multiple of itself. The morphism p∗ is obtained from

p upon applying the functor Hom(−, k+). Finally, from 4.4, we obtain dimkHH
1(A/S) = χ(Q), and

dimkHH
1(A) = χ(Q) − dimkS and the dimension of the cokernel of p∗ follows. Finally, since the

derivations are diagonalisable, the Lie algebras HH
1(A/S) and HH

1(A) are abelian, and the map
p∗ is thus trivially a Lie algebra homomorphism. �

We refer to [22], for instance, for the de�nition of separated, coseparated, or strongly simply
connected algebras. We now easily deduce conditions equivalent to those of our theorem 5.1 for
special biserial representation - �nite algebras.

5.3. Corollary. Let A be a special biserial algebra. The following conditions are equivalent:

(a) A simply connected (thus, by de�nition, representation-�nite),
(b) There exists a string bound quiver presentation (Q, I ′) of A/S such that π1(Q, I ′) is the free

group of rank dimkS,

(c) Q has no bypass and HH
1(A/S) ' k

dimkS.

Proof.
(a) implies (c) : From 5.1, if A is simply connected, then HH

1(A) = 0, and then from 3.3 and
3.4, Q has no bypasses. Finally, the exact sequence of 5.2 gives the result.

(c) implies (b) : The exact sequence of 5.2 gives HH1(A) = 0, and then 5.1 gives that dimkS =
χ(Q). On the other hand, since I ′ is monomial, the group π1(Q, I ′) is free in χ(Q) generators.

(b) implies (a) : The hypothesis implies that dimkS = χ(Q), and the result follows from 5.1.
�

5.4. Remarks.

(1) We have further equivalent conditions, namely if A is special biserial and representation - �nite,
then the following are equivalent:
(a) A is simply connected,
(b) A is separated,
(c) A is co-separated,
(d) A is strongly simply connected.
Indeed, because of [22, 2.3, 4.1] condition (d) implies (b) and (c), which imply (a). Finally, (a)
implies (d) follows from [10].
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(2) Let A be a simply connected triangular special biserial algebra. Then it follows from 5.4, (a),
and [8] that the Auslander-Reiten quiver of A admits both a postprojective and a preinjective
component.

(3) Let A be a simply connected special biserial algebra. By [4], there exists a poset Σ and an a
ideal J of the incidence algebra kΣ which is generated by classes of paths in the quiver of Σ,
such that A ' kΣ/J . In particular, A is schurian.

(4) In [2] criteria are given for the strong simple connectedness of quotients of incidence algebras.

Recall that for schurian algebras, or, more generally for algebras A having a semi-normed basis,
the simplicial homology SH∗(A) and cohomology groups SH∗(A; k+) of A (with coe�cients in k

+)
are de�ned, see [10, 2.1] and [19]. Moreover, following [12], these groups have a clear interpretation
as the homology or cohomology groups of a CW-complex.

5.5. Corollary. Let A be a schurian special biserial algebra. The following are equivalent:

(a) HH
1(A) = 0,

(b) SH1(A) = 0,

(c) SH
1(A; k+) = 0.

Proof. Since A is schurian, its quiver has no bypasses. From the previous results, if HH1(A) =
0, then π1(Q, I) is trivial, and hence so is its abelianisation, SH1(A). Then we have, for every
presentation (Q, I) of A:

HH
1(A) ' Hom(π1(Q, I), k+)

' Hom(SH1(A), k+)

' SH
1(A; k+)

where the �rst isomorphism comes from [15], the second is the Hurewicz Theorem (see [20, 4.29],
and the third is given by the Dual Universal Coe�cients Theorem (see [20, 12.11]). �
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