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ABSTRACT. We show that a right triangulated category is best behaved when
its shift satisfies conditions making it what we calla right semi-equivalence. We
consider right triangulated categories constructed using the standard method
of[B],mdgiwsnmmmdsuﬂicientwnditionfortheshi&ofsucha
right triangulated category to be a right semi-equivalence. We study examples
where this condition is satisfied, then we apply our results to show that the
unfolding of an APR-iterated tilted algebra is the postprojective component of
the full subcategory of the homotopy category of bounded complexes of finitely
generated projective modules having igero cohomology in the positive indices.

The notion of a triangulated category was introduced by Grothendieck and

Verdier in the sixties [22]. At about the same time, the idea of a semi-triangulated
category was implicit in Heller’s construction of the suspension and the loop-space
functors [17]. The explicit formulation of the axioms of a semi-triangulated category
is due to Keller and Vossieck [19], it was used in [18] to provide a natural setting for
an inductive construction of functors. On the other hand, triangulated categories
have found many applications in the representation theory of finite dimensional
algebras over a field (see, for instance, [15]). Our objective in this paper is to study
those right triangulated categories which are as close as possible to triangulated
ones.
We start by recalling the definition of a right triangulated category, and de-
rive some elementary properties. It will be apparent from these properties that
a right triangulated category is best behaved when the shift defining:it is a right
semi-equivalence (see (1.7)). This notion is further justified by our study of the
Auslander-Reiten theory of a right triangulated category having a right semi-
equivalence : this assumption allows us to prove in (2.4) the analog of Auslander-
Reiten’s characterisation of almost split sequences (4}, thus slightly improving [15]
(1.4). Since most known examples of right triangulated categories occur as sub-
categories of triangulated ones, we prove in (2.8) the analog of Auslander-Smalg’s
characterisation of almost split sequences in subcategories [6] (2.4).

We then turn to the consideration of examples. A standard construction of right
triangulated categories, comprising most known examples, was given in [8]. Our
main theorem (3.3) gives & necessary and sufficient condition for the shift defining
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18 IBRAHIM ASSEM, APOSTOLOS BELIGIANNIS, AND NIKOLAOS MARMARIDIS

this standard construction to be a right semi-equivalence. For instance, if 4 is an
artin algebra, then the stable category modA of finitely generated right modules
modulo injectives is right triangulated, but its shift is a right semi-equivalence if and
only if A is self-injective (in which case modA is triangulated). There exist however
non-self-injective locally bounded categories [10] over an algebraically closed field
A such that the shift in modA is a right semi-equivalence (3.4).

We end the paper with an application to unfoldings. This notion was intro-
duced by S. Brenner in [11], where it is shown that a triangular finite dimensional
algebra A over an algebraically closed field has an unfolding if and only if it is
APR-iterated tilted and, if this is the case, then it allows one to determine the
type of A. A slightly different interpretation of unfoldings using the homotopy
category K®(proj A) of bounded complexes of finitely generated projective right A-
modules was given in [2]. Since the inductive construction of unfoldings closely
resembles that of postprojective components, W. Crawley-Boevey has conjectured
(see [11]) that the unfolding is the postprojective component of the full subcate-
gory of K®(proj A) consisting of the complexes having vanishing cohomology in the
positive indices. This was shown to be true if A is iterated tilted of Dynkin type
[2] (4.1). We prove here this conjecture in general (4.4).

For the sake of brevity, we refrain from stating the dual statements for left
triangulated categories with left semi-equivalences.

1. Definition and first properties

1.1. Throughout this paper, we let k denote a commutative ring. We call
a category k-linear if it is additive, and the morphism groups have a k-module
structure with bilinear composition ; we call it k-abelian if it is moreover abelian.
A functor between k-linear categories is called k-linear if it preserves the linear
operations of the morphisms. For a category C, we denote by Cj its class of objects.

DEFINITION . A right triangulated (or suspended) category is a triple
(C,T,A), where :

a) C is a k-linear category.

b) T:C — C is a k-linear functor, called the shift (of suspension) of C.

¢) A is a class of sequences of three morphisms of the form U = V %'W 5 TU,
called triangles, and satisfying the following :

RTDIEU SV S WS TU is a triangle, and U’ % V' % W' % TU’

is a sequence of morphisms such that there exists a commutative diagram
inC

v

U——V——>W—>TU
flg g[g h[g Tfjlg
U s v —Ls W s
where f, g, h are isomorphisms, then the lower row is a triangle.
(RT2) For every object U in C, the sequence 0 — U - U — 0 is a
triangle.
(RT 3) For every morphism u : U — V in C, there exists a triangle
UvsvaiwisTu. |
(RT4) U S5V 5 W 5 TU is a triangle, then so is V 5 W 3
TU 2 TV (called its shift).
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(RT5) For any two triangles U %V 5 W S TU and U’ % V' L W' %
TU' and any two morphisms f : U — U’,g : V.— V' such that gu = u'f,
there exists h : W — W' making the following diagram commutative

w

U—>V——W TU

I
fL gl ki Tfl
[ ’ Y ’
U.f uoo V.r o W: 1 LTU!'

(RT'6) For any two triangles U %V 5 W S TU and U’ 5 U S W' %
TU’, there exists a commutative diagram

u v

v v W —s

I

Uf.&).v_p_g.v!;hTU!

u'L 1I/ g Tu’l
W ——TU
Ty w

W'

where the middle row and the column before the last are triangles.

Thus, if (C,T,A) is a right triangulated category, with T': C — C an equiva-
lence, then (C,T, A) is a triangulated category [22].

1.2. We now outline a construction of [8], comprising most known examples
of right triangulated categories. Let A be a k-linear category, a k-linear subcat-
egory of A is a full subcategory closed under isomorphic images, finite direct sums
and direct summands. If X is a k-linear subcategory of A, a complex in A

> Uipy — Ui = Upy —>

is called X-exact if, for each X € Xy, the induced complex

Hom 4 (u:,

X), Hom(U;, X)

HOmA (uH.l,X)
i s

-+ = Hom 4 (U;-1, X)
Hom4(Uit1, X) — « -

is exact for all 7. A morphism v : U — V in A is an A-monic if the complex
0 — U 5V is X-exact. Assume that X is covariantly finite in A (see [5], [6]) and
that each X-monic has a cokernel in .A, then, for each U € Ay, there exists a left
X-approximation fy : U — X(U), hence a sequence
U e x(U) —_ T(U)

where gy is a cokernel of fyy. By fixing such a sequence for each U € Ap, we make
an X-assignment for A. Let .A/X be the quotient (stable) category, and denote by
U, u, respectively, the image of an object U and a morphism u under the projection
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A — A/X. For an X-monic u: U — V, let v: V — W be a cokernel of u, and

. w:W — T(U) be defined by the commutative diagram

L]

u v

U >V -~ W

N

v 55 ) 22 T(0)

then the class Ay of .sequences of morphisms of A/X

U Lt Ly : .w w ~T(U)

defines a right triangulation on A/X, with shift T, see [8]. One shows that it
depends only on X, in the sense that any two X'-assignments yield equivalent right
triangulated structures. In the sequel, this construction is called the standard
right triangulation of A/X.

For instance, let A be an artin algebra with (artinian) centre k, or a locally
bounded k-category (where k is an algebraically closed field), let .A = mod A, and
X consist of the injective A-modules, then the above construction yields a right

_ triangulated structure on the stable category mod A.

1.3. Let C be a k-linear category. A pseudokernel of a morphism v: V —
W in C is a morphism u : U — V such that vu = 0 and, if v/ : U’ - V is
such that vu' = 0, there exists f : U’ — U (not necessarily unique) such that
v’ = uf. Pseudocokernels are defined dually. From now on, let (C,T,A) be a
right triangulated category.

LEMMA . Let U 5V 5 W 5 TU be a triangle, then :

(a) v is a pseudocokernel of u, and w is a pseudocokernel of v.
(b) IfT is full and faithful, then u is a pseudokernel of v and v is a pseudokernel
of w.

PROOF.  (a) That vu = 0 follows from the commutative diagram in C

U—>l—> ~TU

}
3T
u v Y w
U >~V > >~TU
(where the first triangle exists by (RT4) (RT 2)). Let v/ : V — W' be such
that v'u = 0. The existence of f : W — W’ such that v' = fv follows from

the commutative diagram

U——>V ——W —TU

l
l v"l fl ll
1 Y
0——w — W —-0.

This shows the first statement, the second follows upon applying it to the

shifted triangle V % W % TU 2* TV.

SR S b R e o
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(b) We already know that wv = 0, vu = 0. Let v’ : U’ — V be such that
vu' = 0, and consider the commutative diagram

1

U 0 >~TU' e
|
u"I/ J, fl Tu'l
v w |
|4 >~ W >~TU TV.

There exists f : TU’' — TU such that Tu' = (—Tw)f. Since T is full and

faithful, there exists a unique f : U’ — U such that Tf = —f. Hence

u' = uf. This shows the first statement, the second follows upon shifting.
O

1.4. Let Modk denote the category of k-modules. A k-linear functor F :
C°? — Modk is called cohomological if, for any triangle U = V = W = TU,
the induced sequence of k-modules

o S prY =2 FTU 2 pw 2 py £ pu

is exact. Dually, a k-linear functor F' : C — Modk is called homological if, for
any triangle U = V = W = TU, the induced sequence of k-modules

Fv

Fu —FTu '-'FTU\_

FU >~ FV FW -2 PTU FTV

is exact. The following corollary is immediate.

COROLLARY .  (a) For any object X in C, the functor Home(—, X) : CP —
Mod k is cohomolagical.

(b) IfT is full and faithful, and X is any object in C, the functor Homeg (X, —) :

€ — Mod k is homological. O

1.5. 'We have the following corollary.

u'

COROLLARY . Let U 5V % W % TU and U' % V! 5 W' 5 TU" be two
triangles, and f : U - U’, g : V — V' be two isomorphisms such that gu = u'f.
There ezists an isomorphism h : W — W' such that the following diagram is

commutative
w

w! TU

|
f[ gl Rl Tf[
I i’ Y I
U." u \Vr ko \_W." w\_TU!'

Proor. By (RT5), there exists a morphism h : W — W’ making the dia-
gram commutative. Applying the cohomological functor Home(~, X), then the
Five Lemma, yields that Home(h, X) : Home(W’, X) — Home (W, X) is an iso-
morphism for each X. Thus Home(h, —) : Home(W', ~) — (W, —) is a functorial
isomorphism. By Yoneda’s lemma, h is an isomorphism. ]

1.6. We also deduce the following corollary.

COROLLARY . Let T' be full and faithful, and TU 3 TV 5 TW = T2U be a
triangle. There ezists a triangle U =V 5 W 5 TU such that & = —Tu, © = —Tv
and @ = —Tw.
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PROOF. There exists a unique v : U — V such that i = —Tu, thus a triangle
" USV Y, w' ¥ TU’ and hence a commutative diagram

TU‘ﬂW _:E";. T™W' _:E;. T?U

4 ol !
U —EsTV > TW —> TP
By (1.5), there exists an isomorphism TW' — TW making the diagram com-
mute. Since T is full and faithful, W =W. a

1.7. This leads to the following definition.

DEFINITION . Let (C,T,A) be a right triangulated category. The shift T is
called right dense (or, more precisely, right A-dense) if, for any triangle of the
form U % TV % W' % TU, there exists W € Co such that W’ = TW. The
shift T is called a right semi-equivalence (or, more precisely, right A-semi-
equivalence) if it is full, faithful and right (A—) dense.

COROLLARY . Let T be a right semi-equivalence. For any morphism u : U —
TV, there ezistsatfiangleV—"'WﬁUﬁrTV.

PrROOE. There exists a triangle U - TV % W’ . 7U. Since T is right dense,
there exists W € Co such that W' = TW. Shifting yields a triangle TV LTW S
TU ~5* T2V. Applying (1.6) completes the proof. ]

2. Auslander-Reiten Theory in a right triangulated category

2.1. We start with a characterisation of those triangles in a right triangulated
category that correspond to split exact sequences.

LEMMA . Let T be full and faithful, and U Ay 5 W S TU be a triangle.
then : .
(a) u is a section if and only if v is a retraction, if and only if w =0.
(b) wu is a retraction if and only if v =0, if and only if w is @ section.
(c) w =0 if and only if v is a section, if and only if w is a retraction.

PrOOF. (a) If u is a section, so is Tu. Hence Tu-w = 0 yields w =0.
Conversely, since Tu is a pseudocokernel of w = 0, there exists @' : TV —
TU such that @ - Tu = 1. Since T is full and faithful, there exists a unique
o : V — U such that & = Tw'. Hence v'u=1 and u is a section. The proof
that v is a retraction if and only if w = 0 is similar.

(b) (c) follow from (a) upon shifting.
O

2.2. We can define projective and injective objects in a right triangulated
category as follows.

DEFINITION . Anobject U € Cp is called projective (or injective) in (C,T, )
if Home(U,T—) = 0 (or Home(—, TU) = 0, respectively).

Note that these notions are relative to the particular right triangulation A on
(C,T). Also, U is injective if and only if TU = 0 so that, if T is faithful, U is
injective if and only if U = 0.
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LEMMA . Let P € Co and consider the three conditions :
(a) P is projective. | _
(b) For every triangle U 5 V 5 W 5 TU and every morphism f : P - W
there ezists g : P — V such that f = vg.
(c) Every triangle V= W = P = TV satisfies u = 0.
IfT is full and faithful, (a) and (b) are equivalent and imply (c).
If, moreover, T is right dense, (c) also implies (a).
PrROOF. (a) implies (b). Apply Home(P,—) to the given triangle, then use
~ (1.4) and the projectivity of P. _
(b) implies (a). Let U € Co and f : P — TU be a morphism. Applying (b) to
the triangle U — 0 = TU — TU yields immediately f = 0.
(b) implies (c). Applying (b) to 1: P — P yields that w is a retraction. Hence
u =0, by (2.1).
(c) implies (a). Let U € Cy, and f : P — TU be a morphism. By (1.7). there
exists a triangle U — V — P 4 TU. The hypothesis gives f = 0.
(]

2.3. From now on, we assume that (C, T, A) is such that C is a Krull-Schmidt
category, and that T is a right semi-equivalence.

LEMMA . (see [4] (2.7)) Let U S V S W 5 TU be a triangle with no mor-
phism egual to zero. Then u is irreducible if and only ¢f, for every f : X —= W,
there evists g: X — V such that f =vg or g: V — X such that v = fg.

PROOF. Necessity. Consider the commutative diagram

X—w-'!*-TU--’—*-Y’—-E'-—‘*TX

: .

] ] W e

e Y -

w210 51V S TW
Since T is right dense, there exists ¥ € Co such that Y’ & TY. Since T is full
and faithful, the irreducibility of u implies that of Tu. Hence p’ is a section or A’
is a retraction. In the first case; pwf = 0 gives wf = 0. By (1.3), there exists
g : X — V such that f = vg. In the second case, let h : Y — V be such that
k' = Th. Since h’ is a retraction, so is h, that is, there exists £ : V — Y such
that hf = 1. Let ¢: Y — X be such that ¢ = T'q. Then —Tv.Th = Tf.Tq yields
—vh = fq so that v = f(—gf).

Sufficiency. By (2.1), u is neither a section nor a retraction. Assume u = h¢

and consider the commutative diagram

vtsx Loyt

A4
U——>V——>W—>TU.
If there exists g : Y — V such that f = vg, then ¢ = wf = wvg = 0 and, by (2.1),
£ is a section. If there exists g : V — Y such that v = fg, then g9 = wfg = 0 gives
k' :V — X such that g = ph’. Now v = fg = fph’' = vhh’' gives v(1 — hh') =0, s0
there exists ' : V — U such that 1 — hh’' = uv/, that is, 1 = k' +uu’ = h(h' +fu’)
and h is a retraction. O
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2.4. We can now prove the analog of Auslander-Reiten’s characterisation of
almost split sequences [4] (2.14), (2.15).

4
THEOREM (Auslander-Reiten). The following conditions are egquivalent for a
triangle U SV S W S TU :

TR I e v . R

(a) u is left minimal almost split.

(b) v is right minimal almost split.
(¢) u is left almost split and W is indecomposable. E
(d) v is right almost split and U is indecomposable.
(e) u,v are irreducible and U, W are indecomposable.

PrOOF. (a) implies (b). Since u is not a section, v is not a retraction. Let
f: X — W be a non-retraction. If wf = 0, we apply (1.5). If wf # 0, let
g:V — X be such that v = fg and consider the commutative diagram

Vot X eyt spy
1 ¥ r 1
VW sy =TV
g 1 8 Tgl(
x—tesw—LsztsTx

Th.g

Y

TY

obtained from (RT6), using that the middle row is uniquely determined
by (1.6). Then s is not a section (for, otherwise, r = 0 yields wf = 0,
a contradiction) and there exists by hypothesis s’ : TV — Z such that
s = —8'.Tu. Hence p = sw = —s'.Tu.w = 0 so that f is a retraction, a
contradiction. Thus v’ is right almost split. ,

To show that v is right minimal, let f : V' — V be such that vf = v.
Then the commutative diagram

Tu

V—>W —2>TU —>TV

P

V—lsW —>TU —>TV

yields g : TU — TU such that gw = w. Since u is left minimal almost split,
U is indecomposable. Consequently, End¢ TU is local and g or (1 — g) is an
isomorphism. If (1 — g) is an isomorphism, then (1 — g)w = 0 yields w = 0
so that v is a retraction, a contradiction. Hence g is an isomorphism. By
(1.5), T'f is an isomorphism. Hence so is f.

(b) implies (a). The proof is similar.

(b) implies (d). Since (b) implies (a), W is indecomposable.




RIGHT TRIANGULATED CATEGORIES WITH RIGHT SEMI-EQUIVALENCES 25

(d) implies (b). We need to show that v is right minimal. Let v: V — V be
such that vf = v, then the commutative diagram

V—ew sy ISy

I
I [ 1[ gl Tf l
Y
V—ts W —2sTU 5TV
yields g : TU — TU with gw = w. As above, g is an isomorphism. Hence
so is f.

(a) is equivalent to (c). The proof is sm:ular

(a) implies (e). This is trivial.

(e) implies (a). By hypothesis, U is indecomposable and v is not a retraction.
Assume that f : X — W is not a retraction. We may suppose that X
is indecomposable (replacing it, if necessary, by one of its indecomposable
summands). Since u is irreducible, (2:3) gives g : X — V such that f = vg
(and then we are done) or g : V — X such that v = gf. In this second case,
g is a section, because v is irreducible, and f is not a retraction. Since X is
indecomposable, g is an isomorphism. But then f = vg~1.

I}

DEFINITION . A triangle U = V = W 5 TU is called almost split if it
satisfies the equivalent conditions of the above theorem.

One proves exactly as for almost split sequences that an almost split triangle
is uniquely determined (up to isomorphism) by its first, or its third, term.

2.5. We have the following lemma.

LEMMA . Let K be a Krull-Schmidt category such that any morphism has a
pseudokernel. A morphism v : V — W is right minimal if and only if, for every
pseudokernel u : U — V of v, we have u € rad(U, V).

PROOF. Necessity. Let f : V — U be arbitrary, then v(1 — uf) = v implies
that 1 — uf is an isomorphism.

Sufficiency. If v satisfies vf = v, then v(1 — f) = 0 implies’'the existence
of ' such that 1 — f = wu’. Then f = 1 — uu’ is an isomorphism, because
u € rad(U, V). O

2.6. We say that a Krull-Schmidt category X has right (or right minimal)
almost split morphisms if each indecomposable object in X is the target of a
right (or right minimal, respectively) almost split morphism. We define dually what
it means to have left (or left minimal) almost split morphisms.

LEMMA . Let K be a Krull-Schmidt category having right almost split mor-
phisms, and such that any morphism has a pseudokernel. Then K has right minimal
almost split morphisms.

PRrOOF. Let W € Ky be indecomposable, and v : V — W be a right almost
split morphism with the property that the number n of indecomposable summands
of V is minimal. We claim that v is right minimal almost split. Indeed, if n = 1,
then V' is indecomposable, so that, if f : V — V is such that vf = v, then for 1—f
is invertible (because Endx V' is local) but, if 1 — f were invertible, we would get a
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contradiction to v(1 — f) = 0, hence f is invertible and v is right minimal. Assume
n > 1, and that v is not right minimal. By (2.5), there exists a pseudokernel u :
U — V of v such that u ¢ rad(U, V). WritingU = @ U, V = @ V; with the U;, V;
i=1 i=1
indecomposable, v = [v1,...va) : V — W and u = [u;i : Us — Vili<i<m,1<j<n, this
means that (rearranging the indices if necessary) u1s ¢ rad(Uy, V1), that is, uy; is
an isomorphism. Let V' = @ V;. We claim that v/ = [vz...vs] : V' — W is right i
i>1
almost split, and this will complete the proof, since it contradicts the minimality
of n. Observe first that vu = 0 implies 3 vjuj1 = 0, so that viun = — 3 vjuj
j=1 i>1
and v; = — 3 VU105, -
j>1
(a) Assume that v' is a retraction. Then there exists V' = . W=V
such that v'v” = 1. Let v* = [0,v}...v/]¢ : W — V, then, clearly, vv* =

" v'v" =1, and this contradicts the fact that v is not a retraction.
(b) Assume that f : X — W is not a retraction. There exists g = [g1,---9n]" ¢

X — V such that f = vg. But then

n
F= vigi = vigi+(- Y vjujuit)er = ) vilg; — upnuii 91
j=1

i>1 i>1 i>1

that is, f factors through v’. We are done.

2.7. We have the following easy lemma.

LEMMA . Let K be a Krull-Schmidt category, and L be a contravariantly finite
k-linear subcategory of K, then :
(2) If K has right almost split morphisms, so does L.
| (b) If any morphism in K has a pseudokernel, any morphism in L has a pseu-
| dokernel (in L).

PROOF. (a) Let W € Lo be indecomposable. Since L is closed-under direct
summands, W is indecomposable in X, hence there exists a right almost split
morphism v : V — W in K. Let fy : L(V) — V bea right L-approximation.
Then o' = vfy : L(V) — W is right almost split in L.

(b) Let v : V — W be a morphism in £, and u : U — V be a pseudokernel of
v in K. Let fu : L(U) — U be a right L-approximation. Then v’ = ufy :
L(U) — V is a pseudokernel of v in L.

O

2.8. We deduce a condition for the existence of relative (minimal) almost split
morphisms.

! THEOREM . Let C be a right triangulated Krull-Schmidt category having left

i almost split morphisms, and D be a k-linear subcategory.

1 (a) C has left minimal almost split morphisms. If D is covariantly finite, then
also D has left minimal almost split morphisms.

(b) Suppose that T is a right semi-equivalence.
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(i) If C has right almost split morphisms, then C has right minimal al-
most split morphisms. If D s contravariantly finite, then D has right
minimal almost split morphisms.

(ii) IfC has right almost split morphisms and D is functorially finite, then
both C and D have left and right minimal almost split morphisms.

PROOF. Any right triangulated category has pseudocokernels by (1.3), hence
the first statement of (a) follows from the dual of (2.6), while the second follows
from the duals of (2.6) and (2.7). If T is a right semi-equivalence, then, by (1.7)
and (1.3), any morphism has a pseudokernel, hence the first statement of (b) (i)
follows from (2.6) and the second from (2.6) and (2.7). Finally, (b) (ii) follows from

O

(a) and (b)(i).

3. Right semi-equivalences in stable categories

3.1. Our objective is now to find a necessary and sufficient condition for the
standard shift of a stable category (1.2) to be a right semi-equivalence. Since this
condition is expressed in terms of relative homological algebra as developed, for
instance, in {7], [12], [9] we start by recalling those concepts that will be needed.
Throughout, we let C be a k-abelian category, and A, X be two k-linear subcate-
gories of C. Then A is said to be X'-coresolving [7] if :

(a) A contains X.

(b) f0—->U—V —- W — 0 is X-exact, with U,V € Ag, then W € A,.

(¢) HO->U—->V =W — 0 is X-exact, with U,W € Ap, then V € Aq.
Assume that A is X-coresolving and that each X-monic in A is 2 monomorphism,
then the stable category .A/X’ satisfies the conditions of (1.2), hence has a standard
right triangulated structure. We also remark that 4 is an exact category in the
sense of Quillen [20], having the X-monics as admissible monomorphisms.

Assume that X' is moreover a covariantly finite subcategory of A. For any
U € Ay, we can define X-resolutions of objects in A and hence the relative extension
functors Ext% (U, =) : A — Modk for all i > 0 as follows. Given V € Aj, there
exists an X-exact and exact sequence

00V oaXl Xt o Xxis... .

(with X7 € A for all j > 0) where we use the facts that each X-monic is a
monomorphism, that the cokernel of a morph.lsm in A(D X)) lies in A, and that X
is covariantly finite in A. We then let Ext% (U, V) be the i** cohomology module of
the complex obtained from this sequence by deleting V, then applying Home (U, —).
It is easily seen that the functors Ext% (U, —) are well-defined and, if 0 — V/ —
V — V” — 0 is an X-exact sequence in A, then we have a long exact cohomology
sequence

0 — Home (U, V') — Home (U, V) — Home (U, V") — Ext (U, V') —
Extl, (U, V) — ExtL (U, V") - Ext% (U, V') — -
Also, Ext} (U, V) coincides with the class of all X-exact and exact sequences 0 —
V = E - U — 0in A, so that Ext} (—, —) is a k-linear subfunctor of the restriction

to A of the functor Ext;(—,~). An object U € Ay is called X-projective (or X-
injective) if Ext} (U, —) = 0 (or Ext} (—U) = 0, respectively).
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Under the stated hypotheses, the X-injectives coincide with the objects in X.
Indeed, it is clear that any object in X is X-injective. Conversely, let I € Ay
be X-injective. The left X-approximation f; : I — X(I) is an X-monic, hence a
monomorphism. Since Coker fr € Ay, and I is A-injective, then f; is a section.
Since X(I) € Ay, and X is closed under direct summands, we infer that I € Ap.

3.2. The following lemma generalises properties of the stable module category
of an artin algebra. Only its necessity part is needed for the proof of our main
theorem (3.3), but we include the sufficiency for completeness. Here, and in the
sequel, we use the notation of (1.2).

LEMMA . Assume that A is X-coresolving, that each X-monic in A s a
monomorphism, and that X is covariantly finite in A. Letu: U — V be a mor-
phism in A.

(a) u=0in A/X if and only if Exty(W,u) =0 for each W € Ag.
(b) u is an isomorphism in A/X if and only if Extly (W, u) is an isomorphism
for each W € Ap.

PROOF. The necessity of the conditions in (a) and (b) follows from the fact
that, since the objects of X are X-injective, then the functor Exty (W,-) : A —
Mod k induces a functor A/X — Mod k. We thus just have to prove the sufﬁmency.

(a) Assume that Extk(W,u) = 0 for each W € Ay and consider the exact and
X-exact sequence

f—spgp— 20 —E ) —s

Then Ext% (T(U),u) = 0 gives that the lower sequence in the commutative
diagram with exact rows

0— U —1% x(U) > T(U) —>0
0 Vv E TU)—0

splits, hence there exists v’ : X(U) — V such that u = ' fyy. Thus u = 0.
(b) Assume that Ext (W, u) is an isomorphism for each W € Ay. The morphism

fu

have an exact and A'-exact sequence

i

0 U >VaeXU)—y' —0

. ] :U — V& X(U) is an. X-monic, hence a monomorphism, so that we

where U’ = Coker [?] belongs to A. Then, for each W € Ap, we have a
U

long exact cohomology sequence
0 — Home (W, U) — Home (W, V @ X(U)) —
— Home (W, U’) = Exty(W,U) — Exty(W,V @ X(U))
— Exty(W,U’) — Ext%(W,U) —
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Since Ext (W, fu) = 0 by (a), and Ext} (W, u) is an isomorphism, we
infer that Ext} (W, [ ;:I]) is an isomorphism. Setting W = U’, we deduce

that the original short exact sequence splits, so that [ ;:r] is a section. Con-
sequently, u : U — V is a section. In order to show that u is actually an
isomorphism, it suffices to prove that Ext}(W,U") = 0. For, if this is the
case, the arbitrariness of W yields that U’ is X-injective, that is, by (3.1),
U’ € Xp. Thus, the original short exact sequence induces a triangle in A/X
of the form

USV -0-TQU)

By (2.1), u is a retraction and we are done.
Now, Exty(W,U’) = 0 whenever Ext?, (W', [;;]) or, equivalently,

Ext? (W, u), is a monomorphism. Considering left X-approximations of
U,V, we have a commutative diagram with exact rows

0— U —% X(U) s T(U) —s g

0 __:l —4 ;(LV) S i ;(L) —>0

By dimension shifting, it suffices to show that Ext) (W, w) is a monomor-
phism. Since u is a section, there exist v, f’ such that u'u + ffu=1. We
thus have a commutative diagram with exact rows

0—U % 2(U) s Ty —s g

JoA A

/
0—vV b x(V) Xo1(v)—sy

/ /
url / url / w’l’
Y fu ~ qu
0—> U —% X(U) 2 T(U) —> 0

Since fu f'fu = fu — fuu'u = fy — v'vfy, we have 1—=v'v— fuf)fu=0.
Hence there exists ¢’ : T(U) — X(U) such that 1 — v/ — Juf' = d'gu.
Thus gy = guv'v + gufuf' + gug'9u = w'wgy + gug'gy. Since gy is an
epimorphism, we have 1 = w'w + gyg’. Hence 1 = w'w. By (a), 1 -w'w =0
yields Ext’s (W, ') Ext} (W, w) = 1. Hence Ext} (W, w) is a section and, in
particular, a monomorphism.

O

3.3. We may now state, and prove, our main theorem.

THEOREM . Let C be a k-abelian category, and X, A be two k-linear sub-
categories of C. Suppose that A is X-coresolving, that each X-monic in A is a
monomorphism and that X is covariantly finite in A. Then :

(a) The standard right triangulation in A/X has a right dense shift functor T.
(b) T is a right semi-equivalence if and only if every object in X is X-projective.
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Proor.  (a) Let (A/X,T,A) be the standard right triangulated structure
on A/X. We must show that T is right dense. Assume a triangle in A of

the form

USTW) > W 3TQ).
There exists an exact and X-exact sequence in .4
0=V xwv)ET(v)=o.
There also exists an exact sequence
0-USTV)2W -0

where v = coker u, and u is a monomorphism. We claim that there exists a
commutative diagram in C with exact rows and columns

0 0

q
4 v
0— W —2> X(V) 2o ppr — 0

U—'*"*U—*T(V)—"?—“'W"—*U

2

0 0

where h =ker gy. Indeed, w =ker v, hence p : W — U exists and we
set ¢ =ker p (it is easily seen that ¢ : V — W). Since ¢ is a kernel, it
is a monomorphism, while p is an epimorphism (by the amalgamated sum
diagram in the centre). In particular, the sequence

0-VIwBUu—o

is exact in C. It is also A-exact : indeed, we need to show that g is X-monic,
that is , for each X € Ap, the morphism Hom¢(g, X) is an epimorphism.
But hg = fy yields Hom¢(g, X') Home (h, X) = Home(fy, X) and the result
follows because fy is X-monic. Since A is X-coresolving, U,V € Ay imply
W e Ap.

Next, we claim that h is X-monic. Indeed, let X € X, and assume
£.Hom¢ (h, X) = 0 for some morphism ¢ in Mod k. Then 0 = ¢. Home (h, X)
Home(gv, X) = £ Home(p, X) Home (u, X) implies £ Home(p, X) = 0 be-
cause u is X-monic. On the other hand, we have an exact sequence in
Mod k
0 — Home(U, X) 22X, gome(w, X) 22me@X), Home (v, X) - 0
hence there exists a morphism £ such that ¢ = ¢'.Home(g, X). Conse-
quently, 0 = £. Home (h, X) = £'. Home(g, X) Home (h, X) = ¢ Home(fyv, X)
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which yields #/ = 0. This establishes our claim which implies that the exact
sequence

U—>Wi>X(V)"ﬂ W —o
(which lies in A) is X-exact, with X(V) € Xp. But then W’ = T(W) and
we are done.
(b) Assume that T is a right semi-equivalence. Let X € Ap and U € Ag. The
exact and X-exact sequence in A
0—-UB xS TU)—>0
yields an exact cohomology sequence

Home(X, fu) Home (X,gu)
R ] ) _—

0 — Home (X, U) Home (X, X(U)
— Home (X, T(U)) 2 Ext (X,U) = 0

(because X' (U) is X-injective). Let w : X — T'(U) be a morphism in A, and
consider its image 8(w) in Ext} (X, U)

0—>U—2>Vy —+— X —>0
I
0 — g —% 2(U) 2> T(U) —>0.

Since fy = w'u is X-monic, so is u. Also, U, X € Ap imply V' € Ay so that
O(w) induces a triangle in A/X

U2V 2 X—=T(Q).

Since X = 0, then T'(u) is an isomorphism (by (2.1)). Since T is full and
faithful, u is an isomorphism. By (3.2), Ext} (W, u) is an isomorphism for
each W € Ag. Applying Home (X, —) to the X-exact sequence d(w) yields
an exact sequence

0= Horg (X, U) Home (X, u) Home (X, V) Home (X, v) ’

— Home(X, X) 2 Bxth(X,U) = Exty (X, V) — 0.

Hence Home (X, v) is an epimorphism : there exists v’ : X — V such that
v = 1. But then wv = gyw' implies w = gyw'v' = Home(X, gv) (w'v'),
that is, Home (X, gy) is an epimorphism. By the first cohomology sequence
above, this implies Ext}(X,U) = 0 for all X € X, U € Ay, that is, each
object in X is A-projective.

Conversely, assume that Ext} (X,U) = 0 for all X € Xp,U € Ao. Let

: U — V be a morphism in A/X with T(u) = 0. We have a commutative
dlagram with exact rows

0 — U —1% x(U) 2> T(U) —0

e
fv

g—>V x(v) L 1(V) —0.
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Since u” = 0, there exists v : X(T'(U)) — T(V) such that u” = vfrw). We
consider the following fibered product in C

0—>V —">F—% X(T(U)) —>0

e

00—V —>X(V) s 7(V) —=0,

Then p is X-monic, because fy = wp is. Hence V,X(T(U)) € A imply
E € Ao. By hypothesis, Ebct}r(k'(T(U)),V) = 0 hence there exists w' :
X(T(U)) — X(V) such that v = gvw'. Therefore v’ = v frw) = gy’ fry
and u” factors through gy . Consequently, u factors through fy so that
u = 0. Thus, T is faithful.

To prove that T is full, let u” : T(U) — T(V) be a morphism in AlX.
We have in A a diagram with exact rows

0— v 2% xw) 2 Ty —

“h'

QQVJX;X(V)_F_V;T(V)—H-.U_

We form the fibered product

P

00—V ~F—1 X(U) —> ¢

1 w u’gy

O-—hv—jh-X(V);iv—*T(V)—'—’*O.

Since V,X(U) € Ag and p is X-monic (because fy = wp is ), we have
E € Ay. By hypothesis, Ext} (X (U), V) = 0 hence there exists ' : X w)—
X(V) such that gyu’ = u”gy. By passing to the kernels, there exists a
unique 4 : U — V such that fyu =v'fy. By construction, u” = T'(u).

O

- REMARK . The necessary and sufficient condition of (b) can be interpreted in
terms of the right X-orthogonal of X : this is the k-linear subcategory XL of A
consisting of those U € .4y such that Exty(X,U) =0 for all i > 1 (see [7]). Then
every object in X is X'-projective if and only if 4 = XL, Indeed, the sufficiency is
obvious and, for the necessity, let U € Ay, then there exists an X-exact and exact
sequence

0___;..U_"‘_o_;._Xn_"_l_;..X.1__£;.X2_.;....

with X7 € A; for all § > 0. SettingU5=Cokerujforjzﬂ,wehavererbe-
cause A is X-coresolving. Dimension shifting yields Exty (X, U) & Exty (X, U%) =
0 for each i > 1.

3.4. We apply our theorem to the stable module category of an artin algebra.

COROLLARY . Let A be an artin algebra with centre k. The following conditions
are equivalent for the standard shift T in modA:

(8) T is a right semi-equivalence.
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(b) T is an equivalence.
(c) A is a self-injective algebra.

PROOF. Indeed, if A is an artin algebra, there exists a bijection between the
(finite) sets of isomorphism classes of indecomposable projective and indecompos-
able injective A-modules. Applying (3.3)to A=C= modA and observing that the
X-projectives (or X-injectives) coincide with the projective (or injective, respec-
tively) A-modules yield that (a) implies (c). Since (c) implies (b) by [15] (I.2. 2)
and (b) implies (a) trivially, we are done.

REMARK . The above statement shows that the study of right semi-equivalences
for modA, with A an artin algebra, reduces to the study when modA is triangu-
lated. This is not the case if we consider the stable module category modA, where
A is a locally bounded k-category, with k an algebraically closed field. Indeed, as
before, the standard shift on modA is a right semi-equivalence if and only if every
injective A-module is projective. But this does not imply that A is self-injective.
The following is an example of a non-self-injective locally bounded k-category A
such that the standard shift on modA is a right semi-equivalence. Let A be a fi-
nite dimensional k-algebra. We define the right repetitive category of A to be the
k-category defined by the algebra of lower triangular matrices

Ag 0
Qo A
A = (0] A
0

where matrices have only finitely many non-zero coefficients, A; = A4,Q; = DA =
Homy (A, k) (with its canonical A — A-bimodule structure) for all i > 0, addition
is the usual addition of matrices and multiplication is induced from the bimodule
structure of DA and the zero morphism DA®4 DA — 0. The right repetitive
category was shown to be useful in the covering theory of representation-finite and
polynomial growth self-injective algebras [1], [3].

4. Complexes and unfoldings '

4.1. The aim of this section is to prove a conjecture of W. Crawley-Boevey
which states that, if A is an APR-iterated tilted algebra over an algebraically closed
field, then the unfolding of A is the postprojective component of the full subcategory
H = H~(A) of K®(proj A) consisting of the complexes having vanishing cohomology
in the positive indices. Throughout, we assume that k is an algebraically closed
field, and A is a triangular finite dimensional k-algebra. For unfoldings, we use the
notation and results of [2]. We recall that if A is a triangular algebra then it has
finite global dimension, hence K®(proj A) is equivalent, as a triangulated category,
to the derived category D?(mod A) of bounded complexes of A-modules, and has
almost split triangles [15].

LEMMA . H = H~(A) is a right triangulated subcategory of K®(proj A), whose
shift is a right semi-equivalence.

ProoF. Let C°(proj A) be the category of bounded complexes of projective
A-modules P* such that P* = 0 for all ¢ > 0, and X be the k-linear subcategory
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of Cl6:9) (proj A) generated by those complexes of the form 0 — P L P — 0, where

" P € (proj A)o. We copsider the quotient category K. (proj A) =C:0% (proj 4)/X.

We claim that H K9 (proj 4). Indeed, there clearly exists a full and faith-

ful embedding K®%(proj A) < H. It suffices to show that each object U® =

(U',di,.) € Hp is isomorphic (inside K®(proj A) = D®(mod A)) to a complex in

K®0% (proj A). Consider the complex K* defined by Ki=0ifi>0, K°=Kerd}.

and K = U' if i < 0. Then there exists a morphism of complexes g* : K* — U*

defined by ¢g* = 0 if 4 < 0, g° equal to the inclusion and gt =1ifi > 0. Clearly,
Hi(g*) is an isomorphism for each i, so that U* = K* inside K*(proj A).

Now, we want to apply (3.3) to our situation. We notice that Cl5:% (proj A) is a

full subcategory of the abelian category Cb(mod A), and is closed under extensions.

We claim that X is covariantly finite in C%%(proj A). Let U® € (C%(proj A))o

be arbitrary, and consider the complex (X(U*®)* defined by & (U*)* =0 for i >0,

X(U*)° = U° and X(U*)} = U* @ U™ for i <0 with differential d%;e). defined

by d‘é{U.). =0 fori>0, d}%v.]. = [0,1] and d’fxw.). = [g (]i] for i < —2. Then

X(U®)* € X, and there is a morphism fg. : U* — X(U*)* defined by f{;« =0 if

i>0, fS. =1and fi. = [d‘l ] if i < 0. Then fJ. is a left X-approximation. For,

let X* € X and f*:U® — g&" be a non-zero morphism. We can assume that X*

is of the form 0 — X - X — 0, with X € (proj A)o. There exists i < 0 such that

p the only non-zero components of f* are f* : Ut — X and fit!: U — X which

s further satisfy fidit! = f**1. But then the morphism ¢° : ¥ (U*) — X* such that
i g =[fi0], gt =[0 f]and ¢ =0 for j #4,i+1 satisfies g* f. = f°.

Next, any X-monic f* : U* — V* in C®0 (proj A) is a monomorphism. This
will follow from the fact that f* : U®* — V* is an X-monic if and only if, for
each 4, fi : Ut — V' is a section. Indeed, if f* : U* — V* is an X-monic, then
Hom(f*, X(U*)*) : Hom(V*,X(U®)°*) — Hom(U*, X(U*)*) is an epimorphism,
hence there exists g* : V* — X(U*)* such that g*f* = fj.. But this means

T T

that, for each i, we have [g"] . Vi = U @ Uit such that [‘3,,] fi= [d‘l ] In
particular, g'f* = 1. Conversely, if f* a section for all i, and u® : U®'— X*isa
non-zero morphism, with X* € X, (and assumed of the form 0 — ¥ XX =D
with X € (proj A)o), then there exists v* : V* — X* such that v* f* = u*. For,
there exists ¢ < 0 such that the only non-zero components of u® are w:U = X
and wt! : Uit! — X which further satisfy u'di,' = u'*!. Also, there exists
gt : Vi — U' such that g'f* = 1. We then define v* by vt = uigh, vitl = wigidiil
and v/ =0for j #14,i+1

This also implies that Cl®%(proj A) is X-coresolving. Indeed, it contains X
is closed under extensions, and the above statement implies that it is also closed
under cokernels of X-monics. By (3.3), H =K% (proj A) is a right triangulated
category with right dense shift.

Moreover, the shift T in H is the restriction of the usual shift in K?®(proj A)
(given by T(U*®) = V*, where Vi = U**!, di;e = diit). Indeed, for U* € Ho,
T(U*) is given by the cokernel of the left approximation foe : U® — X(U®)® and
it is easily verified that this gives the restriction of the usual shift in K®(proj 4). In
particular, T is full and faithful, hence is a right semi-equivalence. O




RIGHT TRIANGULATED CATEGORIES WITH RIGHT SEMI-EQUIVALENCES 35

REMARK . It was already observed by Dowbor and Meltzer [13] that H,
equipped with the restriction of the usual shift in K®(proj A), is right triangu-
lated. We have shown that this right right triangulated structure is the standard
one (1.2), and that the shift is a right semi-equivalence.

4.2, We now characterise indecomposable projective objects in H.

LEMMA . An object P* € Hy is indecomposable projective if and only if P* is a
stalk complex with stalk concentrated in degree zero and equal to an indecomposable
projective A-module.

PROOF. Let P* be the given form. For any X* € Hy, we have (T'X*)? =0, by
definition of 7. Hence Hom(P*,TX*) = 0 and P* is projective in H. Obviously,
P* is indecomposable.

Conversely, let P* € Hy be indecomposable projective, and view H as a full
subcategory of the derived category D?(mod A). For each injective A-module I,
and each n € Z, there exists a canonical isomorphism Homps(mmoq 4)(P*, T™1) =
Hom(H~"P*,I) (see [16]). These k-spaces vanish for n > 0 because P* € H,.
Therefore P* is isomorphic, in D®(mod A), to a stalk complex with stalk equal to
the A-module M, say. Now, for each A-module N, and each n > 0, there exists an
isomorphism Homps (meq 4)(M, T"N) = Exti(M, N) (see [15]). As above, these
k-spaces vanish because P* € Hj, so that M must be a projective A-module. Since
mod A is a full subcategory of D®(mod A), it is clear that M is indecomposable. [

4.3. We deduce the existence of minimal almost split morphisms.

LEMMA . H is functorially finite in K®(proj A). In particular, H has left and
right minimal almost split morphisms.

PROOF. First, H is covariantly finite. Let U*® be a complex in K®(proj A)
and U°®_ be its truncation defined by UL = Ut if i < 0, U: = 0 if i > 0, then
U*_ € (K%projA))o and there exists a morphism of complexes t* : U* — U*®_
defined by t* = 1if§ <0, t* = 0if i > 0. Then, clearly, t_ is a left H-approximation.

Next, H is also contravariantly finite. Here we view again H as a full subcat-
egory of D¥(mod A). Let U® be a complex in K®(proj A) and K* be the complex
defined by K* =0 if i > 0, K = Kerd,. and K* = U* if i < 0. As seen in (4.1),
there exists a quasi-isomorphism g¢* : K* — U*® and K* belongs to the essential
image of the embedding of H in D*(mod A). Thus ¢* is a right H-approximation.

The last statement follows from (2.8). o

4.4. We finally prove the main result of this section.

THEOREM . Let A be APR-iterated tilted. The quiver T'(H) of H has a unique
postprojective component, equal to the quiver of the unfolding KC(A) of A.

Proor. If A is APR-iterated tilted of type ¥, say, it has a simple Z-unfolding
K(A), and K(A) contains (by construction and (4.2)) all the indecomposable pro-
jective objects in H. Hence, if K(A) has a postprojective component, it has exactly
one. Since the quiver I'(K(A)) of K(A) is a postprojective translation quiver, it
suffices to show that I'(KC(A)) is a component of I'(H). This is done by descending
induction on a fixed sequence of APR-tilts Ag = A, A,,...A, = kX. For i = n,
there is nothing to show, since the unfolding of the hereditary algebra kX is just its
postprojective component by [2] and [15]. We assume the statement for B = A;4,
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and prove it for C = A;. There exists a simple projective C-module Pc = eC such
that the APR-tilting complex T defined as the projective resolution of the APR-
tilting module 75'(eC) ® (1 — €)C (see[2] (3.1)) satisfies EndT* = B. Let K(B)
and K(C) denote the unfoldings of B and C, respectively. Since, by Rickard’s theo-
rem [21], K®(proj B) and K®(proj C) are equivalent as triangulated categories, and
the images of the summands of T* under this equivalence are just the projective
B-modules, then the full subcategory of (C) consisting of the (non-necessarily
proper) successors of the summands of T* corresponds under this equivalence to
K(B). By the induction hypothesis, K(B) is a component of the category H™(B)
of those objects in K*(proj B) with vanishing cohomology in the positive indices.
Hence any point among the sucessors of T* in I'(XC(C)) represents an indecompos-
able object in H~(C) and any arrow between two successors of summands of T
represents an irreducible morphism in H~(C). Finally, the morphisms of source
P =eC in I'(K(C)) are inclusions of P as a radical summand of other projectives,
hence are also irreducible. 0
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