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In this note, we show that, if A � kQA/IA is a schurian strongly simply connected
algebra given by its normed presentation, and � is the unique poset whose Hasse quiver
coincides with QA, then A � k� if and only if IA has a generating set consisting of
exactly ��QA� elements, where ��QA� is the Euler characteristic of QA. We also prove
that a quotient of an incidence algebra A = k�/J is strongly simply connected if and
only if A is simply connected and k� is strongly simply connected.
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1. INTRODUCTION

In this note, we show how the Euler characteristic of a quiver can be used to
study the strong simple connectedness of incidence algebras and their quotients.

Our motivation comes from the study of the finite dimensional algebras over
an algebraically closed field k. For such an algebra A, there exists a quiver QA,
and an ideal I of the path algebra kQA such that A � kQA/I . For each such pair
�QA� I�, called a presentation of A, one can define the fundamental group �1�QA� I�,
see for instance, Gabriel and Roiter (1992) and Martínez-Villa and de la Peña
(1983). The algebra A is called simply connected if QA is acyclic and, for each
presentation �QA� I�, the group �1�QA� I� is trivial (Assem and Skowroński, 1988).
If A is the incidence algebra of a (finite) poset �, then its quiver QA coincides with
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the Hasse quiver of �, see Gabriel and Roiter (1992). Moreover, all presentations
of the incidence algebra A give rise to isomorphic fundamental groups Bardzell and
Marcos (2002) and A is simply connected if and only if so is the associated simplicial
complex (Bustamante, 2002; Reynaud, 2003). Simply connected representation-finite
algebras were characterized in Bongartz and Gabriel (1981/82) and Bretscher and
Gabriel (1983). Also, the simple connectedness of right multipeak algebras, a class
containing that of incidence algebras, was studied in Kasjan (1999). While it is
difficult to find criteria for an algebra to be simply connected (see, for instance,
Assem et al., 2003), one subclass seems easier to handle: this is the class of strongly
simply connected algebras, introduced by Skowroński in Skowroński (1993). An
algebra A is called strongly simply connected if every full convex subcategory of A
is simply connected. Characterizations of strongly simply connected algebras have
been given in Assem and Liu (1998). In particular, an incidence algebra is strongly
simply connected if and only if its quiver contains no crowns (Dräxler, 1994) or,
equivalently, if and only if the corresponding poset is dismantlable (Rival, 1976).

It was already observed in Dräxler (1994) that, if A is a schurian strongly
simply connected algebra, then there exists a unique poset �, whose Hasse quiver
coincides with QA. As a consequence of this result and Assem and Liu (1998, 2.4),
there exists a presentation of A, called normed presentation, so that A is the quotient
of the incidence algebra k� by an ideal generated by paths.

In this article, using properties of the Euler characteristic ��QA� of the quiver
QA, we first show that a quotient A of an incidence algebra k� is strongly simply
connected if and only if it is simply connected and k� is strongly simply connected.
We next prove that, if A = kQA/I is a schurian strongly simply connected algebra,
then the ideal I has at least ��QA� generators and it reaches this number if
and only if A is an incidence algebra. In a forthcoming article (Assem et al., in
preparation), we give several new characterizations of schurian strongly simply
connected algebras.

The article is organized as follows. Section 2 is devoted to fixing the notation
and briefly recalling the necessary concepts and results. In Section 3, we show that,
if k� is a strongly simply connected incidence algebra, then k� � kQ�/I�, where I�
has a generating set consisting of exactly ��Q�� elements. We prove our main results
in Section 4.

2. PRELIMINARIES

2.1. Notation. In this article, by algebra, we always mean a basic and connected
finite dimensional algebra over an algebraically closed field k. Given a quiver Q, we
denote by Q0 its set of points and by Q1 its set of arrows. A relation in Q from a
point x to a point y is a linear combination � = ∑m

i=1 �iwi where, for each i, �i ∈ k
is nonzero and wi is a path of length at least two from x to y. A relation � as
before is called monomial if m = 1, binomial if m = 2, and a commutativity relation
if it equals the difference of two paths. We denote by kQ the path algebra of Q
and by kQ�x� y� the k-vector space generated by all paths in Q from x to y. For an
algebra A, we denote by QA its quiver. For every algebra A, there exists an ideal
I in kQA, generated by a set of relations, such that A � kQA/I . The pair �QA� I� is
called a presentation of A. An algebra A = kQ/I can equivalently be considered as a
k-category of which the object class A0 is Q0, and the set of morphisms A�x� y� from



QUOTIENTS OF INCIDENCE ALGEBRAS AND EULER CHARACTERISTIC 1077

x to y is the quotient of kQ�x� y� by the subspace I�x� y� = I ∩ kQ�x� y�, see Bongartz
and Gabriel (1981/82). A full subcategory B of A is called convex if any path in A
with source and target in B lies entirely in B. An algebra A is called triangular if
QA is acyclic, and it is called schurian if, for all x, y ∈ A0, we have dimk A�x� y� ≤ 1.
In this article, we deal exclusively with schurian triangular algebras. For a point x
in the quiver QA of an algebra A, we denote by ex the corresponding idempotent.

2.2. Simple Connectedness

Let Q be a connected acyclic quiver and I be an ideal of kQ generated
by relations. A relation � = ∑m

i=1 �iwi ∈ I�x� y� is called minimal if m ≥ 2 and, for
every nonempty proper subset J ⊂ 	1� 2� 
 
 
 � m�, we have

∑
j∈J �jwj � I�x� y�. For

an arrow �, we denote by �−1 its formal inverse. A walk in Q from x to y is a
formal composition �

1
1 �

2
2 · · · �tt (where �i ∈ Q1 and i ∈ 	1�−1� for all i) starting at

x and ending at y. The fundamental group �1�Q� I� is the quotient of the fundamental
group �1�Q� of Q by the normal subgroup generated by all elements of the form
��−1u−1v��, where � is a walk from the base point to x and u, v are paths from x to
y such that there exists a minimal relation

∑
�iwi ∈ I�x� y� with u = w1 and v = w2,

see Martínez-Villa and de la Peña (1983). It is well-known that �1�Q� is the free
group in ��Q� generators, where ��Q� = 1− �Q0� + �Q1� is the Euler characteristic of
Q, see, for instance, Massey (1967).

A triangular algebra A is called simply connected if, for any presentation �QA� I�
of A, the group �1�QA� I� is trivial (Assem and Skowroński, 1988). It is called
strongly simply connected if every full convex subcategory of A is simply connected
(Skowroński, 1993).

It is shown in Bardzell and Marcos (2002) that, if an algebra A � kQA/I is
schurian, then the fundamental group �1�QA� I� does not depend on the presentation
�QA� I� of A. Since in this article we study only schurian triangular algebras, we
therefore use the unambiguous notation �1�A� to stand for �1�QA� I�.

2.3. Strong Simple Connectedness

We need the following notions and results from Assem and Liu (1998). Let Q
be a connected acyclic quiver. A contour �p� q� in Q from x to y is a pair of parallel
paths of positive length from x to y. A contour �p� q� is called interlaced if p and q
have a common point besides x and y. A contour �p� q� is called irreducible if there
exists no sequence of paths p = p0, p1, 
 
 
 , pm = q in Q from x to y such that, for
each i, the contour �pi� pi+1� is interlaced. A cycle C in Q is called irreducible if,
either C is an irreducible contour, or C is not a contour, but satisfies the following
condition and its dual: for each source x of C, no proper successor of x in Q is
also a source of C, and exactly two proper successors of x in Q are sinks of C.
This is easily seen to be equivalent to the definition of irreducibility given in Assem
and Liu (1998, 1.5). It is proven in Assem and Liu (1998, 2.1) that, if A = kQ/I is
any presentation of a schurian strongly simply connected algebra, and if �p� q� is a
contour in Q, then the path p lies in I if and only if the path q lies in I . Moreover,
we have the following theorem.



1078 ASSEM ET AL.

Theorem (Assem and Liu, 1998, 2.4). An algebra A is schurian and strongly simply
connected if and only if

(a) all irreducible cycles are irreducible contours, and
(b) there exists a presentation A � kQA/IA such that for each irreducible contour

�p� q�, we have p, q � IA but p− q ∈ IA. �

Such a presentation (in which every irreducible contour, and hence every contour,
is commutative) is called a normed presentation of A.

3. QUOTIENTS OF INCIDENCE ALGEBRAS

3.1.

Let ���≤� be a finite poset with n elements. The incidence algebra k� of � is
the subalgebra of the algebra Mn�k� of all n× n matrices over k consisting of the
matrices �aij� satisfying aij = 0 if j � i. The quiver Q� of k� is the Hasse quiver
of �, and k� � kQ�/I�, where I� is generated by all differences p− q, for �p� q� a
contour in Q�.

In this article, a quotient of an incidence algebra means an algebra A which
admits a presentation A 	 kQA/I such that there exists a poset � with Q� = QA

and, furthermore, I = I� + J , where J is an ideal of kQ� generated by monomials in
the radical square of the algebra. By abuse of language, we identify J with an ideal
of k� and write A = k�/J . Such an algebra A = k�/J is schurian, triangular and
satisfies the following condition: for any contour �p� q� in QA, we have p � I� + J
if and only if q � I� + J . In this case, we say that �p� q� is a nonzero contour in
A. We also observe that such a presentation of k�/J , generated by monomials and
differences of parallel paths, is a normed presentation in the sense of 2.3.

In the next subsection, we consider such an algebra A = k�/J and construct
inductively a set of generators of the ideal I� + J .

3.2.

We start by constructing a set of contours, following an idea inspired from
Assem et al. (2003, 5.2). Let x be a source in QA, and x→ be the set of all arrows of
source x. Let ≈ be the least equivalence on x→ such that � ≈ � if there exist paths u,
v in Q� such that ��u� �v� is a contour Assem and de la Peña (1996, 2.1). Let t be the
cardinality of ���. We construct by induction on s ≤ t a family of t − 1 irreducible
contours of source x.

If s = 1, we let �1 ∈ ��� be arbitrary. If t = 1, we have finished. Otherwise, we
consider the set C1 of all pairs ��� y�, where � ∈ x→ and y ∈ �Q��0 are such that
there exists a nonzero non-interlaced contour ��1p� �q� from x to y. We let M1 =
	y���� y� ∈ C1�. Since t > 1, we have C1 �= ∅. We thus choose a pair ��2� y2� ∈ C1

such that y2 is maximal in the set M1 and we also choose a nonzero non-interlaced
contour ��1p1�2� �2q1�2� from x to y2.

We claim that this contour ��1p1�2� �2q1�2� is in fact irreducible. Indeed, if this is
not the case, then there exists a sequence �1p1�2 = �1w1� �2w2� 
 
 
 � �rwr = �2q1�2 with
r ≥ 3 such that each pair ��iwi� �i+1wi+1� is interlaced. Since �1 �= �2, there exists a
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least i such that �i �= �i+1. Also, there exists a point z on both �iwi and �i+1wi+1 and
a non-interlaced contour �u� v� from x to z such that �iwi = uw′

i, �i+1wi+1 = vw′
i+1

for some paths w′
i, w

′
i+1. It follows from the maximality of y2 in M1 that A�z� y2� =

0 or else u = 0 in A (and this is equivalent to saying that A�x� z� = 0, because A
is a quotient of an incidence algebra). In either case, A�x� y2� = 0, a contradiction.
This establishes our claim.

Assume inductively that we have a sequence 	�1� 
 
 
 � �s� of arrows of ��� as
well as s − 1 nonzero non-interlaced contours starting at these arrows. If s = t, we
have finished. Otherwise, we let Cs be the set of all pairs ��� y�, with � ∈ x→ and
y ∈ �Q��0 such that � � 	�1� 
 
 
 � �s� and there exists an i ∈ 	1� 
 
 
 � s� and a nonzero
non-interlaced contour ��ip� �q� from x to y. We let Ms = 	y���� y� ∈ Cs�. Since
t > s, we have Cs �= ∅. We thus choose ��s+1� ys+1� ∈ Cs such that ys+1 is maximal in
Ms, and a nonzero non-interlaced contour ��is+1

pis+1�s+1� �s+1qis+1�s+1� from x to ys+1,
where 1 ≤ is+1 ≤ s.

As before, the maximality of the points ys+1 in the sets Ms implies that, in fact,
each of the contours chosen is irreducible.

We denote by I��� the subideal of I� + J generated by all elements of the
form �ispis�s

− �sqis�s, where ��ispis�s
� �sqis�s� is a contour of the above set. Thus

I��� is generated by exactly t − 1 elements and each of these generators is the
commutativity relation of an irreducible contour.

Lemma. Let x be a source in A, and ��p� �q� be a nonzero irreducible contour of
source x. Then there exists a set of generators of I���, constructed as before, containing
the element �p− �q.

Proof. In the above construction, let �1 = �. Then � ≈ �. Since ��p� �q� is an
irreducible contour from x to y (say), it is not interlaced, so that ��� y� ∈ C1 and y is
a maximal element in M1. We may thus take ��2� y2� = ��� y� and ��1p1�2� �2q1�2� =
��p� �q�. �

3.3.

Let A be a schurian triangular algebra, the interval �x� y� between x and y is
the full subcategory of A generated by all points z ∈ A0 which lie on a nonzero path
from x to y, that is, such that A�x� z�A�z� y� �= 0. Clearly, if all paths from x to y
in A are nonzero, then �x� y� coincides with the full subcategory of A generated by
the convex hull of x and y. This is the case, for instance, whenever A is an incidence
algebra.

Generalizing Assem et al. (2003, 3.1) (see also Assem et al., in preparation),
we define a notion of a full weak crown in a quotient of an incidence algebra A.
Let C be a full subcategory of A generated by 2n points 	x1� 
 
 
 � xn� y1� 
 
 
 � yn�, with
n ≥ 2, and of the form:
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We say that C is a full weak crown in A if:

(a) �xi� yj� ∩ �xh� yl� �= ∅ if and only if j = i and �h� l� ∈ 	�i� i�� �i− 1� i�� �i� i+ 1��
or j = i+ 1 and �h� l� ∈ 	�i� i+ 1�� �i� i�� �i+ 1� i+ 1�� (we agree to set yn+1 = y1
and x0 = xn), and

(b) the intersection of three distinct �xh� yl� is empty.

A full weak crown C as above is called a full crown if, for each i, �xi� yi� ∩ �xi� yi+1� =
	xi� and �xi� yi� ∩ �xi−1� yi� = 	yi�.

As in Assem et al. (2003, 3.2) (see also Assem et al., in preparation), we easily
prove that the convex hull of each full weak crown C contains a full crown as a full
subcategory.

A point x ∈ A0 is said to top a full weak crown C if x is a direct predecessor
of each of the xi.

Let now A = k�/J and x be a source in A. Let B = A/�ex�. We observe
that, if A = kQA/IA is a normed presentation of A, and B � kQB/IB is the induced
presentation of B (that is, the one such that IB = IA ∩ kQB), then the latter is a
normed presentation of B. Finally, we recall that the source x is separating if the
number of indecomposable summands of rad�exA� equals the number of connected
components of B.

Lemma. Let A = kQA/IA be a quotient of an incidence algebra, given its normed
presentation, x be a separating source in A, topping no full weak crown, and B =
A/�ex�. If B � kQB/IB is the induced presentation, then

IA = IB +
∑

���

I��� + �m1� 
 
 
 � mr�

where the mi are paths starting at x, and the sum is taken over all equivalence classes
of arrows in x→.

Proof. We may clearly assume that x→ contains only one equivalence class and
that �A0� ≥ 2. Let t = �x→�. If t = 1, I��� = 0 and IA = IB + �m1� 
 
 
 � mr� for some
paths mi starting at x. Assume t > 1, and let �p� q� be a nonzero irreducible contour
starting at x. There exist i, j such that 1 ≤ i� j ≤ t and paths u, v such that
p = �iu and q = �jv. By the construction in 3.2, there exists a unique sequence
	�i = �i0� �i1� 
 
 
 � �is = �j� such that each pair ��ih � �ih+1

� corresponds to a nonzero
irreducible contour of target yih+1

and this contour is one of the generators of I���.
We have the following situation:
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If there is no nonzero path between y and one of the yih , then either there exists in A
a full weak crown topped by x, or else, one of the yih is not maximal, a contradiction
in either case. Thus, there is a nonzero path between y and each of the yih . Since the
yih are maximal points in the respective sets Mih

, we deduce that A�yih� y� �= 0 for all
h. This implies that the relation p− q is induced from relations in I��� and relations
in IB.

Finally, if �p� q� is a zero contour, then we assume that p and q are among the
mi. This completes the proof. �

3.4. Example. The lemma above does not hold true if A is a schurian algebra
which is not a quotient of an incidence algebra. Let A be given by the quiver

bound by �� = 0, �� = 0, �� = �� and ��� = ���. Clearly, the relation ��� = ��� is
not induced from relations in IB and relations in I���.

3.5. Corollary. Let � be a poset, x be a separating source in k� and �′ = �\	x�.
Assume x tops no weak crown. Then I� = I�′ +∑

��� I���. �

3.6. Proposition. Let k� � kQ�/I� be a strongly simply connected incidence
algebra, and let �p� q� be a given irreducible contour in Q�. Then there exists a set
of generators of I�, of cardinality ��Q��, consisting of the commutativity relations of
irreducible contours and such that p− q is one of these generators.

Proof. By induction on ���. If ��� = 1, then there is nothing to prove. Assume
that ��� > 1 and that the result holds for all posets � such that ��� < ���. Let x
be a maximal element of � and �′ = �\	x�. Without loss of generality, we may
assume that �′ is connected. Since k� is strongly simply connected, the source x
is separating, by Assem and de la Peña (1996, 2.6). Therefore all arrows of x→

are equivalent, by Assem and de la Peña (1996, 2.2). Moreover, � contains no full
crown, by Dräxler (1994, 3.3). Hence, by Assem et al. (2003, 3.2), the point x tops
no full weak crown. On the other hand, since k�′ is a full convex subcategory of
k�, we have that k�′ is strongly simply connected.

Assume first that x is not the source of �p� q�. Then we may, by the induction
hypothesis, assume that p− q belongs to a set of generators of I�′ , of cardinality
��Q�′�, and consisting of commutativity relations of irreducible contours lying
entirely in �′. On the other hand, if x is a source of �p� q�, we may, by the lemma in
3.2, assume that p− q belongs to a set of generators of I���, of cardinality �x→� − 1
(recall that x→ = ���). By 3.5, we have I� = I�′ + I��� where I�′ (or I���) is generated
by the commutativity relations of irreducible contours lying entirely in �′ (or of
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irreducible contours starting at x, respectively). Since ��Q�′�+ �x→� − 1 = ��Q��,
this completes the proof. �

3.7. Example. If k� is an incidence algebra which is not strongly simply
connected, then the conclusion of 3.6 may, or may not, hold true. Let � be the poset
with quiver

Then ��Q�� = 1− 6+ 8 = 3, while it is easily seen that a set of generators of
least cardinality for I� is the set 	��− ��� ��− ��� ��− ��� ��− ���, which has 4
elements. Note that k� is simply connected, and even separated and coseparated.
Thus, the conclusion of 3.6 does not hold true in this case.

On the other hand, let �′ = �\	x�. Then ��Q�′� = 1− 5+ 6 = 2, while I�′ is
generated by the set 	��− ��� ��− ���, which has 2 elements. Note that k�′ is
simply connected and separated (but not coseparated). Thus, the conclusion of 3.6
holds true in this case.

4. THE MAIN RESULTS

4.1. Lemma. Let G be a free group in n generators, and S be a subset of G such that
�S� < n. Then the normal subgroup H generated by S is a proper subgroup of G.

Proof. Let G′ be the derived subgroup of G, and assume G = H . Then H/G′ =
G/G′ is free abelian of rank n. However, since H/G′ is abelian, it is generated by
the cosets sG′, with s ∈ S. Hence the rank of H/G′ is at most �S� < n, and this yields
a contradiction. �

4.2.

Before proving the following lemma, we need a simple, but useful observation.
Assume A = kQA/I , where the ideal I is generated by a set of relations of the form
S ∪M , where M consists of monomials, while S consists of minimal relations. As
seen in 2.2, �1�A� = �1�QA�/N , where N is the normal subgroup of �1�QA� generated
by all uv−1, with �u� v� a contour in QA. It is easily seen that in fact, N is the normal
subgroup generated by all uv−1, where �u� v� occurs in a minimal relation belonging
to the set S (see Farkas et al., 2000).

Lemma. Assume that A = kQA/I is a schurian simply connected algebra. Let S be a
set of minimal relations and M be a set of monomials such that I is generated by S ∪M .
Then �S� ≥ ��QA�.
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Proof. Since A is schurian, each minimal relation is binomial. Let N be the
normal subgroup of �1�QA� generated by all uv−1, with u, v are paths occurring
in a binomial relation in S. It follows from 2.2 that �1�A� = �1�QA�/N . Now, the
hypothesis implies that �1�QA� = N . Since �1�QA� is free in ��QA� generators, the
result follows from 4.1. �

4.3. Example. The statement of the lemma is not true if A is not schurian. For
instance, the algebra A given by the quiver QA

bound by �1�1 + �2�2 + �3�3 = 0 is such that �S� = 1, but ��QA� = 2.

4.4. Lemma. Let A be a schurian strongly simply connected algebra. Then:

(a) There exists a unique poset � = ��A� such that Q� = QA.
(b) The incidence algebra k� is strongly simply connected.

Proof. (a) It suffices (see, for instance, Gatica and Redondo, 2001) to prove that
QA contains no subquiver of the form

with �, �1, 
 
 
 , �s arrows of QA. Assume that this is the case, and let A � kQA/I
be an arbitrary presentation of A. Since � � I , we have that �1 · · · �s � I , by 2.3.
Since I ⊆ rad2kQA, there is no relation involving � and �1 · · · �s and of the form
��+ ��1 · · · �s = 0 (where � � ∈ k are nonzero). Consequently, dimk A�x� y� ≥ 2, a
contradiction to A being schurian.

(b) Since Q� = QA and A is schurian strongly simply connected, every
irreducible cycle in Q� is an irreducible contour in Q� (this property, indeed,
depends on the quiver only). Since any contour in k� is commutative, we deduce
from 2.3 that k� is strongly simply connected. �

4.5.

One consequence of this lemma is that every schurian strongly simply
connected algebra is in fact a quotient of an incidence algebra, a fact already shown
in Dräxler (1994, 2.7). In fact, we have the following stronger result.
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Corollary. An algebra A is schurian and strongly simply connected if and only if there
exists a poset � such that k� is strongly simply connected and A � k�/J , where J is an
ideal of k� generated by paths which are not entirely contained in irreducible contours.

Proof. This follows easily from 4.4 and 2.3. �

Remark. If, in particular, A = k�/J is a quotient of an incidence algebra, with k�
strongly simply connected, then A is strongly simply connected if and only if J is
generated by paths which are not entirely contained in irreducible contours.

4.6. Example. Let A be given by the quiver

bounded by �� = ��, �� = ��, �� = 0 and �� = 0. Here, A � k�/J , where � = ��A�
and J is generated by the paths �� and ��. These paths are entirely contained in
the contour ����� ����. However, this contour is not irreducible. Accordingly, A is
schurian strongly simply connected.

4.7.

As a first consequence, we have the following characterization of strongly
simply connected quotient of an incidence algebras. We recall that the strong simple
connectedness of incidence algebras is completely characterized by the absence of
full crowns (see Dräxler, 1994, 3.3).

Theorem. Let A = k�/J be a quotient of an incidence algebra. Then A is strongly
simply connected if and only if A is simply connected and k� is strongly simply
connected.

Proof. Since the necessity follows from 4.4, we only need to prove the sufficiency.
Assume that A is not strongly simply connected. By 4.5, there exists an irreducible
contour �p� q� in QA such that p ∈ J (or, equivalently, q ∈ J ). By 3.6, there exists a
set 	�1� 
 
 
 � ���QA�

� of generators of I� such that �1 = p− q. Let S be the subset of
	�1� 
 
 
 � ���QA�

� corresponding to those contours in QA which are nonzero in A. Thus,
�S� < ��QA� since �1 � S. Hence, I� + J is generated by S and a set 	m1� 
 
 
 � ms� of
monomials, where s ≥ 2 and m1, m2 are respectively subpaths of p, q. Now, �1�A� �
�1�QA�/N , where N is a normal subgroup of �1�QA� generated by �S� elements
(see the remark in 4.2). Since �S� < ��QA�, the statement of 4.2 yields a contradiction
to the simple connectedness of A. �
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4.8.

Our second main result characterizes the incidence algebras among the
schurian strongly simply connected algebras.

Theorem. Let A = kQA/IA be a schurian strongly simply connected algebra, given its
normed presentation, and � be the associated poset. Then A � k� if and only if IA has
a generating set consisting of exactly ��QA� elements.

Proof. Since the necessity follows at once from 3.6, let us show the sufficiency.
Assume that A is schurian and strongly simply connected, and that �QA� IA� is a
normed presentation of A. We further assume that IA has a generating set consisting
of exactly ��QA� relations (such a set is then, by 4.2, of least possible cardinality).
Let � = ��A� be as in 4.4. It follows from the preceding discussion that IA = J + I�,
where J is generated by paths in IA and I� is generated by all possible relations
of the form p− q, with �p� q� an irreducible contour. Clearly, these two sets of
generators are disjoint. Moreover, we get from 3.6 that I� has a generating set
consisting of ��Q�� = ��QA� elements, all of which are commutativity relations of
irreducible contours. This set has as many elements as the given generating set of
IA. Since any generating set of IA must involve the commutativity of all irreducible
contours, we deduce that J = 0, that is, A � k�. �
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