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Introduction.

These notes are an expanded version of a mini-course given at the XV** Encuentro
Rioplatense held at the University of Buenos Aires. The aim of this mini-course was
to survey the recent developments in the study of strongly simply connected algebras,
and their applications in the representation theory of associative algebras.

Strongly simply connected algebras were introduced in the schurian case by Dréxler
[29], under the name of completely separating algebras, then generalised to the non-
schurian case by Skowroniski [52]. They are defined as follows. Let A be a finite
dimensional algebra over an algebraically closed field k. Then there exists a (unique)
quiver @, and (at least) a surjective k-algebra morphism v : kQ — A, where k() is the
path algebra of @, so that, setting I = Ker v, we can write A = kQ/I. To each pair
(@, I), we can associate the fundamental group 1 (Q, I), see [43, 37]. The algebra A is
called simply connected if @ has no oriented cycles and, for each pair (Q, I), the group
m1(Q, I) is trivial (see [10], and the survey [2]). It is called strongly simply connected
if every full convex subquiver of A is simply connected.

Simply connected algebras have played an important role in representation theory.
An algebra whose quiver has no oriented cycles is simply connected if and only if
it has no proper Galois covering [51, 43]. For any representation-finite algebra B,
the indecomposable B-modules can be lifted to indecomposable modules over a simply
connected algebra A contained inside a certain Galois covering of the so-called standard
form of B, see [19, 33|. Thus, covering techniques reduce many problems of the study
of representation-finite algebras to the study of representation-finite simply connected
algebras, explaining the importance of the latter.

The general problem of finding a criterion allowing to verify whether a given algebra
is simply connected or not is undecidable. In contrast, the subclass of strongly simply
connected algebras seems much easier to handle. Indeed, characterisations of strong
simple connectedness were obtained, see [29, 52, 8, 4, 5], and the representation
theory of the tame strongly simply connected algebras is largely known, see [47, 53,
54]. In the representation-finite case, it is known that any strongly simply connected
algebra is simply connected, hence the latter are by now well-understood [15, 18].

In these notes, we present what we hope is a unified theory of strongly simply
connected algebras. Since most of the recent results are obtained in the schurian case,
we concentrate on the latter, but point out which definitions and results hold in general.
We have also chosen not to repeat the results already surveyed in [2]. As we show,
the main concepts here are those of crowns, already appearing in the combinatorics
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of posets (see, for instance, [28, 30, 49]) and its generalisation to schurian algebras,

which we call quasi-crowns [5]. In keeping with the nature of this mini-course, we have

tried to make these notes as self-contained as possible, and included proofs or sketches

of proofs for most results. The techniques either rest on the combinatorics of the

bound quiver, or are homological, and use a Mayer-Vietoris sequence for a one-point

extension, as introduced in [19] or a Hochschild cohomology exact sequence, as in [38].
These notes are divided into the following sections.

. Preliminaries: algebras, quivers and modules.

. Schurian algebras.

. Full convex subcategories.

. The fundamental group and simple connectedness.

. Hochschild cohomology groups.

. Strongly simply connected algebras.

. Quasi-crowns, strong simple connectedness and multiplicative bases.

. Strongly simply connected schurian algebras.

9. Quotients of incidence algebras.

10. Dismantlability.

11. Simple connectedness of incidence algebras.
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1. Preliminaries: algebras, quivers and modules.

1.1. Algebras. Throughout this survey, k denotes a fixed algebraically closed
field. By algebra is always meant an associative, finite dimensional k-algebra with
an identity, and by module is meant a finitely generated right module. Given an
algebra A, we denote by mod A the category of A-modules. We are interested in the
representation theory of A, thus in characterising A by properties of mod A. For this
purpose, we may assume, without loss of generality, that A is basic (that is, A/ rad A
is a direct product of copies of k) and connected (that is, indecomposable as a ring).

An algebra A can equivalently be considered as a k-category of which the object class
Ao = {z1,...x,} is in bijection with a complete set of primitive orthogonal idempotents
{€z,, €z, } in A, and the set of morphisms A(z,y) from z to y is the k-vector space
ezAey, see [18]. Thus, an algebra B is a full subcategory of A if there exist objects
Z1,...x in Ag such that, if e = Zle €z, then B = eAe.

An algebra A is called triangular if there exists no sequence of objects {1, ...z¢, Te41 =
x1} in Ag, with ¢ > 1, such that A(x;,z;11) # 0 for every i. In this paper, we deal
exclusively with triangular algebras.

1.2. Quivers. A (finite) quiver @ is a quadruple (Qo,Q1,s,t) consisting of two
finite sets: the set of points (Jo and the set of arrows @1, and two maps s,t: @1 = Qo
which associate to each arrow a € @)y its source s(a) € Qo and its target t(a) € Q.
Thus, one may think of a quiver as of an oriented graph. The path algebra kQ of a
quiver ) has as basis the set of all paths in @ (including, for each point of @, the
stationary path at this point) and the product of two paths is their composition if
possible, and 0 otherwise. Two paths v and w in a quiver @) are parallel, or the pair
(v, w) is a contour, if v and w have the same source and the same target. A relation in
@ from a point  to a point y is a linear combination p = >* | \;w; where, for each i
with 1 < ¢ < m, A; € k is non-zero and w; is a path of length at least two from z to y. If
m =1 (or m = 2), then p is called a monomial (or binomial, respectively) relation. A
relation of the form w; — wy (where (wy,ws) is a contour) is a commutativity relation.
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Let A be an algebra, and {e, ...ep} be a complete set of primitive orthogonal idem-
potents in A. The quiver Q4 of A is defined as follows. The points {1,...n} of Q4 are
in bijection with the e;, and the arrows from z to y in Q4 in bijection with vectors
in a k-basis {4} of e, r?(f;: ey. Thus, there exists a surjective k-algebra morphism
v : kQa — A defined by sending the stationary path at z to the idempotent e, and an
arrow o : & — y to a representative v, € e, (rad A) e, of the residual class 0,. Thus,
A=kQa/l,, with I, = Ker v. It is easily seen that, while Q4 is an invariant of the
algebra (that is, does not depend on the particular set of idempotents), the morphism
v (and hence the ideal I,,) heavily depend on the choice of the bases above. The mor-
phism v (or the pair (Q4,1,)) is called a presentation of A, see [18, 32]. In this case,
the ideal I, is admissible in kQ 4, that is, is generated by finitely many relations. If 1
is an admissible ideal in the path algebra kQ of a quiver @, the pair (@, I) is called a
bound quiver.

1.3. Modules. Let A = kQ/I be an algebra. A (finite dimensional) representa-
tion M of @ is defined by assigning to each x € Qo a (finite dimensional) k-vector space
M (z), and to each arrow « : ¢ — y a k-linear map M (a) : M(x) - M(y). A represen-
tation M of Q) is called bound by I if, whenever p = 37" | Ai(a;, ---;,) is a relation
(where the \; € k are non-zero and the a;; are arrows), then 1" A\; M (a;,) - - - M (0y,)
= 0. A morphism f : M — N between representations is a family of k-linear maps
(fo : M(z) = N(x))seq, such that, if @ :  — y is an arrow, then N(a)f, = fy M ().
Thus, bound representations are just functors from the k-category A to mod k. We thus
get a category of bound representations, which is equivalent to mod A, see [18, 32].
Accordingly, we identify these two categories and view modules as bound representa-
tions.

For an A-module M, its support SuppM is the full subcategory of A generated
by the points z € Ao such that M(x) # 0. For each z € Ay, we denote by S, the
corresponding simple A-module, and by P, (or I;) the projective cover (or injective
envelope, respectively) of S,.

2. Schurian algebras.

2.1. Let A be an algebra. In order to understand its module category mod A,
it suffices, in view of the classical Krull-Schmidt Unique Decomposition Theorem, to
understand the indecomposable A-modules and the morphisms between them. The
easiest case is that of representation-finite algebras (that is, admitting only finitely
many isomorphism classes of indecomposable modules). Much is known about such
algebras (see, for instance, [16, 18, 32, 33]) so we consider the following class.

DEFINITION. An algebra A is called schurian if, for every z,y € Ay, we have
dim; A(z,y) < 1.

In terms of bound quivers, an algebra A = kQ/I is thus schurian if and only if, for
any contour (v,w) in @, there exist scalars A, u € k such that v + pw € I. Thus,
relations in @) are either monomial or binomial.

EXAMPLES. (a) Every triangular representation-finite algebra A is schurian. In-
deed, if this is not the case, there exist =,y € Ag such that dim; A(z,y) =d > 2.
Let e = e, + e,. The full subcategory eAe is the path algebra of the quiver
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Since d > 2, it is representation-infinite. Since the functor Hom 4 (e A, —) is a left
quasi-inverse t0 — ®¢ 4. €A : mod eAe — mod A, the latter is a full embedding.
Hence A itself is representation-infinite, a contradiction. The triangularity as-
sumption is here essential, as is shown by the non-schurian representation-finite
algebra given by the quiver

bound by a? = 0.
(b) There exist many classes of representation-infinite schurian algebras. An exam-
ple is the path algebra of the quiver

Y1 Y2 Yn

with n > 2, called a crown.

(c) Let X be a partially ordered set (poset) ordered by <. Its incidence algebra kX
is the subalgebra of the full n x n matrix algebra with coefficients in k defined
by

kX = {[aylijes, € Mp(k)|ai; =0if i £ j}.

Clearly, k¥ is schurian. The quiver Qy. of ¥ is the (oriented) Hasse diagram of
3: its points are the elements of X, and there exists an arrow z — y if and only
if z covers y, that is, if z > y and there exists no z € ¥ such that z > z > y.
Let Iy, be the ideal of kQyx. generated by all the differences v — w, with (v, w) a
contour in Qx, then kX = kQyx/Is.

The quiver @y enjoys the following property: if a : x — y is an arrow in
Qs, there is no path from z to y of length at least two (such a path is called
a bypass). Conversely, if @) is a quiver having no bypass, then there exists a
unique poset ¥ such that ) = @y : indeed, we define an order on the set
Y. = Qg by setting x > y if and only if there exists a path from z to y, see, for
instance, [35].

2.2. Let A be a schurian algebra. Following [16] (1.2), we say that a k-basis B
of A is a multiplicative (or a normed) basis if:
(a) e, € B for each z € Ay.
(b) Bne, (rad ™A) e, is a basis of e, (rad "A) e, for all z,y € Ag and all n > 1.
(c) be Bne,Ae, and ¢ € BNeyAe, imply bc € B or be = 0.
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EXAMPLES. (a) A presentation v : kQ 4 — A of an algebra A is called normed if
I, = Ker v is generated by paths and differences v — w of parallel paths v, w. If
a presentation v is normed, then the set {v(w)|w is a path such that v(w) # 0}
is a multiplicative basis.

(b) The following example, due to Bongartz [17], plays a key role in the sequel. Let

Ay be given by the quiver
1
o]
2
&1 6
o]
6

B B2

»O <—NO
U0 <=— WO

NS

bound by Oél,Bl = Q27%2, 0171 = azﬂz, ,81(51 = ’)/162 and 32(52 =\ 7251, where
X € k\{0,1}, and rad®4A = 0. Then A, 2 A, whenever A\; ¢ {\2,A;'}. In
particular, Ay does not admit a multiplicative basis.

The existence of a multiplicative basis for an arbitrary representation-finite algebra
was established in [16]. As a consequence, for any d > 1, there exist only finitely many
isomorphism classes of representation-finite algebras of dimension d.

2.3.

DEFINITION. [19, 21, 22] Let A be a schurian algebra. Its classifying space S.A is
the following simplicial complex:
(a) The set SoA of 0-simplices is the set Ay of objects of A.
(b) The set S, A of non-degenerate n-simplices is that of the sequences (g, x1,...Lp) €
Ag“ such that the composition of morphisms

A(zg, 1) X A(x1,22) X oo X A(Tp—1,2p) = Az, Z1)
1S non-zero.

For instance, S 4 is the set of all pairs (z,y) € A% such that A(z,y) # 0.

The order in which the vertices of a simplex are listed is not important. Since S, A
is always a finite simplicial complex, it may be considered as embedded in an euclidean
space of a suitable dimension.

Let C,, A be the free abelian group with basis S, A. We obtain a chain complex

dn d1

C. A Co Al 1A CoA,

where the differential d,, is defined by
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dn(.’Eo,.’L'l, a:n) = Z(—l)z(.’ﬂo, oLi—1,Ti41, .’L'n)
i=0

The homology groups of this chain complex are denoted by SH, (A), and called the
simplicial homology groups of A. If G denotes an arbitrary abelian group, then the
cohomology groups of the complex Hom(C, A, G) are denoted by SH™(A, G) and called
the simplicial cohomology groups of A with coefficients in G.

We give a sufficient condition for two schurian algebras with the same classifying
space to be isomorphic. We denote by k* the multiplicative group of the non-zero
scalars.

PROPOSITION. [19] (2.3) Let A be a schurian algebra.

(a) There exists a bijection between SH2(A, k) and the set of isomorphism classes
of schurian algebras B such that SeA = S, B.

(b) If SH?(A,k*) = 0, and B is a schurian algebra such that SeA = S,B, then
B = A. Moreover, A admits o multiplicative basis.

(a) For each pair (z,y) € S1A, we choose a basis vector vy, of A(z,y). Let (z,y,2) €
Sy A. Since v,yvy, # 0, there exists a non-zero scalar c.y, such that

VzyUyz = CzyzVzz-
The map S2A — k> defined by (x,y,2) — c.ye induces a group morphism
CQA — kX

This morphism is in fact a 2-cocycle: indeed, it suffices to verify that, for
every (Zo,Z1,%2,%3) € S3A, we have cads(xo,21,%2,23) = 1 and this equality
only expresses the associativity of the multiplication of the basis vectors.

On the other hand, the residual class ¢4 € SH?(A, k*) does not depend on
our choice of bases. Indeed, if, for (z,y) € S14, the vector v;, is another basis
vector of A(z,y), there exists a unique scalar g(x,y) such that v;, = g(x,y)vye.
Let ¢4 : c2A — k> be the 2-cocycle associated to the new basis, and g : ;A —
k* be the group morphism induced by (x,y) — g(z,y). It is easily verified that
ci'cy = gdo and 50 €4 = ' 4.

The map A — ¢4 furnishes the required bijection: if A, B are schurian
such that S¢A = S,B and ¢4 = ¢p, there exists g : ¢;A — k* such that
ci'cp = gdo. Then g defines a base change of the sets B(z,y), so that the
structure constants of B become the same as those of A, thus A = B.

(b) Since the first statement follows from (a), we prove the second. Let indeed, for
(x,y) € S14, vy, be a basis of A(z,y), and ca be the corresponding 2-cocycle.
Since, by hypothesis, €4 = 0, there exists a group morphism g : ¢; A — k* such
that ca = gdi. We define a new basis vector by uy, = g(z,y) vy, for (z,y) €
S1A. Tt is not hard to check that the new basis {e., uyz|2z € Ao, (z,y) € S1A}
is multiplicative. O

2.4. We look for conditions under which the assumption SH%(A, k) = 0 holds
true. Since k is algebraically closed, the multiplicative group k* is divisible and hence
injective. If, moreover, char k = 0, then k* is an injective cogenerator of the category of
abelian groups (Indeed, let G be any abelian group, we must show that Homz (G, k*) #
0. Since k* is injective, it suffices to construct, for each non-zero x € G, a non-zero
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morphism v : £Z — k*. If x is of finite order n, let u(z) = &, where ¢ is a primitive
n*® root of unity, while, if z is of infinite order, we set u(z) = (, where ( is an element
of infinite multiplicative order: such elements exist in k*, since Q embeds in k).

LEMMA. If SH5(A) = 0, then SH2(A,k*) = 0. If char k = 0, then the converse
also holds.
Proof. The Dual Universal Coefficients Theorem [50] (12.11) gives
SH?(A,k*) =2 Homz(SH>(A), kX )® Extl(SH;(A), k*).
If SHo(A) = 0, the injectivity of k¥ yields SH2(A,k*) = 0. If char k = 0, the fact
that k* is an injective cogenerator implies easily the converse. O

2.5. We now consider another class of schurian algebras, very close to the inci-
dence algebras.

DEFINITION. A schurian triangular algebra A = kQ/I is semi-commutative if, for
every contour (v,w) of Q, we have v € I if and only if w € I.

Examples of semi-commutative algebras are the quotients of the incidence algebras,
Indeed, it is easy to show that a schurian algebra A = k@ /I is a quotient of an incidence
algebra if and only if:

(i) there exists a poset ¥ such that @ = Qx, and

(if) there exists an ideal J of kQ generated by monomials such that I = I, + J.

Identifying J with the ideal I/Is of kX, we have A = kX/J. Clearly, then, A is
semi-commutative.

Conversely, we ask when a semi-commutative algebra is a quotient of an incidence
algebra.

LEMMA. Let A be a semi-commutative algebra. Then:

(a) There exists a unique poset ¥ such that Q = Qs.

(b) If SH?(A,k*) =0, then A is a quotient of kX.
Proof.

(a) We must show that the quiver @) of A contains no bypass. Indeed, assume there
exists a subquiver of @ of the form

S TN

o o [e]
x

and let A = kQ/I be an arbitrary presentation of A. Since o ¢ I, we have
B1B2 - Bm ¢ I. Since I C rad 2k(Q, there is no binomial relation linking a and
B182 - - - Bm- Then dim pA(z,y) > 2, a contradiction.

(b) Let J be the ideal of kX generated by all paths w in @ such that w € I, and
set B = kX /J. The semi-commutativity of A implies that, for any two points
Z,y € Qo, we have A(x,y) # 0 if and only if B(x,y) # 0. Therefore, A and B
have the same classifying space. Applying (2.3) yields A = B. O

If, in particular, A is a semi-commutative algebra such that SH2(A) = 0, then A
is a quotient of an incidence algebra. On the other hand, Bongartz’ example (2.2)(b)
shows a semi-commutative algebra which is not a quotient of an incidence algebra.
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3. Full convex subcategories.
3.1.

DEFINITION. Let A be an algebra. A full subcategory C of A is convex if, for any
path xg — x1 — - -+ = x4 of A with xg,x; € Cy, we have z; € Cqy for any i.

Full convex subcategories of A are obtained by deleting successively sources and
sinks.

LEMMA. Let A be an algebra. A full subcategory C of A is convex if and only if
there exists a sequence of full subcategories.

C=09cc®Wc..ccm=4

of A such that, for any j, C’éj)\C’éj ) contains a unique point, which is a source or a
sink of C),

Proof. Since the sufficiency is obvious, we prove the necessity by induction on the
number of objects |Ag| of A. If all sources and sinks of A are in C, then C' = A.
Otherwise, let s € Ag be a source or a sink such that s ¢ Cy and let C (n=1) be the full
convex subcategory of A with object class C\"~") = 4g\{s}. Then C C C("~1_ Since

|C(g"_1)| = |Ag| — 1, we just apply the induction hypothesis. O

Let s be a source of A and define A(®) to be the full convex subcategory of A with
object class Ag\{s}. We then say that A is the one-point extension of A(®) by the
module M = rad P;. In this case, the point s is called the extension point and A can
be written as a triangular matrix algebra

A 0
=3 ]

where the multiplication is induced from the A()-module structure of M.

If s is a sink of A, we define dually A(), and A is a one-point coextension of A,
by the module I;/S;, with coextension point s.

The preceding lemma says that A is constructed starting from a full subcategory C'
by a sequence of one-point extensions or coextensions.

3.2. Let A be a schurian triangular algebra, and s be a source in A. Following
[19], we define two sets

¥* = {x € Ag|A(s,z) #0} and =) = 5 {s}.
Thus, x € X¢ if and only if 2 belongs to the support of the indecomposable projective
module P, = e, A, that is, Pye, # 0. Similarly, z € () if and only if z belongs to the

support of rad Ps.
We define a partial order on X° by:

x <y if and only if A(s,y)A(y,z) #0

(that is, there exists a non-zero path from s to x, passing through y), and we give to
¥(5) the induced order. The incidence algebras kX* and kX(5) are thus subcategories,
generally not full, of A.
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ExAMPLE. Let A be given by the quiver

N
NN
N

bound by af = 0 and Ap = pv. Then ¥ and X(*) are the posets with respective
quivers

o/g\o o o
N N
S N

LEMMA. Let s be a source in a schurian triangular algebra A, then we have a Mayer-
Vietoris exact sequence
oo —— SHy(A®)) ——— SHy(A) ———— SH,; (kX(®)) ———— SH; (A®)
- SHy(A) — = SHy(kS®) —— SHy(k=*) @ SHo(A®)) —= SHy(A).
Proof. We apply [50] (7.17) and the definitions of the classifying spaces of A, A(®),
kY® and kX(%) to obtain the Mayer-Vietoris sequence
oo —— SHy (k%) @ SHy(A®)) —— SHy(A) — SH; (kX(®))
—— SH, (kX*) ® SH{(A®)) —— SH;(A) —— SHy(kX(®)
— . SHy(k*) @ SHo(A®)) —= SHy(A).

Now, the poset ¥* admits s as unique maximal element, hence k¥° is homeomorphic
to a cone, so that SH,(kX*) =0 for any n > 1. O

3.3. Recall that SHy(A) is the free abelian group having as rank the number of
connected components of SeA (or, equivalently, of A). Thus, the morphism j in the
sequence of (3.2) is injective if and only if the number of connected components of
kx(s) (that is, the number of indecomposable summands of rad P;) equals the number
of connected components of A(®).
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DEFINITION. [15, 42] A source s in a (non-necessarily schurian) algebra A is sep-
arating if the number of connected components of A®) equals the number of indecom-
posable summands of rad P,. The algebra A is called separated if every x € Ag is
separating as a source in the full subcategory of A consisting of the non-predecessors
of x. We define dually coseparating sinks and coseparated algebras.

LEMMA. In the sequence (3.2) above, the source s is separating if and only if the
morphism j is injective. O

In the example (3.2) above, the source s is not separating, hence the morphism j is
not injective.

4. The fundamental group and simple connectedness.
4.1.

DEFINITION. Let A be a schurian triangular algebra. The fundamental group m (A)
of A is defined to be that of its classifying space SeA. The algebra A is called simply
connected if S¢A is a simply connected simplicial complez.

We reformulate in the context of algebras the well-known standard technique for
computing the fundamental group of a simplicial complex (see, for instance, [50]
(7.34)). Let A = kQ/I be a schurian triangular algebra, T be a maximal tree in
the quiver @), F' be the free multiplicative group on the set )1 of arrows of @), and
K be the normal subgroup of F' generated by all elements of one of the following two
types:

(a) arrows in T, and

(b) expressions of the form (ajas -+ - am)(B1B2 - -+ Bn) ™! whenever ajas - - - ayy, and

B102 - - - Bn are two non-zero parallel paths in Q).

Then m (A) = F/K, see [21] (2.1).

We give another expression for the fundamental group. A walk in a quiver @) is an
expression of the form a$'as? - - - af* where the a; are arrows, and ¢; € {1, —1}: that is,
it is a composition of arrows and formal inverses of arrows. Let (@, I) be a connected
bound quiver. A relation p = 27;1 Ayw; (where the \; € k are non-zero and the w;
are paths of length at least two from z to y) is called minimal if m > 2 and for any
non-empty proper subset .J ; {1,2,..m}, we have 3, ; \jw; ¢ I. Let m1(Q)) denote
the fundamental group of @) (considered as a graph). It is well-known that 71 (@) is the
free group in x(Q) generators, where x(Q) =1 —|Qo|+ |Q1] is the Euler characteristic
of @, see [45]. Let N be the normal subgroup of m (()) generated by all elements of the
form y~!u~lvy, where v is a walk from the base point to = and u, v are two paths from
x to y occurring in the same minimal relation. The quotient m (Q)/N is called the
fundamental group of the bound quiver (Q,I), see [43, 37]. It was shown in [14] that, if
the algebra A = kQ/I is schurian, then the fundamental group of (Q, I) is an invariant
of the algebra A. However, if A = kQ/I is not schurian, it does heavily depend on the
presentation, see, for instance [23]. The following result was simultaneously shown in
[48] for incidence algebras and in [21] for a class of schurian algebras which includes
all the triangular ones.

LEMMA. [21] (2.2) Let A = kQ/I be a schurian triangular algebra, then mi(A) =2
1 (Q)/N U
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4.2. It follows that the Euler characteristic provides a lower bound for the num-
ber of binomial relations in a schurian simply connected algebra.

COROLLARY. [4] (4.2) Let A be schurian, triangular and simply connected. Let S

be a set of binomial relations and M be a set of monomials such that I is generated by
SUM. Then |S| > x(Q).

Proof. Since A is simply connected, 71 (Q) = N. The result follows from the observa-
tion that m (Q) is free in x(Q) generators. O

4.3.

THEOREM. [31] (7.2) Let G be any finitely presented group. Then there ezists a
poset ¥ such that m (kX) = G.

Proof. It is well-known that, for any finitely presented group G, there exists a finite
simplicial complex S such that 71 (S) 2 G, see [50] (7.45). Let X be the set of all non-
degenerate simplices of S, ordered by inclusion. Then S, (kY) is the first barycentric
subdivision of S, so that m (kX) = 11 (S« (kX)) = m (S) = G. O

Posets obtained from a simplicial complex as in the proof above have been charac-
terised in [24].

4.4. One consequence is that the problem of verifying whether an algebra is
simply connected or not is undecidable. We have however the following theorem, of
which the first part is [52] (2.3) and the second part is in [15]. A triangular non-
schurian algebra A is simply connected if, for every presentation A = kQ/I of A, the
fundamental group of the bound quiver (@, I) is trivial [12].

THEOREM. If an algebra is separated, then it is simply connected. If it is represen-
tation-finite, then the converse also holds. O

4.5. We end this section with a computational tool, obtained in [3]. Let s be a
source in a schurian triangular algebra A = kQ/I, and suppose A(®) = I, Ags) with
all Ags) connected. We agree to set 71 (A®)) =[5, m (Ags)) and, accordingly, A(®) is
simply connected if and only if so is each Ags). Let s denote the set of all arrows in
A of source s, and = be the least equivalence relation on s such that a ~ 3 if there
exist non-zero parallel paths au and fv, see [10] (2.1). Let ¢(Q, I) denote the number
of equivalence classes for a2, and ¢ the number of indecomposable summands of rad P;.
By [10] (2.2), we have ¢ < ¢(Q,I) < t.

THEOREM. [3]| The cokernel of the morphism w1 (A®)) — m(A) induced by the
inclusion is the free group in t(Q,I) — ¢ generators. O

4.6.

COROLLARY. [3] Let A be a triangular schurian algebra, and s be a source such
that A®) is simply connected. Then A is simply connected if and only if the point s is
separating.

Proof. Indeed, rad P; is indecomposable if and only if ¢ = 1, thus if and only if
t(Q,I) =1 for every presentation A = kQ/I (see [10] (2.2)), or if and only if m;(A) is
trivial. O
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5. Hochschild cohomology groups.

5.1. Thereis a strong relationship between the simple connectedness of a schurian
algebra A, and the vanishing of the first Hochschild cohomology group of A with co-
efficients in the bimodule 44 4. The Hochschild complex C*® = (C?, d);cz is defined
as follows: C* = 0, d* = 0 for every i < 0, C° =4 A4, C* = Homy(A®? A) fori > 0
(where A®? stands for the it* tensor power A ®y,---®y A of A), d° : A — Homy(A, A)
is such that (d°z)(a) = az — za (for a,z € A) and d* : C* — C**! is given by

(dif)(aq ®..Qait1) =a1f(a2 ® ... ® ajy1) + Z(—l)jf(al ®..®a;a4;+1 Q... ® @it1)

Jj=1
+(—1)i+1f((11 ®K..Q ai)a,url

for f € C* and a1, ...aiy1 € A. Then HH!(A) = H(C®) is called the i** Hochschild
cohomology group of A with coefficients in 4A 4, see [25].
We denote by k+ the additive group of the field k.

THEOREM. [46] Let A be a schurian triangular algebra, then

HH'(A) = Hom (m (A),kT).0

5.2. This implies that, for schurian triangular algebras, the first Hochschild co-
homology group is a simplicial cohomology group.

COROLLARY. Let A be a schurian triangular algebra. Then

HH'(A) = SH' (A, k).
Proof. By [50] (4.29), SH1(A) is the abelianisation of m (A4), hence

HH'(A) = Hom (m (A), k") = Hom (SH;(A),kT) = SH' (A, kT).

where the last isomorphism follows from the Dual Universal Coefficients theorem. O

5.3. Another consequence of (5.1) is that the simple connectedness of a schurian
algebra implies the vanishing of its first Hochschild cohomology group. The converse
is not true, even for incidence algebras. Indeed, let G be any simple non-abelian
group. By (4.3), there exists a poset ¥ such that m (kX) = G. Since G is simple,
its abelianisation SHy(kX) is zero. Hence HH'(kX) = Hom (m1(kX), k") = Hom
(SH{(kX),kT) = 0.

It is an interesting problem to identify the classes of - not necessarily schurian -
algebras A such that A is simply connected if and only if HH'(A) = 0. In [52],
Skowronski conjectures that this equivalence holds true for tame algebras. This is the
case for representation-finite algebras.

THEOREM. [20] A representation-finite algebra A is simply connected if and only if
HH'(A)=0. O
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5.4. A related conjecture is formulated in [6]. Recall from [39] that a - not neces-
sarily schurian - algebra A is quasi-tilted if gl.dim.A < 2 and, for every indecomposable
A-module M, we have pd M4 <1 orid M4 < 1. It is conjectured that a quasi-tilted
algebra A is simply connected if and only if HH!(A) = 0.

THEOREM. [6] A tame quasi-tilted algebra A is simply connected if and only if
HH'(A)=0. 0O

5.5. A slight generalisation of (5.4) is known. Recall from [27] that a - not
necessarily schurian - algebra A is weakly shod if the length of any path from an
indecomposable injective to an indecomposable projective is bounded. Any quasi-
tilted algebra is weakly shod.

THEOREM. [7] A tame weakly shod algebra A is simply connected if and only if
HH'(A)=0. O

5.6. In the spirit of (5.2), Martins and de la Pefia construct in [44] for a schurian
algebra A and for any n > 2, a monomorphism SH™(A, k) - HH™(A). It was shown
by Gerstenhaber and Schack [36] that this monomorphism is an isomorphism whenever
A is an incidence algebra, a result generalised by Bustamante to the case where A is
semi-commutative.

THEOREM. [22] (6.5) Let A be a semi-commutative algebra. Then, for any n, we
have HH™(A) = SH™(A, k). O

5.7. We need another result on the Hochschild cohomology of a non-necessarily
schurian algebra A. Let s be a source, and A(®) be the full convex subcategory of A
with object class Ag\{s}. The following sequence plays for Hochschild cohomology a
role similar to the Mayer-Vietoris sequence of (3.2) for simplicial cohomology.

THEOREM. [38] (5.3) Let s be a source in an algebra A, and M = rad P;, then we
have an ezact sequence

0—— HH°(A) ———— HH°(A®)) ——— End M/k —— HH'(A)

——> HH'(A®) —— Eat ', (M, M) e Ext 'L (M, M)

——= HHY(A) ———= HHY(A®)) —— ... O

5.8.
COROLLARY. [52] (3.2) If HH'(A) = 0, then every source of A is separating.

Proof. Let s be a source, then write A®®) = [[;_, Ags) connected, and M = ®¢_; M;,
where each M; is an Ags)—module. We have a short exact sequence:

0— HH(A) - HH°(A®) - End M/k — 0.
Since HH®(A) = k and HH°(A®)) = k¢, we have dimj, End M = c. Thus, for each
i, we have End M; = k: each M; is an indecomposable Ags)—module. O
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5.9.

COROLLARY. [5] (5.2) [10] (2.6) Let A be a schurian algebra such that SH1(A) =0
(for instance, let A be simply connected). Then every source of A is separating.

Proof. By (5.1), the hypothesis implies HH'(A) = 0. O

6. Strongly simply connected algebras.
6.1.

DEFINITION. [29, 52] A triangular algebra A is called strongly simply connected if
every full convex subcategory of A is separated.

This definition can be extended to define in the same way the strong simple con-
nectedness of a locally bounded category A, in the sense of [18], which is interval-finite
(that is, such that, for any z,y € Ao, the set {z € Ag|A(z,2)A(z,y) # 0} is finite),
compare with [8].

Obvious examples of strongly simply connected algebras are algebras whose quivers
are trees. In fact, a hereditary (or monomial) algebra is strongly simply connected
if and only if its quiver is a tree. The algebra of Bongartz’ example (2.2)(b) is not
strongly simply connected: indeed, the full convex subcategory obtained by deleting
the unique sink is not separated. However, it is simply connected (so, there exist
simply connected algebras which are not strongly simply connected). We give several
characterisations of strongly simply connected schurian algebras [29] (2.4) [52] (4.1).

THEOREM. Let A be a schurian triangular algebra. The following conditions are
equivalent:

(a) A is strongly simply connected.

(b) Every full convex subcategory of A is simply connected.

(¢c) For every full convex subcategory C of A, we have SH1(C) = 0.

(d) For every full convex subcategory C' of A, we have HH'(C) = 0.

(e) For every full convex subcategory C of A, and every abelian group G, we have
SHY(C,G) = 0.

Proof. (a) implies (b): this is just (4.4).
(b) implies (¢): this is trivial.
(c) implies (d): by (5.1), HH'(C) = Hom (7, (C), k%) = Hom (SH(C),k*) = 0.
(d) implies (a): this is proven by induction on the number of objects |4g| of A.
Since A is triangular, there exists a source s in A. Write A®®) = []7_, Ags), with the

Ags) connected. By (5.8), s is separating. Moreover, the Ags) are proper full convex
subcategories of A, thus, by the induction hypothesis, are separated. Hence so is A.

(e) is equivalent to (c): by the Dual Universal Coefficients Theorem, SH'(C,G) =
Hom (SH1(C),G), so (c) implies (e). The converse follows upon setting G = SH;(C).
O

The equivalence of (a)(b)(d) still holds in the non-schurian case.
As a trivial consequence of the above theorem, an algebra A is strongly simply
connected if and only if so is the opposite algebra A°P.
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6.2. Much attention has been given to the study of the bound quiver of strongly
simply connected algebras. The main result [29] (2.7) [8] (2.4) says that a schurian
strongly simply connected algebra is a quotient of an incidence algebra (in particular,
admits a multiplicative basis). In order to prove it, we need the main structure theorem
from [8].

We need some terminology. Let A = kQ/I be a triangular algebra. A contour (p, q)
in @ from z to y is interlaced if the paths p and ¢ have a common point besides z and y.
A contour (p,q) is irreducible if there exists no sequence of paths p = po,p1,...pt = ¢
from z to y such that, for each 4, the contour (p;,pi+1) is interlaced. Let C be a
(simple, non-oriented) cycle which is not a contour. Let o(C) be the number of sources
(equivalently, of sinks) in C. The cycle C is reducible if there exist two points z, y in
C and a path p:z — ... = y in @ such that C consists of two walks wy, ws from z to
y, both wyp~! and wep~! are cycles and finally o(w1p~!) < o(C), o(wsp~t) < o(C).
The cycle C' is irreducible if either it is an irreducible contour, or it is not reducible
in the above sense. Equivalently, C' is irreducible if either it is an irreducible contour,
or it verifies the following condition and its dual: for any source z in C, no proper
successor of x in @) is a source in C, and exactly two successors of x in @) are sinks of
C.

A typical example of an irreducible cycle which is not a contour is the crown of
example (2.1)(b).

Let (@, I) be a bound quiver. Two parallel paths p, ¢ are called naturally homotopic
(see [22]) if either p = ¢ or there exist a sequence of parallel paths p = pg,p1,...pt = ¢
and, for any i, paths wu;, v;1, v, w; such that p; = wv;w;, Pir1 = Uvw;, with v,
v;2 appearing in the same minimal relation (in the sense of (4.1)). A contour (p,q)
is called naturally contractible if p and ¢ are naturally homotopic, compare with the
formulation in [8].

For instance, in Bongartz’ example (2.2)(b), all contours are naturally contractible.
The next theorem is valid whether the algebra is schurian or not.

THEOREM. [8] (1.3) A triangular algebra A is strongly simply connected if and only
if, for any presentation A =2 kQ/I, the following conditions are satisfied:

(a) Any irreducible cycle in Q is an irreducible contour.
(b) Any irreducible contour in (Q,I) is naturally contractible.

Proof. Necessity. Assume that A = kQ/I is strongly simply connected. Let w be an
irreducible cycle which is not an irreducible contour. Then w = pp] Lvgig™!, where z
isasourceonw, p:x — ... > a,pr:¢ —>ay — ... > aarepaths ,v:c; —co—...— ¢y
is a walk with ¢;, ¢, sources on w, ¢; : ¢, > by — ... > b, q¢: x — ... = b are paths.

Since w is irreducible, there is no path from z to any ¢;. Also, since @ is finite, we
may suppose that no path from z to a intersects the paths from z to b. It is easily
seen that x is not separating as a source in the convex envelope of w in Q).

Suppose now that there exists an irreducible contour (p,q) in @ from z to y that
is not naturally contractible. Define a partial order on the contours in @ as follows.
Let (p1,q1) and (p2,¢2) be contours from z; to y1 and x2 to ya, respectively. We set
(p1,@1) < (p2,90) if either (p1,q1) = (p2,92) or (z1,y1) # (22,y2) and then 21 is a
successor of xy and y; is a predecessor of y». We may assume (p,q) to be minimal
with respect to this order. Let B = kQ'/I' be the convex envelope of z, y in A. We
show that z is not separating as a source in B. Let W; (or W5) denote the set of
non-trivial paths in @' of source x which are contained in a path naturally homotopic
to p (or not naturally homotopic to p, respectively) in (@', I'). The minimality of (p, q)
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implies that W, N W5 = (§ and each path in Q' that is reducible to p lies in W;. Then
rad P, = Ry + R, where, for each i, R; is the k-vector space with basis the residual
classes modulo I' of the paths of W;. Since any two paths p; € Wi, ps € Ws are
not simultaneously involved in a relation, we have R; N Ry = 0. Moreover, two paths
p1 € Wi and p2 € W are not reducible to each other, thus they have no common
points besides z and y. Thus, if p; : £ — ... = y is a path in the k-basis of R;, and «
is an arrow in @', then either pia = 0 or p;a lies in the k-basis of R;. Therefore, the
R; are B-submodules of rad P,. Thus x is not separating in B.

Sufficiency. Let A = kQ/I be a presentation satisfying our two conditions. It
suffices to show that A is simply connected. Let w be a cycle in Q. If o(w) = 1,
then w is a contour, so its sides are naturally homotopic. If o(w) > 1, then w is not
irreducible, so w is homotopic to some composition w;wsy, where w;, ws are cycles with
o(w) < o(w), o(wz) < o(w). By induction, w is naturally contractible. It follows
easily that any closed walk in () is contractible. [

6.3.

COROLLARY. [8] (2.1) Let A = kQ/I be a schurian strongly simply connected alge-
bra. Then A is semi-commutative.

Proof. Let (p,q) be a contour, which we assume minimal in the partial order of the
proof of (6.2), such that p ¢ I while ¢ € I. If (p,q) is reducible, there exist paths
P = po,p1,---p¢ = ¢ such that, for each i, (p;,p;+1) is interlaced. The minimality
of (p,q) implies that p; ¢ I and, inductively, ¢ ¢ I, a contradiction. Therefore,
(p,q) is irreducible. Then, by (6.2), it is naturally contractible, so there exist paths
P = Ppo,P1,---Pt = q such that, for each 4, (p;,p;+1) is a contour and p;, p;+1 contain
subpaths g;, ¢;+1, respectively, which are involved in the same binomial relation in
(Q,I). If ¢1 # p1, then (po,p1) is interlaced. Hence p; ¢ I by the minimality of (p, q).
If ¢1 = p1, then p = pp and p; are involved in the same binomial relation, hence p; ¢ I.
Inductively, g ¢ I, a contradiction. O

6.4.

COROLLARY. [4] (4.4) Let A = kQ/I be a schurian strongly simply connected alge-
bra. Then:

(a) There exists a unique poset ¥ such that Q = Qs.
(b) The incidence algebra kX is strongly simply connected.

Proof. (a) This follows from (6.3) and (2.5).
(b) Since @ = Qsx, any irreducible cycle in Qs is an irreducible contour, by (6.2).
Since any contour in k¥ is commutative, the statement follows from (6.2). O

7. Quasi-crowns, strong simple connectedness and multiplicative bases.

7.1. Let A be a schurian triangular algebra. Let z,y € Ag be such that A(z,y) #
0. We define the interval [z,y] to be the full subcategory having as objects all z € Ag
lying on a non-zero path from z to y, that is, such that the composition A(zx,z) x
A(z,y) = A(z,y) is non-zero.
If, for instance, A is an incidence algebra, then all paths from z to y are non-zero,
and [z, y] coincides with the convex envelope of z and y in A.
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DEFINITION. Let C be a full subcategory of A having 2n objects {x1,...Tn,y1,---Yn}
and 2n non-zero morphisms {u1, ...up,v1,...vy} with n > 2 and of the form

X1 o In

hn Y2 Yn

We say that C is a crown (of width n) in A if:

(a) [xiayj] n [xhayl] =0 Zf and Only ’Lf] =1 and (ha l) € {(iai)a (7’ - l,i), (iai + 1)}
orj=i+1 and (h,1) € {(i,i), (i,i+ 1), (i + 1,0+ 1)}.

(b) The intersection of three distincts [z;,y;] is empty.

(c) For each i, [zi,yi] N [@i, yir1] = {2} and [z, y:] O [zi-1, yi] = {vi}-

Here, and in the sequel, we agree to set £o = Ty, 1 = Tnt1, Yo = Yny Y1 = Ynt1-

LEMMA. [11] (6.2) Let kX be an incidence algebra which is the convexr envelope of
a crown C. Then HH'(kX) # 0. In particular, kY is not simply connected.

Proof. Let X' be the poset obtained from ¥ by adding two elements a, b such that
a>z>bforall z € . By [41] (1.2) , [26] (2.1), HH'(kX) = Ext}y, (Sa, Sp)-
Considering the short exact sequences

0> rad P,> P, =S, =0 and 0—S,—> I, = I;/Sy, = 0.

we deduce that HH(kX') = Extiy, (radP,, I;/Ss) by dimension shifting. We thus
only need to construct a non-split short exact sequence

0—-1;/Sy - E— rad P, = 0
in mod kY.

N\

b

Consider in kX' all the paths uy,, Un,, ..Uy, from z, to y, and, for each i, let ~,, be
the unique arrow of w,,, with source z,. Since C is a crown, no ~,, occurs in a path
of @y different from the u,;. Let A\ € k and define a k¥'-module Ej by
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Ex(a) = k = Ex(b)

Ex(z) = k? for any x ¢ {a,b}

Ex(a) = ( (1) ) for any arrow a of source a
Ex(8) = (0 1) forany arrow j3 of target b
Ex(n;) = ( (1) i\ ) for any i € {1,...r}

Ex(y) = ( (1) (1) ) for any other arrow.

It is easily checked that E is indeed a kX'-module and that, if A # p, then Ey 2 E,.

We now define fx : I,/Sy = Ex by fia = 1, fay = 0 and fr, = () for all
z ¢ {a,b}. Then f) is easily seen to be a monomorphism of cokernel rad P,. Thus,
for each X\ € k, we have an extension

f

0 Iy/Sp —
Since the FE) are pairwise non-isomorphic, these extensions, except perhaps one of
them, do not split. This shows that HH!(kX) # 0. The second statement follows
from (5.1). O

E\ rad P, —=0

7.2.

THEOREM. [29] (3.3) An incidence algebra kX is strongly simply connected if and
only if it contains no crowns.

Proof. Assume first k3 to be strongly simply connected. Since any full convex sub-
category of k¥ is simply connected, the convex hull of any crown in k¥ would yield a
contradiction by (7.1). Therefore kX contains no crowns.

Conversely, if kX is not strongly simply connected, then, since every contour in kX
is commutative, it follows from (6.2) that there exists an irreducible cycle C in kX
which is not a contour. We can assume, without loss of generality, that C' is of least
length. It is then easily (but tediously) verified that the sources and the sinks of C
generate a crown in kY. O

7.3. For schurian algebras which are not incidence algebras, the absence of
crowns does not suffice to characterise strong simple connectedness.

EXAMPLES. (a) Let A be given by the quiver
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bound by af = 0, v6 = 0. Then A has no crown but is not (strongly) simply
connected.
(b) Let A be given by the quiver

NN

bound by ay = 0, 8y = 0. Then A has no crown but is not (strongly) simply
connected. On the other hand, A contains a "non-full" crown.

DEFINITION. A full subcategory C' of a schurian triangular algebra A = kQ/I is a
quasi-crown if there exists a set of arrows {ay,...a,} in Q such that, if R denotes the
ideal of A generated by the classes of arrows a; + I (with 1 <i <r), then:

(a) The canonical surjection C — C/C N R is a retraction, whose section is an

algebra morphism.
(b) C/CNRis acrown in A/R.

Condition (a) expresses that C is a split extension of C/C'NR in the sense of [9, 13].
There exists a criterion allowing to verify whether a schurian triangular algebra is a
split extension or not, see [5] (3.2). Clearly, in an incidence algebra, a quasi-crown is
a crown. However, even in quotients of incidence algebras, these two concepts do not
coincide, as is shown by example (b) above (take R to be the ideal generated by the
class of the arrow 7).

LEMMA. [5] (3.5) Let A be a schurian strongly simply connected algebra. Then A
contains no quasi-crown.

Proof(Sketch). Assume that A contains a quasi-crown. By (6.2), the cycle C' defined
by this quasi-crown is reducible. Denoting by z1, ...z, the sources of C, and y1,...yn
its sinks, there must exist a path w from z; to y; (with j # 4, ¢ + 1) or from z; to ;
(with j # 4i). We may assume j > ¢ and j — ¢ minimal. If j > ¢+ 1, the new path w
yields in each case an irreducible cycle which is not a contour, a contradiction to (6.2).
Therefore j = i + 1, so we get a contour which we may assume by duality to be from
x; to T;41, this contour being (v;, wu;y1). Since A is semi-commutative by (6.3) and
v; is non-zero, then wu;;1 is non-zero. However, C being a split extension of C/CN R
forces wu;4+1 to be zero, a contradiction. O

7.4.

LEMMA. [5] (3.6) Let s be a source in a schurian triangular algebra A. If the points
{Z1, . Tn,Y1,---Yn} induce a crown in kX*, then the same points induce a quasi-crown

mn A.

Proof (Sketch). Let R be the ideal of A generated by the classes of all the arrows lying
on non-zero paths between the z; and the y; which are not in k¥¥?, and show that this
ideal and the given crown in kY% verify the definition of quasi-crown. O
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7.5.

PROPOSITION. [5] (6.2) Let A be a schurian triangular algebra containing no quasi-
crown. Then:

(a) SH,(A) =0 for alln > 2.

(b) SH™(A,@) =0 for all n > 3 and all abelian groups G.

Proof. (a) This is done by induction on |4g|. The result being clear if |4¢| = 1, assume
that |Ag| > 1 and let s be a source in A. Consider the Mayer-Vietoris sequence of (3.2)

o+ ——> SHy(A®) ——> SH(A) ——> SHy(kS()) —> SHy(A)
—— SHy(A) —— SH, (kX)) ——— - -~

The algebra A(®) is schurian and contains no quasi-crowns. Since |A((]S)| < | Ao,
the induction hypothesis yields SH,,(A(®)) = 0 for all n > 2. Moreover, by (7.4), the
incidence algebra kX(*) contains no crown. By (7.2), it is (strongly) simply connected,
so SH; (kX)) = 0. On the other hand, |k2(()s)| < |Ag| so the induction hypothesis also
implies SH,,(kX(*)) = 0 for all n > 2. Therefore, SH,(A) = 0 for all n > 2.

(b) This follows from (a) and the Dual Universal Coefficients Theorem [50] (12.11)

SH"(A,G) =2 Homz(SH,(A),G)® Ext}(SH,_1(A),G). O

7.6. Parts (a)(b) of the next corollary are [29] (2.6), part (c) is [34] (see also [5]
(6.9) (6.10)).

COROLLARY. Let A be a schurian strongly simply connected algebra. Then:
(a) SH,(A) =0 for alln > 1.

(b) SH™"(A,G) =0 for all n > 1 and all abelian groups G.

(¢c) HH™(A) =0 for alln > 1.

Proof. (a) By (7.3) and (7.5), we have SH,(A) = 0 for all n > 2. On the other hand,
SH;(A) =0 because A is simply connected.

(b) By (7.3) and (7.5), we have SH™(A,G) = 0 for all n > 3. The simple connect-
edness of A implies that SH'(A4,G) = 0. Finally, SH?(A,G) = Homgz(SH(A),G)®
Extl(SH1(A),G) = 0.

(c) By (5.6), the semi-commutativity of A implies that HH"(A) = SH™(A,kT) =0
because of (b). O

As a consequence of (c¢), the Hochschild cohomology ring HH*(A) of A equals k.
7.7.

THEOREM. [5] (6.3) Let A be a schurian triangular algebra containing no quasi-
crowns. Then A admits a multiplicative basis.

Proof. By (7.5), SH5(A) = 0. The result follows from (2.4) and (2.3). O

7.8.

COROLLARY. [17] Let A be a triangular representation-finite algebra. Then A ad-
mits a multiplicative basis. [
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7.9.

COROLLARY. [5] (6.4) For each natural number d, there exist only finitely many
isomorphism classes of schurian triangular algebras of dimension d, not containing
quasi-crowns. O

7.10.

COROLLARY. [29, 8] Let A be a schurian strongly simply connected algebra, then A
admits a multiplicative basis. O

8. Strongly simply connected schurian algebras.

8.1.

THEOREM. [29] (2.7) Let A be a schurian strongly simply connected algebra. Then
there exists a unique poset ¥ such that A is a quotient of kY. Furthermore, kX is
strongly simply connected.

Proof. By (6.4), there exists a unique poset ¥ such that Qs is the quiver of A and,
moreover, kX is strongly simply connected. The result follows from (2.5) because, by
(7.6), SH2(A,k*) =0. O

8.2. As a consequence, we obtain that a schurian strongly simply connected
algebra admits a normed presentation, in the sense of example (2.2)(a).

THEOREM. [8] (2.4) A triangular algebra A is schurian strongly simply connected
if and only if there exists a presentation A = kQ/I such that:

(a) Any irreducible cycle in Q is an irreducible contour.
(b) For any irreducible contour (p,q) in Q, we have p,q ¢ I and p—q € I.

Proof. Since the sufficiency follows from (6.2) and the definition of schurian, we just
need to prove the necessity. Again, by (6.2), any irreducible cycle is an irreducible con-
tour, and any irreducible contour is naturally contractible. We take the presentation of
A as a quotient of an incidence algebra. Then all binomial relations are commutativity
relations. Let (p,q) be an irreducible contour from z to y, and assume p € I. We may
also assume that (p,q) is minimal in the partial order of contours defined in the proof
of (6.2). Since (p,q) is naturally contractible, there exist paths p = pg,p1,...-Pm = ¢
in @ from z to y such that, for each i, p; and p;;1 contain subpaths ¢; and ¢;41, re-
spectively, which are involved in the same binomial relation. Since (p, q) is irreducible,
there exists j such that p; is reducible to p, while p;;4 is not. The minimality of (p, q)
forces p; € I. Since p;41 is not reducible to p, the paths p;, pj+1 have a common point
besides  and y. Thus p; and p;; are involved in the same binomial relation, and this
is impossible. Hence neither p nor ¢ lies in I. O

8.3.

COROLLARY. [4] (4.5) An algebra A is schurian strongly simply connected if and
only if there exists a poset ¥ such that kX is strongly simply connected and A = k¥ /J,
where the ideal J of kY is generated by paths which are not entirely contained in
irreducible contours.

Proof. This follows from (8.1) and (8.2). O
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8.4.

THEOREM. [5] (5.7) Let A be a schurian triangular algebra. The following condi-
tions are equivalent:

(a) A is strongly simply connected.

(b) A is separated and contains no quasi-crowns.

(c) A is simply connected and contains no quasi-crowns.

(d) SH1(A) =0 and A contains no quasi-crowns.

(e) SH'(A,G) = 0 for all abelian groups G, and A contains no quasi-crowns.

Proof. That (a) implies (b) follows from the definition and (7.3), that (b) implies (c)
follows from (4.4), that (c¢) implies (d) and that (d) is equivalent to (e) are trivial.
Thus, we just have to prove that (d) implies (a) and we do this by induction on |A|.
Since the statement is clear for |Ag| = 1, assume it holds for all schurian algebras B
without quasi-crowns such that |By| < |Ag| and SH;(B) = 0.

Let s be a source in A. By (7.4), the incidence algebra kX(*) contains no crown,
hence it is simply connected, and SH;(kX(*)) = 0. The Mayer-Vietoris sequence

0=SH,(kx®) = SH(A®) - SH (A) =0

yields SHy{(A®)) = 0. Since A(® contains no quasi-crowns, it is strongly simply
connected by the induction hypothesis.

This entails two consequences. Firstly, since s is separating (by (5.9)), then A is
simply connected, by (4.6). Secondly, we have shown that any full convex subcategory
A’ of A obtained by deleting a source (or, dually, a sink) is strongly simply connected.
The conclusion follows from the observation that any proper full convex subcategory
of A is contained in such a subcategory A'. O

8.5.

COROLLARY. [19] (2.9) A representation-finite algebra is strongly simply connected
if and only if it is simply connected. O

8.6. The last statement of the next corollary is [1] (1.2).

COROLLARY. Let A be a schurian simply connected algebra which is a one-point
extension of an algebra B containing no quasi-crown. Then B is strongly simply con-
nected. If, in particular, B is representation-finite, then it is simply connected.

Proof. Let s denote the extension point, so that B = A®®). By (7.4), kX(*) contains no
crowns, so SH;(kX(®)) = 0. Since A is simply connected, SH;(A) = 0. The Mayer-
Vietoris sequence gives SH; (B) = 0. Since B has no quasi-crown, it is strongly simply
connected. O

8.7. The following corollary follows directly from (8.4), (7.5) and (7.6).

COROLLARY. Let A be a schurian triangular algebra containing mo quasi-crowns.
Then A is strongly simply connected if and only if SH,(A) =0 for alln >1. O
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9. Quotients of incidence algebras.

9.1. Predictably, we get much better results for quotients of incidence algebras.
These results rest on the following combinatorial lemma, whose proof is omitted.

LEMMA. [5] (3.7) Let A be a quotient of an incidence algebra and assume that, for
some source s in A, kX contains a crown. Then A contains a crown. O

9.2,

PROPOSITION. [5] (5.8) Let A be a quotient of an incidence algebra. The following
conditions are equivalent:

(a) A is strongly simply connected.

(b) A is separated and contains no crowns.

(c) A is simply connected and contains no crowns.

(d) SH1(A) =0 and A contains no crowns.

(e) SHY(A,G) =0 for any abelian group G, and A contains no crowns.

Proof. We repeat the proof of (8.4), taking (9.1) into account. O

9.3. We can show that, for strongly simply connected incidence algebras, the
lower bound of (4.2) is attained. We again omit the proof.

LEMMA. [4] (3.6) Let k¥ = kQx/Ix be a strongly simply connected incidence al-
gebra, and let (p,q) be a given irreducible contour in Qs. Then there exists a set of
generators of Is, of cardinality x(Qx), consisting of the commutativity relations of
irreducible contours, and containing the relation p —q. O

9.4.

THEOREM. [4] (4.7) Let A = kX/J be a quotient of an incidence algebra. Then A
is strongly simply connected if and only if A is simply connected and kX is strongly
simply connected.

Proof. Since the necessity follows from (6.4), we prove the sufficiency. If A is not
strongly simply connected then, by (8.2), there exists an irreducible contour (p,q)
in the quiver @ of A such that p € J. By (9.3), there exists a set of generators
{p1 = p—q,..p5@)} of Is. Let S be the subset of this set corresponding to those
contours in @ which are non-zero in A. Thus, |S| < x(Q) because p; ¢ S. Hence,
Is + J is generated by S together with a set of monomials {m;,...m,} where we
may assume that mq, mo are subpaths of p, ¢ respectively (thus, r > 2). By (4.1),
71 (A4) =2 m(Q)/N, where N is a normal subgroup of 71 (Q) generated by |S| elements.
Since |S] < x(Q), (4.2) yields a contradiction to the simple connectedness of A. O

9.5. It turns out that, among the schurian strongly simply connected algebras,
the incidence algebras are characterised by having a generating set of cardinality equal
to the Euler characteristic.

THEOREM. [4] (4.8) Let A = kQ/I be a schurian strongly simply connected algebra,
given its normed presentation, and ¥ be the associated poset. Then A = kY. if and
only if I has a generating set of cardinality x(Q). O
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9.6.

PROPOSITION. [5] (5.6) Let A be a connected quotient of an incidence algebra con-
taining no crowns. Then A is simply connected if and only if HH'(A) = 0.

Proof. By (5.1), it suffices to prove the sufficiency, and we do this by induction on
| Ao|. Assume that |Ag| > 1 and HH'(A) = 0. Up to duality, there exists a source s
such that A(®) is connected. Since A is a quotient of an incidence algebra, so is A(®).
Let M = rad P;. Since A(® is connected and HH'(A) = 0, Happel’s sequence (5.7)
gives End M = k. Thus, M is indecomposable.

The support C of M is convex in A: indeed, let g — 1 — ... =& x¢ be a path in A
with g, ; € Cy. Since A is semi-commutative, A(s,zg) # 0 and A(s,z;) # 0 imply
A(s,z;) # 0 for all i. Therefore, C is a quotient of an incidence algebra. Actually, C
is even an incidence algebra (so that C' = kX(®)): if a,b € Cy are such that A(a,b) # 0
and A(b,c) # 0, then the existence of M = rad P; implies that A(a,c) # 0. Then we
may define a partial order on C by a < b whenever A(a,b) # 0, and this makes C' an
incidence algebra.

Since A contains no crown, neither does C, which therefore is strongly simply con-
nected. By [34] (2.2), Ext},(M,M) = 0. The convexity of C' in A implies that
Ext!, ., (M, M) = 0. Happel’s sequence (5.7)

0=HH'(A) - HH'(A®)) - BExt Y., (M,M)=0

yields HH'(A®)) = 0. The induction hypothesis says that A®®) is simply connected.
Since HH'(A) = 0, then s is separating, by (5.8). By (4.6), A is simply connected. O

9.7.

COROLLARY. [5] A schurian triangular algebra A is strongly simply connected if
and only if A is a quotient of an incidence algebra, HH'(A) = 0 and A contains no
crowns.

Proof. This follows from (9.6) and (8.4). O

10. Dismantlability.

10.1. It is shown in [49] that a poset is dismantlable if and only if its quiver
contains no crown, that is, its incidence algebra is strongly simply connected. Our
objective in this section is to introduce the corresponding notions and prove the cor-
responding results for schurian triangular algebras.

A point z in a schurian algebra A is called doubly irreducible [30] if there are at
most one arrow of target x, and at most one arrow of source zx.
For such a point x € Ay, we define a new category B = A(z). Suppose first

y—g P
If a8 # 0, we let B be the full subcategory of A with object class Ag\{z}. If a8 =0,
we let B be the category with object class Ag\{z} and the arrows of B are those of A
except a and B which are replaced by a new arrow o' : y — z; moreover the relations
in B are exactly those of A, except a8 = 0, which disappears. We define similarly B
in case

B

r—>2z
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or
Y —a> xI.

Note that B is generally not schurian: if A is given by the quiver

o8

o v o

bound by af = 0, then B is given by the quiver

!

[e] [o]
Yy ol z

LEMMA. [5] (4.1) Let x be a doubly irreducible in A such that A(x) is schurian.
Then m (A) = m (A(z)). O

10.2.

COROLLARY. [5] (4.2) Let = be a doubly irreducible in a strongly simply connected
algebra A, then A(x) is strongly simply connected.

Proof. Assume that
a B
Yy—r——>=z
(the other cases are similar) and that C is a full convex subcategory of A(z). If y,
z do not simultaneously lie in C, then C is a full convex subcategory of A, hence is

simply connected. Otherwise, A contains C'(z) as full convex subcategory. Since C(z)
is simply connected, the result follows from (10.1). O

10.3. A schurian algebra A is called dismantlable if there exists an order {zy,
Za, ..., } of all objects in A such that z; is doubly irreducible in A and, for each i > 1,
A(zy,...x;) = A(z1, ...xi—1)(z;) is schurian and admits z;¢; as doubly irreducible.

THEOREM. [5] (4.5) (4.7) A schurian triangular algebra is strongly simply connected
if and only if it is dismantlable.

Proof. Assume the algebra A to be dismantlable. By (10.1) and induction, A is
simply connected. It thus suffices to show that every full convex subcategory of A is
dismantlable. This is done by induction on |Ag|. Assume that A is dismantlable and
let C' be a non-dismantlable full convex subcategory of A. Since C # A, there exists,
up to duality, a source s € Ay not in C. Then C is a full convex subcategory of A(®).
Since |A((]s)| < |Ap|, the induction hypothesis implies that A(*) is not dismantlable.
Since A is so, there exists an order {z1,...z,} as in the definition above. Since A(®) is
not dismantlable, z; # s. If 21 ¢ Cp, then C is a full convex subcategory of A(z1).
Since |A(z1)o| < |Ao|, the induction hypothesis yields a contradiction. Hence z; € Cy,
and C(z1) is a full convex subcategory of A(x1). Again, induction says that C(z1) is
dismantlable. Hence so is C, another contradiction.
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Conversely, let A be strongly simply connected. By (8.1), there exists a strongly
simply connected incidence algebra kX having A as a quotient. Since, by (7.2), kX
contains no crown, ¥ is dismantlable by [30] (2.3). In particular, kX (hence A) contains
a doubly irreducible z. Also, A(z) is schurian: this is clear if A(x) is a full subcategory
of A; otherwise there exist arrows

a B
Yy——sxrx——>z

such that af = 0 so, the statement is clear if z belongs to no cycle while, if it does,
then we can assume that there exists an irreducible cycle containing « and 3, a con-
tradiction to (8.2). By (10.2), A(z) is strongly simply connected. By induction, A(z)
is dismantlable. Hence so is A. O

11. Simple connectedness of incidence algebras.

11.1. In this section, we assume that A = kX is an incidence algebra. A full
subcategory C of A is a weak crown if it consists of 2n points {z1,...2n, Y1, -..yn } and
2n non-zero morphisms of the form

\

X1 X9 In

Y1 Y2 Yn

(with n > 2) and satisfies conditions (a) and (b) of definition (7.1). Again, n is the
width of C.

Let C be a weak crown in A. A point & ¢ Cy suspends C if it is a proper predecessor
of two non-comparable points of C' and no proper successor of x precedes the same
points of C. A suspending point z of C' is a top of C' if it is an immediate predecessor
of all maximal points of C. Let x be a suspending point of a weak crown C, then the
suspension C* of C is the full subcategory of A generated by x, all minimal points of
C, and those of the maximal points which are not comparable to x. The dual notions
are of points which sustain C, which lie at its bottom, and the sustension C,.

A circumference of C' is a cyclic walk w = wi' - - - w& where, for each 4, we have ¢; €
{1,—1} and w; parallel to one of the paths u1,...un,v1, ...v, and such that, moreover,
each u; and each v; is parallel to exactly one of the w;.

There are many circumferences of C starting and ending at a given point x € Cy. If,
for instance, = z1, two examples are vluglvz .- u;lvnufl and u1v, tuy, - - -v;luwfl.
It is easy to prove that, for each 4, each circumference of C' in z; is homotopic to a
conjugate of a circumference at x; 1 (and also of a circumference at y;).

LEMMA. [11] (3.2) The convez hull of a weak crown C contains a crown as o full
subcategory, with a circumference homotopic to a circumference of C.

Proof. If C is not a crown, we may assume that [z1,y1] N [21,ys] contains a point
z ¢ {x1,y1,y2} or [z1,y1] N [T, y1] contains a point z ¢ {z1,Z,,y1}. In the first case,
the points z, z3...Tn, Y1 .-y, generate a weak crown C'. In the second case, the points
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T1,22...Ln, 2, Y2...yn generate a weak crown C'. In both cases, C' has a circumference
homotopic to a circumference of C. If C’ is not a crown, we iterate the procedure. O

11.2. Full subcategories of the form x — y are called sticks, and full subcate-
gories of the form

-
yl/ \yz

are called crosses. We refrain from proving the next proposition, but we illustrate it
on an example.

PROPOSITION. [11] (3.6) Let = suspend a weak crown C.

(a) The suspension C® uniquely decomposes as a union of weak crowns, crosses and
sticks having in common the point x.

(b) The width of each weak crown in the decomposition of (a) is strictly smaller
than the width w(C) of C, except if x precedes no mazimal point of C and x
precedes exactly two minimal points which are consecutive.

(c) The product of circumferences, all starting and ending in x, of the weak crowns
in the decomposition of (a), is homotopic to a conjugate of a circumference of

c. O

EXAMPLE. Let

/ X
T4 Is Te

z1 T2 z3

l l

U Y2 Ys Ya Ys Ys

be a full subcategory of an incidence algebra, and let C' be the weak crown with points
Z1,-.-Te, Y1, ---Y- Lhe suspension C? is easily seen to be the union of the stick z — y5
and the weak crowns

x Te T2 x x3 x

L X X

n Ye Y2 Ys Ys Ya
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11.3.

DEFINITION. Let C be a weak crown.

(a) If w(C) = 2, then C is called complete if there exists a point which suspends
C and precedes its 2 mazximal points or, dually, a point which sustains C' and
succedes its two minimal points.

(b) If w(C) > 2, then C is called complete if:

(i) there exists a point x which suspends C and precedes at least 2 maxi-
mal points of C', and, moreover, each weak crown in the decomposition
(11.2)(a) of C? is complete, or dually

(ii) there exists a point x which sustains C and succedes at least 2 mini-
mal points of C, and, moreover, each weak crown in the decomposition
(11.2)(a) of Cy is complete

ExAMPLES. Consider the following incidence algebras

(@) = / m \5132 Z3 b)) =1 / x \562 Z3
< PSR

In (a), the shown crown is not complete, while in (b) it is complete.

LEMMA. [11] (4.3) Let C be a complete weak crown. Then any circumference of C
is homotopic to the trivial walk.

Proof. This follows easily from the definition, using (11.2)(c). O

11.4. Recall that the problem of determining whether a schurian algebra is sim-
ply connected or not is undecidable. We give however here a sufficient, and also a
necessary condition, for simple connectedness.

THEOREM. [11] Let A be an incidence algebra, which is not strongly simply con-
nected. Then

(a) If every crown in A is complete, then A is simply connected.
(b) If A is simply connected, then A contains a complete crown.

Proof (Sketch).

(a) If A is not simply connected, it contains cyclic walks which are not contractible.
Consider among these walks those with the least number of sources (or sinks)
and among these latter, choose one of least length, denoted by w. One shows
easily that the sinks and sources of w generate a weak crown C of A. Minimality
of length implies that C' is a crown.

(b) This is done by induction on |Ag|. We may assume |Ag| > 4. Since A is not
strongly simply connected, it contains a crown C. If all sources and sinks of A
lie in C, then A is the convex envelope of C, hence a contradiction, by (7.1).
Assume, up to duality, that s is a source of A not in C. Assume moreover that



SIMPLE CONNECTEDNESS AND HOMOLOGY OF SCHURIAN ALGEBRAS 29

no crown of A is complete. Since C C A®) and is connected, there exists a
connected component B of A(®) containing C. Then B is not strongly simply
connected. On the other hand, s is separating, by (5.9). Letting A’ be the full
subcategory of A with object class By U {s}, the restriction to A’ of rad P is
thus indecomposable. By (4.6), A’ is simply connected.

Since no crown in A is complete, no crown in B is complete. Therefore
s is top of no weak crown in B (indeed, if s were top of a weak crown C' in
B, then, by (11.1), C' contains a crown C" and s would be the top of C", a
contradiction). By the induction hypothesis, B is not simply connected. Since
s tops no weak crown in B, one can show that 7y (B) 2 71 (4"), see [11] (5.3),
and then the simple connectedness of A’ yields a contradiction. O
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