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Abstract. We study the module category of a certain Galois covering of a cluster-
tilted algebra which we call the cluster repetitive algebra. Our main result compares
the module categories of the cluster repetitive algebra of a tilted algebra C and the
repetitive algebra of C, in the sense of Hughes and Waschbüsch.
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0. Introduction

The cluster category was introduced in (BMRRT, 2006) and also in
(CCS1, 2006) for type A, as a categorical model to understand better
the cluster algebras of Fomin and Zelevinsky (FZ, 2002). It is a quotient
of the bounded derived category Db(modA) of the finitely generated
modules over a finite dimensional hereditary algebra A. It was then
natural to consider the endomorphism algebras of tilting objects in
the cluster category. Such algebras are called cluster-tilted, and have
been the subject of several investigations since their introduction in
(BMR1, 2007; CCS1, 2006), see, for instance (BMR2, 2006; CCS2, 2006;
KR, preprint; ABS1, preprint; ABS2, preprint; BFPT, preprint). In
particular, it was shown in (ABS1, preprint) that the cluster-tilted
algebras are trivial extensions of tilted algebras by a certain bimodule.

Now, the class of trivial extensions of tilted algebras by the minimal
injective cogenerator has been extensively investigated. They play an
important rôle in the classification results for self-injective algebras. In
this study, one of the essential tools is the repetitive algebra, introduced
by Hughes and Waschbüsch in (HW, 1983). In previous works (ABST1,
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2006; ABST2, to appear), we have related the cluster category and the
m-cluster category to the repetitive algebra of a hereditary algebra.

Our initial motivation in this paper is different. Given a tilted alge-
bra C, we wish to relate the trivial extension T (C) of C by its minimal
injective cogenerator DC and the corresponding cluster-tilted algebra
C̃. Doing so has been difficult to achieve directly, so we decided to
work instead with certain Galois coverings of these two algebras, the
repetitive algebra Ĉ of C, which is a covering of T (C), and the algebra
Č constructed in a similar manner starting from C̃, which we call the
cluster repetitive algebra.

Before stating our main theorem, we recall from (BMR1, 2007) that,
if T̃ is a tilting object in the cluster category CA, and C̃ = End CA

T̃ ,

then the functor Hom CA
(T̃ ,−) : CA → mod C̃ induces an equivalence

CA/iadd (τ T̃ ) ∼= mod C̃, where iadd (τ T̃ ) is the ideal consisting of all
morphisms which factor through a direct sum of summands of the
Auslander-Reiten translate τ T̃ of T̃ . Our main theorem says that this
functor lifts to a functor mod Ĉ → mod Č which satisfies a similar
condition. Namely, we give a different realisation of the cluster category,
using only the tilted algebra C, which we denote as CC , then construct
two functors φ : mod Ĉ → mod Č and π̂ : mod Ĉ → CC as well as an
ideal J of mod Ĉ which satisfy the properties stated in the following
theorem.

THEOREM 0.1. Let C be a tilted algebra. Then there is a commutative
diagram of dense functors

mod Ĉ
φ //

π̂

��

mod Č

Gλ

��
CC

Hom CC
(π̂C,−)

// mod C̃

where Gλ : mod Č → mod C̃ is the push-down functor associated to
the covering Č → C̃. Moreover, φ is full and induces an equivalence of
categories mod Ĉ/J ∼= mod Č.

Note that the functor Gλ is always dense: this is not true of the
push-down functor mod Ĉ → modT (C) (see, for instance, (AS, 1993)).

As a consequence of this theorem, we are able to relate the Auslander-
Reiten quivers of Ĉ and Č, this yields the required relation between
T (C) and C̃.

The paper is organised as follows. After brief preliminaries, we start
by introducing the notion of cluster repetitive algebra and study its
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most elementary properties in section 1. In section 2, we relate the
module category of Č to the bounded derived category Db(modA),
and show that mod Č is equivalent to a quotient of Db(modA) by a
certain ideal. Section 3 is devoted to the proof of our main theorem.
Finally, in section 4, motivated by the need to bring down this infor-
mation to mod C̃, we compute a fundamental domain for mod C̃ inside
mod Č, and show that such a domain lies entirely inside a certain finite
dimensional quotient of Č, which we call the cluster duplicated algebra.

1. The cluster repetitive algebra

1.1. Notation

Throughout this paper, all algebras are basic locally finite dimensional
algebras over an algebraically closed field k. For an algebra C, we denote
by modC the category of finitely generated right C-modules and by
indC a full subcategory of modC consisting of exactly one representa-
tive from each isomorphism class of indecomposable modules. When we
speak about a C-module (or an indecomposable C-module), we always
mean implicitly that it belongs to modC (or to indC, respectively).
Also, all subcategories of modC are full and so are identified with their
object classes. Given a subcategory C of modC, we sometimes write
M ∈ C to express that M is an object in C. We denote by add C the full
subcategory of modC with objects the finite direct sums of modules in
C and, if M is a module, we abbreviate add {M} as addM .

Following (BG, 1981), we sometimes consider equivalently an alge-
bra C as a locally bounded k-category, in which the object class C0 is
a complete set {ei}i of primitive orthogonal idempotents of C, and the
group of morphisms from ei to ej is eiCej. We denote the projective (or
the injective) dimension of a module M as pdM (or idM , respectively).
The global dimension of C is denoted by gl.dim.C. Finally, we denote
by Γ(modC) the Auslander-Reiten quiver of an algebra C, and by
τC = D Tr, τ−1

C = Tr D its Auslander-Reiten translations. For further
definitions and facts needed on modC or Γ(modC), we refer the reader
to (ASS, 2006; ARS, 1995).

1.2. Cluster-tilted algebras

Let A be a finite dimensional hereditary algebra. The cluster cate-
gory CA of A is defined as follows. Let F be the automorphism of
Db(modA) defined as the composition τ−1

Db(mod A)
[1], where τ−1

Db(mod A)

is the Auslander-Reiten translation in Db(modA) and [1] is the shift
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functor. Then CA is the orbit category Db(modA)/F , that is, the ob-
jects of CA are the F -orbits X̃ = (F iX)i∈Z, where X ∈ Db(modA),
and the set of morphisms from X̃ = (F iX)i∈Z to Ỹ = (F iY )i∈Z is

Hom CA
(X̃, Ỹ ) =

⊕

i∈Z

HomDb(mod A)(X,F iY ).

It is shown in (BMRRT, 2006; K, 2005) that CA is a triangulated
category with almost split triangles. Furthermore, the projection π :
Db(modA) → CA is a functor of triangulated categories and commutes
with the Auslander-Reiten translations, see (BMRRT, 2006).

An object T̃ in CA is called a tilting object provided Ext1
CA

(T̃ , T̃ ) = 0
and the number of isomorphism classes of indecomposable summands
of T̃ equals the rank of the Grothendieck group K0(A). The endomor-
phism algebra B = End CA

(T̃ ) is then called a cluster-tilted algebra.

The functor Hom CA
(T̃ ,−) : CA → modB induces an equivalence

CA/iadd (τCA
T̃ ) ∼= modB,

where τCA
is the Auslander-Reiten translation in CA and iadd (τCA

T̃ )
is the ideal of CA consisting of all morphisms which factor through
objects of add (τCA

T̃ ). Also, the above equivalence commutes with the
Auslander-Reiten translations in both categories, see (BMR1, 2007).

Let B = End CA
T̃ be a cluster-tilted algebra. It is shown in (BM-

RRT, 2006) that we may suppose without loss of generality that the
object T̃ = (F iT )i∈Z is such that T ∈ Db(modA) is an A-module.
In this case, the algebra C = EndAT is tilted, the trivial extension
C̃ = C n Ext2C(DC,C) is cluster-tilted and, conversely, any cluster-
tilted algebra is of this form, see (ABS1, preprint). We also need the
following easy lemma.

LEMMA 1.1. Let T be an A-module such that T̃ = (F iT )i∈Z is a tilting
object in CA, then

HomDb(mod A)(T, τF iT ) = 0,

for all i ∈ Z.
Proof. This follows from

⊕i∈ZHomDb(mod A)(T, τF iT ) ∼= Hom CA
(πT, τπT ) = 0,

because T̃ = πT is tilting in CA. 2

abs3.tex; 2/09/2007; 21:55; p.4



On the Galois coverings of a cluster-tilted algebra 5

1.3. The cluster repetitive algebra

Let C be a tilted algebra. We define the cluster repetitive algebra to be
the following locally finite dimensional algebra without identity

Č =















. . . 0
C−1

E0 C0

E1 C1

0
. . .















where matrices have only finitely many non-zero entries, Ci = C and
Ei = Ext2C(DC,C) for all i ∈ Z, all the remaining entries are zero and
the multiplication is induced from that of C, the C-C-bimodule struc-
ture of Ext2C(DC,C) and the zero map Ext2C(DC,C)⊗CExt2C(DC,C) →
0. The identity maps Ci → Ci−1, Ei → Ei−1 induce an automorphism
ϕ of Č. The orbit category Č/ < ϕ > inherits from Č the structure
of a k-algebra and is easily seen to be isomorphic to the cluster-tilted
algebra C̃ = C n Ext2C(DC,C). The projection functor G : Č → C̃ is
thus a Galois covering with infinite cyclic group generated by ϕ, see (G,
1981). We denote be Gλ : mod Č → mod C̃ the associated push-down
functor. We need another description of Č.

LEMMA 1.2. Let T be a tilting A-module, and C = EndAT. Then

Č ∼= EndDb(mod A)(⊕i∈ZF iT ).
Proof. As a k-vector space, we have

EndDb(mod A)(⊕i∈ZF iT ) = ⊕i,j∈ZHomDb(mod A)(F
iT, F jT ).

But HomDb(mod A)(F
iT, F jT ) = 0 unless i = j or i = j − 1 since T ∈

modA. Moreover, Hom Db(mod A)(F
iT, F iT ) = Hom A(T, T ) = C and

HomDb(mod A)(F
iT, F i+1T ) = Hom Db(mod A)(T, FT ) = Ext2C(DC,C),

where the last isomorphism follows from (ABS1, preprint, Theorem
3.4). 2

1.4. The quiver of Č

The quiver QČ of Č is easily deduced from the quiver QC of C. Let
{e1, e2, . . . , en} be a complete set of primitive orthogonal idempotents
of C, then {e`,i | 1 ≤ ` ≤ n, i ∈ Z} is a complete set of primitive
orthogonal idempotents of Č. We have moreover

e`,i Č eh,j
∼=







e` C eh if i = j
e` Ext2C(DC,C) eh if i = j + 1

0 otherwise.
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We now recall that a system of relations R for C = kQC/I is a subset
R of ∪n

`,h=1e`Ieh, such that R, but no proper subset of R, generates I
as an ideal of kQC .

LEMMA 1.3. Let C be a tilted algebra and R be a system of relations
for C = kQC/I. The quiver QČ of the cluster repetitive algebra Č is
constructed as follows:

(a) (QČ)0 = {(`, i) | 1 ≤ ` ≤ n, i ∈ Z}.

(b) For (`, i), (h, j) ∈ (QC̃)0, the set of arrows from (`, i) to (h, j)
equals

(i) The set of arrows from ` to h in QC if i = j,

(ii) Card (R ∩ ehIe`) arrows if i = j + 1,

and there are no other arrows.
Proof. This follows at once from the above comments and (ABS1,

preprint, Theorem 2.6). 2

Thus the quiver of Č can be thought of as consisting of infinitely
many copies (QCi

)i∈Z of the quiver of C, joined together by additional
arrows from QCi+1 to QCi

, corresponding to Ext2C(DC,C). In partic-
ular, the quiver QČ is connected if and only if the tilted algebra C is
not hereditary.

EXAMPLE 1.4. Let C be given by the quiver

1
α // 2

β // 3
γ // 4 // 5
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bound by the relation αβγ = 0. Then Č is given by the infinite quiver

· · ·

(1, 0)
(α,0)

// (2, 0)
(β,0)

// (3, 0)
(γ,0)

// (4, 0)
(ε,0)

//

(δ,0)

iiTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
(5, 0)

(1, 1)
(α,1)

// (2, 1)
(β,1)

// (3, 1)
(γ,1)

// (4, 1)
(ε,1)

//

(δ,1)

iiSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
(5, 1)

· · ·

iiTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

bound by the relations

(α, i)(β, i)(γ, i) = 0, (δ, i + 1)(α, i)(β, i) = 0,
(γ, i + 1)(δ, i + 1)(α, i) = 0, (β, i)(γ, i)(δ, i) = 0,

for all i ∈ Z.

2. The relation with the derived category

2.1.

Throughout this paper, we let A be a finite dimensional hereditary
algebra, T be a tilting A-module and C = EndAT be the corresponding
tilted algebra. By Lemma 1.2, the natural functor

HomDb(mod A)(⊕i∈ZF iT,−)

carries Db(modA) into the category Mod Č of (not necessarily finitely
generated) Č-modules. Since, for every indecomposable object X in
Db(modA), we have dimk HomDb(mod A)(⊕i∈ZF iT,X) < ∞, then its

image lies in mod Č.

PROPOSITION 2.1. The functor

HomDb(mod A)(⊕i∈ZF iT,−) : Db(modA) → mod Č
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is full and dense and it induces an equivalence of categories

Db(modA)/iadd {τF iT}i∈Z

∼=
−→ mod Č,

where iadd {τF iT}i∈Z denotes the ideal of Db(modA) consisting of all
morphisms which factor through add {τF iT}i∈Z.

Proof. We first claim that

KerHom Db(mod A)(⊕i∈ZF iT,−) = iadd {τF iT}i∈Z.

Indeed, let f : X → Y be a morphism in Db(modA) such that

HomDb(mod A)(⊕i∈ZF iT, f) = 0.

By definition of the cluster category, this means that the induced
morphism

Hom CA
(πT, πf) : Hom CA

(πT, πX) → Hom CA
(πT, πY )

is zero. Therefore πf lies in the kernel of Hom CA
(πT,−), that is, πf

factors through an object of addπ(τT ). But this implies that f factors
through add {τF iT}i∈Z.

Conversely, we prove that any morphism which factors through
add {τF iT}i∈Z has a zero image. For this, it suffices to show that the
image of any object of the form τF jT (with j ∈ Z) is zero. But now

HomDb(mod A)(⊕i∈ZF iT, τF jT ) = ⊕i∈ZHomDb(mod A)(T, F j−iτT ) = 0

because of Lemma 1.1.
We now claim that the functor Hom Db(mod A)(⊕i∈ZF iT,−) induces

an equivalence between add {F iT}i∈Z and the subcategory proj Č of
mod Č consisting of the projective Č-modules. Indeed, by Lemma 1.2,
the restriction of Hom Db(mod A)(⊕i∈ZF iT,−) to add {F iT}i∈Z maps

into proj Č. Since, conversely, an indecomposable projective Č-module
P̌0 is an indecomposable summand of ČČ = End (⊕i∈ZF iT ), then
there exists an indecomposable object T0 ∈ add {F iT}i∈Z such that
P̌0

∼= HomDb(mod A)(⊕i∈ZF iT, T0), that is, the functor is dense. By
Yoneda’s lemma, it is full. Let thus f : T1 → T0 be a morphism in
add {F iT}i∈Z such that HomDb(mod A)(⊕i∈ZF iT, f) = 0. Then f factors

through an object of add {τF iT}i∈Z. Therefore, by Lemma 1.1, f = 0.
Thus the functor is faithful and our claim is established.

It remains to show that the functor Hom Db(mod A)(⊕i∈ZF iT,−) :

Db(modA) → mod Č is full and dense. Let L ∈ mod Č and consider
the minimal projective presentation

P̌1
u // P̌0

// L // 0
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On the Galois coverings of a cluster-tilted algebra 9

in mod Č. By our claim above, there exist T0, T1 ∈ add {F iT}i∈Z and
a morphism v : T1 → T0 such that HomDb(mod A)(⊕i∈ZF iT, v) = u.

Applying the functor Hom Db(mod A)(⊕i∈ZF iT,−) to the triangle

T1
v // T0

// L // T1[1]

and using that T1[1] ∈ add {τF iT}i∈Z (because T1 ∈ add {F iT}i∈Z and
F = τ−1[1]) yields an exact sequence

P̌1
u // P̌0

// HomDb(mod A)(⊕i∈ZF iT, L) // 0

in mod C̃. Therefore, L ∼= HomDb(mod A)(⊕i∈ZF iT,L) and the functor
is dense.

Finally, we show that it is full. Let f : L → M be a morphism
in mod C̃. Taking minimal projective presentations of L and M , we
deduce a commutative diagram with exact rows

P̌1

f1

��

u // P̌0

f0

��

// L

f

��

// 0

P̌ ′
1

u′ // P̌ ′
0

// M // 0

in mod Č. Considering the morphisms v : T1 → T0 and v′ : T ′
1 → T ′

0 in
add {F iT}i∈Z corresponding to u, u′, respectively, we find a diagram in
Db(modA) where the rows are triangles

T1

g1

��

v // T0

g0

��

// L

g

��

// T1[1]

g1[1]

��
T ′

1
v′ // T ′

0
// M // T ′

1[1],

that is, there exists g : L → M such that the above diagram com-
mutes. Consequently, Hom Db(mod A)(⊕i∈ZF iT, g) = f and the proof is
complete. 2

2.2.

It is well-known (see (KR, preprint)) that the cluster-tilted algebra C̃
is 1-Gorenstein, that is, such that for every injective C̃-module I, we
have pd I ≤ 1 and, for every projective C̃-module P , we have idP ≤ 1.
This property clearly lifts to its Galois covering Č. This also follows
from Proposition 2.1.
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COROLLARY 2.2. The cluster repetitive algebra Č is 1-Gorenstein.
In particular, gl.dim.C̃ ∈ {1,∞}.

Proof. By (ASS, 2006, (IV.2.7) p.115), we need to prove that

Hom Č(DČ, τČI) = 0,

for every injective Č-module I. Now under the equivalence of Proposi-
tion 2.1, every injective Č-module is the image of an object of the form
τ2T0 ∈ Db(modA), where T0 ∈ add {F iT}i∈Z. It thus suffices to show
that

HomDb(mod A)(⊕i∈Z τ2F iT, τ3T0) = 0.

But this follows from the fact that τ is an equivalence in Db(modA)
and from Lemma 1.1. Thus, Č is 1-Gorenstein. The proof of the second
statement is standard (see, for instance, (KR, preprint)). 2

2.3.

The following Lemma is a “derived” version of the projectivisation
procedure of (ARS, 1995, II.2.1).

LEMMA 2.3. Let T0 ∈ add {F iT}i∈Z and X ∈ Db(modA), then the
map f 7→ Hom Db(mod A)(⊕i∈ZF iT, f) induces an isomorphism

HomDb(mod A)(T0, X) ∼= Hom Č(Hom (⊕F iT, T0),Hom (⊕F iT,X)).

Proof. Since the surjectivity follows from the fact that the func-
tor HomDb(mod A)(⊕i∈ZF iT,−) is full (see Proposition 2.1), we prove

the injectivity. Assume Hom Db(mod A)(⊕i∈ZF iT, f) = 0, then f factors

through an object of add {τF iT}i∈Z. We then infer from Lemma 1.1
that f = 0. 2

2.4.

We now prove the main result of this section.

THEOREM 2.4. There exists a commutative diagram of dense func-
tors
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Db(modA)
Hom

Db(mod A)
(⊕i∈ZF iT,−)

//

π

��

mod Č

Gλ

��
CA

Hom (πT,−) // mod C̃

where Gλ is the push-down functor associated to the Galois covering
G : Č → Č.

Proof. Since π(τF iT ) = τCA
(πT ) for each i, we have

π(iadd {τF iT}i∈Z) = iadd τCA
(πT ).

Therefore, using Proposition 2.1, the functor π induces a functor H :
mod Č → mod C̃ such that the following diagram commutes:

Db(modA)
Hom

Db(mod A)
(⊕i∈ZF iT,−)

//

π

��

mod Č

H

��
CA

Hom (πT,−)
// mod C̃

We must show that H = Gλ. Let M be a Č-module and set M̃ = H(M).
We must prove that, for every a ∈ C̃0, we have

M̃(a) = ⊕x/aM(x),

where the sum is taken over all x ∈ Č0 in the fibre G−1(a) of a.
We use the following notation: for x ∈ Č0, we denote by P̃x (or P̌x)
the corresponding indecomposable projective C̃-module (or Č-module,
respectively) and by T̃x the corresponding summand of πT .

By Proposition 2.1, there exists an object M ∈ Db(modA) such that
HomDb(mod A)(⊕i∈ZF iT,M) = M , thus we have

M̃(a) ∼= Hom C̃(P̃a, M̃)

∼= Hom CA
(T̃a, πM ),

because no morphism from T̃a to πM factors through add (τπT ). Let
thus Tx ∈ Db(modA) be such that πTx = T̃x. Using Lemma 1.2, we
have

M̃(a) ∼= ⊕i∈Z HomDb(mod A)(F
iTa,M)

∼= ⊕x/a HomDb(mod A)(Tx,M),
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and by Lemma 2.3, this is isomorphic to

⊕x/a Hom Č(HomDb(mod A)(⊕i∈ZF iT, Tx),HomDb(mod A)(⊕i∈ZF iT,M)).

We obtain

M̃ (a) ∼= ⊕x/a Hom Č(P̌x,M)
∼= ⊕x/a M(x).

This completes the proof that H = Gλ. Finally, Gλ is dense because so
is the composition Hom (πT,−) ◦ π.

2

2.5.

We deduce the relations between the Auslander-Reiten quivers of Č
and C̃.

COROLLARY 2.5.

(a) The push-down of an almost split sequence of mod Č is an
almost split sequence of mod C̃.

(b) The push-down functor induces an isomorphism of the quo-
tient Γ(mod Č)/Z of the Auslander-Reiten quiver of Č onto the
Auslander-Reiten quiver of C̃.

Proof. This follows from (G, 1981, 3.6) using the density of the
push-down functor. 2

2.6.

Finally, the following proposition is an analog of (BMR1, 2007, 3.2),
and the proof can be easily adapted from there. We include it here for
convenience.

PROPOSITION 2.6. The almost split sequences in mod Č are induced
by the almost split triangles in Db(modA).

Proof. By (AR, 1977), the image under Hom Db(mod A)(⊕i∈ZF iT,−)
of a left (or right) minimal almost split morphism is left (or right,
respectively) minimal almost split. Let u : E → M be a right min-
imal almost split epimorphism in mod Č. Then there exists a right
minimal almost split morphism g : Y → Z in Db(modA) such that
HomDb(mod A)(⊕i∈ZF iT, g) = u. We have an almost split triangle

τZ = X
f // Y

g // Z // X[1].
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Applying HomDb(mod A)(⊕i∈ZF iT,−), we get an exact sequence

HomDb(mod A)(⊕i∈ZF iT,X)
f∗ // E

u // M // 0.

Since f is minimal left almost split, then so is f ∗. In particular, f ∗

is irreducible. Since u 6= 0, f ∗ is not an epimorphism, thus it is a
monomorphism. Therefore f ∗ factors through τM . That is τM ∼=
HomDb(mod A)(⊕i∈ZF iT,X), because f ∗ is irreducible. 2

3. The relation with the repetitive algebra

3.1.

We recall from (HW, 1983) that the repetitive algebra Ĉ of a finite
dimensional algebra C is the self-injective locally finite dimensional
algebra without identity

Ĉ =















. . . 0
Ci−1

Qi Ci

Qi+1 Ci+1

0
. . .















where matrices have only finitely many non-zero entries, Ci = C and
Qi = DC for all i ∈ Z, all the remaining entries are zero, addition is the
usual addition of matrices and the multiplication is induced from that of
C, the C-C-bimodule structure of DC and the zero maps DC⊗CDC →
0. The identity maps Ci → Ci−1, Qi → Qi−1 induce the so-called
Nakayama automorphism ν of Ĉ. The orbit category Ĉ/ < ν > is then
isomorphic to the trivial extension T (C) = C nDC of C by its minimal
injective cogenerator DC.

The repetitive algebra is closely related to the derived category:
if gl.dim.C < ∞, then Db(modC) is equivalent, as a triangulated

category, to the stable module category mod Ĉ, see (H, 1988, II.4.9).
Let now, as in section 2, A be a finite dimensional hereditary algebra,

T be a tilting A-module and C = EndAT . We denote by Ωi the i-th
syzygy of a module. Also, we identify the Ĉ-modules C0 and C.

LEMMA 3.1. The functor Hom Ĉ(⊕i∈Z τ−iΩ−iC,−) maps mod Ĉ into

mod Č and induces an equivalence

mod Ĉ/iadd {τ 1−iΩ−iC}i∈Z
∼= mod Č
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where iadd {τ 1−iΩ−iC}i∈Z denotes the ideal of mod Ĉ consisting of all
morphisms which factor through an object of add {τ 1−iΩ−iC}i∈Z.

Proof. By Proposition 2.1, the functor Hom Db(mod A)(⊕i∈ZF iT,−)

induces an equivalence between Db(modA)/iadd {τF iT}i∈Z and mod Č.
By (H, 1988, III.2.10 and II.4.9), we have

Db(modA) ∼= Db(modC) ∼= mod Ĉ.

Also, under these equivalences, we have

Č = EndDb(mod A)(⊕i∈ZF iT ) ∼= End Ĉ(⊕i∈Z τ−iΩ−iC),

the image of τF iT is τ1−iΩ−iC (for any i ∈ Z) and also the functor
HomDb(mod A)(⊕i∈ZF iT,−) becomes Hom Ĉ(⊕i∈Zτ−iΩ−iC,−). This im-
plies the statement. 2

3.2.

We now wish to introduce a different realisation of the cluster category.
Let C be a tilted algebra, then there exists an automorphism FC :
mod Ĉ → mod Ĉ defined by FC = τ−1Ω−1. We define CC to be the
orbit category of mod Ĉ under the action of FC , that is, the objects
of CC are the orbits (F i

CX)i∈Z of the objects X of mod Ĉ, and the
morphism set from (F i

CX)i∈Z to (F i
CY )i∈Z is ⊕i∈Z Hom Ĉ(X,F i

CY ).

We denote by π̂ : mod Ĉ → CC the projection functor.

LEMMA 3.2. Let A be a finite dimensional hereditary algebra, T be
a tilting A-module and C = EndAT . Then there exists an equivalence
η : CA → CC such that the following diagram commutes.

CA
Hom CA

(πT,−)

++WWWWWWWWWWWWWWWWWWWWW

∼=η

��

mod C̃

CC

Hom CC
(π̂C,−)

33ggggggggggggggggggggg

Furthermore, Hom CC
(π̂C,−) is full and dense and induces an equiva-

lence of categories CC/add (τ π̂C) ∼= mod C̃.
Proof. By (H, 1988, III.2.10 and II.4.9), we have an equivalence of

triangulated categories

Db(modA) ∼= Db(modC) ∼= mod Ĉ.

abs3.tex; 2/09/2007; 21:55; p.14



On the Galois coverings of a cluster-tilted algebra 15

Under these equivalences, the automorphism F goes to FC , and the
object T onto the Ĉ-module C. Therefore there is an equivalence η :
CA → CC making the shown diagram commute. The last statement
follows from (BMR1, 2007). 2

3.3.

Let p : mod Ĉ → mod Ĉ denote the canonical projection. We define the
functor φ : mod Ĉ → mod Č to be the composition

mod Ĉ
p // mod Ĉ

Hom
Ĉ

(⊕τ−iΩ−iC,−)
// mod Č.

Also, we denote by P̂x the indecomposable projective Ĉ-module corre-
sponding to an object x ∈ Ĉ0.

LEMMA 3.3. The kernel J of φ consists of all morphisms factoring
through an object of add {P̂x ⊕ τ1−iΩ−iC}x∈Ĉ0,i∈Z

.
Proof. Clearly, all such morphisms lie in the kernel of φ. Conversely,

let f : X → Y be a morphism in mod Ĉ such that φ(f) = 0. Then p(f)
factors through an object of add {τ 1−iΩ−iC}i∈Z, that is, there exist
Z ∈ add {τ 1−iΩ−iC}i∈Z and morphisms f2 : X → Z, f1 : Z → Y
such that p(f) = p(f1)p(f2). Thus f − f1f2 ∈ ker p, that is, f − f1f2

factors through a projective-injective Ĉ-module P̂ . Thus there exist
morphisms g2 : X → P̂ , g1 : P̂ → Y such that f − f1f2 = g1g2.

Therefore f = [f1g1]

[

f2

g2

]

factors through Z ⊕ P̂ . 2

3.4.

Let now π̂ denote the composition

mod Ĉ
p // mod Ĉ

π̂ // CC .

We prove finally our main theorem.

THEOREM 3.4. There is a commutative diagram of dense functors

mod Ĉ
φ //

π̂

��

mod Č

Gλ

��
CC

Hom (π̂C,−) // mod C̃

abs3.tex; 2/09/2007; 21:55; p.15



16

Moreover, φ is full and induces an equivalence of categories mod Ĉ/J ∼=
mod Č.

Proof. The commutativity of the diagram follows from Theorem 2.4
and Lemma 3.2, where we use the fact that π̂C = π̂C. The functor π̂ is
dense, since it is the composition of two dense functors and, similarly,
φ is full and dense, since it is the composition of two full and dense
functors. Finally, the stated equivalence follows from Lemma 3.3 2

3.5.

The relation between the Auslander-Reiten quivers of Ĉ and Č follows
from the next statement.

PROPOSITION 3.5. The almost split sequences in mod Č are induced
from the almost split triangles in mod Ĉ.

Proof. Similar to the proof of Proposition 2.6. 2

EXAMPLE 3.6. Let C be the tilted algebra of example 1.4. We il-
lustrate the Auslander-Reiten quivers of Ĉ and Č in Figure 1. In the
Auslander-Reiten quiver of Ĉ, the positions of the projective-injective
modules are marked by diamonds and the positions of the indecompos-
able summands of ⊕i∈Z τ1−iΩ−iC are marked by circles. As we see,
removing the points corresponding to those modules in the Auslander-
Reiten quiver of Ĉ yields exactly the Auslander-Reiten quiver of Č.

4. Fundamental domains

4.1.

Let C be a tilted algebra. We define the cluster duplicated algebra C of
C to be the (finite dimensional) matrix algebra

C =

[

C0 0
E C1

]

,

where C0 = C1 = C and E = Ext2C(DC,C), endowed with the ordinary
matrix addition, and the multiplication induced from that of C and
from the C-C-bimodule structure of Ext2

C(DC,C).
Clearly, C is identified to the quotient algebra of Č defined by the

surjection

Č −→

[

C0 0
E1 C1

]

,
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Figure 1. Auslander-Reiten quivers of Ĉ and Č

in the notation of section 1.3. In particular, the quiver QC of C is
identified to the full subquiver of QČ defined by the points

{(h, 0) | h ∈ (QC)0}
⋃

{(h, 1) | h ∈ (QC)0}.

Thus, QC is connected if and only if C is not hereditary.

Since the trivial extension C̃ = C n Ext2C(DC,C) is a subalgebra of
C, the inclusion map C̃ → C defines a functor ζ : modC → mod C̃ (by
restriction of scalars).

First, we recall that, denoting be e0 and e1 the matrices

e0 =

[

1 0
0 0

]

and e1 =

[

0 0
0 1

]

then any C-module can be written in the form M = (U, V, µ) where
U = Me0, V = Me1 are C-modules, and µ : U ⊗C E → V is the
multiplication map u⊗ x 7→ ux (u ∈ U, x ∈ E).

We then define ξ : modC → mod C̃ as follows. For a C-module
(U, V, µ), the C̃-module ξ(U, V, µ) has the C-module structure of U⊕V
and the multiplication of (u, v) ∈ U ⊕ V by x ∈ E is given by

(u, v)x = (0 , µ(u⊗ x)).
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Thus, for (u, v) ∈ M and

[

c 0
x c

]

∈ C̃ = C n E,

(u, v)

[

c 0
x c

]

= (uc, vc + µ(u⊗ x)).

We define in the same way the action of ξ on the morphisms: if (g, h) :
(U, v, µ) → (U ′, V ′, µ′) is a C-linear map, we put ξ(g, h) = g ⊕ h :
U⊕V → U ′⊕V ′ as a C-linear map, the compatibility of this definition
with the multiplication by elements of E follows from the fact that
hµ = µ′(g ⊗ 1).

We now give another description of the functor ξ. Let ξ be the
canonical embedding functor of modC into mod Č (which is obtained
by “extending by zeros”): it is full, exact, preserves indecomposable
modules and their composition lengths. We have the following easy
lemma.

LEMMA 4.1. ξ = Gλ ◦ ζ.
Proof. This is a straightforward calculation. 2

4.2.

We have the following remark about the global dimension of C.

LEMMA 4.2. gl.dim. C ≤ 5.
Proof. This follows from (PR, 1973, Corollary 4’). 2

Easy examples show that this is a strict bound (take for instance C

given by the quiver • •
βoo •αoo bound by αβ = 0).

4.3.

Before stating the main result of this section, we need the following
notation. Let Λ be any finite dimensional k-algebra and M,N be two
indecomposable Λ-modules. A path from M to N in indΛ is a sequence
of non-zero morphisms

M = M0
f1
−→ M1

f2
−→ · · ·

ft

−→ Mt = N

with all Mi in indΛ. In this situation we say that M is a predecessor
of N and write M ≤ N and that N is a successor of M .

If S1 and S2 are two sets of modules, we write S1 ≤ S2 if every
module in S2 has a predecessor in S1, every module in S1 has a successor
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in S2, no module in S2 has a successor in S1 and no module in S1 has
a predecessor in S2. The notation S1 < S2 stands for S1 ≤ S2 and
S1 ∩ S2 = ∅.

We define a fundamental domain for the functor Gλ to be a full
convex subcategory Ω of mod Č such that the restriction

Gλ : Ω −→ ind C̃

is bijective on objects, faithful, preserves irreducible morphisms and
almost split sequences.

Let now Σ be a complete slice in modC. We denote by Σi the images
of Σ in modCi under the isomorphisms Ci

∼= C, i ∈ Z.

THEOREM 4.3. Let Σ be a complete slice in mod C. Then

Ω = {M ∈ indC | Σ0 ≤ M < Σ1}

is a fundamental domain for the functor Gλ.
Proof. Without loss of generality, we may assume that T is an A-

module and that Σ = Hom A(T,DA). Let

ΩD = {X ∈ indDb(modA) | DA ≤ X < F DA}.

By (BMRRT, 2006), ΩD is a fundamental domain for the functor π :
Db(modA) → CA.

We first claim that the image Ω̌ of Ω under the functor

HomDb(mod A)(⊕i∈ZF iT,−)

is equal to the full subcategory of ind Č defined by

Ω̌ = {M̌ ∈ ind Č | Σ0 ≤ M̌ < Σ1}.

We have HomDb(mod A)(F
iT,DA) = 0 unless i = 0, since T is an A-

module. Hence

HomDb(mod A)(⊕i∈ZF iT,DA) = Hom Db(mod A)(T,DA)

= Hom A(T,DA)

= Σ0

Similarly,
HomDb(mod A)(⊕i∈ZF iT, FDA) = Σ1.

By Proposition 2.1, this shows our claim.
Now, note that Ω̌ is a fundamental domain for the functor Gλ. This

indeed follows from Theorem 2.4, because ΩD is a fundamental domain
for π and from Corollary 2.5.
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Finally, we prove that Ω̌ = Ω. For this it suffices to prove that Ω̌ ⊂
modC. Slices are sincere, thus every simple C0 (or C1)-module occurs
as a simple composition factor in addΣ0 (or addΣ1, respectively). Let
e be the sum of all primitive idempotents of Č corresponding to the
simple modules in C0 and C1. We have just shown that eČe = C
and C ⊂ Supp Ω̌, where Supp Ω̌ is the support of Ω̌, that is, the full
subcategory of Č generated by all the points x ∈ Č0 such that Mex 6= 0
for some M ∈ Ω̌.

Now we show that C = Supp Ω̌. Suppose there is some M ∈ Ω̌ having
a composition factor Sx with x not in C1 or C2. Assume first that x
lies in Ci, where i ≥ 2. Then there is a nonzero morphism f : M → Ix,
where Ix is the indecomposable injective Č-module corresponding to
x. Since Ix is a successor of Σ2 and M is a predecessor of Σ1, lifting
this map to the derived category yields a nonzero morphism from a
predecessor of F DA to a successor of F 2DA, which is impossible (we
have used the fact that the functor Hom Db(mod A)(⊕i∈ZF iT,−)is full,
by Proposition 2.1). The proof is entirely similar in case i ≤ −1.

We have shown that the indecomposable objects in Ω and Ω̌ coincide.
Let now X → Y be an indecomposable morphism in Ω̌. Since X,Y are
both C-modules, then this is an irreducible morphism in modC, hence
in Ω. This shows that C = Supp Ω̌, and the theorem follows. 2
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I. Assem, T. Brüstle, R. Schiffler and G. Todorov, Cluster categories and duplicated
algebras, J. Algebra 305 (2006), no. 1, 548–561.
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