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Introduction.

Let k£ be an algebraically closed field. By algebra is meant a finite dimensional associative
k-algebra with an identity. We are interested in studying the representation theory of A,
that is, the category mod A of finitely generated right A-modules. For this purpose, we
may assume that A is basic and connected. An algebra A is called triangular if its ordinary
quiver @) 4 has no oriented cycles. It is well-known that, if kQ) 4 denotes the path algebra of
Q 4, then there exists a surjective algebra morphism v : kQ 4 — A, whose kernel is denoted
by I, (see, for instance, [17]). For each pair (Q4,I,), one can define a fundamental group
m1(Qa,I,) (see [33] or (3.1) below) and A is called simply connected if it is triangular and,
for each pair (Qa,I,), we have m(Qa,1,) = 1 (see [9]). Simply connected algebras have
played an important role in representation theory. A triangular algebra is simply connected
if and only if it has no proper Galois covering. For any representation-finite algebra B,
the indecomposable B-modules can be lifted to indecomposable modules over a simply
connected algebra A (contained inside a certain Galois covering of the standard form of B,
see [17,18]). Thus, covering techniques reduce many problems of the study of representation-
finite algebras to the study of simply connected algebras, hence the importance of the
latter. Representation-finite simply connected algebras are considered by now to be well-
understood (see, for instance, [16,17]). While little is known about covering techniques
in the representation-infinite case, many classes of representation-infinite simply connected
algebras have been described (see, for instance, [5,9,37]). In particular, it was shown in
[26,37,7] that there is a close connection between the simple connectedness of an algebra A,
and the vanishing of the first Hochschild cohomology group H'(A) (of the algebra A with
coefficients in the bimodule 4A44).

The class of quasi-tilted algebras, introduced by Happel, Reiten and Smalg in [30] is
the generalisation of two well-known classes, namely, the class of tilted algebras of Happel
and Ringel [31], and the class of canonical algebras of Ringel [36]. Since their introduc-
tion, quasi-tilted algebras have been the study of many investigations (see, for instance,
[21,22,28,29,30,38]). In particular, it is shown in [38] that a tame quasi-tilted algebra is
either tilted, or a semiregular enlargement of a tame concealed algebra (see (1.3) below for
the definition). We conjecture that a quasi-tilted algebra A is simply connected if and only if
H! (A) = 0. This generalises the conjecture saying that a tilted algebra is simply connected
if and only if its type is a tree (see [5]). This conjecture is known to hold true in case A is
a tame tilted algebra [5], and the first purpose of the present paper is to show that it holds
true in case A is a tame quasi-tilted algebra. This also answers positively (for quasi-tilted
algebras) Skowroriski’s question in [37], Problem 1, whether it is true that a tame triangular
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algebra A is simply connected if and only if H'(A) = 0. Namely, we prove the following
theorem.

THEOREM (A). Let A be a tame quasi-tilted algebra. The following conditions are
equivalent:

(a) A is simply connected.

(b) H'(A4) = 0.

(c) If A is tilted, then its type is a tree. If A is a semiregular enlargement of a tame
concealed algebra, then A is not iterated tilted of type A.

One class of simply connected algebras has attracted much interest lately, this is the
class of strongly simply connected algebras of [37]. The representation theory of strongly
simply connected algebras seems to be relatively accessible, and some progress has been
made towards understanding it in the tame case. Characterisations and construction tech-
niques have been obtained in [37,3], and classes of strongly simply connected algebras have
been completely described (see, for instance, [1,2,4]). In particular, it was asked in [37],
Problem 2, whether it is true that an algebra is strongly simply connected if and only if it is
simply connected and strongly A-free, that is, contains no full convex subcategory which is
hereditary of type A. The answer is known to be positive if the algebra is iterated tilted of
euclidean type [2], derived tubular [1] or tame tilted [5]. Also, it was shown in these papers
that there is a close connection between the strong simple connectedness of an algebra, the
shapes of the orbit graphs of the directed components of its Auslander-Reiten quiver on one
hand, and the separation condition of [16] on the other hand. The second objective of this
paper is to answer positively the aforementioned question for tame quasi-tilted algebras,
and to relate the strong simple connectedness of a (non-tilted) tame quasi-tilted algebra A
to that of two particular full convex subcategories AT and A~ (see (1.3) for the definitions).

THEOREM (B). Let A be a tame quasi-tilted algebra which is not tilted. The following
conditions are equivalent:

(a) A is strongly simply connected.

(b) AT and A~ are strongly simply connected.

(c) A is strongly A-free.

(d) AT and A~ are strongly A-free.

(e) The orbit graph of each directed component of the Auslander-Reiten quiver of each
of AT and A~ is a tree.

(f) AT, (AT)°P A~ and (A™)°P satisfy the separation condition.

Note that the strong simple connectedness of a tame tilted algebra has been characterised
in [4,5], this justifies the assumption of the theorem.

As an application, we study the simple and strong simple connectedness of a natural gen-
eralisation of tame quasi-tilted algebras, namely the semiregular iterated tubular algebras,
which form a subclass of the iterated tubular algebras of [34] and, in particular, are tame.
We obtain results corresponding to the above two theorems.

The paper is organised as follows. After a preliminary section 1, the section 2 is devoted
to lemmata showing how to compute the first Hochschild group in our case. Section 3 is
devoted to the proof of theorem (A) and section 4 to the proof of theorem (B). Finally, the
application to semiregular iterated tubular algebras is in section 5.

1. Preliminaries.

1.1. Notation. Throughout this paper, k£ denotes an algebraically closed field. By
algebra is meant an associative, finite dimensional k-algebra with an identity, which we
assume to be basic and, unless otherwise specified, connected.



SIMPLY CONNECTED TAME QUASI-TILTED ALGEBRAS 3

We recall that a quiver @) is defined by its set of points Q¢ and its set of arrows Q1. A
m

relation from a point = to a point y is a linear combination p = Z Ajw; where, for each i
such that 1 <17 < m, A; is a non-zero scalar and w; is a path ofl éngth at least two from
z to y. Assume that @ has no oriented cycles, then a set of relations generates an ideal
I, called admissible, in the path algebra kQ. The pair (@, I) is called a bound quiver. An
algebra A is called triangular if its ordinary quiver @) 4 has no oriented cycles. In this paper,
we deal exclusively with triangular algebras. It is well-known that, for an algebra A, there
exists a surjective morphism v : kQ4 — A of k-algebras (induced by the choice of a set
of representatives of basis vectors in the k-vector space rad A/ rad® A) whose kernel I, is
admissible. Thus A = kQ4/I,. The bound quiver (Q 4,I,) is called a presentation of A. An
algebra A = kQ/I can equivalently be considered as a locally bounded k-category, whose
object class, denoted by Ag, is the set ()9, and where the set of morphisms A(z,y) from
x to y is the k-vector space kQ(z,y) of all linear combinations of paths in @ from z to y
modulo the subspace I(z,y) = I N kQ(z,y), see [17]. A full subcategory B of A is called
convex if any path in A with source and target in B lies entirely in B.

By A-module is meant a finitely generated right A-module. We denote by mod A their
category. For z € Ay, we denote by S(z) the corresponding simple A-module, and by P(x)
(or I(x)) the projective cover (or injective envelope, respectively) of S(xz). We denote by
D = Homy (—, k) the standard duality between mod A and mod A°P, and by 7 = D Tr and
771 = TrD the Auslander-Reiten translations in mod A. The Auslander-Reiten quiver of
A is denoted by I'(mod A) (for details, see [13,36]). A component I" of I'(mod A) is called
directed if, for any indecomposable module M in I, there exists no sequence M = M hy
My ’3 f# M; = M of non-zero non-isomorphisms between indecomposable A-modules.
Given a component I' of I'(mod A), its orbit graph O(T') has as points the 7-orbits M7
of the modules M in T, there exists an edge M™ — N7 if there exist m,n € Z and
an irreducible morphism 7™M — 7"N or "N — 7™M, and the number of such edges
equals dimy Irr(7™ M, " N) or dimy, Irr(7™ N, 7™ M), respectively (here, Irr(X,Y") denotes
the space of irreducible morphisms from X to V).

1.2. Let A be an algebra. A module T4 is called a tilting module [31] if pd T4 < 1,
Ext!(T,T) = 0 and the number of isomorphism classes of indecomposable summands of T
equals the rank of the Grothendieck group Ky(A).

Two algebras A and B are called tilting-cotilting equivalent if there exist a sequence

of algebras A = Ay, A1,..., A, = B and a sequence of tilting or cotilting modules Tf(l?)),
Tf(lll), ce TXZ;D such that A;1; = End TX,), for each i. Let ) be a finite connected quiver

without oriented cycles. An algebra A is called iterated tilted of type @ if A is tilting-
cotilting equivalent to k@, and it is called tilted of type @ if it is the endomorphism algebra
of a tilting kQ-module. We need the following fact proved in [11](5.2): let A be an iterated
tilted algebra of euclidean type (that is, of type @ such that the underlying graph of @ is
an euclidean diagram), then any full convex subcategory of A is iterated tilted of Dynkin
or of euclidean type. Also, it is well-known that an algebra A is iterated tilted of type @ if
and only if there exists an equivalence of triangulated categories D’(mod A) = D°(mod kQ)
between the derived categories of bounded complexes over mod A, and mod k@, respectively
(see27]).

An algebra A is called quasi-tilted if gl. dim. A < 2 and, for each indecomposable module
My, we have pd M < 1 orid M < 1 (see [30]). Tilted algebras furnish an example of
quasi-tilted algebras, and a representation-finite algebra is tilted if and only if it is quasi-
tilted [30](3.6). Another example is provided by the canonical algebras [36]. Let t > 2,
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n = (n1,...,nt) be a t-tuple of positive integers, and A = (A1,...,At) be a t-tuple of
pairwise distinct elements in P;(k). The canonical algebra C(t,A,n) of type n is given by
the quiver

O <— i <0
atl/ w1
Q2ng (e3P 21
O<——— 0 <— i < 0=<—_0
wi 7
: Q2

O <— i <0

bound by the ¢t — 2 relations 110012 "+ " A1y + aor1an - A2py + )\i(ailaig v aini) = 0, with
3<i<t Iftn =(2,2,2,2), (2,3,6), (2,4,4) or (3,3,3), then C(t,\,n) is called tubular
canonical. An algebra A is called derived canonical (or derived tubular) if there exist a
canonical algebra (or a tubular canonical algebra, respectively) C' and an equivalence of
triangulated categories D’(mod A) = D’(mod C). If t = 2, then the canonical algebras are
hereditary of type A and, thus, the derived canonical algebras coincide with the iterated
tilted algebras of type A.

1.3. An algebra C is called tame concealed if there exist a hereditary algebra A and
a postprojective tilting A-module T such that C' = End T4. Then, I'(mod C) consists of
a postprojective (also called preprojective) component Pc, a preinjective component Q¢,
and a family T = (7x) \ep, (k) Of stable tubes separating Pc from Q¢ (see [36](4.3)).

We now define semiregular enlargements of a tame concealed algebra [38], see also [6].
A branch K with root a is a finite connected full bound subquiver, containing a, of the
following infinite tree, bound by all possible relations of the form af = 0:

.\2/45. '\Z/ﬁ' '\Z/ﬁ'a \Z/Z

N

S8 \O/;
«
B
a
[¢]
Let C' be a tame concealed algebra, (E;);"; and (F;)?_; be two families of simple regular
C-modules, and (K;)/%; and (L;)?_, be two families of branches. For each i, we let a; be the

root of K;. The tubular extension A™ = C[E;, K;]™, has as objects those of C, K1, ... , K,
and as morphism spaces

C(z,y) if z,y € Cy

A+ (z,y) = Ki(z,y) if 2,y € (Ki)o
Ki(z,a;) @ Ei(y) if z € (K;)o,y € Co
0 otherwise.

The tubular coextension A~ = ;_t[Lj, F;]C' is defined dually. Finally, if the families (E;);%,
and (F;)7_, are compatible, that is, for any pair (i, j), the modules E; and F}; do not lie in
the same tube of I'(mod C), then the semiregular enlargement A = ;_"I[L;, F}|C[E;, K;],
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is defined to have as objects those of AT, A~ and as morphism spaces

At(z,y) ifz,y € (AT)o
A(l‘,y) = Ai(mvy) if T,y € (A7)0

0 otherwise.

Thus, a tubular extension, or coextension, of C' is trivially a semiregular enlargement of C.
For each A € Py(k), let r\ denote the rank of the stable tube 7y in I'(mod C). The
tubular type na = (nx)rep, (k) is defined by:

o=t > (Kol + Y (L))ol

E;eTy F; €Ty

(note that, for a given A, at least one of the above two sums vanishes). Since all but at
most finitely many ny equal 1, we write, instead of (ny)y, the finite sequence containing at
least two ny, including all those larger than 1, in non-decreasing order. A tubular extension
(or coextension) is tame if and only if its type is domestic, that is, one of (p,q), (2,2,7),
(2,3,3), (2,3,4) or (2,3,5) (in which case, it is tilted of euclidean type A, D, Eg, E; or K,
respectively) or tubular, that is, one of (2,2,2,2), (2,3,6), (2,4,4) or (3,3,3) (in which case
the algebra is called tubular, see [36]). Let A be a tubular extension of a tame concealed
algebra C. If n4 is domestic, then C' is the unique tame concealed full convex subcategory
of A but, if ny is tubular, then A contains (exactly) one other tame concealed full convex
subcategory C’ and is a tubular coextension of C’. Also, a tubular algebra is derived tubular.

A semiregular enlargement A is tame if and only if both AT and A~ are tame or, equiv-
alently, are tilted of euclidean type or tubular. The following theorem, due to Skowronski
[38], will play an essential role in the sequel.

THEOREM. Let A be a tame algebra. Then A is quasi-tilted if and only if it is a tilted
algebra, or a semiregular enlargement of a tame concealed algebra. O

2. Hochschild cohomology and semiregular enlargements.

2.1. Given an algebra A, the Hochschild complex C* = (C*,d");cz is defined as follows:
Ct=0,d"=0fori<0,C°= 44,4, C' = Homy (A% A) for i > 0, where A®? denotes the
i-fold tensor product A ®j, -+ @y A, d° : A — Homy(A, A) with (d°z)(a) = ax — za (for
a,r € A) and d* : C? — C'! with

dfla ® - @aipr) =arflaz® - @ ai1)
+ Z(—l)jf((h R Rajaj+1 @+ @ ai+1) + (—1)i+1f(a,1 & ® ai)ai_H
j=1
for f € C* and ay,...,a;41 € A. Then H(A) = H'(C*®) is the i*" Hochschild cohomology

group of A with coefficients in the bimodule 4 A4, see [20].
Recall that an algebra A is the one-point extension of an algebra B by a module Mp if

A= B[M] = {B 0}

M k

with the usual matrix addition and the multiplication induced from the B-module structure
of M. The one-point coextension [M]B is defined dually.
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THEOREM [26]. (a) Let Q be a finite and connected quiver without oriented cycles, then
H(kQ) =k, H' (kQ) = 0 if and only if Q is a tree, and H'(kQ) = 0 for all i > 2.

(b) Let A be an algebra, T4 be a tilting module and B = End Ty, then H'(A) = HY(B)
for all i > 0.

(c) Let A = B[M] be a one-point extension algebra. There exists an ezact sequence

0—H%A) - HY(B) = End M/k—HY(A) = HY(B) = Exth (M,M) - H*(A) = -
- = BExtis Y (M, M) — HY(A) — H(B) — Extly (M, M) — - - O

If, in particular, A is iterated tilted of type @Q, then, by (a) and (b), H'(4) = 0 if and
only if () is a tree.

2.2. Let A be a triangular algebra (not necessarily connected). An A-module M is sep-
arated if, for each connected component C of A, the restriction M | of M to C is zero
or indecomposable. A point z € A, is separating if the restriction of rad P(z)4 to the
full subcategory A* of A generated by the non-predecessors of x in @4, is separated as an
A®-module. The algebra A satisfies the separation condition if each x € A is separating
[16]. We define dually coseparated points, and the coseparation condition.

Let A be an algebra. A module M4 is a brick if End M = k.

The following has been used implicitly in [26,12,37].

LEMMA. Let A = B[M] be a one-point extension algebra. Then the morphism f :
H'(A) — H'(B) in the exact sequence of (2.1)(c) is injective if and only if the extension
point is separating, and M is a direct sum of bricks.

Proof. Let B = By X --- X By, where each B; is connected, and M = M, & --- & M; where
each M; is a B;-module. Since M is the radical of the unique indecomposable projective
A-module which is not a B-module, then M; # 0 for all ;. The morphism f is injective if
and only if the sequence

0 — H°(A) — H°(B) — End M/k — 0

is (right) exact or, equivalently, if and only if dim; H*(B) = dimj, H°(A) 4+ dim;, End M —1.
We have dimy, H°(A4) = 1, because H(A) is the centre of the connected algebra A. Similarly,
dim, H°(B) = t. Thus, the morphism f : H'(4) — H'(B) is injective if and only if
dimy, End M = ¢. Now, dimj End M = dimy, End (@;1 M,») > t, and equality holds if
and only if, for each i, we have End M; = k and, for ¢ # j, we have Hompg(M;, M;) = 0.
This establishes the statement. [

2.3. COROLLARY. Let A be a semiregular enlargement of a tame concealed algebra C,
and B be a full convex subcategory of A containing C. If H(B) = 0, then H'(A) = 0.

Proof. There exists a sequence of full convex subcategories A = 49 D A; D --- D A =B
where, for each i, A; is obtained from A;;; by a one-point extension with separating exten-
sion point, and the extension module is a direct sum of bricks, or else A; is obtained from
A; 1 by a one-point coextension with coseparating coextension point, and the coextension
module is a direct sum of bricks. Now, for each i, (2.2) or its dual yields a monomorphism
H'(A;) — H'(As41). Thus H'(4;41) = 0 implies H'(4;) = 0. The statement follows from
an obvious induction. O

2.4. The following lemma should be compared with [25](2.2) and (2.4).
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LEMMA. Let A be derived equivalent to a canonical algebra C(t,\,n). The following
conditions are equivalent:

(a) H'(4) =0,

(b) t > 2,

(c) A is not iterated tilted of type A.

Proof. We have already seen in (1.2) that (b) and (c) are equivalent. We now show the
equivalence of (a) and (c). If A is iterated tilted of type @, where the underlying graph of
Q is A, then, by (2.1)(a) and (b), we have H'(4) = H' (kQ) # 0.

Conversely, assume first that A is a canonical algebra which is not hereditary of type A,
then A = B[M], where B is a hereditary algebra whose quiver is a tree, and M is a brick.
Moreover, the extension point is separating. Hence, by (2.2), there is a monomorphism
H'(A) — H'(B). Since the quiver of B is a tree, we have H' (B) = 0, and hence H'(4) = 0.

Let now A be a derived canonical algebra which is not iterated tilted of type A. Then
there exists a canonical algebra C, which is not hereditary of type A, and an equivalence
of triangulated categories D’(mod A) = D’(mod C). Then A and C are tilting-cotilting
equivalent (see, for instance, [32]) hence H'(A) 2 H'(C) =0. O
REMARK. The above proof can be shortened using the known fact that derived equiva-
lence preserves the Hochschild groups.

2.5. COROLLARY. Let A be a derived canonical algebra which is not iterated tilted of
type A. Then:

(a) Every source in A is separating.
(b) There ezists a connected algebra B and a brick Mg such that A = B[M] or A = [M]B.

Proof. By (2.4), we have H'(A) = 0. Hence (a) follows from the fact that, by [37](3.2), if
A is a triangular algebra with H'(4) = 0, then every source in A is separating. In order to
prove (b), we observe that there exists a connected algebra B and a module Mp such that
A = B[M] or A =[M]B. It remains to show that M is a brick. But now, H' (4) = 0 yields
a short exact sequence

0 — H°(A) — H°(B) — End M/k — 0.
Hence End M =k. O
REMARK. By [15], Theorem 1, the algebra B of (b) above is iterated tilted or derived
canonical.

2.6. LEMMA. Let A be a one-point extension of a hereditary algebra B of type qu, with
p,q > 1, by a simple homogeneous module. Then H*(A) = 0.

Proof. Let x denote the extension point, and y1,¥y2,-.. ,y; be the sinks of B (hence of A).
The algebra A is given by the quiver
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bound by all possible commutativity relations. Let B’ be the full convex subcategory of
A generated by all points except y1,¥2,...,¥y: and, for each i such that 1 < i < ¢, let
M; = I(y;)/S(y;). Then A = [M;]---[M;]B'. Since, for each i, M; is a brick, and y; is
coseparating, the dual of (2.2) and induction yield a monomorphism H*(A4) — H*(B’). Since
B' is a hereditary algebra whose quiver is a tree, H'(B') = 0. Hence H'(4) =0. O

3. Simple connectedness of tame quasi-tilted algebras.

m
3.1. Let (Q, I) be a connected bound quiver. A relation p = Z Aiw; € I(x,y) is minimal if
i=1
m > 2 and, for any non-empty proper subset J C {1,2,...,m}, we have Z Ajw; & I(z,y).
jed
We denote by a~! the formal inverse of an arrow o € ;. A walk in Q from z to y is a
formal composition aj'as? ---a;' (where a; € Q1 and ¢; € {1,—1} for all §) with source z
and target y. We denote by e, the trivial path at x. Let ~ be the least equivalence relation
on the set of all walks in @@ such that:

(a) If a : x — y is an arrow, then a~!
m

a~ e, and aa™! ~ e,.
(b) If p= Z Ajw; is a minimal relation, then w; ~ w; for all ¢, j.
i=1
(¢) If u ~ v, then wuw' ~ wvw' whenever these compositions make sense.

Let ¢ € Qo be arbitrary. The set m(Q, I,z) of equivalence classes @ of closed walks u
starting and ending at = has a group structure defined by the operation @ - = uv. Since @
is connected, 71 (Q, I, z) does not depend on the choice of z. We denote it by m1 (Q, I) and
call it the fundamental group of (Q,I), see [24,33].

Let m(Qa,I,) be a presentation of a triangular algebra A. The fundamental group
m1(Qa,I,) depends essentially on I, — thus is not an invariant of A (see, however, [14]).
A triangular algebra A is simply connected if, for any presentation (Qa,I,) of A, the
fundamental group m(Q 4, I,) is trivial [9].

The following result, of which the first part is [5] and the second part is [9], yields large
classes of examples of simply connected algebras.

THEOREM. Let A be an algebra.

(a) If A is tame tilted of type Q, then A is simply connected if and only if Q is a tree
or, equivalently, if and only if H*(A) = 0.

(b) If A is iterated tilted of euclidean type or derived tubular, then A is simply connected
if and only if it is not iterated tilted of type A or, equivalently, if and only if H* (4) =
0. O

3.2. The following lemma follows from the proof of [37](2.3).
LEMMA. Let A = B[M] be a one-point extension algebra. If B is a product of simply
connected algebras, and the extension point is separating, then A is simply connected. [
3.3. One of the consequences of (3.2) is that, if A satisfies the separation condition, then
A is simply connected [37](2.3). Another one is the following.

COROLLARY. Let A be a semiregular enlargement of a tame concealed algebra C, and
B be a full convex subcategory of A containing C. If B is simply connected, then so is A.

Proof. There exists a sequence of full convex subcategories A = A4y D A1 D --- D 4A; =
B where, for each i, A; is obtained from A;;; by a one-point extension with separating
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extension point lying in the branches or by a one-point coextension with coseparating point
lying in the branches. Assume inductively that A;;; is simply connected. Applying (3.2)
or its dual yields that A; is simply connected. The result follows by induction. O

3.4. We wish to apply (3.3) to a particular case. Let A be a semiregular enlargement of
a tame concealed algebra C, and A° be the full convex subcategory of A generated by all
points of C, as well as all the extension and all the coextension points of C' inside A. We
recall that a walk in a quiver is reduced if it contains no subwalk of one of the forms aa ™!
or a o, with « an arrow.

COROLLARY. Let A be a semireqular enlargement of a tame concealed algebra.

(a) The non-contractible reduced cycles in A and A° coincide.
(b) A is simply connected if and only if so is A°.

Proof. (a) Let w be a non-contractible reduced cycle in A not lying entirely inside the
tame concealed subcategory C. Then w contains a point z lying in a branch. But x must
be connected to other points in w and w, being a cycle, cannot lie entirely in the branch
containing x. Since the only walks between branches pass through C, then z must be the
root of a branch. Thus, the only points of w not lying in C' are in A%, that is, w lies in A°.
On the other hand, by definition of a semiregular enlargement, if « is in a branch and is the
starting (or ending) point of a relation ending (or starting) in C, then z is an extension point
(or a coextension point, respectively) of C'. That is, = lies in AY. Thus, w is contractible in
A if and only if it is contractible in A°.

(b) Assume that A° is simply connected. Then, by (3.3), so is A. Conversely, if A° is not
simply connected, then it contains a non-contractible cycle w. By (a), w is not contractible
in A either. Thus, A is not simply connected. O

3.5. Proof of Theorem (A). If A is a tame tilted algebra of type @, then, by (3.1)(a), A4 is
simply connected if and only if @ is a tree or, equivalently, if and only if H'(A4) = 0. Thus,
the three conditions are equivalent in this case. Also, notice that a representation-finite
quasi-tilted algebra is tilted (see (1.2)). In view of (1.3), we may assume from the start
that A is a tame semiregular enlargement of a tame concealed algebra C, and that A is not
tilted.

If A is iterated tilted of type A then, by (3.1)(b), A is not simply connected, and also,
by (2.1), H'(A) # 0. Thus, either (a) or (b) implies (c). We have to show that (c) implies
(a) and (b).

Suppose first that C' is tame concealed of type different from A. Then C is simply
connected and H'(C) = 0. Applying (2.3) and (3.3), we infer that (a) and (b) hold. Also,
in this case, it follows from [8] that A is not iterated tilted of type A. Hence, the three
conditions hold and they are equivalent.

Suppose now that C is tame concealed of type A (thus hereditary of type A). Assume first
that A* is not a tilted algebra of type A. It follows from [10](2.5) that A is not iterated tilted
of type A. Furthermore, since A" is tilted of type # A, or tubular, we have H' (A*) = 0 and
At is simply connected. Hence, by (2.3) and (3.3), A is simply connected and H*(A4) = 0.
Thus the three conditions hold, and they are equivalent. This is in particular the case if
A = AT, because the assumption that A is not tilted implies that At is tubular. Similarly,
if A~ is not tilted of type A (in particular, if A = A7), then the three conditions hold and
they are equivalent. We may thus assume that A # A", A~ and that each of AT and A~ is
tilted of type A. We now consider three cases:

Case 1. Assume C is of type qu, with p,¢g > 1. Thus I'(mod C') has two non-
homogeneous tubes 7y and 7o, of respective ranks p, q.
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In order to show that (c) implies (a), assume that A is not simply connected. Let M
be a simple regular C-module such that C[M] is a full convex subcategory of A™T. Assume
M & ToV Teo. Then C[M] has three non-homogeneous tubes and hence is simply connected
(because it is a full convex subcategory of the tilted algebra A1, hence it is tilted of euclidean
type, see (1.2)). Therefore, by (3.3), A itself is simply connected, a contradiction. This
shows that M € Ty V To. Similarly, if N is a simple regular C-module such that [N]C
is a full convex subcategory of A~, then N € To V T. In particular, A has only two
non-homogeneous tubes. Therefore, A is iterated tilted of type A.

In order to show that (c) implies (b), assume that A is not iterated tilted of type A.
By [10](2.5), there exists a simple homogeneous C-module M (that is, M & To V Tx)
such that C[M], or [M]C, is a full convex subcategory of A. By (2.6) or its dual, we have
H'(C[M]) = 0, or H'([M]C) = 0, respectively. Applying (2.3) yields H'(A4) = 0, as required.

Case 2. Assume C is of type Alp, with p > 1. Then ['(mod C) has exactly one non-
homogeneous tube 7.

In order to show that (c) implies (a), assume that A is not simply connected. Since AT and
A~ are tilted of type A, each is of tubular type (s,t), with 1 < s <'t. Assume first that the
tube Ty is used for extensions, that is, there exists My € To such that C[Mp] is a full convex
subcategory of A. Assume next that 71 # 7o is also used for extensions and T, # 71, To for
coextensions, that is, there exist My € 71 and My, € Too such that C[M;] and [My]C are
full convex subcategories of A. Then the full convex subcategory [Moo|C[Mo][M:] of A is
iterated tilted of type (2,2, p+1), hence is simply connected. Applying (3.3) yields that A is
simply connected, a contradiction. Therefore we can only use one other tube, say 7., and,
since A # AT, this is necessarily for coextensions. Since A has only two non-homogeneous
tubes, it is iterated tilted of type A. The proof is dual if 7y is used for coextensions. We
may therefore suppose that 7Ty is used neither for extensions nor for coextensions. Since
A # AY A~ there exist two simple regular C-modules M; € Ti, with 71 # 7o, and
My € Too, with Too # To, T1, such that [M]C[M;] is a full convex subcategory of A. Since
[M]C[M,] is iterated tilted of type (2,2, p), it is simply connected. Hence, by (3.3), so is
A, a contradiction. This completes the proof of this implication.

In order to show that (c) implies (b), we notice that, in this case, it is easily seen that
the bound quiver of A is, up to duality, of one of the forms:

7 7 M

dp Cp—1 &1 / a
/ v \ —
Co b ‘

where the shaded triangles represent branches, bound by Sy = 0 and ad;62 - -- 6, = oy and
possibly other relations in the branches, or

(i)

where the shaded triangles represent branches, bound by v8 = 0 and ad1d> - - - §, = ary, and
possibly other relations in the branches.
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In each case, let B be the full convex subcategory of A generated by the points a, b,
o, C1, ..., ¢p. Then B is iterated tilted of type (2,2,p), that is, of type D. Therefore,
H'(B) = 0 (see (2.1)). Applying (2.3) yields H'(A) = 0, as required.

Case 3. Assume C is of type A;;. Then all tubes in I'(mod C) are homogeneous.

In order to show that (c) implies (a), assume that A is not simply connected. Since
A # AT, A and each of AT and A~ is tilted of type A, at most two tubes can be used
for extensions, and at most two for coextensions. If at least three tubes are used, then A
contains, up to duality, a full convex subcategory B given by the quiver

bound by af = a7, 0 = 0 and ve = 0. Since B is simply connected, so is A, by (3.3), a
contradiction. This shows that at most two tubes are used, so that the bound quiver of A
is of the form

where the shaded triangles represent branches, bound by af = 0, vé = 0 and possibly other
relations in the branches. Therefore A is iterated tilted of type A.

In order to show that (c) implies (b), assume that A is not iterated tilted of type A. Then
A contains, up to duality, a full convex subcategory B given by the quiver

o 5 3
\O/{\o [e%
O/E Y

o

bound by af = av, 86 = 0 and v¢ = 0. Then B is iterated tilted of type D;. Hence
H'(B) = 0. Applying (2.3) yields H'(4) = 0, as required. O

REMARK AND EXAMPLE. In general, a simply connected tame quasi-tilted algebra
does not satisfy the separation condition. Indeed, while the simple connectedness of an
algebra implies that each source is separating [7](2.6), this is not true for the points which
are not sources, as is shown by the following example. Let A be given by the quiver

bound by the relations aX = ¢y - au, B\ = ¢ - Bu, YA = c3 - Y, OX = ¢4 - 6p, Ao’ =
es - pa’, A3 = cg - uB, MY = er - py', A6 = cg - pud’, where the ¢; are pairwise distinct
scalars. Clearly, the point z is not separating. On the other hand, each of A™ and A~ is
tubular of type (2,2,2,2) so that A is a simply connected tame quasi-tilted algebra of type
(2,2,2,2,2,2,2,2). In particular, it is derived equivalent to a (wild) canonical algebra of
that type (see [38], Corollary D).
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3.6. COROLLARY. Let A be a tame quasi-tilted algebra which is not tilted. If A is
strongly A-free, then A is simply connected.

Proof. If A is strongly A-free, then the tame concealed full convex subcategory C of A (in
the above notation) is not hereditary of type A. It then follows from the proof above that
A is simply connected. O

3.7. For representation-finite algebras, which are not necessarily (quasi-)tilted, we have the
following result (for the general case, see [19]). The proof below is due to E. N. Marcos
(private communication).

PROPOSITION. Let A be a triangular representation-finite algebra. Then A is simply
connected if and only if H*(A) = 0.

Proof. Assume A to be simply connected. Since A is representation-finite, any full convex
subcategory of A is simply connected [18](2.8). By [37](4.1), this implies H'(4) = 0. Con-
versely, assume that H'(4) = 0 and let (Q4,I) be an arbitrary presentation of A. Since A
is triangular, it is standard, hence it follows from [33](3.9) and (4.3) that 71 (Q 4, I) is a free
group. Then the monomorphism of abelian groups

0 — Hom (m1 (Qa, 1), k") — H'(A)

(where kT denotes the additive group of the field k) of [35]§3, [23], [7](3.2) implies that
T (QA, I) =1. O

4. Strong simple connectedness of tame quasi-tilted algebras.

4.1. An algebra A is strongly simply connected [37] if it satifies the following equivalent
conditions:

(a) Any full convex subcategory of A is simply connected.

(b) Any full convex subcategory of A satisfies the separation condition.
(¢) Any full convex subcategory of A satisfies the coseparation condition.
(d) For any full convex subcategory C' of A, we have H'(C) = 0

We need the following definitions and results from [3]. Let A be an algebra, and (Q4,T)
be a presentation of A. A contour (p,q) in Q4 from z to y consists of a pair of non-trivial
paths p,q from x to y. It is interlaced if p,q have a common point besides z and y. It is
irreducible if there exists no sequence of paths p = pg,p1,... ,Pm = q from z to y such that
each of the contours (p;, pi+1) is interlaced. Let C be a simple cycle which is not a contour,
and let o(C) denote the number of sources in C. Then C' is reducible if there exist x,y on
C and a path p: ¢ — --- = y in @4 such that, if w; and wy denote the subwalks of C
from z to y (so that C = wywj "), then wip~! and wap~t are cycles and o (w1p~?) < o(C),
o (wgp’l) < o(C). A cycle C is irreducible if it is either an irreducible contour, or it is not
a contour, but it is not reducible in the above sense. Finally, a contour (p,q) from z to y is
naturally contractible in (Q 4, I) if there exists a sequence of paths p = po,p1,... ,Pm = ¢
in @ 4 such that, for each i, the paths p; and p;;+1 have subpaths ¢; and ¢;;1, respectively,
which are involved in the same minimal relation in (Q 4, I).

THEOREM [3](1.6). An algebra A is strongly simply connected if and only if, for any
presentation (Qa,I) of A, any irreducible cycle in Q4 is an irreducible contour, and any
irreducible contour in Q4 is naturally contractible in (Qa,I1). O
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4.2. THEOREM [4,5]. Let A be a tame tilted algebra. The following conditions are
equivalent:

(a) A is strongly simply connected.

(b) The orbit graph of each of the directed components of I'(mod A) is a tree.
(c) A is simply connected and strongly A-free.

(d) A satisfies the separation condition and is strongly A-free. O

4.3. THEOREM [1]. Let A be a tubular algebra, and C©), C(>) denote its two tame
concealed full convex subcategories. The following conditions are equivalent:

(a) A is strongly simply connected.

(b) The orbit graph of each of the directed components of T'(mod A) is a tree.
(c) A is strongly A-free.

(d) C© and C°) are not hereditary of type A.

(e) A and A°P satisfy the separation condition. O

4.4. Proof of Theorem (B). Clearly, (a) implies each of (b) (c¢) and (f), and (c) implies (d).
By (4.2) and (4.3), (b) implies (e). By (4.3) and [2](2.3), (b) is equivalent to (d). Since (e)
implies (b) by (4.2), (4.3), we just have to show that (f) implies (b), and that (b) implies
(a).

We first show that (f) implies (b). If AT (or A™) is tubular, then it follows from (4.3) that
the separation condition for A*™ and (A%)°P (or A~ and (A™)°P) implies that AT (or A™,
respectively) is strongly simply connected. Let B be a representation-infinite tilted algebra
of euclidean type having a complete slice in its preinjective component. By [1](1.5), if B
satisfies the separation condition, then its unique tame concealed full convex subcategory
is not hereditary of type A. Hence B is strongly A-free and consequently strongly simply
connected by (4.2). Now, if B is representation-infinite tilted of euclidean type, either B or
B°P has a complete slice in its preinjective component. Hence the separation condition for
both B and B°P implies the strong simple connectedness of B. This completes the proof of
this implication.

We now show that (b) implies (a). If A is not strongly simply connected, then, by (4.1),
its bound quiver contains an irreducible cycle w which is not a contour, or an irreducible
contour which is not naturally contractible. It follows from (b) that w does not lie entirely
inside AT, or inside A=. We consider two cases. As usual, we denote by C the tame
concealed full convex subcategory common to At and A~.

Case 1. Assume first that w is an irreducible contour (p,q) from z to y which is not
naturally contractible. Since w lies neither inside A™ nor inside A~, we have z € (A7) \
(A7 )pand y € (A7)0 \ (AT)o. Applying (3.4)(a), we get that x is the root of an extension
branch, thus is an extension point of C'. Also, y is the root of a coextension branch, and is
a coextension point of C.

Now, z, being the root of a branch, is separating. Hence, by [7](2.2), if a; : 2 = a1
and as : £ — ay are the arrows of source x on p and ¢, respectively, there exists a minimal
relation A\jajv1 + Asasvs + Z)\jUj from z to ¢ € Cy, say, when all the \; are non-zero

Jj=>3
scalars. Since ¢ € (A1)o while y & (A™)o, we have ¢ # y. Also, since AT is closed under
predecessors, there is no path from y to c. Moreover, there is no path from c to y, because
w is irreducible. Let b; (or b2) be the last common point between v; and p (or v and
q, respectively) and ¢’ be the first common point between v; and vs. Call v] (or vj) the
subpath of vy (or vy) from by (or be, respectively) to ¢, and p' (or ¢') the subpath of p (or
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q from by (or bs, respectively) to y.
’ bl

\/-\/_\ a
/ i R 01 aq
y o vy \o

<~

o o
Cc c’
q U2 bQM/\/J‘/V a
[e]

o

Consider now the walk w' = vy~ '¢’p’~'v|. This walk is a cycle: there is no intersection

between p’ and ¢', neither is there one between v and v}, and the existence of an intersection
between vhv! "' and p'q’ " would contradict the irreducibility of w. Further, w' is irreducible
because w is. Finally, w’ is not a contour, because it has two sinks ¢ and ¢’ and, since ¢’ € Cy,
we have ¢’ # y. Since w' lies entirely inside A~ this contradicts (b).

Case 2. Assume now that w is an irreducible cycle which is not a contour. We denote
by z1,...,z; the sources of w, by y1,... ,y; its sinks and, for each ¢ with 1 <1 <, by w;
the path from z; to y;, and by w} the path from z; to y;+1 (where yry1 = y1). As before,
one of the x; (say z1) lies in AT but not in A~, and one of the y; (say y,) lies in A~ but
not in AT™. We may assume furthermore, without loss of generality, that w has the least
possible number of sources lying in AT but not in A~

As before, x1 is the root of a branch and, if o : 21 — a1 and as : 1 — as are the arrows of
source 1 on wy and wi, respectively, there exists a minimal relation Aj vy +A2a2+z Aju;

>3
from z; to ¢ € Cy, say, where the \; are non-zero scalars. Let b; (or by) be the last common
point of v; (or v2) and w; (or w}, respectively), and ¢’ be the first common point of v; and
v2. Also, denote by v] (or v}) the subpath of vy (or vy) from b; (or by, respectively) to ¢
and by w' (or w}) the subpath of wy (or w}) from by (or bs) to y; (or y2, respectively)

T T2 T
[0 as

o i\OGQ

(431

§YA

[¢]
;
5
:
e
:
!

NI N
g

,\
S e c’o \ )
wi' )
! AN \\\
{ \ I N
Y1 Y2 Ye Yt

Again, c € (AT)g and y, € (AT)o imply that y, # ¢, and there is no path from y, to c.
Moreover, by irreducibility, there is no path from ¢ to y,.

We claim that either ¢ > 3 or, if ¢ = 2, then by # y1 or by # y». Indeed, if t = 2,
b1 = y1 and by = y» then, since c is a successor to both b; and by, we get a contradiction to
the fact that y; or ys lies in A=, but not in AT, while ¢ € (A7)p, and A™ is closed under
predecessors. This establishes our claim.

T2
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. 1 1 —1 . .
We now consider the walk w' = wiw, “w;---wow! "vhv! . This walk is a cycle:
1 Wy 2 Ul

indeed wiw] wy - -wywy " has no self-intersection because it is a subwalk of w, the walk
vhvy ' has no self-intersection by definition, and these two do not intersect because w is
irreducible. Further, w' is irreducible because w is. Finally, it is not a contour, because it
has at least two sinks, namely ¢’ (which lies in C, hence in A™) and y, (which does not lie in
A™T). Since the points of vév{fl belong to A, either w' lies entirely in A~, a contradiction
to (b), or else w' has one source less than w lying in AT but not in A™, a contradiction to
our minimality assumption on w. This completes the proof of this implication, and hence
of the theorem. 0O

REMARKS AND EXAMPLES. (a) One cannot improve condition (e) of the theorem.
The following example (borrowed from [1]) shows a tame quasi-tilted (derived tubular)
algebra A such that the orbit graph of each directed component of I'(mod A) is a tree, but
A is not strongly simply connected. Let A be given by the quiver

, o= 0o _ |
° / >< \ o
77\ ° 4 o /u
bound by Aa = py, \8 = ud, av = c¢- fBn, yv = c¢- on (for some ¢ € k\ {0,1}) and Aav = 0.
(b) One cannot improve condition (f) of the theorem. The following is an example of a

tame quasi-tilted algebra such that each of A", (A%)°P and (A7)°P satisfies the separation
condition, but A~ does not. Let A be given by the quiver

O%O%O

o‘{

O]

(e
S— .

//\\

o

bound by Aa =0, pf =0, pa = c-uf, va = c' -vf (where c # ¢, ¢,c’ € k\{0,1}) ¢\ = Yu,
PAB =0, EX = (v and EAS = 0. Clearly, A is not strongly simply connected (but is simply
connected).

4.5. COROLLARY. Let A be a tame quasi-tilted algebra. Then A is strongly simply
connected if and only if A is simply connected and strongly A-free.

Proof. If A is tame tilted, this follows from (4.2). Otherwise, this follows from (4.4). O

5. Semiregular iterated tubular algebras.

5.1. We start by defining these algebras. Let Ay be a tame tubular coextension of a tame
concealed algebra Co, thus Ag = ;| tg [K?O, ?0] C)y is either tubular or tilted of euclidean type
having a complete slice in its postprojective component. We say that Ag is a semiregular
O-iterated tubular algebra. Let {E{,...,E} } be a family of simple regular Co-modules
compatible with {E?,...,E] } that is, for any pair (i,7), E{ and E] do not lie in the
same tube of F(mod Co), and let {K{,... K} } be a family of branches, and assume that

=Ch [ K} ] is a tame tubular extension of Cy. Then we say that the algebra

i1 1=1

A= SR ED) Co [ KL

io=1 207 117
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is a semiregular 1-iterated tubular algebra. Assume that B; is a tubular algebra. Then

there exist a tame concealed algebra C, a set of simple regular C1-modules {Fll, e ,Fsll}
and a set of branches {Li,...,L} } such that By = ; *t[L} ,F}]Ci. Let {E},... E7}

be a set of simple regular Cj-modules compatible with {F{,... F} }, and {K%,... , K2}

be a set of branches such that By = C; [EEQ,KEQ]Zzl is a tame tubular extension of C.

Then we say that the algebra

Ay = Ay (B2 K2]7_ =, "[KQ E] . *t[L}

i) in=1 ip=1 t0? iod j1=1L"j1>

FL)0) (B K

to
227 lz] io=1

is a semiregular 2-iterated tubular algebra.
Inductively, assume that

An =, KD E) oy [t Rt G (B2 KT
is a semiregular n-iterated tubular algebra, and that B,, = C),_1 [EZ , KZL]:::1 is tubular.
There exist a tame concealed algebra C),, a set of simple regular C),-modules {Fln, R }
and a set of branches {L{‘, e 7L?n} such that B,, :jn:s} [L;-‘n , F}Z]Cn. Let {E{Lﬂ, e ,E&tll}
be a set of simple regular C,,-modules compatible with {Fln, ey FS’;} and {Kf“, e ,Kﬁtll}
be a set of branches such that B,+1 = C, [EZLE K Zi]j":il is a tame tubular extension

of C),. Then we say that the algebra

tnt1
_ to 0 07 ... Sn n n n+1 n+1
A”+1  ip=1 [Ki()’Eio] Jn=1 [Ljn’an] Ch [Ein+1’Kin+l]i -1
n+1=

is a semiregular n + l-iterated tubular algebra.

REMARKS. (a) Let A be a semiregular n-iterated tubular algebra, then A is n-iterated
tubular in the sense of [34]. In particular, it follows from [34](2.4) that A is tame.

(b) The construction of the semiregular iterated tubular algebras generalises the one of
(1.3). In fact, a semiregular n-iterated tubular algebra is quasi-tilted if and only if n < 1.
If n = 0, then such an algebra is tilted of euclidean type or tubular. If n = 1, then it is a
semiregular branch enlargement of a tame concealed algebra.

EXAMPLE. We borrow this example from [34]. Let A be given by the quiver

1 4 7 10
° a B ° o B ° o B °
P AN AN N
2 ) 8 11

bound by B”Oé”ﬁ’ — 01_5117//6/, 5”0&”5’ — 02-5”’)/"5', aII/BIaI — 03_,)//1610/’ aIIBI,YI — c4‘,)/ll(sl I’
Ba'B =c5- 095, 8B = cg- 076, 'Ba = cr-v'da, &'By = cg - 70y (where the ¢;
are pairwise distinct scalars) and rad* A = 0. Letting Ay be the full convex subcategory
generated by the points 1,2, 3,4, 5,6, we see that Ay is tubular. Then A;, generated by the
points 1,2,3,4,5,6,7,8 is semiregular 1-iterated tubular (thus, tame quasi-tilted). The full
convex subcategory Ao, generated by 1,2,3,4,5,6,7,8,9 is semiregular 2-iterated tubular.
Similarly, A = A3 is semiregular 3-iterated tubular.
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5.2. PROPOSITION. Let A be a semireqular n-iterated tubular algebra. The following
conditions are equivalent:

(a) A is simply connected.
(b) H'(A) =0. i
(c) n>2or if n <1, then A is not iterated tilted of type A.

Proof. Assume n < 1, then A is a tame quasi-tilted algebra, and the equivalence of (a)(b)(c)
follows from (3.5). If n > 2, then A contains a tubular algebra B; as full convex subcat-
egory, and is obtained from it by an iteration of one-point extensions (or coextensions) by
separating (or coseparating) points, the extension (or coextension, respectively) modules
being direct sums of bricks. Applying (2.3) and (3.3), the algebra A is simply connected
and satisfies H' (4) = 0. O

5.3. Let A be a semiregular n-iterated tubular algebra, then we may assume that Ag is
a domestic tubular extension of Cy (otherwise, A is also a semiregular (n + 1)-iterated
tubular algebra), and, similarly, B,, is a domestic tubular extension of C,,_1. When these
assumptions are made, we say that A is a semiregular strict n-iterated tubular algebra.

PROPOSITION. Let A be a semiregular strict n-iterated tubular algebra. The following
conditions are equivalent:
(a) A is strongly simply connected.
(b) A is strongly A-free.
(c) Each B; is strongly A-free.
(d) No C; is hereditary of type A.
(e) For each i, the orbit graph of each of the postprojective and the preinjective compo-
nents of I'(mod B;) is a tree.
(f) For each i, B; and (B;)°? satisfy the separation condition.

Proof. Clearly, (a) implies (b) which implies (c). If i < n, then B; is a tubular algebra, and
the equivalence of (c)(d)(e)(f) follows from (4.3). On the other hand, B, is tilted of euclidean
type having a complete slice in its preinjective component, thus (c)(d)(e) are equivalent by
[2](2.3). Finally, (c) clearly implies (f) and [1](1.6) yields that (f) implies (d). There only
remains to show that (c) implies (a). We do it by induction on n. If n < 1, the statement
holds by (4.4). Assume that n > 2 and that the statement holds for any j <n — 1. If A is
not strongly simply connected, then, by (4.1), it contains an irreducible cycle w which is not
a contour, or an irreducible contour w which is not naturally contractible. By induction, w
must contain a point lying in Ay but not in Cy, and a point lying in B, but not in C,,_1.
Exactly as in the proof of (4.4), we replace w by an irreducible cycle w' which is not a
contour, but lies in A,,_1, a contradiction to the induction hypothesis. We leave the easy
details to the reader. O

ACKNOWLEDGEMENTS. The first author gratefully acknowledges partial support
from the NSERC of Canada. The second author gratefully acknowledges partial support
from FAPESP and CNPq, and the hospitality of the University of Sherbrooke. This work
was done while the third author was benefiting of a postdoctoral position at the UNAM,
Mexico. She would also like to thank Shiping Liu for his kind invitation to Sherbrooke.

REFERENCES.

1. Assem, I.: Strongly simply connected derived tubular algebras, to appear in Proc.
Conf. on Representations of Algebras — Sdo Paulo.



18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

IBRAHIM ASSEM, FLAVIO U. COELHO AND SONIA TREPODE

Assem, I. and Liu, S.: Strongly simply connected tilted algebras, Ann. Sci. Math.
Québec 21 (1997), No. 1, 13-22.

Assem, I. and Liu, S.: Strongly simply connected algebras, J. Algebra 207 (1998),
449-477.

Assem, 1., Liu, S. and de la Pena, J. A.: The strong simple connectedness of a tame
tilted algebra, Comm. Algebra, to appear.

Assem, 1., Marcos, E. N. and de la Penia, J. A.: The simple connectedness of a tame
tilted algebra, to appear.

Assem, 1., Nehring, J. and Schewe, W.: Fundamental domains and duplicated alge-
bras, Can. Math. Soc. Conf. Proc. Vol.11 (1991) 25-51

Assem, I. and de la Pefa, J. A.: The fundamental groups of a triangular algebra,
Comm. Algebra 24(1) 187-208 (1996).

Assem, I. and Skowroniski, A.: Iterated tilted algebras of type A,, Math. Z. 195
(1987) 269-290.

Assem, I. and Skowroniski, A.: On some classes of simply connected algebras, Proc.
London Math. Soc. (3)56 (1988) 417-450.

Assem, I. and Skowronski, A.: Algebras with cycle-finite derived categories, Math.
Ann. 280 (1988) 441-463.

Assem, I. and Skowronski, A.: Quadratic forms and iterated tilted algebras, J.
Algebra, Vol.128, No.1 (1990) 55-85.

Assem, I. and Skowronski, A.: Tilting simply connected algebras, Comm. Algebra
22(12) 4611-4619 (1994).

Auslander, M., Reiten, I. and Smalg, S.O.: Representation theory of artin algebras,
Cambridge Studies in Advanced Mathematics 36, Cambridge Univ. Press (1995).
Bardzell, M. J. and Marcos, E. N.: H'(A) and presentations of finite dimensional
algebras, preprint (1999).

Barot, M. and Lenzing, H.: Derived canonical algebras as one-point extensions,
Contemp. Math. Vol.229 (1998) 7-15.

Bautista, R., Larrién, F. and Salmerén, L. : On simply connected algebras, J. London
Math. Soc. (2)27 (1983) 212-230.

Bongartz, K. and Gabriel, P.: Covering spaces in representation theory, Invent.
Math. 65(3) (1981/82) 331-378.

Bretscher, O. and Gabriel, P.: The standard form of a representation-finite algebra,
Bull. Soc. Math. France 111 (1983) 21-40.

Buchweitz, R.-O. and Liu, S.: Hochschild cohomology and representation-finite al-
gebras, in preparation.

Cartan, H. and Eilenberg, S.: Homological algebra, Princeton Univ. Press, Prince-
ton, N. J. (1956).

Coelho, F. U. and Happel, D.: Quasi-tilted algebras admit a preprojective compo-
nent, Proc. Amer. Math. Soc. 125, 5 (1997) 1283-1291.

Coelho, F. U. and Skowronski, A.: On the Auslander-Reiten components of a quasi-
tilted algebra, Fund. Math. 149 (1996) 67-82.

Farkas, D. R., Green, E. L. and Marcos, E. N.: Diagonalizable derivations of finite
dimensional algebras II, preprint (1999).

Green, E. J.: Graphs with relations, coverings and group-graded algebras, Trans.
Amer. Math. Soc. 297 (1983) 297-310.

Happel, D.: Hochschild cohomology of piecewise hereditary algebras, Colloq. Math.
78 (1998) 261-266.

Happel, D.: Hochschild cohomology of finite dimensional algebras, Sém. M.-P.
Malliavin (Paris, 1987-88) Lecture Notes in Math. 1404, Springer (1989) 108-126.



27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

SIMPLY CONNECTED TAME QUASI-TILTED ALGEBRAS 19

Happel, D.: Triangulated categories in the representation theory of finite dimen-
sional algebras, Cambridge Univ. Press, Cambridge (1988).

Happel, D.: Quasitilted algebras, Can. Math. Soc. Conf. Proc. Vol.23 (1998)
55-81.

Happel, D. and Reiten, I.: Hereditary categories with tilting object, preprint (1998).
Happel, D., Reiten, I. and Smalg, S. O.: Tilting in abelian categories and quasitilted
algebras, Memoirs Amer. Math. Soc., No.575, Vol.120 (1996).

Happel, D. and Ringel, C. M.: Tilted algebras, Trans. Amer. Math. Soc. 274, No.2
(1982) 399-443.

Lenzing, H. and Skowroniski, A.: Derived equivalence as iterated tilting, preprint
(1999).

Martinez-Villa, R. and de la Penia, J. A.: The universal cover of a quiver with
relations, J. Pure Applied Algebra 30 (1983) 277-292.

de la Pena, J. A. and Tomé, B.: Iterated tubular algebras, J. Pure Applied Algebra
64 (1990) 303-314.

de la Pena, J. A. and Saorin, M.: The first Hochschild cohomology group of an
algebra, preprint (1999).

Ringel, C. M.: Tame algebras and integral quadratic forms, Lecture Notes in Math.,
Vol. 1099, Springer (1984).

Skowroriski, A.: Simply connected algebras and Hochschild cohomologies, Can.
Math. Soc. Conf. Proc. Vol.14 (1993) 431-447.

Skowronski, A.: Tame quasi-tilted algebras, J. Algebra 203 (1998) 470-490.

Ibrahim Assem

Département de Mathématiques et d’Informatique
Université de Sherbrooke

Sherbrooke, Québec

Canada, J1IK 2R1

ibrahim.assem@dmi.usherb.ca

Flavio Ulhoa Coelho

Instituto de Matematica e Estatistica
Universidade de Sao Paulo

Rua do Matao 1010

05508-900, Sao Paulo, SP

Brasil

fucoelho@ime.usp.br

Sonia Elisabet Trepode

Departamento de Matemaéticas

Facultad de Ciencias Exactas y Naturales
Universidad Nacional de Mar del Plata
Funes 3350

76 000 Mar del Plata

Argentina

strepode@mdp.edu.ar



