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Abstract. Let C be a finite dimensional algebra of global dimension at most two.
A partial relation extension is any trivial extension of C by a direct summand of its rela-
tion C-C-bimodule. When C is a tilted algebra, this construction provides an intermediate
class of algebras between tilted and cluster tilted algebras. The text investigates the rep-
resentation theory of partial relation extensions. When C is tilted, any complete slice in
the Auslander–Reiten quiver of C embeds as a local slice in the Auslander–Reiten quiver
of the partial relation extension. Moreover, a systematic way of producing partial relation
extensions is introduced by considering direct sum decompositions of the potential arising
from a minimal system of relations of C.

Introduction. Cluster tilted algebras were introduced in [14] and in-
dependently in [15] for the A case, as a by-product of the now extensive
theory of cluster algebras of Fomin and Zelevinsky. They have been the sub-
ject of many investigations. In particular, it was proved in [2] that a cluster
tilted algebra can always be written as the relation extension of a tilted alge-
bra C, that is, the trivial extension of C by the so-called relation bimodule
E = Ext2C(DC,C). Tilted algebras have been characterised by the existence
of complete slices in their module categories (see, for instance, [6]). It was
proven in [4] that any complete slice in the module category of a tilted al-

gebra C embeds in the module category of its relation extension C̃ as what
is called a local slice. However, as seen in [4], the existence of local slices
does not characterise cluster tilted algebras, and it was asked there which
algebras are characterised by the existence of local slices. Our objective in
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the present paper is to exhibit another natural class of algebras admitting
local slices.

Because cluster tilted algebras are Jacobian algebras of quivers with po-
tential, as shown in [11], we take this context as our starting point. We
define the notion of direct sum decomposition of the Keller potential of the
relation extension of a triangular algebra C with global dimension at most
two. In this case, a direct sum decomposition of the potential associated
with the relation extension of C induces a direct sum decomposition of the
relation bimodule. It is reasonable to expect that the converse statement
also holds true. We can prove this converse in two cases where a minimal
system of minimal relations is known, namely the cluster tilted algebras with
a cyclically oriented quiver of [9], which include all the representation-finite

cluster tilted algebras (see [13]), and the cluster tilted algebras of type Ã
of [1]. Referring to Section 1 for the definitions, we state our first theorem.

Theorem 1 (Propositions 1.2.2, 1.3.2 and 1.4.2). Let C = kQ/I be a
triangular algebra of global dimension at most two, and W be the Keller
potential of its relation extension associated with a minimal system of rela-
tions in I. If W = W ′ ⊕W ′′ is a direct sum decomposition and E′, E′′ are
the partial relation bimodules corresponding to W ′,W ′′ respectively, then

E = E′ ⊕ E′′

as C-C-bimodules.

Conversely, if C̃ = C n Ext2C(DC,C) is a cluster tilted algebra with a

cyclically oriented quiver or a cluster tilted algebra of type Ã and E = E′⊕E′′
is a direct sum decomposition of E as C-C-bimodules, then there exists a
direct sum decomposition of the Keller potential

W = W ′ ⊕W ′′

such that E′, E′′ are the partial relation bimodules corresponding to W ′,W ′′

respectively.

We then define the class of algebras we are interested in. Let C be a
triangular algebra of global dimension at most two, and E = E′ ⊕ E′′ be a
direct sum of C-C-bimodules, then the algebra B = CnE′ is called a partial
relation extension of C. Because it is easily shown that C̃ = BnE′′, partial
relation extensions can be thought of as an intermediate class of algebras
between tilted and cluster tilted algebras (or more generally, between a tri-
angular algebra of global dimension at most two, and its relation extension).
The bound quiver of a partial relation extension is easily computed and we
then proceed to study its module category, obtaining the following theorem
when the original algebra C is tilted.
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Theorem 2. Let H be a hereditary algebra, CH its cluster category, TH
a tilting H-module and C = EndH(T ). Then there exists an ideal K in the
cluster category such that the composition

(−⊗
C̃
B) ◦HomCH (T,−) : CH → mod C̃ → modB

induces an equivalence modB ' CH/K.

The ideal K is characterised by approximations in the cluster category.
It is important to observe that, in contrast to what happens for cluster
tilted algebras, factoring by K does not mean simply deleting finitely many
objects of CH : we may have H representation-infinite and B representation-
finite. As an easy consequence of our Theorem 2, we obtain a full and dense
functor from the module category of the cluster repetitive algebra of C to
modB. Returning to our original motivation, we finally prove the following
result.

Theorem 3. Let C be a tilted algebra and A be an algebra such that
there exist surjective algebra morphisms C̃ � A � C. Then any complete
slice in Γ (modC) embeds as a local slice in Γ (modA). In particular, partial
relation extensions admit local slices.

Notice however that H. Treffinger [19] has obtained a very large class of
algebras having local slices, containing partial relation extensions.

We devote a section of the paper to the proof of each of the stated
theorems.

1. Decomposition of the potential and the relation bimodule

1.1. Decompositions of a potential. Let (Q,W ) be a pair consisting
of a finite quiver Q and a potential W , that is, a linear combination of
oriented cycles of Q. Define a relation between the (oriented) cycles which
appear as summands of W as follows: γ ∼ γ′ whenever there exists an arrow
α ∈ Q1 which is common to both γ and γ′. This relation is reflexive and
symmetric; let ≈ be its transitive closure (that is, the smallest equivalence
relation containing it).

Two cycles γ and γ′ are called independent if γ 6≈ γ′, and dependent
if γ ≈ γ′.

A sum decomposition of the potential

W = W ′ +W ′′

is said to be direct if, whenever γ′ is any cycle in W ′ and γ′′ is any cycle
in W ′′, we have γ′ 6≈ γ′′. We denote a direct sum decomposition of the
potential as W = W ′ ⊕W ′′.
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Example 1.1.1. (a) Let (Q,W ) be the quiver

• ε //

η

66

•
β

��
•

γ

__

δ

��
• σ

//

τ

LL

•
α

__

with W = βγε+βδτ +αγη+αδσ. Here, the four summands of the potential
are pairwise dependent.

(b) Let (Q,W ) be the quiver

1
λ // 4

α��
3

β

__

δ

��
2 µ

// 5

γ
__

with W = αβλ+ γδµ. Here the two cycles αβλ and γδµ are independent so
the decomposition W = W1 +W2 with W1 = αβλ and W2 = γδµ is direct,
and W = W1 ⊕W2.

1.2. Induced decompositions of the relation bimodule. Our ob-
jective is to apply the notion of direct sum decompositions of the poten-
tial to the study of cluster tilted algebras. We refer the reader to [14] and
to [2] for general background on cluster tilted algebras. In particular let C
be a triangular algebra of global dimension at most two and consider the
C-C-bimodule E = Ext2C(DC,C) equipped with the natural left and right
actions of C. This bimodule E is called the relation bimodule and the trivial
extension algebra C̃ = CnE is called the relation extension of C. The best
known class of relation extensions is provided by the cluster tilted algebras:
it is shown in [2, (3.4)] that, if C is a tilted algebra, then C̃ is cluster tilted,
and every cluster tilted algebra arises in this way.

The bound quiver of a relation extension is constructed as follows. Let
C = kQ/I be an admissible presentation of C. A subset R = {ρ1, . . . , ρt}
of
⋃
x,y∈Q0

exIey is called a system of relations for C if R, but no proper
subset of R, generates I as a two-sided ideal (see [10, (1.2)]). The ordinary

quiver Q̃ of C̃ has the same vertices as those of Q, while the set of arrows
in Q̃ from x to y, say, equals the set of arrows in Q from x to y, plus, for
each relation ρ ∈ R∩eyIex, a so-called new arrow αρ : x→ y (see [2, (2.6)]).
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Thus C̃ is not triangular unless C is hereditary and, if R = {ρ1, . . . , ρr} is
as above, and the new arrow αi corresponds to ρi, then αiρi is an oriented

cycle in Q̃. We define the Keller potential (associated with R) by setting

W =
t∑
i=1

αiρi.

Oriented cycles in potentials are, as usual, considered up to cyclic permu-
tations: two potentials are called cyclically equivalent if their difference lies
in the linear span of all elements of the form γ1γ2 · · · γm − γmγ1 · · · γm−1
where γ1 · · · γm is an oriented cycle. For a given arrow β, the cyclic partial
derivative ∂β of W is defined on each cyclic summand γ1 · · · γm of W by

∂β(γ1 · · · γm) =
∑
β=γi

γi+1 · · · γmγ1 · · · γi−1.

In particular, cyclic derivatives are invariant under cyclic permutations. The
Jacobian algebra J(Q̃,W ) is the one given by the quiver Q̃ bound by all
partial cyclic derivatives ∂βW of the Keller potential W with respect to each

arrow β ∈ Q̃1. Then the relation extension C̃ is isomorphic to J(Q̃,W )/J
where J is the square of the ideal of J(Q̃,W ) generated by the new arrows

(see [5, Lemma 5.2]). If, in particular, C is tilted, so that C̃ is cluster tilted,

then C̃ ' J(Q̃,W )(see for instance [18]).

Setting C̃ = kQ̃/Ĩ, we recall from [2, (2.4)] that the classes of arrows

(modulo Ĩ) which belong to Q̃1 \Q1 are the generators of the C-C-bimod-
ule E.

Before proving the main result of the subsection, we need a technical
lemma. We assume that C is a triangular algebra of global dimension at
most two, and that C̃ is its relation extension.

Lemma 1.2.1. With the above notation, consider a partition of the set of
new arrows Q̃1\Q1 = F ′∪F ′′. Let E′, E′′ be the subbimodules of E generated
by the classes of the arrows in F ′ and F ′′, respectively. If E′ ∩E′′ 6= 0 then
there exist oriented cycles γ′, γ′′ in W such that

(1) γ′ has one or two arrows in Q̃1 \Q1, and at least one of them lies in F ′,

(2) γ′′ has one or two arrows in Q̃1\Q1, and at least one of them lies in F ′′,
(3) γ′ and γ′′ have a common arrow,

(4) γ′ has two arrows in Q̃1 \Q1 if and only if so does γ′′, in which case γ′

and γ′′ have a common arrow in Q̃1 \Q1.

Proof. Suppose e is a nonzero element of E′ ∩ E′′. There exist paths
u1, . . . , um, v1, . . . , vn and scalars λ1, . . . , λm, µ1, . . . , µn satisfying the fol-
lowing conditions:

(a) e equals both classes of
∑

i λiui and
∑

j µjvj ,
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(b) each ui has exactly one arrow from Q̃1 \ Q1 and that arrow lies in F ′,
we denote this arrow by α′i,

(c) each vi has exactly one arrow from Q̃1 \Q1 and that arrow lies in F ′′,
we denote this arrow by α′′i .

Therefore, there exist paths a1, . . . , aN , b1, . . . , bN , scalars t1, . . . , tN and ar-
rows β1, . . . , βN such that∑

i

λiui −
∑
j

µjvj =
∑
`

t`a` · ∂β`W · b`.

In view of condition (a) above and because e 6= 0, there exists ` such that
the expression a` · ∂β`W · b` contains both ui and vj for some indices i, j.
Note that neither α′i nor α′′j appears in some a` or b` for, otherwise, both
would appear in ui and vj , thus contradicting conditions (b) and (c) above.
Hence, there exist oriented cycles γ′, γ′′ that appear in W , that contain α′i
and α′′j , respectively, and that both contain β`.

Since any cycle in W contains at most one arrow from Q̃1 \Q1 it follows

that γ′ contains at most two arrows from Q̃1 \Q1 (namely α′i ∈ F ′ and pos-
sibly β`). This yields (1). Assertion (2) follows from similar considerations.
Moreover, γ′ and γ′′ have the arrow β` in common. This shows (3) and (4).

In view of the preceding lemma, we define for each direct summand W ′

of the potential W in kQ̃ the subbimodule E′ of E as follows: E′ is generated
by the classes of arrows in Q̃1 \ Q1 appearing in a cycle of W ′. We call E′

the partial relation bimodule corresponding to W ′.

Proposition 1.2.2. Let W = W ′ ⊕W ′′ be a direct sum decomposition
of the potential. Then E = E′⊕E′′ where E′ and E′′ are the partial relation
bimodules corresponding to W ′ and W ′′, respectively.

Proof. Let F ′ and F ′′ be the set of arrows in Q̃1\Q1 appearing in a cycle
from W ′ and W ′′, respectively. By construction of W , the union F ′ ∪ F ′′
equals Q̃1 \ Q1. And because the decomposition W = W ′ + W ′′ is direct,
F ′∩F ′′ = ∅. The preceding lemma therefore applies: because W = W ′+W ′′

is a direct sum decomposition, it entails that E′ ∩ E′′ = 0. On the other
hand E = E′ + E′′ because F ′ ∪ F ′′ = Q̃1 \Q1.

It is natural to ask if, conversely, given a direct sum decomposition of the
relation bimodule E = E′⊕E′′, one can get a corresponding decomposition
of the potential. The next two subsections are devoted to this problem.

In order that the converse process be possible, it seems to be needed
that a presentation of the cluster tilted algebra by minimal relations be
given by the potential. It is known that this is not always the case (see [9,
Example 4.3]). Recall that, following [13], a minimal relation in a bound
quiver (Q, I) is any element of I not lying in rI + Ir, where r denotes the
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two-sided ideal of kQ generated by all the arrows of Q. The problem of
finding systems of minimal relations for a cluster tilted algebra or, more
generally, Jacobian algebras of quivers with potentials, is a basic one. It
was first solved for representation-finite cluster tilted algebras in [13], then
for the cluster tilted algebras having a cyclically oriented quiver in [9]. The
latter class includes the representation-finite cluster tilted algebras. Also it
was solved for Jacobian algebras arising from surfaces without punctures
and in particular for cluster tilted algebras of type Ã in [1]. We are not
aware of other cases where the solution is known. We pose the following
problem.

Problem 1. Given a system of minimal relations on a Jacobian algebra,
which conditions are necessary on this system in order for the converse of
Proposition 1.2.2 to be valid?

1.3. Induced decompositions of the potential: the cyclically ori-
ented case. Here we prove this converse in the two particular cases where
systems of minimal relations are known. We start with algebras having cycli-
cally oriented quivers. We recall from [9] that a quiver is called cyclically
oriented if each chordless cycle is an oriented cycle. Here is a summary of the
combinatorial properties of Q̃ that follow from the fact that it is cyclically
oriented (see [9, Propositions 1.1 and 3.5]).

(a) Let a ∈ Q̃1 lie in an oriented cycle. Then the sum of all the paths
antiparallel to a is a minimal relation.

(b) Any minimal relation is proportional to one as above.

(c) Let a ∈ Q̃1 lie in an oriented cycle. Then a has no parallel arrow and
two distinct paths antiparallel to a have no common vertex but their
source and target.

Here, two oriented paths, say from x to y and from x′ to y′, respec-
tively, are called parallel whenever x = x′ and y = y′, and they are called
antiparallel whenever x = y′ and y = x′.

Proposition 1.3.1. Let C̃ be a cluster tilted algebra with a cyclically
oriented quiver. Assume E = E′ ⊕ E′′ is a nontrivial direct sum decompo-
sition of E as a C-C-bimodule. Then there exists a nontrivial direct sum
decomposition W = W ′ + W ′′ of the Keller potential such that E′, E′′ are
respectively the partial relation bimodules corresponding to W ′,W ′′.

Proof. The direct sum decomposition of C-C-bimodules E = E′ ⊕ E′′
induces a decomposition topE = topE′⊕topE′′. Let Σ be the set of couples
(x, y) of vertices such that Ext2C(Sx, Sy) 6= 0. Recall that dimk Ext2C(Sx, Sy)
≤ 1 for any couple (x, y). Hence there exists a nontrivial partition Σ =
Σ′ ∪Σ′′ such that eytop(E′)ex = eytop(E)ex if (x, y) ∈ Σ′ and eytop(E′′)ex
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= eytop(E)ex if (x, y) ∈ Σ′′. Since Q̃ is cyclically oriented, if (x, y) ∈ Σ, then
the arrow y → x in Q

C̃
corresponding to the one-dimensional vector space

Ext2C(Sx, Sy) is the unique path from x to y in Q̃ (see [9]). In particular
ey · rad(E) · ex = 0. Hence eyEex = eyE

′ex or eyEex = eyE
′′ex according to

whether (x, y) ∈ Σ′ or (x, y) ∈ Σ′′.
For every couple (x, y) ∈ Σ, let α(x,y) : y → x be the corresponding

arrow in Q̃, let r(x,y) ∈ exkQey be a corresponding generator of I, and let

ξ(x,y) ∈ Ext2C(Ix, Py) be a corresponding element in Ext2C(DC,C). Therefore
we have

(i) W =
∑

(x,y)∈Σ α(x,y)r(x,y),

(ii) E′ is generated by {ξ(x,y) | (x, y) ∈ Σ′}, and
(iii) E′′ is generated by {ξ(x,y) | (x, y) ∈ Σ′′}.

Let W ′ =
∑

(x,y)∈Σ′ α(x,y)r(x,y) and W ′′ =
∑

(x,y)∈Σ′′ α(x,y)r(x,y). Hence

W = W ′ + W ′′. To prove that this is a direct sum decomposition of W
inducing the direct sum decomposition E = E′ ⊕ E′′, it suffices to prove
that no arrow of Q̃ appears simultaneously in a cycle of W ′ and in a cycle
of W ′′.

By contradiction, assume there exists an arrow a appearing simultane-
ously in a cycle of W ′ and in a cycle of W ′′. Because of the definition of W ′

and W ′′, the arrow a is distinct from any α(x,y), for (x, y) ∈ Σ. Therefore
we have

∂aW = ∂aW
′ + ∂aW

′′(1)

=
∑

(x,y)∈Σ′
ϕ(x,y)α(x,y)ψ(x,y) +

∑
(x,y)∈Σ′′

ϕ(x,y)α(x,y)ψ(x,y)

where, in the second row, ϕ(x,y) and ψ(x,y) denote elements in kQ. Note that

each one of the two terms of this row is nonzero in kQ̃ because Σ′ and Σ′′

are nonempty. Since ∂aW ∈ Ĩ, the expression (1) yields∑
(x,y)∈Σ′

ϕ(x,y)α(x,y)ψ(x,y) + Ĩ =
∑

(x,y)∈Σ′′
ϕ(x,y)α(x,y)ψ(x,y) + Ĩ

where the left-hand side lies in E′ and the right-hand side lies in E′′. Since
E′ ∩ E′′ = 0, it follows that both terms∑

(x,y)∈Σ′
ϕ(x,y)α(x,y)ψ(x,y) and

∑
(x,y)∈Σ′′

ϕ(x,y)α(x,y)ψ(x,y)

are nonzero and lie in Ĩ. Considering (c) above, both are nontrivial linear
combinations of partial derivatives of W with respect to arrows parallel to a.
This contradicts (c). Thus the decomposition W = W ′ ⊕W ′′ is direct.



PARTIAL RELATION EXTENSIONS 9

Moreover, in the present situation, the direct sum decompositions of the
relation bimodule assume particularly nice forms.

Corollary 1.3.2. Let C̃ be a cluster tilted algebra with cyclically ori-
ented quiver. Assume E = E′ ⊕ E′′ is a direct sum decomposition. Then
there exist direct sum decompositions CC = P ′ ⊕ P ′′ and D(C)C = I ′ ⊕ I ′′
such that E′ = Ext2C(I ′, P ′) and E′′ = Ext2C(I ′′, P ′′).

Proof. As explained in the proof of Proposition 1.3.1, given vertices x, y,
the vector space Ext2C(D(Cex), eyC) has dimension 0 or 1. The claimed
decompositions of DC and C follow from this property.

Note that the corollary implies that Ext2C(I ′′, P ′) = Ext2C(I ′, P ′′) = 0.

Example 1.3.3. Let C be the tilted algebra given by the quiver

1 4
α

~~
3

β
``

δ~~
2 5

γ
``

bound by αβ = 0, γδ = 0. It is easily verified that E = Ext2C(DC,C) =

Ext2C(I4, P1)⊕ Ext2C(I5, P2). Moreover C̃ is given by the quiver

1
λ // 4

α~~
3

β

``

δ

~~
2 µ

// 5

γ
``

with potential W = αβλ+γδµ. As seen in Example 1.1.1(b), this is a direct
sum decomposition of the potential W . It is easily seen that it corresponds
to the direct sum decomposition E = E′⊕E′′ with the summand αβλ corre-
sponding to E′ = Ext2C(I4, P1) and δγµ corresponding to E′′ = Ext2C(I5, P2).

1.4. Induced decompositions of the potential: the Ã case. An-
other case where the Keller potential is known to induce a system of minimal
relations is the case of cluster tilted algebras of type Ã (see [1]). Therefore, in
this case also we can deduce a decomposition of the Keller potential start-
ing from a decomposition of the relation bimodule. The proof is different
from that of the cyclically oriented case. It relies on the fact that the cluster
tilted algebra C̃ = kQ̃/Ĩ is gentle and on the following specific combinatorial

properties of Q̃.
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Lemma 1.4.1. Let i, j be vertices such that there exists an arrow α : i→ j
in Q̃\Q and such that eirad(E)ej 6= 0. Consider a path uβv from i to j such
that u, v lie in Q and are not both trivial, such that β : i′ → j′ is an arrow
in Q̃ \Q and such that the class of uβv in eirad(E)ej is nonzero. Then

(1) no arrow is parallel to β (or α),

(2) α and uβv are the only paths in Q̃ not lying in Ĩ, in particular eiEej is

generated by α+ Ĩ and uβv+ Ĩ and eirad(E)ej is generated by uβv+ Ĩ,
and

(3) ei′rad(E)ej′ = 0.

Proof. (1) Should α have a parallel arrow α′, that arrow would lie in

Q̃1 \ Q1. Since (Q̃, Ĩ) is a gentle bound quiver, the path uβv would start
with α or α′ and end with α and α′. The path uβv would therefore contain
two arrows from Q̃1 \Q1 instead of only one, namely β. This proves that no
arrow is parallel to α.

By contradiction, assume that β has a parallel arrow β′. Then β′ lies in
Q̃1 \Q1. Moreover (Q̃, Ĩ) contains the following bound quivers:

•
b

��
i α

// j

a

^^

and

•
d

��
•

β //
β′

// •

c
__

c′��
k

d′

__

with relations all paths of length 2 in any triangle. Moreover, there exist
paths u′ and v′ in Q with sources i and k, respectively, and with targets k
and j, respectively, such that u = u′d′ and v = c′v′, and hence uβv =
u′d′βc′v′. As a consequence, C̃ contains the following two full subcategories
that are hereditary of type Ã:

k

d′βc′v

��
i

u′
BB

α
// j and •

β //
β′
// •

Note that these subcategories are indeed full because (Q̃, Ĩ) is a gentle bound
quiver. The existence of these two subcategories is a contradiction to the
characterisation of cluster tilted algebras of type Ã (see [1]).

(2) This follows from the fact that (Q̃, Ĩ) is a gentle bound quiver.

(3) It only remains to prove that ei′rad(E)ej′ = 0. If this were not the
case, there would exist a path w parallel to β, not lying in Q, and such that
w 6∈ Ĩ. According to (2), the paths β and w would be the only paths in Q̃
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from i′ to j′. Hence C̃ would have the following two full subcategories:

i′
w //
β
// j′ and i

uβv //
α
// j .

These are hereditary categories of type Ã. This would again contradict the
classification of cluster tilted algebras of type Ã (see [1]). Thus we obtain
ei′rad(E)ej′ = 0.

Here is the construction of direct sum decomposition of the potential W
starting from direct sum decompositions of E in the case of cluster tilted
algebras of type Ã.

Proposition 1.4.2. Let C̃ be a cluster tilted algebra of type Ã. Assume
E = E′ ⊕ E′′ is a direct sum decomposition of E as a C-C-bimodule. Then
there exists a direct sum decomposition W = W ′⊕W ′′ of the Keller potential
such that E′, E′′ are respectively the partial relation bimodules corresponding
to W ′,W ′′.

Proof. Let Σ be the set of couples of vertices (x, y) such that extop(E)ey
6= 0. Note that extop(E)ey has dimension at most 2 for any couple of vertices

(x, y) because (Q̃, Ĩ) is a gentle bound quiver. According to the preceding
lemma, the set Σ admits the partition Σ = Σ1 ∪Σ2 ∪Σ3 where

• Σ1 is the set of couples (x, y) such that exrad(E)ey = 0 and extop(E)ey
has dimension 1,
• Σ2 is the set of couples (x, y) such that exrad(E)ey 6= 0,
• Σ3 is the set of couples (x, y) such that exrad(E)ey = 0 and extop(E)ey

has dimension 2.

In what follows we make a detailed study of these sets. Note that if
(i, j) ∈ Σ1 then dim(eiEej) = 1. Therefore, (i, j) ∈ Σ1 implies that

(2)

{
eiEej = eiE

′ej ,

0 = eiE
′′ej ,

or

{
eiEej = eiE

′′ej ,

0 = eiE
′′ej .

Now let us study Σ2. According to Lemma 1.4.1, and using the same
notation, we see that eiEej is generated by α+ Ĩ and uβv+ Ĩ. Denote by i′

and j′ the source and target of β, respectively. Following Lemma 1.4.1, the
couple (i′, j′) lies in Σ1. Without loss of generality we may assume that

ei′Eej′ = ei′E
′ej′ and ei′E

′′ej′ = 0 (see (2)). Assume that α+ Ĩ does not lie
in E′ ∪ E′′. Then there exists λ ∈ k× such that

α+ Ĩ =
(
λuβv + Ĩ

)
+
(
(α− λuβv) + Ĩ

)
is the decomposition of α mod Ĩ according to E = E′⊕E′′. By construction
of C̃, the gentle bound quiver (Q̃, Ĩ) contains a bound quiver of the following
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shape:

•
b

��
i α

// j

a

]]

bound by ab ∈ Ĩ, bα ∈ Ĩ, αa ∈ Ĩ. Therefore uβva 6∈ Ĩ because the last arrow
of uβv is not α. Hence α−λuβv+ Ĩ is an element of the C-C-bimodule E′′

satisfying (
α− λuβ + Ĩ

)
·
(
a+ Ĩ

)
= λuβva+ Ĩ ∈ E′ \ {0}.

Remember that β+ Ĩ ∈ E′ by hypothesis. This contradicts the fact that the
decomposition E = E′ ⊕ E′′ is direct. Thus, (i, j) ∈ Σ2 implies that

(3) α+ Ĩ ∈ E′ ∪ E′′

where α : i → j is the unique arrow of Q̃ with source i and target j. As a
consequence, exactly one the following situations occurs when (i, j) ∈ Σ2:

(a) eiE
′ej = Span(α+ Ĩ , uβv + Ĩ) and eiE

′′ej = 0,

(b) eiE
′ej = Span(α+ Ĩ) and eiE

′′ej = Span(uβv + Ĩ),

(c) eiE
′ej = Span(uβv + Ĩ) and eiE

′′ej = Span(α+ Ĩ),

(d) eiE
′ej = 0 and eiE

′′ej = Span(α+ Ĩ , uβv + Ĩ).

Let us finally consider a couple (i, j) ∈ Σ3. Then eirad(E)ej = 0 and

(Q̃, Ĩ) contains a bound subquiver of the following shape:

•
γ

��
•

α //
a

// •

β
^^

b��
k

c

^^

with relations αβ, βγ, γα, ab, bc, ca ∈ Ĩ. Denote by u the class modulo Ĩ of a
path u. Therefore eiEej = Span(a, α). Let us prove that eiE

′ej and eiE
′′ej

are one of the subspaces 0, Span(a), Span(α) or Span(a, α). If this is not
the case, then there exists an invertible matrix

(
t1 t2
t3 t4

)
such that

t1a+ t2α ∈ E′, t3a+ t4α ∈ E′′ with t1, t2, t3, t4 ∈ k×.

This implies that

0 6= t1aβ = (t1a+ t2α)β ∈ E′, 0 6= t3aβ = (t3a+ t4α)β ∈ E′′.
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This is absurd. Thus, if (i, j) ∈ Σ3, then

(4) eiE
′ej , eiE

′′ej ∈ {0, Span(α),Span(a), Span(α, a)}.
This study allows us to describe the claimed decomposition of W . Denote

by F the set of arrows in Q̃1 \ Q1. For every α ∈ F let aαbα ∈ I be the
associated monomial relation of length 2 in (Q, I). Thus W =

∑
α∈F αaαbα.

Remember that if α, β are distinct arrows lying in F , then αaαbα and βaβbβ
have no common arrow because (Q̃, Ĩ) is a gentle bound quiver. It follows
from (2), (3), (a), (b), (c), (d), and (4) that α ∈ E′ or α ∈ E′′, for every
α ∈ F . Denote by F ′ and F ′′ the subsets of F consisting of the arrows
α ∈ F such that α ∈ E′ or α ∈ E′′, respectively. This provides a partition
F = F ′∪F ′′. Moreover, the C-C-bimodules E′ and E′′ are generated by the
classes modulo Ĩ of the arrows lying in F ′ and F ′′, respectively. Let W ′ =∑

α∈F ′ αaαbα and W ′′ =
∑

α∈F ′′ αaαbα. The previous considerations show
that W = W ′+W ′′ is a direct sum decomposition that fits the requirements
of the proposition.

We now give an example showing that the analog of Corollary 1.3.2 does
not hold true for cluster tilted algebras of type Ã. Assume that there exist
decompositions C = P ′⊕P ′′ and DC = I ′⊕ I ′′ such that E′ = Ext2C(I ′, P ′)
and E′′ = Ext2C(I ′′, P ′′). Then, for any pair (x, y) of points in Q, we have
either exE

′ey = 0 or exE
′′ey = 0.

Example 1.4.3. Let C be given by the quiver

2
β

~~
1 4

α
``

λ~~
3

µ

``

bound by all paths of length 2. Then C̃ is given by the quiver

2
β

~~
1 4

α
``

λ~~

//
ν

//γ

4
µ

``

and the Keller potential is given by W = αβγ + λµν. The summands
αβγ and λµν are independent, therefore the sum is direct and it induces
a direct sum E = E′ ⊕ E′′ where E′ = Span(γ, γλ, µγ, µγλ) and E′′ =
Span(ν,, να, βν, βνα). However, we have e1E

′e4 6= 0 and e1E
′′e4 6= 0. This

shows that Corollary 1.3.2 does not hold true in this case.
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2. Partial relation extension algebras

2.1. The definition and examples. Let C be a triangular algebra of
global dimension at most 2 and E′ be a direct summand of the C-C-bimodule
E = Ext2C(DC,C). We recall that C̃ = C n E is the relation extension
of C. Then the trivial extension B = C n E′ is called the partial relation
extension of C by E′. In this subsection we prove a variant of transitivity
for this construction. Let E = E′ ⊕ E′′ be a direct sum decomposition of
the C-C-bimodule E and B = C n E′. Denote by π : B → C the canonical
projection. Then E′′ admits a B-B-bimodule structure by setting

b1x
′′b2 = π(b1)x

′′π(b2)

for b1, b2 ∈ B and x′′ ∈ E′′.

Lemma 2.1.1. With the preceding notation we have C̃ = B n E′′.

Proof. We have an isomorphism of vector spaces:

ϕ : C n E → (C n E′) n E′′, (c, e′ + e′′) 7→ ((c, e′), e′′),

where c ∈ C, e′ ∈ E′ and e′′ ∈ E′′. It is necessary to check that

ϕ((c1, e
′
1 + e′′1)(c2, e

′
2 + e′′2)) = ϕ(c1, e

′
1 + e′′1)ϕ(c2, e

′
2 + e′′2).

Indeed,

ϕ(c1, e
′
1 + e′′1)ϕ(c2, e

′
2 + e′′2) = ((c1, e

′
1), e

′′
1)((c2, e

′
2), e

′′
2)

= ((c1, e
′
1)(c2, e

′
2), (c1, e

′
1)e
′′
2 + e′′1(c2, e

′
2))

= ((c1c2, e
′
1c2 + c1e

′
2), c1e

′′
2 + e′′1c2)

= ϕ(c1c2, e
′
1c2 + e′′1c2 + c1e

′
2 + c1e

′
2)

= ϕ((c1, e
′
1 + e′′1)(c2, e

′
2 + e′′2)).

We pose the following problem on the meaning of E′′ in terms of CnE′.

Problem 2. Let C be a triangular algebra of global dimension at most 2
and E = E′ ⊕ E′′ be a direct sum decomposition of the C-C-bimodule E =
Ext2C(DC,C). What is the connection between E′′ and the relation bimodule
of the partial relation extension C n E′?

Remark 2.1.2. We may define a poset of partial relation extensions. We
say that B1 = CnE1 is smaller than B2 = CnE2 if E1 is a direct summand
of E2. Notice that the poset obtained admits C̃ as a unique maximal element
and it admits C as a unique minimal element. This poset is infinite in
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general. For instance, let C be the algebra given by the quiver

•
β

��
•

α
??

γ
��

•

•
δ

??

and relations αβ, γδ. Then dimkE = 2. Let (u, v) be a basis of E. For
every point [x : y] on the projective line P1(k) denote by B[x:y] the partial
relation extension of C by the one-dimensional subbimodule of E generated
by xu+yv. The resulting partial relation extensions are pairwise isomorphic.
Then the poset consists of the algebras C, C̃ and B[x:y], for [x : y] ∈ P1(k),
and it has the following shape:

C̃

B[0:1] B[x:y] B[1:0]

C

2.2. The bound quiver of a partial relation extension. Let C =
kQ/I be a triangular algebra of global dimension at most two, let C̃ = C n
Ext2C(DC,C) be its relation extension, and assume that E = Ext2C(DC,C)
has a C-C-bimodule direct sum decomposition E = E′ ⊕E′′. Our objective
is to describe a bound quiver presentation of the partial relation extension
B = C n E′ when this direct sum decomposition arises from a direct sum
decomposition of the Keller potential associated with a minimal system of
relations in I (see Proposition 1.2.2).

Now, it follows from [2, (2.4)] that the new arrows generate the top
of the C-C-bimodule Ext2C(DC,C). Assume that there exists a direct sum
decomposition W = W ′ ⊕W ′′ of the Keller potential in such a way that E′

and E′′ are the partial relation bimodules corresponding to W ′ and W ′′

respectively (see Proposition 1.2.2). Then the set of new arrows can be
partitioned into two sets {α′1, . . . , α′s} and {α′′1, . . . , α′′t } forming respectively
the tops of E′ and E′′. We may now state

Corollary 2.2.1. Let C = kQ/I be a triangular algebra of global di-

mension at most two, C̃ its relation extension, W the Keller potential asso-
ciated with a minimal system of relations in I, and J the square of the ideal
of J(Q̃,W ) generated by the new arrows. If E = E′ ⊕ E′′ is a direct sum
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C-C-bimodule decomposition arising from a direct sum decomposition of the
Keller potential, α′′1, . . . , α

′′
t are the new arrows generating the top of E′′ and

J ′ = J +
∑t

i=1 C̃α
′′
i C̃, then

C n E′ = J(Q̃,W )/J ′.

Proof. Let B = CnE′. It follows from Lemma 2.1.1 that B ' C̃/E′′. By
definition, E′′ is the subbimodule of Ext2C(DC,C) generated by the classes
of the new arrows α′′1, . . . , α

′′
t (see Section 1.2). Hence the statement follows

from the fact that C̃ ' J(Q̃,W )/J (see 1.2).

Thus, B is given by the bound quiver obtained from that of C̃ = kQ̃/Ĩ
by simply deleting the arrows α′′i from the ordinary quiver and by deleting
any path involving such an arrow from any relation. Set W ′ =

∑s
i=1 ρ

′
iα
′
i and

W ′′ =
∑t

i=1 ρ
′′
i α
′′
i with α′i, α

′′
j the new arrows and ρ′i, ρ

′′
i the elements of the

chosen minimal system of relations R corresponding to α′i, α
′′
j respectively.

Then the top of E′ is generated by the α′i and the top of E′′ is generated by
the α′′j , so we can state the following corollary.

Corollary 2.2.2. With the above notation, B = C n E′ has a bound
quiver as follows:

(a) (QB)o = Qo = Q̃o,

(b) (QB)1 = Q̃1 \ {α′′1, . . . , α′′t } = Q1 ∪ {α′1, . . . , α′s},
(c) the binding ideal IB is generated by the cyclic partial derivatives of W ′,

the relations ρ′′1, . . . , ρ
′′
t and J .

Example 2.2.3. Let C be the tilted algebra given by the quiver

1 4
α

��
3

β
__

δ

��
2 5

γ
__

bound by αβ = 0, γδ = 0. Then C̃ is the Jacobian algebra given by the
quiver

1
λ // 4

α

��
3

β
__

δ

��
2 µ

// 5

γ
__
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and the Keller potential W = αβλ+γδµ. As seen in Section 1.1, W ′ = αβλ
and W ′′ = γδµ are independent so that W = W ′ ⊕ W ′′ is a direct sum
decomposition. Set E′ = Ext2C(I1, P4) and E′′ = Ext2C(I2, P5). Then E =
E′ ⊕ E′′ is a direct sum decomposition of the bimodule E = Ext2C(DC,C)
corresponding to the previous decomposition of the potential. The algebra
B = C n E′ is given by the quiver

1
λ // 4

α

��
3

β
^^

δ

��
2 5

γ
^^

bound by αβ = 0, γδ = 0, λα = 0 and βλ = 0.

2.3. The module category of a partial relation extension. In
the present subsection, we assume that C is tilted, so that its relation ex-
tension C̃ is cluster tilted. Our objective is to give two descriptions of the
module category of a partial relation extension: one as a quotient of a mod-
ule category of a cluster tilted algebra, and the other as a quotient of another
category which we now define. We mean by module a finitely generated right
module. Given an algebra B we denote by modB its module category.

We consider the following setting. Let A be a hereditary algebra, CA the
corresponding cluster category and T a cluster tilting object in CA. We de-
note by Db(modA) the bounded derived category of modA and by τ and [−]
respectively the Auslander–Reiten translation and the shift of Db(modA).
Because of [12, Theorem 3.3] we may assume that T is actually a tilting
module over A. We denote by C = EndA(T ) the tilted algebra and we set

C̃ = EndCA(T ). Then C̃ is the relation extension of C.

We recall that it is shown in [2] that E = Ext2C(DC,C) is isomorphic to
HomDb(modA)(T, τ

−1 ◦ T [1]) as a C-C-bimodule. Assume that E = E′ ⊕E′′
is a C-C-bimodule direct sum decomposition. Observe that E′ and E′′ can
be considered as subbimodules of HomDb(modA)(T, τ

−1 ◦T [1]) and the latter

may in turn be considered as contained in EndCA(T ) = C̃ (see [2]).

Let I be the ideal of all morphisms in CA generated by E′′, that is, of
all morphisms of CA which factor through an element of E′′ considered as
a morphism from T to T . We define B to be the additive quotient category
CA by I, that is, B has the same objects as those of CA and, if X,Y are two
such objects, then HomB(X,Y ) = HomCA(X,Y )/I(X,Y ).

Proposition 2.3.1. With the above notation, EndB(T ) is isomorphic to
the partial relation extension B = C n E′.
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Proof. Because B = CA/I, we have EndB(T ) = EndCA(T )/I(T, T ).
However, E′′ = I(T, T ) as ideals of EndCA(T ). Hence we get EndB(T ) '
EndCA(T )/E′′ ' (C n (E′ ⊕ E′′)) /E′′ ' C n E′.

As a corollary, for every objectX in B, the EndB(T )-module HomB(T,X)
is a B-module. Thus we have a functor HomB(T,−) : B → modB, which is
full and dense. More precisely, we have the following lemma.

Lemma 2.3.2. We have a commutative diagram of full and dense func-
tors

CA
HomCA (T,−)

// //

π
����

mod C̃

−⊗
C̃
B

����
B

HomB(T,−) // // modB

where π : CA → B = CA/I is the canonical projection.

Proof. The functor −⊗
C̃
B maps a C̃-module M to the B-module

M ⊗
C̃
B = M ⊗

C̃
C̃/E′′ 'M/ME′′.

Thus

(−⊗
C̃
B) ◦HomCA(T,−)(X) ' HomCA(T,X)/HomCA(T,X)E′′.

On the other hand,

HomB(T,−) ◦ π(X) = HomB(T,X) = HomCA(T,X)/I(T,X).

Now notice that I(T,X) is the image of the morphism HomCA(T,X)⊗ E′′
→ I(T,X) given by u ⊗ v 7→ u ◦ v. Indeed, let f ∈ I(T,X). Then f =∑

i ui ◦ ei ◦ vi where ei ∈ E′′, vi : T → E′′ and ui : E
′′ → X. Because

I(T, T ) = E′′ is an ideal in EndCA(T ), we have ei ◦ vi ∈ E′′. Therefore
f =

∑
i ui ◦ (ei ◦ vi) belongs to the image of the given map. This shows that

I(T,X) = HomCA(T,X)E′′. The shown diagram is thus commutative.

Now, if M is a B-module, then it admits a natural C̃-module structure,
and, with respect to this structure, M⊗

C̃
B 'MB. Thus the functor −⊗

C̃
B

is full and dense. On the other hand, HomCA(T,−) is full and dense because
of [14, Proposition 2.1]. Hence HomB(T,−) is full and dense.

We now turn our attention to the kernel of the composed functor (−⊗
C̃
B)

◦HomCA(T,−) : CA → modB.

Lemma 2.3.3. The kernel of the functor (− ⊗
C̃
B) ◦ HomCA(T,−) is

the ideal K of CA consisting of all morphisms f : X → Y such that the
composition of f with a minimal add(T )-approximation uX : TX → X can
be written in the form f ◦ uX = uY ◦ e where e ∈ E′′ and uY : TY → Y is a
minimal add(T )-approximation.
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Proof. Let f : X → Y be a morphism in CA. Using minimal add(T )-
approximations of X and Y yields the following diagram in CA:

TX
uX // X

f
��

TY
uY // Y

The image of f in modB is equal to that of the mapping

HomCA(T,X)/HomCA(T,X)E′′ → HomCA(T, Y )/HomCA(T, Y )E′′

given by u 7→ f ◦ u, where the notation g stands for the residual class of a
morphism g in its respective quotient. If f ◦ u vanishes for every u then it
vanishes for u = uX . Because f ◦ uX = 0, there exist T0 ∈ add(T ), e0 ∈ E′′
and a morphism g0 : T0 → Y such that f ◦ uX = g0 ◦ e0. Because uY is a
minimal add(T )-approximation, g0 factors through it and thus there exists
a morphism g′ : T0 → TY such that uY ◦ g′ = g0. Setting e = g′ ◦ e0 we find
that e ∈ E′′ because the latter is an ideal and uY ◦ e = f ◦ uX :

TX

e

��

uX //

��

X

f

��
TY

uY // Y

This proves that f belongs to K. Conversely, if f belongs to K then it is
immediate that its image in modB is zero.

Theorem 2. The composed functor (−⊗
C̃
B)◦HomCA(T,−) induces an

equivalence modB ' CA/K.
Proof. This follows immediately from Lemmata 2.3.2 and 2.3.3.

Note that taking E′′ equal to 0 yields the main theorem of [14].
This theorem entails several consequences. Let C be a tilted algebra.

Recall that the cluster repetitive algebra is the locally finite dimensional
algebra without identity

Č =



. . . 0 0

. . . C−1 0

0 E0 C0 0

0 E1 C1

0 0
. . .

. . .


where the matrices have only finitely many nonzero entries, Ci = C and Ei =
Ext2C(DC,C) for all i ∈ Z, all remaining entries are zero and multiplication
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is induced from that of C, the C-C-bimodule structure of Ext2C(DC,C) and
the zero map

Ext2C(DC,C)⊗ Ext2C(DC,C)→ 0.

The identity maps Ci → Ci−1 and Ei → Ei−1 induce an automorphism ϕ
of C̃, and the orbit category Č/〈ϕ〉 inherits from Č a k-algebra structure

isomorphic to C̃ = CnExt2C(DC,C). Thus the projection functorG : Č → C̃
is a Galois covering with infinite cyclic group generated by ϕ. We denote by
Gλ : mod Č → mod C̃ the associated push-down functor (see [16]).

Now let A be a hereditary algebra and T be a tilting A-module such that
C = EndA(T ). Consider the automorphism F = τ−1 ◦ [1] in Db(modA) and
let π′ : Db(modA) → CA denote the canonical projection onto the cluster
category. We are now able to state the first corollary.

Corollary 2.3.4. With the above notation, there exists a commutative
diagram of full and dense functors

Db(modA)
HomDb(modA)

(
⊕
i∈Z F

iT,−)
// //

ππ′

��

mod Č

(−⊗
C̃
B)◦Gλ

��
B

HomB(π
′T,−) // modB

Proof. It is shown in [3, Theorem 9 of 2.3] that there is a commutative
diagram of dense functors

Db(modA)
HomDb(modA)

(
⊕
i∈Z F

iT,−)
// //

π′

��

mod Č

Gλ
��

CA
HomCA (π′T,−)

// mod C̃

These functors are also full: π′ is full by definition, HomCA(π′T,−) is full
because of [14, Proposition 2.1], and HomDb(modA)(

⊕
i∈Z F

iT,−) is full be-
cause of [3, Proposition 7 of 2.1]. The required commutative square follows
upon composing this diagram with the one of Lemma 2.3.2 above.

As a consequence of this corollary, there is also a relation with the repet-
itive algebra Ĉ of C, this is the algebra

Ĉ =



. . . 0 0

. . . C−1 0

0 Q0 C0 0

0 Q1 C1

0 0
. . .

. . .
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where matrices have only finitely many nonzero entries, Ci = C and Qi =
DC for all i ∈ Z, all remaining entries are zero, addition is the usual addition
of matrices and multiplication is induced from that of C, the C-C-bimodule
structure of DC and the zero maps DC ⊗ DC → 0. The Nakayama au-
tomorphism ν of Ĉ is the one induced by the identity maps Ci → Ci−1,
Qi → Qi−1. Then the quotient category Ĉ/〈ν〉 is isomorphic to the triv-
ial extension T (C) = C n DC of C by its minimal injective cogenera-

tor DC (see [17]). There is a natural functor from mod Ĉ to mod Č: In-

deed, let p : mod Ĉ → mod Ĉ denote the canonical projection, and define
Φ : mod Ĉ → mod Č to be the composition

mod Ĉ
p−→ mod Ĉ

Hom
Ĉ
(
⊕
i∈Z τ

iΩ−iC,−)
−−−−−−−−−−−−−−−→ mod Č.

Corollary 2.3.5. With the above notation, there exists a commutative
diagram of full and dense functors

mod Ĉ

π′′

����

Φ // // mod Č

(−⊗
C̃
B)◦Gλ

����
B

HomB(τ
′T,−) // // modB

Proof. Let CC be the orbit category of mod Ĉ under the action of the
automorphism FC : mod Ĉ → mod Ĉ defined by FC = τ−1Ω−1 and the
morphism space from (F iCX)i∈Z to (F iCY )i∈Z is

⊕
i∈Z Hom

Ĉ
(X,F iCY ). Also

let π̂ be the composition of the two projection functors p : mod Ĉ → mod Ĉ
and π̂ : mod Ĉ → CC . Then there is a commutative diagram of full and dense
functors (see [3, Theorem 17 of 3.4])

mod Ĉ
Φ // //

π̂

����

mod Č

Gλ
����

CC
HomCC (π̂C,−)

// // mod C̃

Moreover, it follows from [3, Lemma 15 of 3.2] that there is a commuta-
tive diagram of full and dense functors

CA
HomCA (πT,−)
## ##

η

����

mod C̃

CC
HomCC (π̂C,−)

;; ;;

with η an equivalence.
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The required diagram follows upon composing these two diagrams with
the one of Lemma 2.3.2 above. The functor π′′ : mod Ĉ → B is equal to the
composition π ◦ η−1 ◦ π̂.

Example 2.3.6. (a) Let C be the tilted algebra given by the quiver

• •
α

��
•

β
__

δ

��
• •

γ
__

bound by αβ = 0, γδ = 0. Then its relation extension C̃ is given by the
quiver

1
λ // 4

α

||
3

β
bb

δ

||
2 µ

// 5

γ
bb

and the potential W = αβλ + γδµ. As seen before in Section 1.1, this is
a direct sum decomposition W = W1 + W2 with W1 = αβλ, W2 = γδµ.
Let E′ be the direct summand of the C-C-bimodule E = Ext2C(DC,C)
corresponding to W1. Then B = C n E′ is given by the quiver

1
λ // 4

α||
3

β

bb

δ

||
2 5

γ
bb

bound by αβ = 0, βλ = 0, γδ = 0, λα = 0. Its Auslander–Reiten quiver
Γ (modB) is given by

4
3
2

$$
1

''

3
2

%%

::

4
3

''
5

3
1 2

''

77

3

%%

99

4 5
3

''

77

2

77

3
1

$$

99

5
3

77

4

$$

1

5
3
1

::

1
4

::
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where the two copies of the simple S1 = 1 are identified. The reader may
compare this quiver with Γ (mod C̃):

4
3
2

$$

2
5

$$
1

''

3
2

%%

::

4
3

''
5

::

2

3
1 2

''

77

3

%%

99

4 5
3

''

77

2

77

3
1

$$

99

5
3

77

4

$$

1

5
3
1

::

1
4

::

where the two encircled copies of S1 = 1 are identified, as are the two
encircled copies of S2 = 2. It is easily seen that Γ (modB) is obtained from

Γ (mod C̃) by deleting the C̃-module P2 = 2
5 .

(b) Of course, one may have C̃ representation-infinite but B representa-
tion-finite. Let C be given by the quiver

2
β

}}
1 4

α
aa

λ}}
3

µ

aa

bound by αβ = 0, λµ = 0. Its relation extension C̃ is the cluster tilted
algebra of type Ã given by the quiver

2
β

}}
1

γ //
ν

// 4

α
aa

λ}}
3

µ

aa

and the potential W = αβγ + λµν. This is a representation-infinite al-
gebra. However, if we let E′ be the direct summand of the C-C-bimodule
corresponding to W1 = αβγ, then B = C n E′ is given by the quiver

2
β

}}
1

γ // 4

α
aa

λ}}
3

µ

aa

bound by αβ = 0, βγ = 0, γα = 0, λµ = 0. The algebra B is representation-
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finite. Its Auslander–Reiten quiver is given by

4
2

$$

2
1

&&
3

&&
4

3 2

&&

88

4

$$

1

$$

::

2 3
1

&&

88

4
3 2

4
3

##

::

1
4

##

::

3
1

88

2

88

1
4
3

;;

��

3
1
4

;;

3
1
4
3

??

where the two copies of the module P4 = 4
3 2 are identified.

3. Local slices

3.1. Preliminary facts. The notion of local slice was defined in [4] for
the study of cluster tilted algebras. We recall the definition.

Definition 3.1.1. Let A be an algebra. A full subquiver Σ of Γ (modA)
is called a local slice if:

(1) It is a presection, that is, if L→M is an irreducible morphism between
indecomposables in modA, then

(a) L ∈ Σo implies M ∈ Σo or τAM ∈ Σo,
(b) M ∈ Σo implies L ∈ Σo or τ−1A L ∈ Σo.

(2) It is sectionally convex, that is, if L = M0 → M1 → · · · → Mn = M is
a sectional path in Γ (modA) such that L,M ∈ Σo, then Mi ∈ Σo for
all i.

(3) |Σo| = rk(K0(A)).

Here |Σo| denotes the number of points of Σ.

It is shown in [4] that, if C is a tilted algebra, and Σ is a complete slice

in Γ (modC), then Σ embeds fully as a local slice in Γ (mod C̃), where C̃ de-
notes, as usual, the relation extension of C, which is cluster tilted. However,
local slices do not characterise cluster tilted algebras, and it was asked in [4]
to identify the algebras which have local slices. Our objective in this section
is to prove that, if A is an algebra such that there exist surjective algebra
morphisms C̃ � A� C, then A admits a local slice in its Auslander–Reiten
quiver. For this purpose, we need to recall the following well-known result
of Auslander and Reiten (see [8, p. 187]).

Proposition 3.1.2. Assume that there exists a surjective algebra homo-
morphism A� B, and let M be an indecomposable B-module. Then:
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(a) If M is projective as an A-module, then M is projective as a B-module.
IfM is not projective as an A-module, then τBM is a submodule of τAM.

(b) If M is injective as an A-module, then M is injective as a B-module.
If M is not injective as an A-module then τ−1B M is a quotient of τ−1A M.

3.2. Modules on slices. We start with the following lemma.

Lemma 3.2.1. Let C be a tilted algebra, M a module on a complete
slice Σ in Γ (modC) and C̃ the relation extension of C. Then:

(a) If M is projective as a C-module, then it is projective as a C̃-module.
If M is not projective as a C-module then τCM ' τC̃M .

(b) If M is injective as a C-module, then it is injective as a C̃-module. If M
is not injective as a C-module, then τ−1C M ' τ−1

C̃
M .

Proof. We only prove (a) because the proof of (b) is dual. Assume first
that M = eC is projective, with e a primitive idempotent of C. Let, as usual,
E = Ext2C(DC,C). Because C̃ = C n E, it follows from [7, Corollary 1.4]

that M is projective as a C̃-module if and only if eE = 0. Now eE =
eExt2C(DC,C) = Ext2C(DC, eC) ' Ext2C(DC,M) = 0 because M , lying on
a complete slice in modC, has injective dimension at most one.

Assume now that M is not projective. It follows from [7, Theorem 2.1]
that τCM ' τC̃M if and only if M ⊗C E = 0 and HomC(E, τCM) = 0. We
proceed to prove these two equalities.

Because C is tilted and Σ is a complete slice, it follows that the algebra
H = EndC(

⊕
U∈Σo U) is hereditary and there exists a tilting H-module T

such that C = EndH(T ). Because M ∈ Σo, there exists an injective H-mod-
ule I such that M = HomH(T, I) (see [6, (VIII.3.5) and (VIII.5.6)]). De-
note as before by [−] the shift functor in the bounded derived category
Db(modH) and by τ its Auslander–Reiten translation. It follows from [2]
that

D(M ⊗C E) ' HomC(M,DE)

' HomC(HomH(T, I), DHomDb(modH)(T, τ
−1T [1]))

' HomC(HomH(T, I), DHomDb(modH)(τT, T [1]))

' HomC(HomH(T, I), DExt1Db(modH)(τT, T ))

' HomC(HomH(T, I),HomH(T, τ2HT ))

' HomH(I, t(τ2HT ))

where t(τ2HT ) = HomH(T, τ2HT )⊗CT is the torsion submodule of τ2HT in the
torsion pair (T (TH),F(TH)) induced by T in modH (see [6, (VI.3.9)]). Now
τ2HT is clearly not injective, therefore neither is its submodule t(τ2HT ). Be-
cause I is injective and H is hereditary, we infer that HomH(T, t(τ2HT )) = 0.
Therefore M ⊗C E = 0.
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The proof that HomC(E, τCM) = 0 is sensibly different. We first claim
that every indecomposable summand of EC is a proper successor of the
complete slice Σ. Indeed, the Auslander–Reiten formula yields

E = Ext2C(DC,C) ' Ext1C(DC,Ω−1C) ' DHomC(τ−1C Ω−1C,DC).

Now for any indecomposable summand N of Ω−1C, there exists an inde-
composable injective C-module I0 such that HomC(I0, N) 6= 0. Because the
slice Σ is sincere in modC, there exist L ∈ Σo and a nonzero morphism
L→ I0. Thus we have a path L→ I0 → N → ?→ τ−1C N in modC, so that

τ−1C N is a proper successor of Σ in modC. This proves that any indecom-

posable summand of τ−1C Ω−1C is a proper successor of Σ in modC. On the
other hand, no indecomposable projective C-module is a proper successor
of Σ. Therefore

HomC(τ−1C Ω−1C,DC) ' HomC(τ−1C Ω−1C,DC)

and so E ' HomC(τ−1C Ω−1C,DC) ' τ−1C Ω−1C. This establishes our claim
that every indecomposable summand of E is a proper successor of Σ.

Now τCM is a proper predecessor of Σ. Therefore HomC(E, τCM) = 0.
This completes the proof.

Proposition 3.2.2. Let C be a tilted algebra, M a module in a complete
slice Σ in Γ (modC), C̃ the relation extension algebra and A an algebra such

that there exist surjective algebra morphisms C̃ � A� C. Then:

(a) If M is projective as a C-module, then it is projective as an A-module.
If M is not projective as a C-module, then τCM ' τAM .

(b) If M is injective as a C-module, then it is injective as an A-module.
If M is not injective as a C-module, then τ−1C M ' τ−1A M .

Proof. This follows from Lemma 3.2.1 and Proposition 3.1.2.

Corollary 3.2.3. Let C be a tilted algebra, Σ a complete slice in
Γ (modC), C̃ the relation extension of C, and A an algebra such that there

exist surjective algebra morphisms C̃ � A � C. Let L → M be an irre-
ducible morphism between indecomposables in modA. If either L or M lies
in Σ, then the other is a C-module.

Proof. We may, by duality, assume that L ∈ Σo. Suppose first that L
is an injective C-module. Because of Proposition 3.2.2, it is injective as an
A-module. In particular, socC L = socA L and so the canonical projection
L � L/socC L is a minimal left almost split morphism in modA. There-
fore M is an indecomposable direct summand of L/socC L and in particular
is a C-module.

Suppose that L is not injective as a C-module. Because of Proposi-
tion 3.2.2, we have τ−1C L ' τ−1A L. It then follows from [7, Theorem 2.1]
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that the almost split sequence 0→ L→ X → τ−1C L→ 0 in modC remains
almost split in modA. Therefore M is an indecomposable direct summand
of X, so it is a C-module. This completes the proof.

3.3. The existence of local slices. We are now able to prove the main
result of this section.

Theorem 3. Let C be a tilted algebra and A be an algebra such that
there exist surjective algebra morphisms C̃ � A � C. Then any complete
slice in Γ (modC) embeds as a local slice in Γ (modA). In particular, partial
relation extensions admit local slices.

Proof. Because clearly |Σo| = rk(K0(C)) = rk(K0(A)), it suffices to
prove the first two properties in the definition of local slices.

We first show that Σ is a presection in Γ (modA). Let f : L→M be an
irreducible morphism between indecomposables in modA. Assume L ∈ Σ.
Because of Corollary 3.2.3, M is a C-module. Therefore f remains an irre-
ducible morphism in modC. Because the complete slice Σ is a presection in
Γ (modC), we have M ∈ Σo or τCM ∈ Σo. In the latter case, the observation
that τCM ' τAM completes the proof.

One shows in exactly the same way that, if M ∈ Σo, then L ∈ Σo or
τ−1A L ∈ Σo.

It remains to prove sectional convexity. Let

M0
f1−→M1

f2−→M2 → · · ·
ft−→Mt

be a sectional path in Γ (modA), with M0,Mt ∈ Σ. We may assume without
loss of generality that M1 6∈ Σo. Because of Corollary 3.2.3, M1 is a C-
module. Now, observe that the morphism ft · · · f2 : M1 → Mt is nonzero in
modA, because it is the composition of a sectional path. Therefore it is also
nonzero in modC. Because f1 : M0 → M1 is also nonzero in modC, the
convexity of Σ in modC and the path M0 → M1 → Mt yield M1 ∈ Σo, a
contradiction which completes the proof.

In particular, our result applies to partial relation extensions.

Corollary 3.3.1. Let C be a tilted algebra and B a partial relation
extension. Then any complete slice in Γ (modC) embeds as a local slice
in Γ (modB).

The reader may notice that the example in [4] of a local slice is an
example of a local slice in a partial relation extension. We give an example
of an algebra which has a local slice but is not a partial relation extension.
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Example 3.3.2. Let A be given by the quiver

1
δ // 5

α
��

3

γ
^^

µ
��

4
βoo

2 6

λ

^^

bound by λβµ = 0, αβγ = 0, γδ = 0, δα = 0. Then Γ (modA) is given by

5

1
5

1

3
12

2

3
2

4
3
12

3
1

4
33
12

4
3
1

3

4
3
2

6
4
3
1

4
3

5
4
3
2

6
4
3

4

5
4
3

65
44
3

5
4

65
4
3

6
4

65
4

6

5

where the two copies of 5 are identified. We have illustrated a local slice
which arises from the embedding of Γ (modC) in Γ (modA), where C is
the algebra obtained from A by deleting the arrow δ (that is, C = A/〈δ〉).
Notice that C is a tilted algebra of type E6. Notice finally that A is not
a partial relation extension as shown by direct inspection: for instance, if
A were a partial relation extension of C, then the defining relations of A
involving the arrow γ would be βγδ = 0 and δαβ = 0 (instead of γδ = 0 and
δα = 0) because the Keller potential has a unique oriented cycle, namely,
αβγδ, containing α or γ.
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