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Abstract. We give several equivalent characterisations of left
(and hence, by duality, also of right) supported algebras. These
characterisations are in terms of properties of the left and the right
parts of the module category, or in terms of the classes L0 and
R0 which consist respectively of the predecessors of the projective
modules, and of the successors of the injective modules.

Introduction

Let A be an artin algebra. In order to study the representation theory
of A, thus the category modA of finitely generated right A−modules,
we consider a full subcategory indA of modA having as objects ex-
actly one representative from each isomorphism class of indecompos-
able A−modules. Following Happel, Reiten and Smalø [15], we define
the left part LA of modA to be the full subcategory of indA having
as objects the modules whose predecessors have projective dimension
at most one. The right part RA is defined dually. These classes were
heavily investigated and applied (see, for instance, the survey [5]).

In particular, left (and right) supported algebras were defined in [4]:
an artin algebra A is called left supported provided the additive full
subcategory addLA of modA having as objects the (finite) direct sums
of modules in LA, is contravariantly finite in modA (in the sense of
Auslander and Smalø [10]). Many classes of algebras are known to be
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left supported, such as those laura algebras which are not quasi-tilted
(see [3], [19],[23]) as well as several classes of tilted algebras. Since, by
definition, modA has a well-behaved left part when A is left supported,
then this left part affords a reasonably good description, namely, it is
contained in the left part of modB, for some tilted algebra B, which is
a full convex subcategory of A (see [4]).

The objective of this paper is to give several characterisations of left
supported algebras. In our first main theorem, we prove that an artin
algebra A is left supported if and only if LA coincides with the full
subcategory PredE of indA consisting of all predecessors of the direct
sum E of all indecomposable Ext-injective modules in add LA (these
were characterised in [4],[7]). We also prove that A is left supported
if and only if LA equals the support Supp(−, E) of the contravariant
Hom functor HomA(−, E) or, equivalently, equals Supp(−, L) for some
suitably chosen module L. Other equivalent characterisations of left
supported algebras involve the left support Aλ of A (in the sense of
[4]). We now state our first main theorem (for the definition of almost
directed and almost codirected modules, we refer the reader to (2.2)).

Theorem A. The following conditions are equivalent for the artin
algebra A:

(a) A is left supported.
(b) LA = Supp(−, E).
(c) LA = PredE.
(d) There exists an almost codirected A−module L such that LA =

Supp(−, L).
(e) There exists an A−module L such that HomA(τ−1

A L, L) = 0 and
LA = Supp(−, L).

(f) E is a sincere Aλ−module.
(g) E ∩ modB �= ∅ for each connected component B of Aλ.
(h) E is a cotilting Aλ−module.
(i) E is a tilting Aλ−module.

All these characterisations are in terms of the left part of the mod-
ule category. We also wish to have characterisations in terms of the
remaining part of the module category. For this purpose, we define
two new full subcategories of indA: we let L0 (or R0) denote the full
subcategory of indA consisting of the predecessors of projective mod-
ules (or the successors of injective modules, respectively). As we shall
see, the class R0 is almost equal to the complement of LA in indA, in
the sense that the intersection of R0 and LA consists of only finitely
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many indecomposable modules. We describe the indecomposable Ext-
projective modules in the class R0, and denote by U their direct sum.
We are now able to state our second main result.

theorem B. Let A be an artin algebra. The following conditions are
equivalent:

(a) A is left supported.
(b) addR0 is covariantly finite.
(c) addR0 = GenU .
(d) U is a tilting module.
(e) R0 = Supp(U,−).
(f) There exists an almost directed module R such that R0 = Supp(R,−).
(g) There exists a module R such that HomA(R, τAR) = 0 and R0 =

Supp(R,−).
(h) addR0 = Ker Ext1

A(U,−).
(i) Ker HomA(U,−) = add(LA \ E1).

Clearly, the dual statements for right supported algebras hold as
well. For the sake of brevity, we refrain from stating them, leaving
the primal-dual translation to the reader. The paper is organised as
follows. After a very brief preliminary section 1, devoted to fixing the
notation and recalling some definitions, we study in section 2 those
subcategories which are supports of Hom functors. In section 3, we
recall known results on the Ext-injective modules in the left part. Sec-
tion 4 is devoted to the proof of our first theorem (A). In section 5, we
introduce the classes L0 and R0, study some of their properties, then
prove our second theorem (B). Finally, in section 6, we characterise
classes of algebras defined by finiteness or cofiniteness properties of the
classes L0 and R0.

1. Preliminaries.

1.1. Notation. Throughout this paper, all our algebras are basic and
connected artin algebras. For an algebra A, we denote by modA its cat-
egory of finitely generated right modules and by indA a full subcategory
of modA consisting of one representative from each isomorphism class
of indecomposable modules. Whenever we say that a given A-module
is indecomposable, we always mean implicitly that it belongs to indA.
Throughout this paper all modules considered belong to modA, that
is, are finitely generated, unless otherwise specified. Also, all subcate-
gories of modA are full, and so are identified with their object classes.
We sometimes consider an algebra A as a category, in which the object
class A0 is a complete set {e1, · · · , en} of primitive orthogonal idempo-
tents of A, and the group of morphisms from ei to ej is eiAej.
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We say that a subcategory C of indA is finite if it has only finitely
many objects, and that it is cofinite if Cc = indA \ C is finite. We
sometimes write M ∈ C to express that M is an object in C. Fur-
ther, we denote by addC the subcategory of modA having as objects
the finite direct sums of objects in C and, if M is a module, we ab-
breviate add{M} as addM. We denote the projective (or the injec-
tive) dimension of a module M as pd M (or idM , respectively). The
global dimension of A is denoted by gl.dim. A. For a module M, the
support Supp(M,−) (or Supp(−, M)) of the functor HomA(M,−) (or
HomA(−, M)) is the subcategory of indA consisting of all modules X
such that HomA(M, X) �= 0 (or HomA(X, M) �= 0, respectively). We
denote by GenM (or CogenM) the subcategory of modA having as
objects all modules generated (or cogenerated, respectively) by M.

For an algebra A, we denote by Γ(modA) its Auslander-Reiten quiver,
and by τA = D Tr, τ−1

A = Tr D its Auslander-Reiten translations. For
further definitions and facts needed on modA or Γ(modA), we refer the
reader to [9], [20], [22]. For tilting theory, we refer to [1], [20] and for
quasi-tilted algebras to [15].

1.2. Paths. Let A be an artin algebra. Given M, N ∈ indA we write
M � N in case there exists a path

(∗) M = X0
f1−→ X1

f2−→ · · · −→ Xt−1
ft−→ Xt = N

(t ≥ 1) from M to N in indA, that is, the fi are non-zero morphisms
and the Xi lie in indA. In this case, we say that M is a predecessor
of N and N is a successor of M . A path from M to M involving at
least one non-isomorphism is a cycle. An indecomposable module M
lying on no cycle in indA is a directed module. When each fi in (∗)
is irreducible, we say that (∗) is a path of irreducible morphisms, or a
path in Γ(modA). A path (∗) of irreducible morphisms is sectional if
τAXi+1 �= Xi−1 for all i with 0 < i < t. A refinement of (∗) is a path
in indA

M = X ′
0

f ′
1−→ X ′

1

f ′
2−→ · · · −→ X ′

t−1

f ′
t−→ X ′

t = N

such that there exists an order-preserving injection σ : {1, · · · , t −
1} −→ {1, · · · , s − 1} such that Xi = X ′

σ(i) for all i with 1 ≤ i < t. A

subcategory C of modA is convex if, for any path (∗) in indA with M ,
N ∈ C, all the Xi belong to C.

Finally, C is said to be closed under successors if, whenever M � N
is a path in indA with M lying in C, then N lies in C as well. Clearly,
such a subcategory is then the torsion class of a split torsion pair. We
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define dually subcategories closed under predecessors which are then
the torsion-free classes of split torsion pairs.

2. Supports of functors.

2.1. Let A be an artin algebra. We are interested in modules M
having the property that HomA(M, τAM) = 0. These modules were
studied in [11]. In particular, it is shown there that HomA(M, τAM) =
0 if and only if Ext1

A(M, M ′) = 0 for all quotient modules M ′ of M , or
if and only if GenM is closed under extensions (see [11] (5.5) (5.9)).

We recall that, if C is a subcategory of modA, closed under exten-
sions, then a module M ∈ C is called Ext-projective (or Ext-injective)
in C if Ext1

A(M,−)|C = 0 (or Ext1
A(−, M)|C = 0, respectively), see [11].

It is shown in [11] (3.3) (3.7) that if C is a torsion (or a torsion-free)
class then an indecomposable module M is Ext-projective in C if and
only if τAM is torsion-free (M is Ext-injective in C if and only if τ−1

A M
is torsion, respectively).

Proposition. Let M be an A−module such that HomA(M, τAM) =
0. Then Supp(M,−) is closed under successors if and only if add
Supp(M,−) = GenM . Moreover, if this is the case, then add Supp(M,−)
is a torsion class, and M is Ext-projective in add Supp(M,−).

Proof. Assume first that Supp(M,−) is closed under successors. It is
clear that GenM ⊆ add Supp(M,−). In order to prove the reverse
inclusion, let X ∈ Supp(M,−) and let {f1, · · · , fd} be a set of gener-
ators of the (non-zero) right EndM−module HomA(M, X). We claim
that the morphism f = [f1, · · · , fd] : Md −→ X is surjective.

Assume that this is not the case. Then V = Cokerf �= 0. Also,
clearly, U = Imf �= 0.

U

M d f g
X V 0

0 0

Since HomA(M, τAM) = 0 and U is a quotient of M , then Ext1
A(M, U)

= 0, as we observed at the beginning of this section. Thus we have a
short exact sequence

0 −→ HomA(M, U) −→ HomA(M, X) −→ HomA(M, V ) −→ 0.

Since Supp(M,−) is closed under successors, then V ∈ add Supp(M,−),
and so there exists a non-zero morphism h : M −→ V . The exactness
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of the above sequence yields a morphism h′ : M −→ X such that
h = gh′. By definition of f , there exist u1, · · · , ud ∈ EndM such that

h′ =
d∑

i=1

fiui = [f1, · · · , fd]


u1

.

.

.
ud

 = fu , where u =


u1

.

.

.
ud

 .

But this implies that h = gh′ = gfu = 0, a contradiction which
establishes our claim (and hence the necessity).

Conversely, assume that add Supp(M,−) = GenM and let

X = X0
f1−→ X1

f2−→ · · · −→ Xt−1
ft−→ Xt = Y be a path in indA, with

X ∈ Supp(M,−) . We prove by induction on j, with 0 ≤ j ≤ t, that
Xj ∈ Supp(M,−) . So let i < t and assume that Xi ∈ Supp(M,−).
Since Xi ∈ GenM , there exist di > 0 and an epimorphism pi : Mdi −→
Xi . Therefore the composition fi+1pi : Mdi −→ Xi+1 is non-zero and
so Xi+1 ∈ Supp(M,−). Thus Y ∈ Supp(M,−). This completes the
proof of the sufficiency.

To show that add Supp(M,−) = GenM is a torsion class it suffices
to observe that it is closed under quotients and extensions, since it is
closed under successors.

There remains to prove that M is Ext-projective in add Supp(M,−).
Assume that this is not the case. Then there is an indecomposable sum-
mand Mi of M such that τAMi ∈ Supp(M,−). Thus HomA(M, τAMi) �=
0, and this contradicts the hypothesis HomA(M, τAM) = 0. �

2.2. An A−module M (not necessarily indecomposable) is called
almost directed if there exists no path Mi � τAMj with Mi, Mj inde-
composable summands of M . The reason for this terminology comes
from the directing modules of [14]. Clearly, if M is directing in the
sense of [14] then it is almost directed, but the converse is not true.
Also, if M is directed, then HomA(M, τAM) = 0. The dual notion is
that of an almost codirected module.

We recall from [11] (4.4) that, if C is a torsion class in modA of
the form GenX, then C has only finitely many isomorphism classes of
indecomposable Ext-projective modules.

Lemma. Let C be an additive (full) subcategory of modA, closed
under successors. Let M be the (not necessarily finite) sum of all the
modules in indA which are Ext-projective in C. Then the following
conditions are equivalent:
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(a) The module M is finitely generated and C = Supp(M,−).
(b) There exists an almost directed (finitely generated) module R such

that C = Supp(R,−).
(c) There exists a (finitely generated) module R such that HomA(R,

τAR) = 0 and C = Supp(R,−).

Proof. (a) implies (b). Assume (a). It suffices to show that M is
almost directed. Let Mi, Mj be two indecomposable summands of M
such that there exists a path Mi � τAMj. Since C is closed under
successors and Mi ∈ C, we have τAMj ∈ C. On the other hand, Mj is
Ext-projective in C, and therefore τAMj /∈ C, a contradiction.

(b) implies (c). This is trivial.
(c) implies (a). Let R satisfy condition (c). Then, by Proposition

(2.1), we know that add C = GenR and R is Ext-projective in addC.
Hence, if we apply the above remarks with X = R, we obtain that
M is finitely generated. Now, since R ∈ addM , then Supp(R,−) ⊆
Supp(M,−). Conversely, let X ∈ Supp(M,−). Since M ∈ C, and C is
closed under successors, we have X ∈ C = Supp(R,−). �

3. Ext-injectives in the left part.

3.1. Let A be an artin algebra. Following [15], we define the left part
of modA to be the (full) subcategory of indA defined by

LA = {M ∈ indA | pd L ≤ 1 for any predecessor L of M}
Clearly, LA is closed under predecessors. We refer to the survey [5] for
characterisations of this class. The dual concept of LA is the right part
RA of modA.

While the Ext-projectives in addLA are simply the projective mod-
ules lying in addLA, the Ext-injectives are more interesting.

Lemma [7] (3.2), [4] (3.1).
(a) The following conditions are equivalent for M ∈ LA :

(i) There exist an indecomposable injective module I and a path I �
M .

(ii) There exist an indecomposable injective module I and a path of
irreducible morphisms I � M .

(iii) There exist an indecomposable injective module I and a sectional
path I � M .

(iv) There exists an indecomposable injective module I such that
HomA(I, M) �= 0.

(b) The following conditions are equivalent for M ∈ LA which does not
satisfy the conditions (a):
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(i) There exist an indecomposable projective module P /∈ LA and a
path P � τ−1

A M .
(ii) There exist an indecomposable projective module P /∈ LA and a

path of irreducible morphisms P � τ−1
A M .

(iii) There exist an indecomposable projective module P /∈ LA and a
sectional path P � τ−1

A M .
(iv) There exists an indecomposable projective module P /∈ LA such

that HomA(P, τ−1
A M) �= 0.

Further, denoting by E1 (or E2) the set of all M ∈ LA satisfying condi-
tions (a) (or (b), respectively), then X ∈ LA is Ext-injective in addLA

if and only if X ∈ E1 ∪ E2. �

Throughout this paper, we denote by E1 (or E2, or E) the direct
sum of all A−modules lying in E1 (or E2, or E = E1 ∪ E2, respectively).

3.2. The following lemma will also be useful.

Lemma [4] (3.4). Assume that M ∈ E and that there exists a path
M � N with N ∈ LA. Then this path can be refined to a sectional
path and N ∈ E. In particular, E is convex in indA. �
3.3. The endomorphism algebra Aλ of the direct sum of all projective
A−modules lying in the left part LA is called the left support of A (see
[4], [23]). Since LA is closed under predecessors, then Aλ is isomorphic
to a full convex subcategory of A, closed under successors, and any
module in LA has a natural Aλ−module structure. It is shown in [4]
(2.3), [23] (3.1) that Aλ is a product of connected quasi-tilted algebras
and that LA ⊆ LAλ

⊆ indA. From this it follows easily that E is
a convex partial tilting Aλ−module (see [4] (3.3)). Moreover, we can
prove the following result.

Lemma. The module E is a partial cotilting Aλ−module.

Proof. It suffices to show that idAλ
E ≤ 1. Let E ′ ∈ E . Then τ−1

A E ′ /∈
LA. Since τ−1

Aλ
E ′ is an epimorphic image of τ−1

A E ′ (see[9], p.187), then

τ−1
Aλ

E ′ /∈ LA. But Aλ ∈ addLA. Hence HomA(τ−1
Aλ

E ′, Aλ) = 0 and
idAλ

E ≤ 1. �

4. Left supported algebras.

4.1. Let C ⊆ D be additive subcategories of modA. We recall from
[10], [11] that C is called contravariantly finite in D if, for every D ∈ D,
there exists a morphism fD : CD −→ D with CD ∈ C such that, if f :
C ′ −→ D is a morphism with C ′ ∈ C, then there exists g : C ′ −→ CD
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such that f = fDg. Such a morphism fD is called a right approximation
of D in C. The dual notion is that of a covariantly finite subcategory.

An algebra A is called left supported (see [4]) provided the subcate-
gory addLA is contravariantly finite in modA. The following theorem
characterises left supported algebras. Here, and in the sequel, we de-
note by F the sum of the projective A−modules in indA \ LA. It is
shown in [4] (3.3) that T = E ⊕ F is a partial tilting module.

Theorem [4] (4.2) (5.1). Let A be an artin algebra. The following
conditions are equivalent:

(a) A is left supported.
(b) addLA = CogenE.
(c) T = E ⊕ F is a tilting module.
(d) Each connected component B of the left support Aλ is tilted, and

E ∩ modB is a complete slice in modB. �
If A is left supported, then the module T is called the canonical

tilting module.

4.2. We recall that, by (3.3), Aλ is a quasi-tilted algebra. We also
have the following consequence of (4.1).

Corollary. If A is left supported, then Aλ is a tilted algebra. �
However, the converse is not true, as the following (counter)example

shows. Left supported (quasi)tilted algebras were characterised in
[25](3.8).

example. Let k be a field and A be the k−algebra given by the
quiver

1 2 3

α

β

γ

bound by the relation αγ = 0.{
2 ,

2
1

,
3

2 2
1

}
is a complete slice in modA. Hence A is tilted and

A � Aλ. But E = ∅, since LA does not contain any injective modules.
Therefore A is not left supported.

4.3. Now we show that all counterexamples to the converse of Corol-
lary (4.2) must have E = ∅, provided Aλ is connected. The next propo-
sition generalises [15] (II,3.3) and its proof is inspired from the proof
of the latter.
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Proposition. Let B be a connected component of Aλ such that E ∩
modB �= ∅. Then E ∩ modB is a complete slice in modB.

Proof. For simplicity, we assume that Aλ is connected and E �= ∅.
We then show that E is a convex tilting Aλ−module. This is equivalent
to proving that E is a complete slice in modAλ, see [8]. It is easy to
see that the argument carries on to the general case.

We know that E is a convex partial tilting Aλ−module. By counting
the number of modules in E , it suffices to prove that E is cotilting. By
(3.3), E is a partial cotilting Aλ−module. Consequently, there exists
a short exact sequence in mod Aλ

(∗) 0 −→ Ed −→ X −→ DAλ −→ 0
such that E ⊕ X is a cotilting Aλ−module (see [12] or [1] (1.7)). Let
Y be an indecomposable summand of X. It follows from the exactness
of (∗) that Y is Aλ−injective or HomAλ

(E, Y ) �= 0 (as observed in [20],
p. 167).

Assume first that HomAλ
(E, Y ) �= 0. We claim that in this case,

Y ∈ E . To prove it, it suffices to show that Y ∈ LA, by (3.2). Now,
suppose Y /∈ LA and let f : E ′ −→ Y be a non-zero morphism,
with E ′ ∈ E . Then f factors through the Aλ−minimal left almost
split morphism g : E ′ −→ M . Let M ′ be an indecomposable sum-
mand of M such that HomA(M ′, Y ) �= 0. Since f is minimal, the
morphism πg : E ′ −→ M ′ is non-zero, where π is a projection of M
onto M ′. If M ′ ∈ LA then M ′ ∈ E , by (3.2). Hence, by factorising
through minimal left almost split morphisms several times and using
that EndAλ

E is a triangular algebra (by (3.2)) we can (and do) as-
sume that M ′ /∈ LA. In particular, M ′ is not Aλ-projective. Hence
HomAλ

(τAλ
M ′, E ′) �= 0 and thus τAλ

M ′ ∈ LA. If τAλ
M ′ /∈ E then

τ−1
A τAλ

M ′ ∈ LA ⊆ modAλ, whence τ−1
A τAλ

M ′ � τ−1
Aλ

τAλ
M ′ � M ′.

This contradicts the hypothesis that M ′ /∈ LA. Therefore τAλ
M ′ ∈ E

and f factors through M ′ ∈ τ−1
Aλ

E . Now, since idAλ
E ≤ 1, we have:

0 �= HomAλ
(τ−1

Aλ
E, Y ) � D Ext1

Aλ
(Y, E), contradicting the fact that

E ⊕ X is cotilting. Therefore Y ∈ LA and our claim is established.
We have shown that the Bongartz sequence (∗) can be written in the

form 0 −→ E0 −→ E1⊕J −→ DAλ −→ 0, with add(E0⊕E1) = addE,
and J an injective Aλ−module such that HomAλ

(E, J) = 0. In order
to complete the proof that E is cotilting, it suffices to show that J = 0.
Assume that this is not the case. Since Aλ is a connected algebra and
E ⊕ J is cotilting, then the algebra EndAλ

(E ⊕ J) is also connected.
Therefore there exists an indecomposable module J ′ which is a direct
summand of J such that HomAλ

(J ′, E) �= 0 or HomAλ
(E, J ′) �= 0.

Since HomAλ
(E, J) = 0, we also have HomAλ

(E, J ′) = 0. Therefore
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HomAλ
(J ′, E) �= 0 and, in particular, J ′ ∈ LA. Since, by hypothesis,

J ′ /∈ E , then τ−1
A J ′ ∈ LA. But then τ−1

A J ′ � τ−1
Aλ

J ′ = 0, a contradiction
which completes the proof. �

4.4. Corollary. If Aλ is connected and E �= ∅ then the cardinality
|E| of E coincides with the rank of the Grothendieck group K0(Aλ) of
Aλ. �

4.5. For any module M , we let PredM denote the subcategory of indA
having as objects all the predecessors of indecomposable summands of
M .

Using Proposition (4.3) we can now give the following characterisa-
tions of left supported algebras.

Theorem. The following conditions are equivalent for the artin alge-
bra A:

(a) A is left supported.
(b) LA = Supp(−, E).
(c) LA = PredE.
(d) There exists an almost codirected A−module L such that LA =

Supp(−, L).
(e) There exists an A−module L such that HomA(τ−1

A L, L) = 0 and
LA = Supp(−, L).

(f) E is a sincere Aλ−module.
(g) E ∩ modB �= ∅ for each connected component B of Aλ.
(h) E is a cotilting Aλ−module.
(i) E is a tilting Aλ−module.

Proof. (a) implies (b) implies (c) follows from (4.1) and the fact that
CogenE ⊆ add Supp(−, E) ⊆ add PredE ⊆ addLA.

The equivalence of (b), (d), (e) is just the dual of (2.2).
(b) implies (f). This follows from the fact that every projective

Aλ−module lies in addLA.
Let now B be a connected component of Aλ and P be an indecom-

posable projective B−module. Since P ∈ LA, if (c) holds there exist
E ′ ∈ E and a non-zero path P � E ′. On the other hand, if (f) holds
there exist E ′ ∈ E and a nonzero morphism P −→ E ′. In either case
we obtain that E ′ ∈ modB, and so (g) holds. Thus (c) implies (g), and
also (f) implies (g).

(g) implies (h). This was established in Proposition (4.3).
(h) implies (i). This follows by counting the elements of the set E ,

since E is a partial tilting Aλ−module.
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(i) implies (a). If (i) holds, then T = E ⊕ F is a tilting A−module
(see [4] (3.3)). (a) follows from this and (4.1). �

5. the classes L0 and R0.

5.1. Let M be an A-module. Now we consider the subcategory SuccM =
D(Pred DM) of indA consisting of the successors of M . We define two
(full) subcategories of indA as follows:

L0 = {M ∈ indA | there exists a projective P in indA and a path
M � P}

R0 = {M ∈ indA | there exists a injective I in indA and a path
I � M}

Then L0 = PredA, and R0 = Succ DA.
Thus, the class L0 contains all the projective modules of indA and

is closed under predecessors. In particular, addL0 is the torsion-free
class of a split torsion pair. Clearly, L0 coincides with the class of all
projective modules in indA if and only if A is hereditary.

Dually, the class R0 contains all the indecomposable injectives and
is closed under successors. In particular, addR0 is the torsion class of
a split torsion pair.

Our first lemma gives the relationship between these classes and the
classes LA and RA. We only state the results for R0, and leave to the
reader the formulation of the corresponding ones for L0.

Lemma. R0 = E1 ∪ (LA)c.

Proof. In order to prove that (LA)c ⊆ R0, let M ∈ (LA)c. Then
there exists a predecessor L of M such that pd L > 1. By [20] p. 74,
there exists an injective I ∈ indA such that HomA(I, τAL) �= 0. The
path I −→ τAL −→ ∗ −→ L � M yields M ∈ R0.

On the other hand, it follows from the very definition of E1 (see (3.1))
that E1 = LA ∩R0. Therefore
R0 = R0 ∩ (LA ∪ (LA)c) = (R0 ∩ LA) ∪ (R0 ∩ (LA)c) = E1 ∪ (LA)c. �

5.2. Corollary. Let A be a quasi-tilted algebra which is not tilted.
Then R0 = (LA)c.

Proof. Since A is not tilted, then by [15] (II.3.3), LA contains no
injective. Therefore E1 = ∅. �

5.3. Recall from (3.1) and (4.1) that E1 (or E2) denotes the direct
sum of all modules in E1 (or E2, respectively), and F denotes the direct
sum of all projectives in indA \ LA.
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From now on, we denote by U the direct sum U = E1 ⊕ τ−1
A E2 ⊕ F

(we recall that no summand of E2 is injective).

Lemma. Let M ∈ indA. Then:

(a) M is Ext-projective in addR0 if and only if M ∈ addU .
(b) M is Ext-injective in addR0 if and only if M is injective.

Proof. (a) Necessity. Let M be Ext-projective in addR0. If M ∈ LA,
then M ∈ E1 (so M ∈ addU). If M /∈ LA and is projective, then
M ∈ addF (so M ∈ addU). If M /∈ LA and is not projective, then
τAM �= 0. Since M is Ext-projective in addR0 then τAM /∈ R0. Since
(LA)c ⊆ R0, we have τAM ∈ LA. Then τAM is Ext-injective in addLA,
that is, τAM ∈ E . If τAM ∈ E1, then τAM ∈ R0, a contradiction.
Therefore τAM ∈ E2, and so M ∈ τ−1

A (E2) ∈ addU .
Sufficiency. Assume M ∈ addF . Since M is projective and lies in

R0, then it is Ext-projective in addR0.
Assume M ∈ E1. If τAM ∈ R0, there exists an indecomposable

injective I and a path I � τAM , which we may assume to con-
sist of irreducible morphisms, by (3.1). But then the composed path
I � τAM −→ ∗ −→ M consists of irreducible morphisms and is not
sectional, contradicting [3] (1.6). Therefore τAM /∈ R0 and so M is
Ext-projective in addR0.

Finally, assume M ∈ τ−1
A (E2). Then τAM ∈ E2. By (5.1), τAM /∈ R0

and so, again, M is Ext-projective in addR0.
(b) Assume that M is Ext-injective in addR0 and let j : M −→ I

be an injective envelope, so that we have a short exact sequence

0 −→ M
j−→ I −→ Cokerj −→ 0.

Since R0 is closed under successors, both I and Cokerj belong to
addR0. Hence Ext1

A(Cokerj, M) = 0, the sequence splits, and so M is
injective. The reverse implication is trivial. �

5.4. Lemma. (a) U is a partial tilting module.
(b) U is a tilting module if and only if T = E1 ⊕ E2 ⊕ F is a tilting

module, if and only if the number of (isomorphism classes of) inde-
composable summands of E1 ⊕ τ−1

A E2 equals the number of projectives
lying in LA.

Proof. (a) Since U is Ext-projective in addR0, then Ext1
A(U, U) = 0.

We thus have to show that pdU ≤ 1. Clearly, pd(E ⊕ F ) ≤ 1. Let
M ∈ τ−1

A E2. Then τAM ∈ E2. Now, since τAM ∈ LA, the existence of
a morphism from an indecomposable injective I to τAM would imply
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I ∈ LA, and then we would deduce that τAM ∈ E1, a contradiction.
Thus HomA(DA, τAM) = 0, that is, pd M ≤ 1.

(b) We recall that, by [4] (3.3), T is a partial tilting module. Since
no summand of E2 is injective, we have |indA∩addU | = |indA∩addT |.
This establishes the statement. �

5.5. We denote by (T (L),F(L)) the torsion pair determined by a
tilting module L.

Lemma. Assume that U = E1 ⊕ τ−1
A E2 ⊕ F is a tilting module. Then

T (U) = addR0 and F(U) = add(indA \ R0).

Proof. Let M be an indecomposable module in T (U). Then HomA(U, M)
�= 0. Since U ∈ addR0 which is closed under successors, then M ∈ R0.
Assume conversely that M ∈ R0. If M /∈ T (U), then HomA(M, τAU) �
D Ext1

A(U, M) �= 0. Since τAU ∈ addLA which is closed under prede-
cessors, then M ∈ LA. Therefore M ∈ R0 ∩ LA = E1 and hence there
exist an injective I in indA and a path I � M . Since Ext1

A(E1, M) = 0
(because E1 is a partial tilting module), then the condition Ext1A(U, M)
�= 0 implies the existence of E0 ∈ E2 such that HomA(M, E0) �
D Ext1

A(τ−1
A E0, M) �= 0. Hence our path can be extended to a path

I � M −→ E0. But this yields E0 ∈ E1, a contradiction. This shows
the first equality. The second follows by maximality (because R0 is
closed under successors). �

5.6. We are now able to prove our second main theorem. Observe
that, since R0 is closed under successors, then it is trivially contravari-
antly finite. Here and in the sequel, for a functor F : modA −→ modA,
we denote by KerF the full subcategory having as objects the A-
modules M such that F (M) = 0.

theorem. Let A be an artin algebra. The following conditions are
equivalent:

(a) A is left supported.
(b) addR0 is covariantly finite.
(c) addR0 = GenU .
(d) U is a tilting module.
(e) R0 = Supp(U,−).
(f) There exists an almost directed module R such that R0 = Supp(R,−).
(g) There exists a module R such that HomA(R, τAR) = 0 and R0 =

Supp(R,−).
(h) addR0 = Ker Ext1

A(U,−).
(i) Ker HomA(U,−) = add(LA \ E1).
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Proof. (a) is equivalent to (d). By (4.1), A is left supported if and only
if T = E ⊕ F is a tilting module. By (5.4) T is tilting if and only if so
is U .

(d) implies (c), (h), (i). This follows from (5.5) (Note that indA \
R0 = LA \ E1).

(h) implies (a). Since we always have addR0 ⊆ Ker Ext1
A(U,−)

(because U is Ext-projective in addR0), (h) says that if X ∈ indA
is such that HomA(X, τAU) � D Ext1

A(U, X) = 0, then X ∈ R0, or,
equivalently, if X /∈ R0, then HomA(X, τAU) �= 0. Now assume (h)
holds and let X ∈ LA. If X /∈ E1, then X ∈ LA \ E1 = (R0)

c. Hence
HomA(X, τAE1 ⊕ E2) = HomA(X, τAU) �= 0, and so X ∈ PredE. If
X ∈ E1 then we also have X ∈ PredE. Thus LA ⊆ PredE, and so
LA = PredE. Now (a) follows from Theorem (4.5).

(i) implies (c). Assume (i). Since U is a partial tilting module,
it induces the torsion class GenU . We claim that the torsion pair
(GenU , Ker HomA(U,−)) is split. To prove this, it suffices to show that
LA \ E1 is closed under predecessors. Let X � Y , with Y ∈ LA \ E1.
Since Y ∈ LA, then X ∈ LA. Suppose X ∈ E1. Then there exist
an indecomposable injective A-module I and a path I � X. But
then the composed path I � X � Y yields Y ∈ E1, a contradiction.
Hence X ∈ LA \ E1, as required. The pair being split, we deduce that
GenU = add(indA \ (LA \ E1)) = addR0 (by (5.1)).

(c) implies (d). Since addR0 is a torsion class which contains the
injectives, then addR0 = GenU implies that addR0 = GenV for some
tilting module V (see [1] (3.2)). Since addV = add{M | M is Ext-
projective in addR0} = addU and U is a partial tilting module, then
we obtain that U is a tilting module by counting the indecomposable
summands of addU .

(b) implies (c). Since addR0 is covariantly finite and is the torsion
class of a torsion pair, then, by [24], there exists an Ext-projective V
in addR0 such that addR0 = GenV . Thus V ∈ addU , and so

addR0 = GenV ⊆ GenU ⊆ addR0

implying the result.
(c) implies (b). This follows directly from [10] (4.5).
(c) implies (e). Assume (c). Then (e) follows from

addR0 = GenU ⊆ add Supp(U,−) ⊆ addR0.

(e) implies (c). If (e) holds, then Supp(U,−) is closed under succes-
sors. So, by (2.1), add Supp(U,−) = GenU . Therefore addR0 = GenU .

The equivalence of (e), (f), (g) follows from (2.2). �



16 ASSEM, CAPPA, PLATZECK, AND TREPODE

5.7. The following technical lemma is a consequence of [10] (3.13).

Lemma. Let B, C be (full) subcategories of indA such that the sym-
metric difference B
C is finite and add(B ∪ C) has left almost split
morphisms. Then addB is covariantly finite in modA if and only if so
is addC.

Proof. Let B, C be as above. By symmetry, we assume without loss of
generality that addB is covariantly finite in modA, and show that then
so is addC. From [10] (3.13), we deduce that addC is covariantly finite
in add(B∪C). Since addB is covariantly finite in modA by hypothesis,
and add(C \ B) is covariantly finite in modA (because C \ B is a finite
set), then add(B ∪C) = add(B ∪ (C \ B)) is covariantly finite in modA.
Then, by transitivity, addC is covariantly finite in modA. �

The dual of the preceding lemma is also valid. We leave the primal-
dual translation to the reader.

5.8. With the aid of the preceding lemma, we obtain the following
corollary of (4.5) and (5.6).

Proposition. The class addLA is contravariantly finite in modA if
and only if add((LA)c) is covariantly finite in modA.

Proof. Indeed, addLA is contravariantly finite in modA if and only if
A is left supported, if and only if addR0 is covariantly finite in modA.
Since, by (5.1), R0 = (LA)c ∪ E1, then (LA)c
R0 = R0 \ (LA)c = E1

is a finite set, and add((LA)c ∪ R0) = addR0 has left almost split
morphisms, since it is closed under successors. Then the result follows
from (5.7). �
5.9. Let C be a subcategory of indA. It follows from [10] (4.1) (4.2)
that if C is finite or cofinite, then addC is contravariantly and covari-
antly finite in modA. From this, and our preceding proposition, it
may be asked whether addC is covariantly finite in modA if and only
if add(Cc) is contravariantly finite in modA. This is not true though,
as the following example shows.

Example. Let A be the Kronecker algebra over an algebraically
closed field k. This algebra can be described as the path algebra of the
quiver

1 2

Let Mµ be the indecomposable representation
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1

µ

k k

Consider the full subcatefory C of indA having as objects all Mµ in
indA, with µ ∈ k. Then, since length(Mµ) = 2, it follows from [10]
(4.1) that add(indA \ C) is functorially finite in modA. However C is
neither covariantly nor contravariantly finite in modA. For instance,
the injective hull I2 of Mµ (the same module for every µ) does not
admit a left approximation C −→ I2 in add C, for HomA(Mµ, Mν) = 0
if µ �= ν.

5.10. We now show that, if A is left supported, then the tilting module
U has a property also enjoyed by the canonical tilting module T (see [4]
(5.3)). Recall from [6] (4.3) that the torsion classes having a given par-
tial tilting module M as Ext-projective form a complete lattice under
inclusion, having as largest element the class T1(M) = {N ∈ modA |
Ext1

A(M, N) = 0} and furthermore, T1(M) = Gen(M ⊕ X), where X
is the Bongartz complement of M (see [1] (1.7)).

Corollary. Let A be left supported. Then F is the Bongartz comple-
ment of E1 ⊕ τ−1

A E2.

Proof. Let X denote the Bongartz complement of E1 ⊕ τ−1
A E2. Since

Ext1
A(E1 ⊕ τ−1

A E2 ⊕ F,−) = Ext1
A(E1 ⊕ τ−1

A E2,−), we deduce that
Gen(E1 ⊕ τ−1

A E2 ⊕F ) = T (U) = Gen(E1 ⊕ τ−1
A E2 ⊕X). Since addU =

{M | M is Ext-projective in T (U)} = add(E1 ⊕ τ−1
A E2 ⊕ X), looking

at the number of isomorphism classes of indecomposable summands
of U and of E1 ⊕ τ−1

A E2 ⊕ X, we conclude that E1 ⊕ τ−1
A E2 ⊕ X =

E1 ⊕ τ−1
A E2 ⊕ F . �

5.11. Example. Let k be a field and A be the finite dimensional
k−algebra given by the quiver

α

β

γδ

ε

1 2

3

4 5

bound by the relations αγ = 0, γδ = 0. Then the beginning of the
postprojective component of Γ(modA) has the following shape:
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4
  5 5
4 4 4
2

   5 
4  4
2

      5
3  4  4
  2

4
2

  5
4  4

  5 5
4 4 4
2

4

3  4
  2

3
2

2

3
2
1

2
1

1

................................. .................................

................................. .................................

where modules are represented by their composition factors and we
identify along the horizontal dotted lines. The shaded area represents

LA. Clearly, here E1 =
{ 3

2
1

,
3
2

,
3 4
2

}
and E2 =

{
4
2

}
. Indeed,

F =
5

4 4
2

. The module U =
3
2
1

⊕ 3
2

⊕ 3 4
2

⊕
5

3 4 4
2

⊕
5

4 4
2

is

clearly a tilting module. Thus A is left supported.

6. Algebras determined by the classes L0 and R0.

6.1. Many classes of algebras have been characterised by finiteness
or cofiniteness properties of the classes LA and RA; see, for instance,
the survey [5]. It is natural to seek similar characterisations using the
classes L0 and R0. Our first proposition is a restatement of many
known results. For the definitions and properties of left glued, right
glued and laura algebras, we refer to [5]. We denote by µ the Gabriel-
Roiter measure of a module [21].

Proposition. Let A be an artin algebra.

(a) A is left (or right) glued if and only if the class L0 (or R0, respec-
tively) is finite.

(b) A is concealed if and only if the class L0 ∪R0 is finite.
(c) The following conditions are equivalent:

(i) A is a laura algebra.
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(ii) L0 ∩R0 is finite.
(iii) The set {µ(M) | M ∈ L0 ∩R0} is finite.
(iv) There exists an m such that any path in L0 ∩ R0 contains at

most m hooks.

Proof. (a). By [3] (2.2), the algebra A is left glued if and only if RA

is cofinite, thus if and only if (RA)c is finite. By the dual of (5.1), this
amounts to saying that L0 is finite. The proof is similar for right glued
algebras.

(b) By [2] (3.4), A is concealed if and only if it is both left and right
glued, thus if and only if both L0 and R0 are finite.

(c) The equivalence of (i) and (ii) follows from [3] (2.4) (or directly
from the definition and (5.1)). The equivalence of (i) and (iii) follows
from [16], and the equivalence of (i) and (iv) from [17]. �

6.2. The following proposition is a reformulation of part of a result of
D. Smith [25], Theorem 2. For quasi-directed components, see [5, 25].

Proposition. Let A be an artin algebra, and Γ be a non-semiregular
connected component of Γ(modA). The following conditions are equiv-
alent:

(a) Γ is quasi-directed and convex.
(b) There exists an n0 such that any path in Γ ∩ L0 ∩R0 contains at

most n0 distinct modules.
(c) There exists an m0 such that any path in Γ∩L0 ∩R0 contains at

most m0 distinct hooks.

Furthermore, if AnnΓ is the annihilator of Γ and B = A/AnnΓ, then
B is a laura algebra and Γ is the unique non-semiregular and faithful
component of Γ(modB). �

6.3. The following is a restatement of [25] (1.4).

Lemma. Let A be an artin algebra, Γ be a non-semiregular component
of Γ(modA) having only finitely many τA−orbits, and X ∈ Γ be a
non-directed module. Then X ∈ L0 ∩R0. �

6.4. We now look at what happens when the classes L0 and R0 are
cofinite, that is, when LA and RA are finite.

Proposition. Let A be an artin algebra. The class R0 is cofinite if
and only if the left support Aλ is a product of connected tilted alge-
bras, each of which has an injective in its corresponding postprojective
component.
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Proof. Sufficiency. Assume that Aλ satisfies the stated condition.
Then, for each connected component B of Aλ there is a complete
slice in a postprojective component of Γ(modB), which is thus unique.
Then, clearly, LAλ

is finite. Hence LA ⊆ LAλ
is finite. But then

R0 = (LA)c ∪ E1 is cofinite.
Necessity. If R0 is cofinite then, by [10] (4.1), addR0 is covari-

antly finite. By (5.6), A is left supported. By (4.1), Aλ is a product
of connected tilted algebras. We may, without loss of generality, as-
sume that Aλ is connected. By [4] (5.4), the Auslander-Reiten quiver
Γ(modA) has a postprojective component containing at least one in-
jective module I. We may, without loss of generality, assume that I
is minimal with respect to the natural order in the component. Hence
I ∈ LA ⊆ LAλ

. Since I is injective as an A−module, it is also injective
as an Aλ−module. This completes the proof. Observe that the post-
projective component containing I is the unique connecting component
of Γ(modAλ). �

6.5. The dual notion of the left support algebra Aλ of an artin alge-
bra A is called its right support and is denoted by Aρ. The following
corollary is a direct consequence of (6.4) and its dual.

Corollary. Let A be an artin algebra. The following conditions are
equivalent:

(a) L0 ∩R0 is cofinite.
(b) LA ∪RA is finite.
(c) Aλ is a product of connected tilted algebras, each of which has

an injective in its corresponding postprojective component, and
Aρ is a product of connected tilted algebras, each of which has a
projective in its corresponding preinjective component. �

Example. The following is an example of an artin algebra satisfying
the conditions of the corollary. Let k be a field, and A be the radical-
square zero algebra given by the quiver:

1 2 3 4 5

6.6. It is an interesting problem to determine which algebras have the
property that the class L0 ∪R0 is cofinite. We solve here this problem
in the case of laura algebras.
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Proposition. Let A be a laura algebra. The following conditions are
equivalent:

(a) L0 ∪R0 is cofinite.
(b) Γ(modA) has a non-semiregular component.
(c) A is left and right supported but not concealed.

Proof. Assume first that A is a laura algebra which is not quasi-tilted.
Then all three statements clearly hold true (see [3] (4.6), [4] (4.4)).
We may thus assume that A is quasi-tilted. It was shown by Smith in
[25] (3.8) that a quasi-tilted algebra A is left supported if and only if
A is tilted having an injective module in a connecting component of
Γ(modA). Thus (b) and (c) are equivalent, and we just have to prove
that (a) holds if and only if A is tilted having both an injective and a
projective in a connecting component of Γ(modA).

Clearly, if the latter condition is satisfied, then L0 ∪R0 is cofinite.
Conversely, assume that A is tilted and Γ(modA) has a connecting

component Γ containing no injective. Let Σ be a complete slice in Γ.
We have to prove that (L0 ∪ R0)

c is not finite. Clearly, it suffices to
show that all proper successors in Σ of Γ lie in (L0 ∪R0)

c. Indeed, let
M ∈ SuccΣ ∩ Γ. Hence M ∈ τ−k

A Σ, for some k ≥ 0. Since there are no
injectives in Γ, τ−k

A Σ is also a complete slice. If M ∈ L0, there exists
a projective P ∈ indA and a path M � P −→ S, with S ∈ τ−k

A Σ (by
sincerity of τ−k

A Σ). Hence, using the convexity of τ−k
A Σ, we obtain that

M ∈ τ−k
A Σ. If M ∈ R0, there exist an injective I ∈ indA and a path

S −→ I � M , with S ∈ τ−k
A Σ, and so we reach the contradiction I ∈

τ−k
A Σ ⊆ Γ. The case when A is tilted and Γ(modA) has a connecting

component containing no projective module is dual. Finally, assume
that A is not tilted. By Happel’s theorem [13], A is of canonical type.
By [18] (3.4), Γ(modA) contains infinitely many stable tubes which lie
neither in L0 nor in R0. This completes the proof. �
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Álgebra, Contemp. Math. 376 (2005) 13-47, Amer. Math. Soc.



22 ASSEM, CAPPA, PLATZECK, AND TREPODE

6. I. Assem, O. Kerner, Constructing torsion pairs, J. Algebra 185 (1996) 19-41.
7. I. Assem, M. Lanzilotta, M. J. Redondo, Laura skew group algebras, to appear.
8. I. Assem, M. I. Platzeck, S. Trepode, On the representation dimension of tilted

and laura algebras, to appear in J. Algebra.
9. M. Auslander, I. Reiten, S. O. Smalø, Representation Theory of Artin Alge-

bras, Cambridge Studies in Advanced Mathematics 36, Cambridge Univ. Press,
(1995).

10. M. Auslander, S. O. Smalø, Preprojective modules over artin algebras, J. Alge-
bra 66 (1980) 61-122.

11. M. Auslander, S. O. Smalø, Almost split sequences in subcategories, J. Algebra
69 (1981) 426-454, ”Addendum” in J. Algebra 71 (1981) 592-594.

12. K. Bongartz, Tilted algebras, in Proc. ICRA III (Puebla 1980), Lecture Notes
in Math. 903 (1981) 26-38, Springer-Verlag.

13. D. Happel, A characterization of hereditary categories with tilting object, Invent.
Math 144 (2001) 381-398.

14. D. Happel, C. M. Ringel, Directing projective modules, Arch. Math 60 (1993),
237-246.

15. D. Happel, I. Reiten, S. O. Smalø, Tilting in Abelian Categories and Quasitilted
Algebras, Memoirs AMS 575 (1996).

16. M. Lanzilotta, The Gabriel-Roiter measure of a laura algebra, in preparation.
17. M. Lanzilotta, D. Smith, Some characterizations of laura algebras, in prepara-

tion.
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