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ABSTRACT. We introduce and study the class of right ada algebras. An artin algebra is
right ada if every indecomposable projective module lies in the left or in the right part of its
module category. We study the Auslander-Reiten components of a right ada algebra which
is not quasi-tilted and prove that they are of three types: components of the left and of the
right support, and transitional components each containing a right section.
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1. INTRODUCTION

Let A be an artin algebra. In order to study the representation theory of A, Happel,
Reiten and Smalφ have introduced in [20] the notion of left and right parts LA and RA
of its module category. These parts turned out to be well-behaved and are by now largely
understood, see, for instance, [20],[6], [5], [1]. Making hypotheses on these parts leads
to define algebras whose representation theory is to a large extent predictable, such as the
quasi-tilted algebras of [20], the shod algebras of [17], the weakly shod algebras of [16] or
the laura algebras of [3]. A recent addition to this list is the class of ada algebras [2]. An
algebra A is ada if every indecomposable projective and every indecomposable injective
A-module lies in LA or in RA. It was shown in [2] that the representation theory of an
ada algebra is entirely determined by those of its left and right support algebras, both of
which are tilted. We recall from [6] that the left support Aλ of an artin algebra A is the
endomorphism algebra of a complete set of representatives of the isoclasses (isomorphism
classes) of those indecomposable projective A-modules which lie in LA. One defines
dually the right support algebra Aρ.

One objective in the present paper is to prove a similar statement for a larger class of
algebras, generalising ada algebras by relaxing its defining condition. We define an artin
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algebra A to be right ada if every indecomposable projective A-module belongs to LA or
to RA. This class shares some of the nicest properties of ada algebras: it behaves well
with respect to taking full subcategories, split extensions and skew group algebras. Also,
a right ada algebra has representation dimension at most 3 and global dimension at most
4 (further, any indecomposable module has projective dimension at most 2 or injective
dimension at most 1). Moreover, if A is a finite dimensional right ada algebra over an
algebraically closed field, then A is simply connected if and only if the first Hochschild
cohomology group HH1(A) of A with coefficients in the bimodule AAA vanishes. This
answer positively for right ada algebras a well-known question of Skowroński [22]. We
prove that an algebra A is right ada if and only if every indecomposable A-module is a
module over its left support Aλ or lies in RA (and then, it is an Aρ-module). Using this
result, we characterise the Auslander-Reiten components of a right ada algebra as in the
following theorem.
Theorem. Let A be a right ada algebra which is not quasi-tilted. Then there exist a finite
family (Γi)

t
i=1 of connected components of the Auslander-Reiten quiver Γ(mod A) of A

containing right sections (Σi)
t
i=1 such that:

(a) For each i, the full subcategory (Γi)≥Σi of successors of Σi, inside Γi is directed,
generalised standard and convex in ind A. Also (Γi)≥Σi

= Γi ∩RA.
(b) The full subcategory (Γi)�Σi

of non-successors of Σi inside Γi consists of Aλ-
modules not inRA.

(c) If Γ is a component of Γ(mod A) distinct from the Γi, then either Γ is a component
of Γ(mod Aλ) or is entirely contained in RA (and in this case is a component of
Γ(mod Aρ).

(d) If moreover HomA(Γ,∪ti=1Γi) 6= 0, then Γ is a component of Γ(mod Aλ).
(e) Let M be an indecomposable A-module. Then M 6∈ LA ∪RA if and only if there

exist an indecomposable projective module P ∈ RA, an indecomposable injective
Aλ-module and two paths I  M , M  P which are not refinable to sectional
paths.

Because the study of right ada algebras closely resembles that of the (two-sided) ada
algebras of [2], most of the techniques introduced there can be applied to our case yielding,
however, weaker results, beacuse we are dealing with a much larger class.

The paper is organised as follows. After a short preliminary section 2, we define and
study the most immediate properties of right ada algebras in section 3. We start describing
their module categories in section 4 and prove our main theorem in section 5. The paper
ends with an example.

2. PRELIMINARIES

2.1. Notation. Let A be a basic connected artin algebra. We denote by mod A the cat-
egory of finitely generated right A-modules and by ind A a full subcategory consisting
of one representative from each isoclass of indecomposable A-modules. When we speak
about an A-module, or an indecomposable A-module, we always mean that it belongs to
mod A, or ind A, respectively. All subcategories of mod A are full and so are identified
with their object classes.

Following [15], we equivalently consider an algebra A as a k-category, whose object
class A0 = {1, · · · , n} is in bijection with a complete set {e1, · · · , en} of primitive or-
thogonal idempotents and the space of morphisms from i to j is eiAej . An algebra B is
a full subcategory of A if there exists e ∈ A, sum of some of the ei, such that B = eAe.
It is convex if, for any sequence i0, · · · , it in A0 such that eikAeik+1

6= 0 for all k with
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0 ≤ k < t and i0, it ∈ B0 then ik ∈ B0 for all k. We say that A is triangular if there is
no sequence of distinct objects i0, · · · , it = i0 with t ≥ 1 such that eikAeik+1

6= 0 for all
k. We denote by ex, Px, Ix, Sx respectively the primitive idempotent, the indecomposable
projective, the indecomposable injective and the simple module corresponding to x ∈ A0.

Given a subcategory C of mod A, we write M ∈ C to express that M is an object in
C. We denote by add C the subcategory of mod A consisting of the direct sums of direct
summands of objects in C. If C,D are two subcategories of mod A, HomA(C,D) = 0
expresses that HomA(M,N) = 0 for all M ∈ C, N ∈ D. If C is a subcategory of mod A
closed under extensions, then M ∈ C is called Ext-projective in C if Ext1

A(M,−)|C = 0.
It is shown in [12] (3.4) that M is Ext-projective in C if and only if τM 6∈ C. One defines
and characterises dually Ext-injective in C.

Given an A-module M , we denote by pd M and id M , respectively, its projective
and injective dimensions. The global dimension of A is denoted by gl.dim A. For further
definitions and results on the representation theory of A, we refer the reader to [14], [10].

2.2. Paths, left and right parts. . Let A be an algebra. Given M,N ∈ ind A, a path
from M to N (denoted by M  N ) is a sequence of nonzero morphisms

(∗) M = M0
f1→M1 → · · ·

ft→Mt = N

with Mi ∈ ind A for all i. Then N is called successor of M and M predecessor of N .
A path (∗) from M to M where at least one of the fi is not an isomorphism is a cycle.

A module M ∈ ind A is directed if it lies on no cycle. If each fi is irreducible in (∗),
then (∗) is a path of irreducible morphisms. If moreover, τMi+1 6= Mi−1, for each i with
0 < i < t, then (∗) is a sectional path. A refinement of (∗) is a path

M = M ′0 →M ′1 → · · · →M ′s = N

with s ≥ t and an order-preserving map {1, · · · , t − 1} → {1, · · · , s − 1} such that
Mi ' M ′σ(i) for all i. A path (∗) is refinable to a sectional path if it has a refinement
which is sectional.

Following [19], the left part LA of mod A is the full subcategory whose objects are
those M ∈ ind A such that every predecessor of M has projective dimension at most one.
Clearly LA is closed under predecessors. The right partRA is defined dually and has dual
properties.

3. DEFINITION AND FIRST PROPERTIES

We recall that an artin algebra A is ada if every indecomposable projective and every
indecomposable injective A-modules lies in LA or inRA, that is, if A⊕DA ∈ add (LA∪
RA), see [2]. We define right ada algebras by asking this condition only of projectives.

Definition 3.1. An artin algebra A is called a right ada algebra if AA ∈ add (LA ∪RA).

This is clearly equivalent to requiring that, for every x ∈ A0, we have Px ∈ LA ∪RA.
Dually, A is left ada if DAA ∈ add (LA ∪RA) or, equivalently, every indecomposable

injective module lies in LA ∪RA. Clearly A is right ada if and only if its opposite algebra
Aop is left ada. Finally, A is ada if it is both left and right ada.

Example 3.2.

(a) An algebra A is quasi-tilted if and only if AA ∈ add LA if and only if DAA ∈
add RA, see [20] (II. 1.4). Then, quasi-tilted algebras are right and left ada. A
right or left ada algebra which is not quasi-tilted is called strict.
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(b) LetA be a shod algebras, then indA = LA∪RA, see [17] or [5](6.1). Thus, shod
algebras are right and left ada.

(c) The following is an example of a right ada algebra which is not left ada (and thus
not ada). Let A be given by the quiver

1 2 3 4 5 6ε δ γ β α

bounded by αβ = 0, βγ = 0, δε = 0.
We now study elementary properties of right ada algebras. We start by proving that a

full subcategory of a right ada algebra is right ada.

Lemma 3.3. Let A be a right ada algebra, and e ∈ A be an idempotent. Then B = eAe
is right ada.

Proof. Let x ∈ B0 and Px = exB. Then Px⊗B eA ∼= exA, because exe = ex. Therefore,
Px ⊗B eA ∈ LA ∪RA. Because of [4](Corollary 2.3), we have HomA(eA, Px ⊗B eA) ∈
LB ∪ RB . But HomA(eA, Px ⊗B eA) ∼= Px, because of [4](Lemma 2.1). Hence
Px ∈ LB ∪RB and B is right ada. �

For split-by-nilpotent extensions, we refer the reader to [11].

Lemma 3.4. Let R be a split extension of A by a nilpotent bimodule. If R is right ada,
then so is A.

Proof. Let x ∈ A0. Then exRR ∼= exA⊗A RR. The statement then follows immediately
from [11](2.3)(b). �

For skew group algebras, we refer to [21, 9].

Proposition 3.5. Let A be an artin algebra, and G a group acting on A with |G| invertible
in A. Then the basic algebra R = A[G]b associated to the skew group algebra is right ada
if and only if A is right ada.

Proof. Suppose that A is right ada, and let P be an indecomposable projective R-module.
Because of [9](4.3), there exists an indecomposable projective summandPA of HomR(R,P )
such that PR is a direct summand of P ⊗A R.

Suppose P ∈ LA. Because of [9](5.2)(a), we have P ⊗A R ∈ add LR. Therefore
P ∈ LR. Suppose on the other hand that P ∈ RA. Let X be an indecomposable R-
module such that HomR(P ,X) 6= 0. We claim that id X ≤ 1. Because of [9](4.6), there
exist σ ∈ G and an indecomposable summand M of HomR(R,X) such that X is a direct
summand of σM ⊗A R and HomA(P, σM) 6= 0. Because P ∈ RA, we get σM ∈ RA.
In particular, id σM ≤ 1. Now the functor −⊗A R : modA→ modR is exact and sends
injectives to injectives, we get id (σM ⊗A R) ≤ 1. Therefore id X ≤ 1, as required.
Because of [9](1.1) this yields P ∈ RR. We have proved that P ∈ LA ∪ RA implies
P ∈ LR ∪RR. Then A right ada implies R right ada.

Conversely, assume that R is right ada, and let PA be an indecomposable projective
A-module. Then there exists an indecomposable projective summand P of P ⊗A R such
that P is a direct summand of HomR(R,P ).

Suppose P ∈ LR. Because of [9](5.2)(b), we have HomA(R,P ) ∈ add LA. There-
fore P ∈ LA. Suppose now that P ∈ RR, and let M be an indecomposable A-module
such that HomA(P,M) 6= 0. We claim that id M ≤ 1. Because of [9](4.4)(a), we have
HomR(P ,M ⊗A R) 6= 0. Because of [21] (1.1, 1.8), there exists an indecomposable
decomposition M ⊗A R = ⊕mi=1Xi such that HomR(R,Xi) = ⊕σ∈Hi

σM for some
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Hi ⊆ G. Hence there exists i with 1 ≤ i ≤ m and HomR(P ,Xi) 6= 0. Because P ∈ RR,
we get Xi ∈ RR and so id Xi ≤ 1. Therefore, for every σ ∈ Hi, we have id σM ≤ 1.
Thus id M ≤ 1, as required. Therefore P ∈ RA. This proves that P ∈ LR ∪ RR implies
P ∈ LA ∪RA. �

As immediate corollaries of (3.3), (3.4), (3.5) and their duals we obtain [2] (2.8),(2.9),(2.10).

Corollary 3.6. (a) Let A be an ada algebra and e ∈ A be an idempotent, then eAe is
ada.

(b) Let R be a split extension of A by a nilpotent bimodule. If R is ada, then A is ada.
(c) Let A be an artin algebra and G a group acting on A with |G| invertible in A.

Then the basic algebra R = A[G]b associated to the skew group algebra is ada if
and only if A is ada. �

We now study homological dimensions of a right ada algebra. It is shown in [2] that an
ada algebra has global dimension at most 4 and for every indecomposable A-module M ,
one has pd M ≤ 2 or id M ≤ 1. We now prove that the same statement holds true for
right ada algebras, but we obtain it as a result of more general considerations.

Given m,n ≥ 1, we define two full subcategories Lm and Rn of indA as follows:
Lm = {M ∈ indA | If L  M,L ∈ ind A, then pdA L ≤ m} and Rn = {M ∈ indA |
If M  N,N ∈ ind A, then idA N ≤ n}.

Clearly, L1 = LA, R1 = RA. Also, Lm is closed under predecessors in ind A, while
Rn is closed under successors.

Proposition 3.7. Let A be an artin algebra such that AA ∈ add (Lm ∪Rn) . Then:
(a) For any M ∈ ind A, we have pdA M ≤ m+ 1 or idA M ≤ n.
(b) gl.dim A ≤ m+ n+ 2.

Proof. (a) Let f : P0 → M be a projective cover. If some indecomposable summand P ′0
of P0 belongs to Lm, then any indecomposable summand of the kernel of f also lies in
Lm. Therefore pd M ≤ m + 1. Otherwise, if no indecomposable summand of P0 lies in
Lm, then P0 ∈ addRn. Hence M ∈ Rn and id M ≤ n.

(b) Let M ∈ ind A and suppose that pd M ≥ n + 1. Then we have the start of a
minimal projective resolution

0→ Kn → Pn → · · · → P0 →M → 0.

Also, for every indecomposable summandX ofKn, we have Extn+1
A (M,X) 6= 0. But this

implies idX ≥ n+1. Because of (a), we have pdX ≤ m+1. Therefore pdKn ≤ m+1
and so pd M ≤ (m+ 1) + (n+ 1) = m+ n+ 2. �

Corollary 3.8. Let A be a right ada algebra. Then:
(a) For every indecomposable module M , we have pd M ≤ 2 or id M ≤ 1
(b) gl.dim A ≤ 4.

Proof. This follows immediately from (3.7). �

Examples 3.9. (a) The bound obtained in (b) above is sharp: it is attained in the case of the
radical square zero algebra with quiver

1 2 3 4 5
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(b) The conditions of (3.8) do not suffice to characterise right ada algebras. Indeed, let A
be the radical square zero algebra given by the quiver

2

1 3

Then it is easily seen that for every indecomposable module M , we have pdAM ≤ 2.
Hence gl.dim A = 2. On the other hand, LA = {P1, P2} and RA = {I2, I3}. Thus A
satisfies the conditions of (3.8), but it is not right ada, because P3 6∈ LA ∪RA.

If A is ada, then, by symmetry, we also have that for every indecomposable module M ,
one has pd M ≤ 1 or id M ≤ 2. This is usually not true for right ada algebras.

The most recent and perhaps the most intriguing homological dimension is the repre-
sentation dimension, introduced by Auslander in [13] and denoted as rep.dim A, for an
algebra A.

Proposition 3.10. Let A be a right ada algebra. Then rep.dim A ≤ 3.

Proof. This is proved in [7] (5.2). �

We recall definitions from [8]. Given a strict right ada algebra A, let PA denote the
set of indecomposable projectives lying in RA. Because each such projective is directed
[6] (1.6), we can define a partial order by setting P ≤ P ′ if and only if there exists
a path P  P ′ in ind A. Because PA is a finite set, it contains maximal elements.
Such a maximal element P = eA is called maximal projective. Setting M = rad P and
B = (1− e)A(1− e), we have A = B[M ]: we say that A is a maximal extension.

Lemma 3.11. Let A be a strict right ada algebra, then there exists a sequence of right ada
algebras of the form

Aλ = A0 $ A1 $ · · · $ At = A

sucht that, for each i with 1 ≤ i < t, there exists an Ai-module Mi such that Ai+1 =
Ai[Mi] is a maximal extension and is also right ada.

Proof. Because A is strict, there exists an indecomposable projective module inRA \ LA
which we may assume to be maximal Pt = etA. Setting Mt−1 = rad Pt−1 and At−1 =
(1− et)A(1− et), we get that A = At−1[Mt−1] is a maximal extension. Because of (3.3),
At−1 is also right ada. If it is not strict, then every indecomposable projectiveAt−1-module
lies in LAt−1

= LA ∩ ind At−1 and so At−1 = Aλ. Otherwise, we apply induction. �

Let A be a finite dimensional algebra over an algebraically closed field k. We denote
by HHi(A) the ith Hochschild cohomology group of A with coefficients in the bimodule
AAA and by HH∗(A) the Hochschild cohomology ring, see [18]. Also, A is called simply
connected if for every presentation A = kQ/I of A as a bound quiver algebra, we have
Π1(Q, I) = 0, see [22]. It was asked in [22] for which algebras is simple connectedness
equivalent to the vanishing of the first Hochschild cohomology group. This is answered
positively for right ada algebras.

Corollary 3.12. Let A be a right ada algebra. The following conditions are equivalent:
(a) A is simply connected.
(b) HH1(A) = 0.
(c) HH∗(A) = 0.

Proof. The proof in [2] applies word to word. �
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4. SUPPORT ALGEBRAS OF RIGHT ADA ALGEBRAS

We recall the definition. Let P denote the direct sum of a complete set of representatives
of the isoclasses of indecomposable projective modules lying in LA. Then Aλ = End P
is called the left support of A (see [6]). Then Aλ is a full convex subcategory of A, closed
under successors and LA ⊆ ind Aλ. Moreover, it is shown in [6] (2.3) that Aλ is a direct
product of quasi-tilted algebras. The right support algebra Aρ of A is defined dually and
has the dual properties.

Lemma 4.1. Let A be a right ada algebra. Then:
(1) A is triangular.
(2) A = Aλ ∪Aρ

Proof. (1) Because of [6](2.2)(a),A can be written in triangular matrix formA =

[
Aλ 0
M B

]
.

Because Aλ is a direct product of quasi-tilted algebras, it is triangular. Let x ∈ B0, then
the indecomposable projective A-module Px does not lie in LA. Therefore Px ∈ RA.
Now, projectives inRA are directed [1](6.4). In particular, B is triangular. Hence so is A.
(2) Let x ∈ A0. Then Px ∈ LA ∪ RA. If Px ∈ LA, then x ∈ (Aλ)0. If Px ∈ RA, then
HomA(Px, Ix) 6= 0 implies that Ix ∈ RA and so x ∈ (Aρ)0. �

Theorem 4.2. An algebra A is right ada if and only if ind A = ind Aλ ∪RA.

Proof. Assume that A is right ada, and let M ∈ ind A be such that M 6∈ ind Aλ. Then
there exists an indecomposable projectiveA-modulePx /∈ LA, such that HomA(Px,M) 6=
0. Then Px ∈ RA and so M ∈ RA.

Conversely, assume that indA = ind Aλ∪RA. Let P be an indecomposable projective
A-module. Then P lies in indAλ and so P ∈ LA (because the indecomposable projective
Aλ-modules are the projective modules lying in LA), or else P ∈ RA. �

Corollary 4.3. (a) If A is right ada, then ind A = ind Aλ ∪ ind Aρ.
(b) An algebra A is ada if and only if ind A = ind Aλ ∪RA = ind Aρ ∪ LA

Proof. (a) Follows from the theorem and fromRA ⊆ ind Aρ.
(b) Follows from the theorem and its dual. �

Notice that (b) above is [2] (2.5).
Theorem (4.2) will be our chief tool for proving our main theorem in section 5 below.

For now, we apply it to obtain a characterisation of right ada algebras which are laura or
weakly shod. Recall that an algebra A is laura if LA ∪RA is cofinite in ind A, see [3] and
it is weakly shod if there exists a bound on the length of any path of non-isomorphisms in
ind A from an indecomposable injective to an indecomposable projective module [16].

Example 4.4. In general, right ada algebras are not laura. Here is an example. Let A be
the radical square zero algebra given by the quiver

1 2 3 4

Lemma 4.5. Let A be a right ada algebra. If A is laura, then it is a weakly shod algebra.

Proof. We may assume that A is a strict. Because A is laura, Γ(mod A) admits a unique
faithful non-semiregular component Γ. In order to prove that A is weakly shod, it suffices
to prove that Γ contains no oriented cycles, see [5] (5.12). Let M be an indecomposable
lying in a cycle in Γ. Because of [3] (1.5), we have M 6∈ LA and M 6∈ RA. In particular,
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M ∈ ind Aλ because of (4.2). But then the whole cycle lies in ind Aλ. Because Aλ is a
direct product of quasi-tilted algebras, then the cycle lies in a tube in Γ(modAλ). But then
the cycle in Γ can be made arbitrarily large, using more modules from the tube. Therefore
we get arbitrarily many indecomposables lying in ind Aλ \ (LA ∪RA), a contradiction to
A being laura. �

Corollary 4.6. If A is a representation-finite right ada algebra, then A is weakly shod.

5. THE AUSLANDER-REITEN COMPONENTS

Let A be a strict right ada algebra. Our objective now is to describe the components of
Γ(mod A). Because A is strict, there exists x ∈ A0 such that Px 6∈ LA. Then Px ∈ RA
and so is Ext-projective in add RA. Therefore the set Σ of Ext-projectives in addRA is
not empty. Decompose Σ as Σ = Σ1 ∪ Σ2 ∪ . . . ∪ Σm where we assume that each Σi is
the non-empty set of Ext-projectives in add RA lying in the same connected component
Γi of Γ(modA). Observe that in general Σi is not connected.

Because of [1] (6.7), each Σi is a right section and A/AnnΣi is a product of tilted
algebras admmiting Σi as disjoint union of complete slices.

We denote by (Γi)≥Σi the full subquiver of Γi consisting of the successors of Σi and
by (Γi)�Σi

the full subquiver consisting of the non-successors. Because of the definition
of Σi, all its successors lie in RA, thus are indecomposable Aρ-modules. Our first lemma
is as follows.

Lemma 5.1. Let A be a right ada algebra.

(a) If Px ∈ Σi is projective, then every projective successor of Px lies in the same
connected component of Σi.

(b) (Γi)≥Σi = Γi ∩RA.
(c) Let M be a proper predecessor of Σ. Then M is an Aλ-module and MA /∈ RA.

Proof. (a) Assume that we have a path Px  Py with Py projective. Because Px ∈ RA,
we have also Py ∈ RA. Then [1](6.3), gives that the path Px  Py can be refined to a
path sectional path of irreducible morphisms. This implies the statement.
(b) Assume M ∈ (Γi)≥Σi . We have already pointed out that M ∈ RA. Clearly M ∈ Γi
so that M ∈ Γi ∩RA.

Conversely, ifM ∈ Γi∩RA then, by [1](6.6), there existsm ≥ 0 such that τmAM ∈ Σi.
Therefore, M ∈ (Γi)≥Σi

.
(c) LetM be a proper predecessor of Σ. ThenM /∈ RA, because of (b) above. Let x ∈ A0

be such that HomA(Px,M) 6= 0. We claim that Px ∈ LA. For this, it suffices to prove
that Px /∈ RA. However, if Px ∈ RA then HomA(Px,M) 6= 0 and the existence of a
nontrivial path M  N , with N ∈ Σ yields a composed path Px → M  N . But
Px ∈ RA and projective give Px ∈ Σ. Therefore M ∈ Σ because of [1](6.3). This is a
contradiction. Therefore Px /∈ RA. �

We are now in position to prove the main theorem. By component of Γ(mod A), we
mean a connected component.

Theorem 5.2. Let A be a strict right ada algebras. There exists a finite family (Γi)
t
i=1 of

components of Γ(modA) containing right sections (Σi)
t
i=1, respectively, such that:

(a) Each (Γi)≥Σi = Γi ∩RA is directed, generalised standard and convex in indA.
(b) For each i, (Γi)�Σi

⊆ indAλ \ RA.
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(c) If Γ is a component of Γ(modA) distinct from the Γi, then either Γ is a component
of Γ(modAλ), or is entirely contained in RA (and in this case is a component of
Γ(modAρ)).

(d) If moreover HomA(Γ,∪iΓi) 6= 0, then Γ is a component of Γ(modAλ).
(e) Let M be an indecomposable A-module. Then M /∈ LA ∪RA if and only if there

exist an indecomposable projective module PA ∈ Σ, an indecomposable injective
module IA ∈ indAλ and two paths I  M , M  P which are not refinable to
sectional paths.

Proof. (a) Because Σi is a right section in Γi, then (Γi)≥Σi
is directed and generalised

standard, see [1](2.2) and (2.3). We have already shown that (Γi)≥Σi
= Γi ∩ RA. There

remains to prove the convexity of (Γi)≥Σi
. Assume that we have a path in indA:

M = M0
f1−→M1 → . . .

ft−→Mt = N

with M,N ∈ (Γi)≥Σi
but M1, . . . ,Mt−1 /∈ (Γi)≥Σi

. Because M ∈ RA then Mt−1 ∈
RA. Because of (5.1) (b), we must have Mt−1 /∈ Γi. Therefore ft ∈ rad∞A (Mt−1,Mt).

Then, for any s ≥ 0, we have a path Mt−1
hs−→ Ns

gs−→ . . . → N1
g1−→ N0 = N in indA,

with g1, . . . , gs irreducible and hs ∈ rad∞A (Mt−1, Ns) such that g1 · · · gshs 6= 0. Because
N ∈ (Γi)≥Σi

there exists s such that Ns /∈ (Γi)≥Σi
. In particular, Ns ∈ Γi. Then (5.1)

(b) yields Ns 6∈ RA. But Mt−1 ∈ RA, and this is a contradiction.
(b) This follows from (5.1)(b). Indeed, (Γi)�Σi

⊆ ind A \ RA. Because of (4.2), we
deduce (Γi)≥Σi ⊆ ind Aλ. Therefore (Γi)≥Σi ⊆ ind Aλ \ RA.

(c) Let Γ be a component of Γ(mod A), distinct from (Γi)
t
i=0. Then Γ ∩ Σ = ∅.

Because of [1](Theorem B), we have either Γ ⊆ RA or Γ ∩RA = ∅. In the first case, Γ is
a component of Γ(mod Aρ) contained in RA. In the second case, because of (4.2), every
M ∈ Γ is an Aλ-module so Γ is a component of Γ(mod Aλ).

(d) Assume now that Γ satisfies HomA(Γ,∪ti=1Γi) 6= 0. If Γ is not a component
of Γ(modAλ) then, because of (4.2), Γ contains an indecomposable module M ∈ RA.
Therefore Γ ∩RA 6= ∅. Because of [1](Theorem B), then Γ ⊆ RA.

Because HomA(Γ,∪ti=1Γi) 6= 0, there exist M ∈ Γ, an index i with 1 ≤ i ≤ t and
N ∈ Γi such that HomA(M,N) 6= 0. Because of (5.1) (b), we have N ∈ (Γi)≥Σi

. Let
f : M → N be a nonzero morphism. Because Γ 6= Γi, we have f ∈ rad ∞A (M,N). For
any s ≥ 0, there exists a path in indA

M
hs−→ Ns

gs−→ . . .→ N1
g1−→ N0 = N

with g1, . . . , gs irreducible and hs ∈ rad ∞A (M,Ns) such that g1 . . . gshs 6= 0. Then there
exists s ≥ 0 such that Ns ∈ (Γi)�Σi

. Then (5.1) (b) gives Ns /∈ RA, a contradiction to
the fact that M ∈ RA.

(e) AssumeM 6∈ LA∪RA. BecauseM /∈ RA, it has a successorN such that idN ≥ 1.
Because of [10] (IV.2.7), there exist an indecomposable projectiveA-module P and a path

M  N → ∗ → τ−1
A N → P.

Because M /∈ LA, then P /∈ LA. Because A is right ada, then P ∈ RA and so P ∈ Σ
(because it is necessarily Ext-projective inRA).

Because M /∈ LA, there exist, similarly, a predecessor L of M and an indecomposable
injective A-module I such that we have a path

I → τAL→ ∗ → L M.

Because N /∈ RA then I /∈ RA. Therefore I is an Aλ-module.
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Conversely, assume that two paths as in the statement exists. Because P ∈ Σ, it follows
from [1] (6.3) that M 6∈ RA: indeed, if M ∈ RA , then every path from M to P is
refinable to a sectional path, a contradiction. On the other hand, if M ∈ LA then I ∈ LA.
But I , being injective is Ext-injective in LA. Hence every path I  M is refinable to a
sectional path, a contradiction. Therefore M /∈ LA. �

Thus, the Auslander-Reiten components of a right ada algebra can be divided into three
types: those which are components of the lef support algebra, those which are components
of the right support algebra and the finite family of components containing the right section
Σi. Because the left and the right supports are direct products of quasi-tilted algebras, they
can be considered as known. One nice consequence of the theorem is the fact that right ada
algebras always admit postprojective components: this indeed follows from the fact that
Aλ always admits postprojective components.

Example 5.3. Let A be the following finite dimensional right ada algebra given by the
quiver

3 2 1 4 5 7

6

λ

µ

ν γ

β

α

bounded by λν = 0, µν = 0, αγ = 0, βγ = 0. We show the Auslander-Reiten quiver of
A just below

P6 S2 • · · ·

P5

6
5

4 2
1

• •

P4
5

4 2
1

• • · · ·

P1
4 2
1

5 3
4 2 2

1
• · · ·

P2 • • • · · ·

P3 • • · · ·

7
5 5

7 7 6 6
5 5 · · ·

3
2

3
2
1

4 5 6 7
5 5 · · ·

3 3
2 2
1

3
4 2
1

5
4

6
5

7
5 · · ·

• 3 3
4 2 2

1

5 3
4 2
1

I4

• 5 3 3
4 2 2

1
I1

• •
6

5 3 3
4 2 2

1

3
2

.
... • •

...
... •

.

ZA∞

· · · • I7

· · · I5

· · · • I6

· · ·
· · · • I3

· · · I2

In this example, we see that indAλ ∩ RA 6= ∅ because I4 ∈ indAλ ∩ RA. Here Aλ
is the algebra generated by {1, 2, 3, 4, 5, 6} while Aρ is the direct product of the algebras
generated by {2, 3} and {4, 5, 6, 7}. The reader will notice a component obtained by gluing
a coray tube of Aλ with a posprojective component of Aρ.
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