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Abstract

It is known that the incidence algebra of a finite poset is not strongly simply connected
if and only if its quiver contains a crown. We give a combinatorial condition on crowns
which, if satisfied, forces the incidence algebra to be simply connected. The converse is
not true, but we show that a simply connected incidence algebra which is not strongly
simply connected always contains crowns satisfying this condition.
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1 Introduction.

The objective of this paper is to study whether the incidence algebra of a finite partially ordered set
(poset) or, equivalently, a finite simplicial complex, is simply connected. This is well known to be an
undecidable problem (because it can be reduced to a word problem) and therefore it is impossible
to find a necessary and sufficient condition. We give here a sufficient condition, which also yields a
necessary condition.

Our motivation comes from the representation theory of finite dimensional algebras over an al-
gebraically closed field k. For such an algebra A, there exists a (uniquely determined) quiver ) 4
and (at least) a surjective algebra morphism v from the path algebra kQa of Q4 onto A, whose
kernel is denoted by I,, see [BG]. The algebra A is called triangular if )4 has no oriented cycles.
For each pair (Q4,I,), called a presentation of A, one can define the fundamental group 7 (Q 4, I,,),
see [G, MP]. A triangular algebra A is called simply connected if, for every presentation (Q 4,1, ) of
A, the group m(Qa4,I,) is trivial [AS]. If A is an incidence algebra, then all its presentations yield
isomorphic fundamental groups [BM], and A is simply connected if and only if so is the associated
simplicial complex (namely, the chain complex of the poset) [B, R]. Simply connected algebras have
played an important role in representation theory: indeed, covering techniques allow to reduce many
problems to problems about simply connected algebras.

In this paper, we are interested in finding conditions for simply connectedness. If the algebra
A is representation—finite, that is, admits only finitely many isomorphism classes of indecomposable
modules, then there exists a handy combinatorial criterion, known as the separation condition (see
before (5.3) below) allowing to verify whether A is simply connected or not [BLS]. If, on the other
hand, A is representation—infinite, then the separation condition is a sufficient condition for simple
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connectedness, but is not necessary [S]. On the other hand, it was shown by Drixler [D] that an inci-
dence algebra A is strongly simply connected (that is, the incidence algebra of every convex subposet
of A is simply connected) if and only if the quiver of A contains no crowns, thus yielding another
sufficient condition for A to be simply connected. Crowns are well-known in the combinatorics of
posets, and are associated to their dismantlability (see, for instance, [CF, DR]). Here, we generalize
this notion to that of a weak crown and describe a combinatorial operation, which we call suspension,
and its dual, sustension, which we perform systematically on weak crowns (see (3.1) for the defin-
itions). This allows us to define the notion of completeness of a weak crown (see (4.1)). We then
prove the following theorem.

THEOREM. Let A be the incidence algebra of a finite poset. If A is not strongly simply con-
nected, then:

(a) If every crown in A is complete, then A is simply connected.
(b) If A is simply connected, then there exists a complete crown in A.

(c) A is simply connected if and only if every crown in A is homotopic to a complete crown.

Note that there exist simply connected incidence algebras which satisfy condition (a) of the
theorem but whose associated simplicial complex is not contractible (see (4.7)(c)).

Since our point of view and our intuition are mainly algebraic, we introduce in section 2 all the
necessary terminology and results needed from the representation theory of algebras. Sections 3 and
4 are devoted to the proof of part (a) of the theorem and, after a section 5 devoted to reduction
lemmata, we prove (b) and (c) in section 6.

2 Preliminaries

2.1 Algebras and quivers.

Throughout this paper, k will denote a fixed algebraically closed field. By algebra is meant an
associative, finite dimensional k—algebra with an identity which we moreover assume to be basic
(that is, A/rad A is a direct product of copies of k). Since we are interested in the representation
theory of A, thus in the category mod A of finitely generated right A—modules, the latter hypothesis
entails no loss of generality.

A (finite) quiver @ is a quadruple (Qo, @1,s,t) consisting of two finite sets: Qo (the set of
points) and @; (the set of arrows) and two maps s,t : ()1 — (o which associate to each arrow
a € Y its source s(a) € Qo and its target t(«) € Qp. Thus, one may think of a quiver as being
a directed graph. A relation in a quiver ) from a point z to a point y is a linear combination
p = > Aw; where, for each ¢ with 1 <14 < m, A; is a non-zero scalar and w; is a path of length
at least two from z to y. A set of relations in ) generates an ideal I in the path algebra k@ of
Q. We denote kQ(z,y) the k—vector space generated by all paths in @ from z to y. For an algebra
A, we denote by Q4 the ordinary quiver of A. For every basic algebra A, there exists a surjective
k-algebra morphism v : kQ 4 — A (induced by the choice of a set of representatives of basis vectors
in the k-vector space rad A/ rad” A) so that A ~ kQ4/I,, where I, = Kerv (see [BG]). The pair
(Qa,1,) is called a presentation of A. An algebra A = kQ/I can equivalently be considered as a
k—category of which the object class Ay is the set Qg, and the set of morphisms A(x,y) from z to y is
the quotient of kQ(z,y) modulo the subspace I(z,y) = INkQ(z,y) (see [BG]). A full subcategory B
of A is called convex if any path in A whith source and target in B lies entirely in B. An algebra A
is called triangular if () 4 has no oriented cycles. The present work deals exclusively with triangular
algebras.



2.2 Modules and representations.

Let A = kQ/I be an algebra. A (finite dimensional) representation M of () is defined by assigning
to each € (o a finite dimensional k—vector space M (z), and to each arrow « :  — y a k-linear
map M(«a) : M(z) — M(y). The representation M of @ is said to be bound by I if, whenever
P =Yty Nt @iy ..., is a relation in I (with the A; non—zero scalars and the a;; arrows), then
S MM (g, ) ... M(ai,)M(a;,) = 0. A morphism f : M — N between bound representations
is a family of k-linear maps f, : M(xz) — N(z) such that, if a : * — y, then N(a)f, = f,M(a).
Thus, bound representations of A = k@Q/I are just functors from the k—category A to mod k. This
yields a category of bound representations of A, which is equivalent to the category mod A (see
[BG]). Accordingly, in the sequel, we identify these two categories, and view our modules as bound
representations.

For an A-module M, we denote by supp M its support, that is, the full subcategory of A
generated by the © € Ag such that M (z) # 0. For each z € Qo, we denote by S, the corresponding
simple A-module, and by P, (or I,) the projective cover (or the injective envelope, respectively) of

S

2.3 The fundamental group.

Let @ be a connected quiver without oriented cycles and I be an ideal of kQ) generated by a set of
relations. A relation p = 31" | \w; in I(xz,y) is called minimal if m > 2 and, for every non-empty
proper subset J C {1,2,...,m}, we have ZjeJ Ajw; ¢ I(z,y).

For an arrow a € @1, we denote by ! its formal inverse. A walk of length ¢ in @ from z to y is
a formal composition af'as? ...ag* (where o; € Q1 and €; € {1, —1} for all 4 with 1 < i < t) starting
at z and ending at y. We also have walks of length zero, these are the trivial paths: we denote by e,
the trivial path at z.

We define the homotopy relation ~ to be the smallest equivalence relation on the set of all

walks in @) such that:
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(a) If o : ¢ — y is an arrow, then o 'a ~ e, and aa™' ~ e,

(b) If p=>", Ajw; is a minimal relation, then w; ~ w; for all 7,7 such that 1 <4,j < m.
c) If u ~ v, then wuw' ~ wvw' whenever these compositions are defined.

We denote by [u] the equivalence class of a walk u. Let 29 € Qo be arbitrary. The set 1 (Q, I, o)
of equivalence classes of all closed walks starting and ending at zo is a group under the operation
induced from the composition of walks. Since, clearly, the group 71 (Q, I, zo) does not depend on the
choice of zg, we denote it by m1(Q, ) and call it the fundamental group of (Q, I), see [G, MP].

Let now A be a triangular algebra, and (Q 4, I,)) be a presentation of A. The fundamental group
m1(Qa,I,) depends essentially on I, and thus is not an invariant of A, see, for instance, [AP, (1.4)]
. A connected triangular algebra A is called simply connected if, for any presentation (Q4,I,) of
A, the fundamental group m (Q 4, I,) is trivial [AS].

2.4 Incidence algebras.

Let (¥, <) be a finite poset with n elements. The incidence algebra A = A(X) of ¥ is the subalgebra
of the algebra M, (k) of n x n square matrices over k consisting of the matrices (z;;) satisfying z;; = 0
if j £ 4. In particular, A(X) is a basic finite dimensional algebra.

An incidence algebra A = A(X) can also be given by a quiver with relations. The quiver @ 4 of
A(X) has as points the elements of ¥. For z,y € X, there is (exactly) one arrow from z to y if and
only if y < x and there is no element z € ¥ such that y < z < x (we then say that = covers y).



In other words, @4 is the Hasse diagram (also called covering diagram) of the poset ¥. Given two
paths v and 4" in @ 4, we say that « and ' are parallel if they have the same source and the same
target. The ideal I is then the ideal generated by all differences v — ', with ~,+' parallel paths, and
then A ~ kQ4/I (see, for instance, [C, H, GR]).

Observe that, if A = A(X) is an incidence algebra, then the full (or full convex) subcategories of
A coincide with the incidence algebras of the full (or full convex, respectively) subposets of X.

It follows from [BM, (3.5)] that, if A is an incidence algebra then the fundamental group is
independent of the presentation. Thus, for such an algebra, the notation 7 (A) is not ambiguous.

It is important to note that the fundamental group of an incidence algebra is also the fundamental
group of a finite simplicial complex. Indeed, let A = A(X) be an incidence algebra, and |X| be
the chain complex of ¥ (that is, |¥| is the simplicial complex whose i—simplices are the chains
Top <1 < ...<xin X), then we have m (4) ~ m(|X]) (see [B, (2.2)], [R, (2.1)]). Conversely, if K
is a finite simplicial complex, and ¥ is the set of its non—degenerate simplices ordered by inclusion,
then m (K) ~ w1 (A(Z)) (see [B, (3.5)]).

Finally, if A is an incidence algebra, then it is particularly easy to describe the simple modules
and the indecomposable projective and injective modules. Indeed, let x € Ag, then S, is given by
Se(z) =k and Sg(y) =0 for y # x, and S;(a) = 0 for all arrows . Its projective cover P, is given
by Py(y) = kif ¢ > y and P,(y) =0 if  # y; moreover, P,(a) = idy, if © > s(a) and Py(a) = 0 if
x # s(a). The injective envelope I, of S, is constructed dually.

3 Weak crowns

An algebra A is called strongly simply connected if every full convex subcategory of A is simply
connected. It was shown in [D, (3.3)] that an incidence algebra is strongly simply connected if and
only if it contains no crown. This leads to the following definitions.

DEFINITION 3.1 Let ¥ be a poset, and A = A(X) be its incidence algebra. Let T be a full
subcategory of A generated by 2n points {x1,...,%Tn,Y1,.-.,Yn} (with n > 2) and of the form

I T2 Tn
Un
Uil oS U2 . Vp—1 = Un (*)
Y1 Y2 Yn

1) We say that T is a weak crown if:

(a) For each i, the convex hull of {x;,y;} in ¥ intersects those of {x;—_1,y;} and {z;,yit1},
and of no other {zn,y1} (here, and in the sequel, we agree to set y,+1 = y1 and To = x,, ).

(b) The convex hulls of three distinct {xp,y;} do not intersect.

2) A weak crown T is said to be a crown if, for each i, the intersection of the convex hulls of
{zi,y:} and of {z;,yix1} is z;, and the intersection of the convex hulls of {x;_1y;} and of
{ziyi} is yi.

3) Given a weak crown T of the form (x), we define its width w(T') to be n. Thus, for any weak
crown T', we have w(T') > 2.

4) Let T be a weak crown. A point x not in T' is said to suspend T if x is a proper predecessor
of at least two non—comparable points of T, and no proper successor of x is a predecessor of
the same points of I'. A suspending point x is said to be a top of I if x is a direct predecessor
of all the maximal points of T'. We define dually points which sustain T', or which lie at its
bottom.



5) LetT be a weak crown, and let x € ¥ suspend . The suspension I'* of T is the full subcategory
of A generated by x, all the minimal points of T' and those of its maximal points which are not
comparable to x. We define dually the sustension 'y, of ' at a point which sustains it.

6) A circumference of a weak crown T of the form (%) above is a cyclic walk w = wi*ws? ... wy2"

where, for each i with 1 < i < 2n, we have that ¢; € {1, —1} and w; is a path parallel to one of
the paths uy, - -, Up, vy, -, U, and such that, moreover, each u; or v; is parallel to exactly one
of the w;.

Given a point x in a weak crown I, there exist many circumferences of I' starting and ending at
x. We refer to all of them as circumferences of T' at x. For instance, viuj ‘vz -+ - vp_1u;, 'vauy " and
uyvy, tuputy vy tuguy ! are circumferences of T at ;. We observe that any cirumference of T' at
z1 is homotopic to one of these two circumferences. On the other hand, it is easily verified that, for
any ¢, every circumference of I' at z; is homotopic to a conjugate of a circumference of I' at z;_1,
and is also homotopic to a conjugate of a circumference of " at y;. Thus, if a circumference of T is

homotopic to a trivial walk, then so are all the circumferences of T'.

In the poset ¥ with Hasse diagram

ANVAN
\/A/

the elements {z1,z2,y1,y2} generate a weak crown of width two which is not a crown. We now show
that the convex hull of a weak crown always contains a crown.

LEMMA 3.2 The convex hull of a weak crown I' contains a crown as a full subcategory, with a
circumference homotopic to a circumference of I.

Proof.  Assume that ' is not a crown. Then we may assume that either the intersection of the
convex hulls of {z1,y;} and {z1,y>} contains a point z # z1,y1, y» or the intersection of the convex
hulls of {z1,y:} and {z,,y1} contains a point z # x1,Z,,y;.

In the first case, the 2n points z,xs, -, T, Y1, Y2, -, Yn generate a weak crown IV, This follows
from the fact that the convex hull of {z,y;} is contained in the convex hull of {z1,y;} for all I. In
the second case, the points x1,x2, -, Tn,2,¥2, *,Yn generate a weak crown I'. In either case, IV
has a circumference homotopic to a circumference of I'. If IV is not a crown, then we can iterate
the procedure. Since the convex hull of TV is strictly contained in the convex hull of T', after a finite
number of steps we obtain a crown , as desired. a

We now give a useful characterization of weak crowns.
LEMMA 3.3 Let A be an incidence algebra, and T be a full subcategory of A, of the form (x). Then
I is a weak crown if and only if:
(a) n =2, and the convex hulls of {z1,y1} and {x2,y>2} do not intersect, or
(b) n > 2 and the only pairs of distinct comparable points in T are of the form (x;,y;) and (x;,yi+1),
or of the form (z;,y;) and (x;_1,y;), for each i.

Proof.



(a) Indeed, if the convex hulls of {z1,y:} and {z2,y>} intersect, then so do the convex hulls of
{xlayQ} a‘nd {m27y1}-
(b) The proof is straightforward.

REMARK 3.4
(a) If T and T' are weak crowns and the points of T’ are among those of T, then T =T".

(b) The suspension I'* of a weak crown T’ of A at a point x is the full subcategory generated by the
maximal and the minimal elements of the full subcategory of A generated by I' and x.

The basic observation of our work is that the suspension of a weak crown decomposes uniquely
as a union of weak crowns. We show the process on an example.

EXAMPLE 3.5 Let

1 Zsg
| l
Y1 Y2 Y3 Ya Ys Ye Y7 Ys
be a full subcategory of an incidence algebra A, and let " be the weak crown with points Ty, -, Tg, Y1, -

The suspension I'* is the full subcategory obtained by deleting the points x1,x2, x4

Ts

|

Y1 Y2 Y3 Ya Ys Ye Yr ys

Thus, the suspension is the union of four weak crowns and a full subcategory s generated by two
points, all having in common the point x:

pP2u2
s r —> Y2
F3 CC V3 F5 CC (%5
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v v
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Moreover, if we consider the following circumference of I' starting and ending at y, containing the
walk u;*, then we have

uflvlu;lU2u;lv3u21v4ug1v5ug1v6u;1v7uglvg
-1 -1 -1, -1 -1 -1, -1 -1 _—1_ -1 -1
~ Uy P P2U2Ug V3UL Py Palslly UsOg Ogllg VeOy O7lly  Urllg U

~ (prur) " (pavaug twsuy Py ) (pavaus vsog ) (osug tveoy V) (orur forug usuy oy ) (prug)

that is, this circumference is homotopic to a conjugate of the product of circumferences of each of the
weak crowns in the decomposition, all starting and ending at x.

In the sequel, it is useful to refer to full subcategories of the form z — y as sticks and to full
subcategories of the form

I o

N

zZ

SN

Y1 Y2

as crosses. The decomposition of the following proposition is referred to as the canonical decom-
position.

PROPOSITION 3.6 Let T be a weak crown in an incidence algebra A, and let © suspend T'. Then:

(a) The suspension I'* of ' at © can be written uniquely as a union of weak crowns, crosses and
sticks all having in common the point x.

(b) The width of each weak crown in the decomposition of (a) is smaller than the width of T,
unless x© precedes no mazimal point of T, and = precedes exactly two minimal points which are
consecutive.

(¢) The product of circumferences, all starting and ending at x, of the weak crowns in the above
decomposition of T'* is homotopic to a conjugate of a circumference of T'.

Proof. Let, as in (3.1), z1,...,z, denote the maximal points of ', y;,...,y, denote its minimal
points, and let u; : ©; = y;, v; : ; — y;+1 be paths in A (where, as usual, y,+1 = y1). Moreover, we

define v; ; to be the walk u; 'vju; ;.. w2 vj—1 from y; to y;.

(a) Assume that z precedes yn,,Yhs,--.,Yn, and no other y;, where hy < he < ... < h, (and
we agree that hpy1 = hy). Let Cp = {i: 1 < i <randz 2 xp,} and let Cf = {i :
i € Cp and there exists a point u such that ys,,yn,,, < v <, x4, }. Now, for each i € Cy, let
['; be the full subcategory of A generated by z,zn,, yn,,Yn.,, and, for each i € Cp \ C§, let T';
be the full subcategory of A generated by the points

i+1

ThiyThi+1r-+3Thip1—1sLyYh;s Yhi+15- 3 Yhjyq-

It follows from the definition of C} that I'; is a cross for each i € C). We prove next that,
for each i € Cy \ Cf, T'; is a weak crown contained in the suspension I'*. Since x precedes yp,
and yp,,,, and no other y; in I';, we only have to consider the intersections of the convex hull
of {z,y;}, with that of {z,,y;} in I';, for | = h; and | = h;11. We study only the first case
since the second one is analogous. So we assume that the convex hull of {z,ys,} intersects the



convex hull of a set {z4,y:}. Then x precedes y;, so t is either h; or h;y;. From (3.3), s is h;
or h;11 — 1 respectively. Hence the convex hull of {x,ys,} can only intersect with the convex
hull of {z,yn, 1 }, {Th:s Y } oF {Thiy1—1,Yhiy, }- If it intersects the convex hull of the third set,
there exists a point u such that ys,,yn, ., < v < o,Th,,—1. But in this case hj;1 = h; +1
and hence i € C{, a contradiction. We only need to prove now that the convex hulls of three
pairs of points of I'; do not intersect, and this reduces to prove that the intersection of the
convex hulls of {z,yn,}, {z,yn,,, } and {xn,,ys,} is empty. Otherwise, we have i € Cj, again
a contradiction. So I'; is a weak crown for each i € Cp \ Cj.

If i € Co, then hjypy =h;+1. Welet C; ={i:1<i<r,ig€Coandi—1¢ Cp} and, for each
1 € C1, we let I'; be the stick z — yp,;.

We prove next that I'* = U;cc,uc, I'i- We note that the points of I'* are z, all the z; such that
x # x; and all the minimal points yi,...,y, of I'. So, let h be such that 1 < h < n and ¢ be
such that h; < h < hijy1. If i € Cy then, by definition, z; and yj, are points in I';. If i & Co,
then = > x5 and hence x, is not a point of ['*. We then have two cases. Firstly, if i ¢ C1,
then i — 1 € Cy and h = h; so that yp belongs to I';_;. Secondly, if i € Cy, then I'; is the stick
x — yp, which contains yp,. This establishes that ['* = Ujec,uc, i

Now, we show that this decomposition is unique. In view of (3.4), it suffices to prove that, if T
is a weak crown containing x and with maximal and minimal points among those of I'*, then I/
is one of the weak crowns in the decomposition just described. So, let I be such a weak crown.
There exist two consecutive maximal points of T', say z; and x5, such that z; does not belong
to IV, while x5 does. Then the maximal points of I are contained in the set {zs,...,z,,z}. In
this set, the only z; preceding y» is x2. Moreover, I’ is a weak crown, so there are two maximal
points preceding y>. Therefore, x precedes y». Let ¢ be the least index such that x; belongs
to I, while z;41 does not belong to I'" (recall that x,+1 = x1). Then z; > y;41 gives that
yi+1 belongs to I''. Since y;41 has exactly two predecessors among the maximal points, then
T > Yir1. Thus, xs,...,z;, ¢ are maximal points of IV, each of them having two minimal points
of T as successors. Thus, necessarily, ya,...,¥;+1 are among the minimal points of the weak
crown I''. Consequently, the weak crown I' generated by the points s, ..., Z;, T, Y2, . - ., Yit1
has its points among those of I''. By (3.4)(a), we infer that I = I. But I'"’ is one of the weak
crowns in the described decomposition, and this proves that I'' is one of them, as desired.

For i € Cy, we have w(I';) = hyy1 — h; +1 < n. Assume that the equality holds for some 7, and
that h; =1, so¢ = 1. Then h;y; = n, so that the only minimal points of I' preceded by z are
y1 and y,. If = precedes a maximal point zp, then x precedes also yp, and yp+1, and therefore
h = n, since we are assuming that 1 € Cp. Since a proper successor of z, namely x,, is a
predecessor of the two non—comparable points y; and ¥, it follows that x does not suspend T,
a contradiction. Therefore, z precedes no maximal points and it precedes exactly two minimal
points which are consecutive, as desired.

Let o; denote a fixed chosen path from z to yp,. When i € Cy, that is, when z > zp,,, there is a
path p; from z to zj, and we have o; ~ p;up,, oi41 ~ p;vp;. Thus U;lgi+1 ~ u,;lvhi = Yhihig -
Moreover, if i,i+1,...,i+j — 1 & Cp, then

Uzlai+j ~ (o-iilo-i+1)(gi7+110-i+2) .- (U$j710i+j) ~ Yhihigr == Yhigj—1,hiv; = Vhihigj-

For any i € Cy, we consider the walk w; = Ui,)/hi7hi+1a1;-11 of I';. We now show that the product
of the w;, with ¢ € Cy, is homotopic to a conjugate of a circumference w of I'. If ¢, + 1 € Cy,
then wjwit1 ~ 03Vh hiyaOiro- 1 i,i+j € Co,and i+ 1,...,i+j — 1 & Cp, then, using the
relation above, we get

— . 71 . . 71 . 71
WiWitj = OiVhihit1 93419145 Vhitj,hitj1 Oitjt1 ™ OiVhihivr Vhiga,hiv; Vhivg,hivis1 4541+



Hence HiECo w; ~ 017h1,h,,+10;+11 = alwafl with w = Yp, h,,, (We recall that h,.1 = hy).
Finally we observe that if i € C{), the walk w; ~ e, because the underlying graph of the cross
is a tree. So [[;ec, wi ~ [lieco\c wi-

O

We remark that the condition in (b) is in fact necessary and sufficient. Indeed, in the poset with
Hasse diagram

x
x x T3
Yt 2 3

the suspension I'* of the weak crown ' generated by {z1,z2,%3,¥y1,¥y2,ys} is a union of two weak
crowns of respective widths two and three.

Let z suspend a weak crown I'. We define the width w(I'*) of I'” to be the maximal width of
all the weak crowns in the canonical decomposition.

COROLLARY 3.7 Assume that x suspends I, and precedes at least one mazximal point, or two
minimal non—consecutive points of T, then w(I'*) < w(T).

4 Completeness of a weak crown.

We are now able to define the notion of a complete weak crown, which is essential to our study, and
we do it by induction on the width of a crown.

DEFINITION 4.1 LetT be a weak crown.

(a) Ifw(I') =2, then T is said to be complete if there exists a point which suspends T' and precedes
its two maximal points or, dually, there exists a point which sustains I' and succedes its two
minimal points.

(b) If w(T) > 2, then T is said to be complete provided one of the following conditions is satisfied:

(i) There exists a point © which suspends T' and precedes at least two mazimal points of T
and, moreover, each weak crown in the canonical decomposition of I'® is complete or,
dually,

(i) There exists a point x which sustains T' and succedes at least two minimal points of T
and, moreover, each weak crown in the canonical decomposition of 'y is complete.

EXAMPLE 4.2 An inmediate ezample of a complete weak crown is that of a weak crown I' such
that there is a point x preceding all its mazimal points. In this case, only sticks occur in the cannonical
decomposition of T'*.

LEMMA 4.3 Let ' be a complete weak crown. Then any circumference of T' is homotopic to a
trivial walk.



Proof. Suppose w(I') = 2. Then, up to duality, we have the following picture
x
n N
T2

x
U1
U1l l U2
v
Y1 2 Y2

and viuy 'voui ~ p7papy pr ~ e,

Suppose w(I') > 2. By (3.6)(c), a circumference of I" is homotopic to a conjugate of the product
of circumferences of the weak crowns in the canonical decomposition of I'*. By induction, this latter
product is homotopic to a trivial walk. Hence the statement. a

LEMMA 4.4 Let w be a cyclic walk in an incidence algebra A having least number of sinks (or,
equivalently, of sources) among the cyclic walks which are not homotopic to a trivial walk. Then the
full subcategory I' of A generated by the sinks and the sources of w is a weak crown.

Proof. We may assume that w = vlugl cee vnufl with u; a non—trivial path from z; to y;, and v;
a non-trivial path from z; to y;11, for each ¢ with 1 < ¢ < n (where we set y,+1 = y1). Then T is
generated by the sinks and sources z1,...,%,,¥1,--.,Yn. Furthermore, we may assume that these
points are all different. Otherwise, we can replace w by a walk w' passing exactly once through its
sinks and sources, and not homotopic to a trivial walk. Then the full subcategory of A generated by
the sinks and the sources of w’ coincides with T.

Clearly, n > 1 since otherwise w would be homotopic to a trivial walk. If n = 2 and the
intersection of the convex hulls of {z1,y;} and {z»,y>} is non—empty, then w is homotopic to a trivial
walk, contradicting our assumption. Therefore, such an intersection is empty and w is a weak crown,
by (3.3)(a). So, let n > 2. According to (3.3)(b), in order to prove that w is a weak crown, we have
to prove that the only pairs of comparable elements among the z; and the y; are of the form (z;,y;)
and (x;,yi;+1). Assume that x; and x; are comparable. We may assume without loss of generality
that 1 =4 < j and that z; > z;. Let o be a path from z; to z; .

——— —U_
- - - = — -
P o~
s ~ < .
x1 T2 ~ &Lj v Tn
Ull V1 U2 Vs U; Vp1 Unl
hn Y2 Yji Yn

Then w equals the union of the two cycles w; and ws represented by:
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T T2 Tj-1
Vj—1
O"U/j v U2

Yj Y2 Yj—1

— I -1 — =1 Tl )1
Let w; = (av])ujﬂvﬁl uytopuy and we = viug ujilvj,l(auj) . Then w; and wy are

cyclic walks each having less sinks than w and wew; ~ w. Since w is not homotopic to a trivial walk,
then this is the case for at least one of w; and ws, contradicting our minimality assumption.

We treat by duality the case where y; and y; are comparable, and we assume next that z; and yj
are comparable, where h ¢ {i,7 4+ 1}. We may assume without loss of generality that 1 =i < h —1
and z; is not comparable with z;. We can furthermore assume, by duality, that z; > y;,. Let o be
a path from z; to yp.

e _ 0O
- - o~ ~
- - ~ ~
-~
T Z2 S - Th Up, Tn
~N

ull V1 U2 V2 Up—1 “”l
Y1 Y2 Yn Yn

Then w equals the union of two cycles w; and wy represented by

w1
T1 Th Tn
Un
u1 g Un .. Un—1 Un
Y1 Yn Un
w2
T T2 Th—1
Vh—-1
o 1 U2 vp—o~Yh—1

Yh Y2 Yn—-1

Setting w; = nglvh - -uglvnufl and wy = v1u2_1 - -u;ilvh_la’l, we have w ~ wyw; and the
argument continues as before. g

PROPOSITION 4.5 Let A be an incidence algebra. If A is not simply connected, then A contains
a crown I' whose circumference is not homotopic to a trivial walk.

Proof. Since A is not simply connected, it contains cyclic walks which are not homotopic to trivial
walks. Consider all such cyclic walks in A having least number of sinks (or, equivalently, of sources),
then choose among them one of minimal length, and call it w. By (4.4), the sinks and the sources
of w generate a weak crown I' in A. Moreover the minimality of the length of w implies that, for
each i, the convex hulls of {z;,y;} and {z;,y;+1} intersect only at x; and, dually, the convex hulls of
{zi—1,y;} and {z;,y;} intersect only at y; Thus, I' is a crown. O

11



COROLLARY 4.6 Let A be an incidence algebra, and assume that every crown in A is complete.
Then A is simply connected.

Proof.  1If this is not the case, then, by (4.5) there exists a crown I" whose circumference is not
homotopic to a trivial walk. By (4.3), this implies that I" is not complete, a contradiction. g

EXAMPLE 4.7 The first two examples show that the converse of (4.6) is not true, and the third
shows an incidence algebra satisfying the hypothesis of (4.6) but whose associated simplicial complex
is not contractible.

(a) Let A be given by the poset with Hasse diagram
T )

< NN,
5=

Then A is simply connected, but the crown generated by the points {x,zs,y1,ys} is not complete.

(b) Let A be given by the poset with Hasse diagram

e T

21 22 Z3

Then A is simply connected. Let T' be the crown generated by the points T1,...,T5,Y1,...,Y5.
Then the suspension I'* is complete, while T'Y is not.

(c) Let A be given by the poset with Hasse diagram

T T2

<
T

21

Clearly, every crown in A is complete and therefore A is simply connected. On the other
hand, the geometric realisation of the associated simplicial complex is an octahedron in three
dimensional space, and therefore is not contractible.
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5 Reduction lemmata.

In order to prove our main theorem, we need a couple of lemmata which allow us to do induction
on the number of points in A. The first reduction is well-known (see for instance, [CF, (3.7)] or [B,
(3.4)]), we give however an independent proof for the convenience of the reader.

LEMMA 5.1 Let A be an incidence algebra and x be a point in A such that there exists a unique
arrow o : © — y with source x, and let B be the full subcategory of A generated by all objects except
x. Then m (B) = m (A).

Proof.  Let y be the base point of both 7 (A) and 71 (B). We construct group morphisms ¢ :
m1(A4) = m(B) and ¢ : 71 (B) — 71 (A), and show that they are inverse isomorphisms by showing
that 1 is surjective and that ¢y = 1.

To construct v, we first let W, and Wy denote respectively the set of walks in A and in B, then
define 1) : W4 — Wg as follows

@(ex) Yiey) = ey

ﬂ(ez) = e if z#x,y

y(a) = €y

vpB) = B for any arrow  # « such that ¢(3) # «

Let ¢ be an arrow with ¢(§) = x. If there exists at least one path v in A which is parallel to da, we
choose one such v and set ¥(d) = v. Otherwise, we set 1)(§) = &', where ¢’ is the arrow in B from
s(9) to y.

For any arrow &, we set t(¢71) = (€)1 and, for any walk w = £'€5% ... €5 (where the &; are
arrows, and €; € {+1, —1} for all ¢ such that 1 <1i < m), we set

P(EES - 6r) = P(E) (&) . P (Em)

Then v induces a group morphism 1) : 71 (A) — 71 (B): indeed, we must check that, if w and w’ are
parallel paths in A, then ¢)(w) and (w') are parallel in B, and this is clear from the above definition,
because 1 (w) and 1) (w') have the same endpoints. Moreover, 1 is surjective, hence so is 1.

We now construct a group morphism ¢ : 7 (B) — 7 (A) as follows. Let ¢ : W — Wy be
such that ¢(e.) = e. for all z, ¢(B) = B for all B # &' (where ¢’ is as above) and, for any such
', let #(8") = 6a. We extend ¢ to walks in the obvious way. Again, ¢ induces a group morphism
¢ : 7 (B) — m (A): if w and w' are parallel paths in B, then ¢(w) and ¢(w') have the same endpoints.

To finish, we must prove that ¢ = 1. Let w be a closed walk in W4 through y. If w does not
pass through a and the arrows & of terminus z, then, clearly, ¢ ¥(w) = w. If w = wid;a (where §;
is an arrow of target x and we can assume that the walk w; does not pass through «) then we have
two cases to consider: 1(d;) = &} or ¥(6;) = v (where v is parallel to d;a). In the first case, we have
(¢ ) (w161a) = p(w16}) = widr . In the second case, we have (Y ¢)(w161) = 1)(wiv) = wyv which
is homotopic in A to wyd;. The last case we have to consider is that of w not passing through «a
but passing through arrows with target . Then w = w1616;1w2 (where we can assume that neither
w1 nor wy passes through an arrow of target x). We then have to consider three cases, up to duality:

1) ¢(61) = 01, 6(d2) = 0.
2) 5(51) =1, 5(52) = 55-

3) ¢(51) =1, ¢(52) = V3.

We have, respectively,
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].) (%)(wﬁl&;lu@) = E(wléiéglwg) = wlélaa*16glw2 ~ w1616;1w2.

2) (W)(wléléglwg) = E(wlvléglwg) = w11 ((520&)_111)2 = wl’UlOé_l(s;le ~

wlélaa_léglua ~ w16162_1w2.
3) (%)(wﬁl&;lu@) = E(U}1U1U2_1UJ2) = ’11}11)1’[)2_111)2 ~ W1 ((51&)(62&)71102 ~ ’11)16152_1102.

O

The reader will observe that, in the situation of the lemma, the simplicial complex corresponding

to B is a deformation retract of the one corresponding to A and, in fact, the proof consists in
constructing a retraction to the inclusion of B into A.

Before stating our second reduction procedure, we need a lemma, which generalizes an idea used
in [AMP, (2.2)(2.3)]. Let « be a source in A and 2™ be the set of all arrows starting at z. Following
[AP, (2.1)], we let = be the smallest equivalence relation on ™ such that a ~  whenever there exist
paths u, v in A such that au and Bv are parallel paths. We denote by [a] the equivalence class of
an arrow a € £ and we associate to [a] a graph G[a] as follows. Assume that [a] = {ou,, -, a4, }.
Then G[a] has r vertices. Let M; = {z € Ao : z < t(a;)}. Then the number of edges connecting a;,
and «;, is equal to the number of maximal points in M;, N M;,. The number of edges connecting a;,
and «y, is equal to the number of maximal points in M;, N M;, and the number of edges connecting
ai, and a4, is equal to the number of maximal points in M;, N M;,, which are not comparable with the
maximal elements in M;, N M;,. Assume that we have already constructed the edges connecting o, _,
and the a;, with 1 < h < j—2. Then the number of edges connecting «;; with a;, for 1 <h <j—1
is equal to the number of maximal points in M;, N M;, which are not comparable with the maximal
elements in M;, N M;, with 1 <1 <h—1.

LEMMA 5.2 With the above notation, G[a] is a tree if and only if x = s(a) tops no weak crown.

Proof. Suppose that x tops a weak crown

T
Clil Oéi Ckit
2
T T2 Tt
Ut
u1 v~ U2 . Vg1 Ut
Y1 Y2 Yt

This gives ai, — a;, — -+ - — a;, — @;, in G[a], which therefore is not a tree.
Conversely, if G[a] is not a tree, then it contains a circuit

ai] ait

Qs e a,_,

where we can assume that ¢ is minimum. Let x; = t(«y;), and My, = {z € Ag : z < t(ap)}. If t =2,
then we have two edges connecting «;, and «;,. These edges correspond to two maximal elements
Y1, Y2 in My N M;,. Then the convex hulls of {z1,y1} and {z2,y2} do not intersect, and, by (3.3),
{z1,T2,y1,y2} generate a weak crown topped by z.

Assume now that ¢ > 2. Since we have an edge connecting a;; and «;,,, there is at least a
maximal point in M;; N M;, , which is not comparable with the maximal points in M;, N M;,_, for
all 7 such that 1 <1 < j — 1. Let y;j;1 be such a point and x; = t(a;;). We now prove that the
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full subcategory of A generated by {1, --,z¢,y1, -,y } with y1 = y41 is a weak crown. Invoking
(3.3), we need to prove that the only pairs of comparable elements among the z; and the y; are of
the form (z;,y;) and (z;,y;j+1) (where, as usual, we set o = x; and y1 = yi+1). Now, two points
xn, 1 are not comparable, because «;, and «;, are arrows. By definition, yj, y; are not comparable
for h # 1. Now, y;, > x; implies x, > x; so h = [, a contradiction. On the other hand, if ; > y; for
h & {l,1+ 1}, then we get a circuit

Qg a,
Qipiq o Ay
contradicting the assumed minimality of ¢. O

We now recall the separation property [BLS]. Let z be a source in A, and B be the full sub-
category of A generated by all objects except x. Then z is said to be separating if the number of
indecomposable summands of rad P, (that is, the kernel of the canonical surjection P, — S,.) equals
the number of connected components of B. In general, a point y in A (not necessarily a source) is
called a separating point if y is separating as a source in the full subcategory of A generated by all
objects except the points z such that there exists a non—trivial path from z to y in A. The algebra A is
said to satisfy the separation property or is called separated if all the points in A are separating.
It is known that, if A is separated, then it is simply connected [S, (2.3)]. The dual notions are those
of coseparating points and coseparated algebras.

LEMMA 5.3 Assume that A is an incidence algebra and that x is a source in A such that rad P, is
indecomposable, and x tops no weak crown. Let B be the full subcategory of A generated by all objects
except ©. Then w1 (B) ~ w1 (A).

Proof.  Since rad P(z) is indecomposable, z is separating. By [AP, (2.2)] all arrows « in 2™ are
equivalent under the relation ~. Let G be the graph associated to this equivalence class, as described
before (5.2), whose vertices are in one-to—one correspondence with the arrows «; : £ — x; starting
at x (where 1 <i < n). Since z tops no weak crown, G is a tree (by (5.2)).

We may assume that a; corresponds to a simple vertex of G. Given any arrow «,. : £ — ., there
exists a unique sequence of vertices in GG associated to the arrows a1 = «a;,, a4y, +,a;, = a, with ¢
minimun such that there is an edge in GG connecting «;;, a;;,, for each j with 1 < j <r. Thus, each
pair (aij , C“ij+1) is involved in a commutativity relation a;; vy, i, = Qui; . Uij i, -

We take z; as base point for both 71 (A) and 71 (B) and define g : W4 — Wg as follows. We set

Plez) = Ples,) =eq,

Dley) = ey for all y # z,x;

E(al) = €y

ola,) = Uil,hui_l}ﬁviz,igu;% Vi, “iil,it for all r such that 1 <r <mn
pB) = B for all 8 # a,.

We extend ¥ to walks as usual. Assume w and w' are two parallel paths in A, then clearly, P(w)
and p(w') are parallel in B. Therefore, @ induces a group morphism ¢ : 71 (A4) — 7 (B). Also, @ is
surjective, hence so is .

On the other hand, the inclusion of B as a full subcategory of A induces a map ¢ : W — Wy
and a group morphism ¢ : m (B) — m1(A4). We claim that ¢ = 1, and this will finish the proof.
Let indeed w be a closed walk in A through z;. If w does not factor through any of the arrows
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starting at z, then it is clear that 9@ (w) = w. Otherwise, there exist r, s such that 1 < r,5 < n and
w=wia, la,we and we can assume that w, ws do not factor through any of the arrows starting at
x. Then Yp(wi e asws) = w1 'as)ws. On the other hand, let oy = ay,, vy, - - - , @, = a, and
i = aj,,Qj,, - - ., j, = ag be the unique sequences of arrows in #7 corresponding respectively to a,
and a, above defined, with the commutativity relations o, vi, i, = Qi, i Uiy iny, and v, 5, =
Qj, 1 Uy g, for all h,l. Then we have

1 —1 1

DAY = (0, -yl oy T gy, . -1 Lo alas ---aT o)L 1oy, = ¢
1/}(,0(6% ) - (vllJzuil,izvlzylsuiz,ig vlt—lyuuip,l,ip) ~ (al Qjp O, Qg aip,lalp) ~ aip a1 = a0,

hTA _ . . 71 . . 71 .. . . 71 71 . 71 . ... 71 . 71 . _— 71
Up(as) = Ujrga Wiy o Viasga Wiy js * " Viimrii Wiy _y g ™ X1 Qo @y Qg o= Oy~ Qg ~ O O, = Qg Qg

1

_ B ~ . B
so that Yp(wia; tasws) ~ wia, taja] asws ~ wia; tasws = w. a

LEMMA 5.4 Let A be an incidence algebra, x be a source in A, B be the full subcategory of A
generated by all objects of A except x, and A’ be the full subcategory of A generated by x and one of
the connected components of B. Then the morphism ¢ : m(A'") — w1 (A) induced by the inclusion
admits a retraction. In particular, if A is simply connected, then so is A’.

Proof. We take x as a base point for both A and A’ and define @ : W4 — Wy as follows. We set

Pley) = ey if y € Ay

ple:) = ey if z & A}

Pla) = « if « is an arrow in A’
p(B) = e if 8 is an arrow not in A’.

We extend @ to walks as usual. If w and w' are parallel paths in A, then B(w) and P(w') are parallel
in A". Therefore, P induces a group morphism ¢ : w1 (4) — m (A"). Also, P is surjective, hence so is
. _ _

Letting ¢/ : W4 — W4 be the map induced by the inclusion, it is clear that Py = 1, and therefore
@y = 1. The last statement is obvious. O

6 Proof of the main theorem.

We recall a few facts about Hochschild cohomology. Given an algebra A, the Hochschild complex
C* = (C%,d");ez is defined as follows: C* = 0, d* = 0 for i < 0, C° =4 A, C' = Homy (A%, A)
for i > 0, where A®? denotes the i-fold tensor product A ®j ... ®; A, d° : A — Homy (A4, A) with
(d°z)(a) = ax — xa (for a,z € A) and d' : C' — O with

dfa®...®aip1) = arfla2®...Qai)

(2

+ Z (1Y fla®...® Ajajt1 Q... Q Qiq1)
i=t

+ ()T @@ a)ain
for f € C' and ay,...,a;1; € A. Then H'(A) = H!(C*®) is the i-th Hochschild cohomology
group of A with coefficients in the bimodule 4 A4, see [CE].
There is a close relation between the first Hochschild cohomology group H'(A) and the fun-

damental group 71 (Q,I) of a bound quiver presentation (Q,I) of a triangular algebra A = kQ/I.
Indeed, denoting by k' the additive group of the field k, there exists a group monomorphism

Hom(m(Q,I), k") — H'(A)
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[AP, (3.2)]. Further, it follows from [PS, (3)] that, if A is an incidence algebra then this is an
isomorphism. Consequently, if an incidence algebra A is simply connected, then H'(A) = 0. For
further results, see [H, GS].

Let now ¥ be a poset, and  be obtained from ¥ by adding two points a, b such that a >z > b
for all x € ¥. We denote by A and A the respective incidence algebras of ¥ and 3. It is shown in
[1Z, (1.2)], [C, (2.1)] that H'(A) ~ Ext’(Sa, Sp).

LEMMA 6.1 With the above notation, we have
H'(A) ~ Ext; (rad P, I,/ Sp).

Proof. This follows from the aforementioned result and the short exact sequences
0—radP, = P, — S, =0

and
0—)5;,—)[1,—)[1,/5;,—)0.

O

PROPOSITION 6.2 Let A be an incidence algebra which is the convex hull of a crown T'. Then
HY(A) #0. In particular, A is not simply connected.

Proof. 1In view of (6.1), we only need to construct a non—split exact sequence 0 - N — E — M — 0,
where N = I},/S, and M = rad P,.

It follows from (2.4) that M (x) = k for each point © # a, M (a) = 0 and M (a) = 1 for each arrow
a such that s(a) # a. Dually, N(z) = k for each point x # b, N(b) = 0 and N(a) = 1 for each arrow
a such that t(a) # b.

a
I T2 Tn
N I\ N _ =
AN AN Uy =¥ |
Co LY - h !
Ull U1 U2 [ Unl*l
Y1 Y2 Yn

N//

b

Consider in A all the paths uy,,- -, u,, from x, to y, and, for each i such that 1 <4 < r, let 7,, be
the unique arrow of u,, with origin z,,. Since z1,---,2n,y1, -, Yy, generate a crown, no y,, occurs
in a path different from w,,,---,u,,. Let A € k, and define an A-module E\ by:
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E)\ (a) = k

E\(b) = k

Ex(z) = k* for any point = € {a,b}
Ey(a) = (1) for any arrow « of source a
Ex(B) = (0 1) for any arrow [ of target b
Ex(vn;) = < (1) i‘ ) for each ¢ with 1 <i <r
E\(9) = < (1) (1) > for any other arrow o

A straightforward verification proves that F) is indeed a bound representation (thus an fifmodule)
and that, if A\ # p in k, then E) £ E,,.

We now define a map fy : N = Ex by fae =1, fapy =0and fr, = < L

0 > for all ¢ {a,b}. It
is easily shown that f) is a monomorphism of cokernel M. This shows that, for each A € k, we have
an extension

05 NB B - M0

Since the E) are pairwise non—isomorphic, it follows that these extensions, except possibly one of
them, do not split. This shows that Extk(M ,N) # 0, thus ending the proof of the proposition. O

PROPOSITION 6.3 Let A be an incidence algebra which is simply connected but is not strongly
simply connected. Then A contains a complete crown.

Proof. 'We prove the result by induction on the number |A4g| of points of A. If |4p| < 4, then the
hypothesis is never satisfied, so the result trivially holds. Assume then that |4g| > 4 and that A is
not strongly simply connected, but that any incidence algebra B such that |By| < |Ao| verifies the
statement of the proposition.

Since A is not strongly simply connected, then A contains a crown I'. If all the maximal and all
the minimal points of A are in T, then A is the convex hull of I, thus A is not simply connected by
(6.2). We may therefore assume, by duality, that there is a maximal point z of A which is not in
I'. Moreover, we assume that A is simply connected and that no crown in A is complete . Let B be
the full convex subcategory of A generated by all objects except x. Since I' is contained in B and
is connected, there exists a connected component By of B containing I'. Then B; is not strongly
simply connected. On the other hand, we know from [AP, (2.6)] that since A is simply connected,
all sources in Ay are separating. Hence z is separating. Denoting by A; the full subcategory of A
generated by z and By, this means that the restriction of rad P, to A; is indecomposable. Moreover,
by (5.4), A; is simply connected.

Now, since we are assuming that no crown in A is complete, it follows that no crown in Bj is
complete. This implies that x tops no weak crown in B;. Indeed, if = tops a weak crown I'y, by
(3.2), there is a crown I's in the convex hull of T';. Then z precedes all the maximal points of Is,
so I's is complete, contradicting our assumption. By the inductive hypothesis, it follows that the
non-strongly simply connected algebra B; is not simply connected. On the other hand, since z tops
no weak crown in Bj, we get from (5.3) that m (B1) ~ 71 (A4;1). Since A; is simply connected so is
Bi. We have thus reached a contradiction which completes the proof. a

THEOREM 6.4 Let A be an incidence algebra which is not strongly simply connected.
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(a) If every weak crown in A is complete, then A is simply connected.

(b) If A is simply connected, then there exists a complete crown in A.

(c) A is simply connected if and only if every crown of A is homotopic to a complete crown.
Proof. Part (a) follows from (4.6) and part (b) from (6.3) above. As for part (c), assume that A is

simply connected then, clearly, every crown in A is homotopic to a complete crown (which exists by
(b)), and the converse follows from (4.4). O

ACKNOWLEDGEMENTS. This work was started while the first author was visiting the others
at the Universidad Nacional del Sur in Bahia Blanca. He acknowledges partial support from NSERC
of Canada and FOMEC of Argentina, and would like to express his gratitude to all members of the
Argentinian group for their warm hospitality. He also thanks Juan Carlos Bustamante for very useful
discussions.

References

[AL] Assem, I. and Liu, S. Strongly simply connected algebras, J. Algebra 207 (1998), 449-477.

[AMP] Assem, I., Marcos, E.N. and de la Pefia, J.A. The simple connectedness of a tame tilted
algebra, J. Algebra 237 (2001), 647-656.

[AP] Assem, I. and de la Pena, J. A. The fundamental groups of a triangular algebra, Comm. Algebra
24 (1996), no. 1, 187-208.

[AS] Assem, I. and Skowroriski, A. On some classes of simply connected algebras, Proc. London Math.
Soc. (3) 56 (1988), 417-450.

[BM] Bardzell, M.J. and Marcos, E. N. HY(A) and presentations of finite dimensional algebras, in:
Representations of algebras, Lecture Notes in Pure and Appl. Math, vol. 224, Marcel Dekker
(2002), 31-38.

[BLS] Bautista, R. , Larrién, F. and Salmerén, L. On simply connected algebras, J. London Math.
Soc. (20) 27 (1983), no. 2, 212—220.

[BG] Bongartz, K. and Gabriel, P. Covering spaces in representation theory, Invent. Math. 65
(1981/82), no. 3, 331-378.

[B] Bustamante, J.C. On the fundamental group of a schurian algebra, Comm. Algebra, to appear.

[CE] Cartan, H. and Eilenberg, S. Homological algebra, Princeton Math. Series No. 19, Princeton
University Press (1956).

[C] Cibils, C. Cohomology of incidence algebras and simplicial complexes, J. Pure Appl. Algebra 56
(1989), no. 3, 221-232.

[CF] Constantin, J. and Fourier, G. Ordonnés escamotables et points fizes, Discrete Math. 53 (1985),
21-33.

[D] Dréxler, P. Completely separating algebras, J. Algebra 165 (1994), no. 3, 550-565.

[DR] Duffus, D. and Rival, I. Crowns in dismantable partially ordered sets, Colloquia Math. Soc.
Janos Bolyai 18 (1976), 271-292.

[GR] Gatica, M. A. and Redondo, M. J. Hochschild cohomology and fundamental groups of incidence
algebras, Comm. Algebra 29 (5), 22692283 (2001).

19



[GS] Gerstenhaber, M. and Schack, S.D. Simplicial cohomology is Hochschild cohomology, J. Pure
Applied Algebra 30 (2) (1983), 143-156.

[G] Green, E.L. Graphs with relations, coverings and group-graded algebras, Trans. Amer. Math. Soc.
279 (1983), 297-310.

[H] Happel, D. Hochschild cohomology of finite-dimensional algebras, Séminaire d’Algeébre Paul
Dubreil et Marie-Paul Malliavin, 39¢me Année (Paris, 1987/1988), 108-126, Lecture Notes in
Math., 1404, Springer, Berlin, 1989.

[IZ] Igusa, K. and Zacharia, D. On the cohomology of incidence algebras of partially ordered sets,
Comm. Algebra 18 (1990), no. 3, 873—-887.

[MP] Martinez—Villa, R. and de la Peia, J.A. The universal cover of a quiver with relations, J. Pure
Applied Algebra 30 (1983), 277-292.

[PS] de la Pena, J. A. and Saorin, M. On the first Hochschild cohomology group of an algebra,
Manuscripta Math. 104 (2001), no. 4, 431-442.

[R] Reynaud, E. Algebraic fundamental group and simplicial complexes, J. Pure Applied Algebra, to
appear.

[S] Skowroriski, A. Simply connected algebras and Hochschild cohomologies, Representations of al-
gebras (Ottawa, ON, 1992), 431-447, CMS Conf. Proc., 14, Amer. Math. Soc., Providence, RI,
1993.

Ibrahim Assem
Université de Sherbrooke, Sherbrooke, Québec, Canada
e-mail: ibrahim.assem@DMI.USherb.CA

Marfa Inés Platzeck
INMABB, Universidad Nacional del Sur, Bahia Blanca, Argentina
e—mail: impiovan@criba.edu.ar

Maria Julia Redondo
INMABB, Universidad Nacional del Sur, Bahia Blanca, Argentina
e-mail: mredondo@criba.edu.ar

Sonia Trepode
Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
e-mail: strepode@mdp.edu.ar

20



