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On the first Hochschild cohomology group of a

cluster-tilted algebra

Ibrahim Assem, Maŕıa Julia Redondo and Ralf Schiffler ∗

To the memory of Dieter Happel

Abstract

Given a cluster-tilted algebra B, we study its first Hochschild cohomol-
ogy group HH1(B) with coefficients in the B-B-bimodule B. If C is a tilted
algebra such that B is the relation-extension of C, then we show that if
B is tame, then HH1(B) is isomorphic, as a k-vector space, to the direct
sum of HH1(C) with knB,C , where nB,C is an invariant linking the bound
quivers of B and C. In the representation-finite case, HH1(B) can be read
off simply by looking at the quiver of B.

2010 Mathematics Subject Classification : 13F60, 16E40, 16G20

1 Introduction

This paper is devoted to the study of the first Hochschild cohomology group HH1(B)
with coefficients in the B-B-bimodule B, see [CE].

Cluster-tilted algebras were defined in [BMR] and in [CCS] for the type A, as a
by-product of the extensive theory of cluster algebras of Fomin and Zelevinsky [FZ].
Now, it has been shown in [ABS1] that every cluster-tilted algebra B is the relation-
extension of a tilted algebra C. Our goal is to relate the Hochschild cohomologies of
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FRQNT of Québec and the Université de Sherbrooke, the second author has been supported
by the project PICT-2011-1510 and is a research member of CONICET (Argentina), and the
third author gratefully acknowledges partial support from the NSF Grant DMS-1001637 and
the University of Connecticut. The authors wish to thank the referees of this paper whose
useful comments allowed to discover gaps in the proof.
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the two algebras B and C. The main step in our argument consists in defining an
equivalence relation between the arrows in the quiver of B which are not in the quiver
of C. The number of equivalence classes is then denoted by nB,C . The first two authors
have shown in [AR] that, if the cluster-tilted algebra B is schurian, then there is a short
exact sequence of vector spaces

0 // knB,C // HH1(B)
ϕ // HH1(C) // 0.

This holds true, for instance, when B is representation-finite. In a further paper,
[ABIS], it is actually proven that if B is a cluster-tilted algebra (but generally not
schurian) then ϕ is still surjective and the kernel of the morphism ϕ is equal to the first
cohomology group HH1(B,E) of B with coefficients in the bimodule E.

Our objective in the present paper is to show that the result of [AR] also holds true
in case the cluster-tilted algebra B is tame (that is, is of Dynkin or euclidean type).

THEOREM 1.1 Let k be an algebraically closed field and let B be a tame cluster-
tilted algebra which is the relation-extension of the tilted algebra C. Then there is a
short exact sequence of vector spaces

0 → knB,C → HH1(B) → HH1(C) → 0.

We next show that, for any cluster-tilted algebra B, we have HH1(B) = 0 if and
only if B is hereditary and its quiver is a tree, that is, B is simply connected. This
answers positively for all cluster-tilted algebras Skowroński’s question in [S, Problem
1]: For which algebras is simple connectedness equivalent to the vanishing of the first
Hochschild cohomology group?

Finally, we consider the case where the cluster-tilted algebra B is representation-
finite and show that the k-dimension of HH1(B) can be computed simply by looking
at the quiver of B: indeed, in this case, for any tilted algebra C such that B is the
relation-extension of C, we have HH1(C) = 0 and moreover the invariant nB,C does not
depend on the particular choice of C (and thus is denoted simply by nB). Recalling
that an arrow in the quiver of B is called inner if it belongs to two chordless cycles,
our theorem may be stated as follows.

THEOREM 1.2 Let B be a representation-finite cluster-tilted algebra. Then the di-
mension nB of HH1(B) equals the number of chordless cycles minus the number of
inner arrows in the quiver of B.

The paper is organized as follows. In section 2, after briefly setting the notation and
recalling the necessary notions, we present results on systems of relations in cluster-
tilted algebras. We then introduce the arrow equivalence relation in section 3. In
section 4 we describe the tilted algebras C that are associated to the cluster-tilted
algebra B and section 5 is devoted to the proof of Theorem 1.1. Section 6 contains the
proof of Theorem 1.2.
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2 Systems of relations.

Let k be an algebraically closed field, then it is well-known that any basic and connected
finite dimensional k-algebra C can be written in the form C = kQ/I, where Q is a
connected quiver, kQ its path algebra and I an admissible ideal of kQ. The pair (Q, I)
is then called a bound quiver. We recall that finitely generated C-modules can be
identified with representations of the bound quiver (Q, I) , thus any such module M
can be written as M = (M(x),M(α))x∈Q0,α∈Q1

(see, for instance, [ASS]).
A relation from x ∈ Q0 to y ∈ Q0 is a linear combination ρ =

∑m
i=1 aiwi where

each wi is a path of length at least two from x to y and ai ∈ k for each i. If m = 1 then
ρ is monomial. The relation ρ is minimal if each scalar ai is non-zero and

∑
J aiwi 6∈ I

for any non-empty proper subset J of the set {1, . . . ,m}, and it is strongly minimal if
each scalar ai is non-zero and

∑
J biwi 6∈ I for any non-empty proper subset J of the

set {1, . . . ,m}, where each bi is a non-zero scalar. Two paths u, v will be called parallel
if they have the same source and target. They are called antiparallel if the source (or
the target) of u equals the target (or the source, respectively) of v.

We sometimes consider an algebra C as a category, in which the object class C0 is a
complete set {e1, . . . , en} of primitive orthogonal idempotents of C and C(x, y) = exCey
is the set of morphisms from ex to ey. An algebra C is constricted if, for any arrow
from x to y in Q1, we have dimk exCey = 1, see [BM].

For a general background on the cluster category and cluster-tilting, we refer the
reader to [BMRRT]. It is shown in [ABS1] that, if T is a tilting module over a hereditary
algebra A, so that C = EndA(T ) is a tilted algebra, then the trivial extension C̃ =
C ⋉ Ext2C(DC,C) (the relation-extension of C) is cluster-tilted and, conversely, any
cluster-tilted algebra is of this form (but in general, not uniquely: see [ABS2]). As a
consequence, we have a description of the quiver of C̃. Let R be a system of relations
for the tilted algebra C = kQ/I, that is, R is a subset of ∪x,y∈Q0

exIey such that R,
but no proper subset of R, generates I as an ideal of kQ. It is shown in [ABS1] that
the quiver Q̃ of C̃ is as follows:

(a) Q̃0 = Q0;

(b) For x, y ∈ Q0, the set of arrows in Q̃ from x to y equals the set of arrows in Q
from x to y (which we call old arrows) plus |R∩ I(y, x)| additional arrows (which
we call new arrows).

The relations in Ĩ are given by the partial derivatives of the potentialW =
∑

ρ∈R αρρ,
with αρ the new arrow associated to the relation ρ, see [Ke].

Now we show that R can be chosen as a set of strongly minimal relations.

LEMMA 2.1 If ρ =
∑m

i=1 λiwi ∈ R, with λi 6= 0, is not strongly minimal, there exists
ρ′ =

∑m
i=1 µiwi ∈ I with µ1 = λ1 which is strongly minimal.

3



Proof. We proceed by induction on m. If m = 2 and ρ = λ1w1 + λ2w2 is not
strongly minimal, then it is clear that w1, w2 are relations in I and hence we may take
ρ′ = λ1w1.
Assume now m > 2 and ρ is not strongly minimal. Then there is a relation ρ1 =∑

J βjwj ∈ I, with J a proper non-empty subset of {1, . . . ,m}, βj 6= 0. By induction
on m we may assume that ρ1 is strongly minimal. If 1 ∈ J , we take ρ′ = λ1

β1
ρ1 and we

are done. If 1 6∈ J , let s be the first element in J . We apply the inductive hypothesis
to the relation ρ− λs

βs
ρ1. �

A relation ρ is called triangular if it is a linear combination of paths that do not
contain oriented cycles.

LEMMA 2.2 Any system of triangular relations R = {ρ1, · · · , ρt} can be replaced by
a system of strongly minimal relations R′ = {ρ′1, · · · , ρ

′
t}. Morevoer, each ρ′i is a linear

combination of the paths which occur in the relation ρi.

Proof. We proceed by induction on t. If t = 1, then ρ =
∑m

i=1 λiwi is already
strongly minimal, since if it is not, then, by the previous lemma we get a relation
ρ′ =

∑m
i=1 µiwi ∈ I with µ1 = λ1. Without loss of generality we may assume that w1

has maximal length, and hence the relation ρ− ρ′ =
∑m

i=2(λi − µi)wi belonging to the
ideal generated by ρ yields a contradiction: in its triangular expression as an element
in < ρ >, there should be a summand of the form µu1w1u2, with µ a non-zero scalar,
u1, u2 paths in Q, and then u1w1u2 is w1 or a path of greater length, so this term
cannot appear in ρ− ρ′.
Let t > 1, let {w1, . . . , ws} be a complete set of paths appearing in the relations ρi,
that is,

ρi = λ1iw1 + · · ·+ λsiws.

Without loss of generality, we may assume that w1 has maximal length and that λ11 6= 0.
Now, the ideal generated by the set {ρ1, · · · , ρt} is equal to the ideal generated by the
set

{ρ1, ρ̃2, · · · , ρ̃t}

with

ρ̃j = ρj −
λ1j

λ11
ρ1.

If we apply the previous lemma to ρ1 we get a strongly minimal relation ρ′1 with λ11

as the first coefficient. Following an argument similar to what we did in the case
t = 1, using the maximality of w1 we get that the relation ρ1 − ρ′1 belongs to the
ideal < ρ̃2, · · · , ρ̃t >, and so we get a system of relations {ρ′1, ρ̃2, · · · , ρ̃t}, with ρ′1
strongly minimal. Now we proceed by induction on the set {ρ̃2, · · · , ρ̃t}, and we get a
system of relations {ρ′2, · · · , ρ

′
t} which are strongly minimal with respect to the ideal

4



I ′ =< ρ′2, · · · , ρ
′
t >. Assume that one of these relations is not strongly minimal with

respect to I, say ρ′i =
∑s

i=2 βiwi and ρ′′ =
∑

J µiwi ∈ I, where J is a proper subset of
{2, · · · , s}. So ρ′′ 6∈ I ′ says that if we write it as an element in I, the relation ρ′1 should
appear. Again we get a contradiction when considering the summands that contain w1

as a subpath. �

Let w be a nontrivial walk in a bound quiver (Q, I). Assume that one writes
w = uw′v where each of u,w′, v is a subwalk of w. We say that u, v point to the same
direction in w if u and v, or u−1 and v−1, are paths in Q.

A reduced walk w = uw′v having u and v pointing to the same direction is called
a sequential walk if there is a relation ρ =

∑
i λiui such that u = u1 or u = u−1

1 , there
is a relation σ =

∑
j µjvj such that v = v1 or v = v−1

1 and no subpath w1 of w′, or of

(w′)−1, is involved in a relation of the form
∑

λiwi.

EXAMPLE 2.3 The quiver

·
β // ·

γ

��
·

α

OO

δ
// ·

bound by the relation αβ = 0 contains a sequential walk w = αβγδ−1αβ.

The following lemma generalises [A, HL, AR].

LEMMA 2.4 Let C = kQ/I be a tilted algebra. Then the bound quiver (Q, I) contains
no sequential walk.

Proof. Suppose that w = uw′v is a sequential walk, with u, v the (only) two subwalks
of w which are involved in relations pointing to the same direction. Clearly, w′ may
have self-intersections and may also intersect the paths u and v. Then (Q, I) contains
a bound subquiver (Q′, I ′), maybe not full, consisting of the points and arrows on w as
well as all the points and arrows which lie on a path parallel to u or to v and bound
to it by a relation. This may be visualised as in the following pictures (drawn under
the assumption that w′, the walk from b1 to bs, has no self-intersections and intersects
neither u nor v):

(a)

a1
//❧ ❤ ❝ ❴ ❬ ❱
· · · // ar = b1 · · · bs = c1 //

❤ ❞ ❴ ❩ ❱ ◗
· · · // ct

5



(b)

• . . . •

  ❅
❅❅

❅❅
❅❅

❅

a1
//❧ ❤ ❝ ❴ ❬ ❱
. . . // ar = b1 . . . bs = c1

;;①①①①①①①①①

��✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹

##❋
❋❋

❋❋
❋❋

❋❋
❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ct

• . . . •

>>⑦⑦⑦⑦⑦⑦⑦⑦

• . . . •

GG✍✍✍✍✍✍✍✍✍✍✍✍✍

(c)

• . . . •

##●
●●

●●
●●

●●

a1

>>⑥⑥⑥⑥⑥⑥⑥⑥

  ❆
❆❆

❆❆
❆❆

❆

��✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵

❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ar = b1 . . . bs = c1
//

❤ ❞ ❴ ❩ ❱ ◗
. . . // ct

• . . . •

;;✇✇✇✇✇✇✇✇✇

• . . . •

DD✡✡✡✡✡✡✡✡✡✡✡✡✡✡

(d)

• . . . •

##●
●●

●●
●●

●● • . . . •

  ❅
❅❅

❅❅
❅❅

❅

a1

>>⑥⑥⑥⑥⑥⑥⑥⑥

  ❆
❆❆

❆❆
❆❆

❆

��✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵

❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ar = b1 . . . bs = c1

;;①①①①①①①①①

##❋
❋❋

❋❋
❋❋

❋❋

��✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹

❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ct

• . . . •

;;✇✇✇✇✇✇✇✇✇
• . . . •

>>⑦⑦⑦⑦⑦⑦⑦⑦

• . . . •

DD✡✡✡✡✡✡✡✡✡✡✡✡✡✡
• . . . •

GG✍✍✍✍✍✍✍✍✍✍✍✍✍

(e)

bs = a1

❣ ❝ ❴ ❬ ❲
// . . . // ar = b1

●●
●●

●●
●●

●

•

✇✇✇✇✇✇✇✇✇
• . . . • •
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(f)

• . . . •

��✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹

• . . . •

##●
●●

●●
●●

●●

bs = a1

;;✇✇✇✇✇✇✇✇✇

DD✡✡✡✡✡✡✡✡✡✡✡✡✡✡

##●
●●

●●
●●

●●
❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ar = b1

❉❉
❉❉

❉❉
❉❉

❉❉
❉❉

❉❉
❉❉

❉❉

• . . . •

;;✇✇✇✇✇✇✇✇✇

•

③③③③③③③③③③③③③③③③③③
• . . . • •

where we have represented relations by dotted lines. The last two cases occur when
u = v. Moreover, the minimality of the length of w′ implies that there is no additional
arrow between two bj’s. Let C ′ = kQ′/I ′. Because of [Ha1, III.6.5, p. 146], C ′ is also
a tilted algebra. In each of these cases above, let M be the C ′-module defined as a
representation by

M(x) =

{
k, if x is a point of the walk w′,
0, otherwise,

and

M(α) =

{
id, if s(α), t(α) are points of the walk w′,
0, otherwise,

for every point x and arrow α in the quiver of C ′. Since there is no subpath w1 of w′,
or of (w′)−1, involved in a relation of the form

∑
λiwi, then M is indeed a module.

It is actually a tree module, and therefore it is indecomposable, see [K]. On the other
hand, it can be seen that both of its projective and its injective dimensions equal two,
a contradiction because C ′ is tilted. �

Let now C̃ = kQ̃/Ĩ be the relation-extension of a tilted algebra C. A walk w = αw′β
in (Q̃, Ĩ) is called a C-sequential walk if:

(i) w′ consists entirely of old arrows,

(ii) α, β are two new arrows corresponding respectively to old relations ρ =
∑

i λiui
and σ =

∑
j µjvj, and

(iii) w = uiw
′vj is a sequential walk in (Q, I) for any i, j.

COROLLARY 2.5 Let C = kQ/I be a tilted algebra. Then the bound quiver of its
relation-extension C̃ contains no C-sequential walk.
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3 Arrow equivalence

The following lemma is an easy consequence of the main result in [ACT]. For the
benefit of the reader, we give an independent proof.

Recall from [DWZ] that for a given arrow β, the cyclic partial derivative ∂β in β is
defined on each cyclic path β1β2 · · · βs by ∂β(β1β2 · · · βs) =

∑
i:β=βi

βi+1 · · · βsβ1 · · · βi−1.
Note that ∂β(β1β2 · · · βs) = ∂β(βj · · · βsβ1 · · · βj−1) for every j such that 1 ≤ j ≤ s.

From now on, we consider a given presentation of a tilted algebra C = kQ/I with
minimal system of relations R and consider its relation-extension B = kQ̃/Ĩ together
with the presentation having as relations the cyclic partial derivatives of the potential
W =

∑
ρ∈R αρρ, with αρ the new arrow associated to the relation ρ. All these relations

are triangular. Then we reduce this system to an equivalent system of strongly minimal
relations each of which is a linear combination of the relations obtained from the partial
derivatives (see Lemma 2.2.)

LEMMA 3.1 Let C = kQ/I be a tilted algebra and B = kQ̃/Ĩ be such that B = C̃
and Ĩ is generated by the partial derivatives of the potential. Let ρ =

∑m
i=1 aiwi be a

minimal relation in Ĩ. Then either ρ is a relation in I, or there exist m new arrows
α1, . . . , αm such that wi = uiαivi (with ui, vi paths consisting entirely of old arrows).

Proof. Let ρ1, . . . , ρs be a system of minimal relations for the tilted algebra C. Then
each relation ρi induces a new arrow αi and the product ρiαi is a linear combination
of cyclic paths in the quiver of the cluster-tilted algebra B. The potential of B can be
given as W =

∑s
i=1 ρiαi and the ideal of B is generated by all partial derivatives ∂βW

of the potential W with respect to the arrows β. If β is one of the new arrows αi then
∂βW is just the “old” relation ρi ∈ I.

If β is an old arrow then ∂βW is a sum of terms which are cyclic permutations of
(∂βρi)αi. Now, each of the summands contains exactly one new arrow αi. �

The previous lemma asserts that if ρ =
∑

i aiwi is a strongly minimal relation lying
in Ĩ but not in I, then on each wi lies exactly one new arrow αi and each new arrow
appears in this way. Clearly, the αi are not necessarily distinct as arrows of Q̃.

Lemma 3.1 above brings us to our main definition. Let B = kQ̃/Ĩ be a cluster-tilted
algebra and C = kQ/I a tilted algebra such that B = C̃. We define a relation ∼ on
the set Q̃1 \ Q1 of new arrows as follows. For every α ∈ Q̃1 \ Q1, we set α ∼ α. If
ρ =

∑m
i=1 aiwi is a strongly minimal relation in Ĩ and αi are as in Lemma 3.1 above,

then we set αi ∼ αj for any i, j such that 1 ≤ i, j ≤ m.
By Corollary 2.5, the relation ∼ is unambiguously defined. It is clearly reflexive

and symmetric. We let ≈ be the least equivalence relation defined on the set Q̃1 \Q1

such that α ∼ β implies α ≈ β (that is, ≈ is the transitive closure of ∼).

8



We define the relation invariant of B to be the number nB,C of equivalence classes
under the relation ≈.

Observe that the equivalence relation ≈ is related to the direct sum decomposition
of the C-C- bimodule E. Indeed, E is generated as C-C-bimodule by the new arrows. If
two new arrows occur in a strongly minimal relation, this means that they are somehow
yoked together in E. It is proven in [ABIS, Lemma 4.3] that E decomposes, as C-C-
bimodule, into the direct sum of nB,C summands.

The following two lemmata will be useful in section 4. They use essentially the fact
that cluster-tilted algebras of type Ã are gentle (because of [ABCP, Lemma 2.5]) and
in particular all relations are monomial of length 2 contained inside 3-cycles that is,
cycles of the form

·
β

��❂
❂❂

❂❂
❂❂

·

α
@@✁✁✁✁✁✁✁

·γ
oo

bound by αβ = βγ = γα = 0.

LEMMA 3.2 Let B be a cluster-tilted algebra of type Ã and let C1, C2 be tilted algebras
such that B = C̃1 = C̃2. Let R1, R2 be systems of relations for C1, C2 respectively.
Then |R1| = |R2|.

Proof. Indeed, in order to obtain C1 and C2 from B, we have to delete exactly one
arrow from each chordless cycle (for the notion of chordless cycle, see [BGZ] or section
6 below). Because B is of type Ã, then the chordless cycles are 3-cycles, and no arrow
belongs to two distinct 3-cycles. Deleting exactly one arrow from each 3-cycle leaves a
path of length 2. The system of relations for the tilted algebra consists in exactly these
paths of length 2. This implies the statement. �

LEMMA 3.3 Let B = C̃, where C is a tilted algebra of type Ã. Let R be a system of
relations for C. Then nB,C = |R|. In particular, nB,C does not depend on the choice
of C.

Proof. Let αi, αj be two equivalent new arrows, then there exists a sequence of new
arrows

αi = β1 ∼ β2 ∼ · · · ∼ βt = αj

where βℓ, βℓ+1 appear in the same strongly minimal relation in (Q̃, Ĩ). Now, B is gentle.
Hence strongly minimal relations contain just one monomial. Therefore βℓ = βℓ+1 for
each ℓ, and αi = αj . This shows that the relation invariant nB,C is equal to the number
of new arrows, and the latter is equal to |R| because of [ABS1, Theorem 2.6]. �
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4 The tame cluster-tilted algebras

Our objective in this section is to describe the tilted algebras C that are associ-
ated to the tame cluster-tilted algebra B. Because of [BMR, Theorem A], the tame
representation-infinite cluster-tilted algebras are just the cluster-tilted algebras of eu-
clidean type, that is, the relation-extensions of the tilted algebras of euclidean type.
Our strategy will consist of reducing the proof to the case where C is a constricted
algebra.

An algebra K is tame concealed if there exists a tame hereditary algebra A and a
postprojective tilting A-module T such that K = EndA(T ). Then Γ(modK) consists
of a postprojective component PK , a preinjective component QK and a family TK =
(Tλ)λ∈P1(k) of stable tubes separating PK from QK , see [Ri, 4.3].

We now define tubular extensions of a tame concealed algebra. A branch L with a
root a is a finite connected full bound subquiver, containing a, of the following infinite
tree, where all compositions αβ of two arrows labeled as α and β are zero.

.

α

��⑦⑦
⑦⑦
⑦⑦
⑦

•

α

��⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦

β

��❅
❅❅

❅❅
❅❅

. . .

a

β

��❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅ . . .

α

��⑦⑦
⑦⑦
⑦⑦
⑦

•

β

��❅
❅❅

❅❅
❅❅

. . .

.

Let now K be a tame concealed algebra, and (Ei)
n
i=1 be a family of simple regular

K-modules. For each i, let Li be a branch with root ai. The tubular extension B =
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K[Ei, Li]
n
i=1 has as objects those of K,L1, · · · , Ln and as morphism spaces

B(x, y) =





K(x, y) if x, y ∈ K0

Li(x, y) if x, y ∈ (Li)0
Li(x, ai)⊗k Ei(y) if x ∈ (Li)0, y ∈ K0

0 otherwise.

The tubular coextension n
i=1[Ei, Li]K is defined dually.

For each λ ∈ P1(k), let rλ denote the rank of the stable tube Tλ of Γ(modK). The
tubular type nB = (nλ)λ∈P1(k) of B is defined by

nλ = rλ +
∑

Ei∈Tλ

|(Li)0|.

Since all but at most finitely many nλ equal 1, we write for nB the finite sequence
containing at least two nλ, including all those larger than 1, in non-decreasing order. We
say that nB is domestic if it is one of the forms (p, q), (2, 2, r), (2, 3, 3), (2, 3, 4), (2, 3, 5).
The following structure theorem is due to Ringel, see [Ri, Theorem 4.9, p. 241].

THEOREM 4.1 Let C be a representation-infinite tilted algebra of euclidean type.
Then C contains a unique tame concealed full convex subcategory K and C is a domestic
tubular extension or a domestic tubular coextension of K.

As a consequence of Ringel’s theorem, we obtain the following.

LEMMA 4.2 Let C be a tilted algebra of euclidean type which is not constricted. Then
C is given by one of the following two bound quivers, or their duals.

(1)

3

⑧⑧⑧⑧⑧

❄❄
❄❄

❄

4

⑧⑧⑧⑧⑧

❄❄
❄❄

❄

5

⑧⑧⑧⑧⑧

❄❄
❄❄

❄

2
||

α

②②②②②②②②②②②②②oo β ❴❴❴❴❴❴❴❴❴❴bb

ǫ

❋❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋1
oo δ
oo

γ

where the triangles are branches, possibly empty, bound by αδ = 0, βδ = βγ, ǫγ =
0, and the branch relations.
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(2)

p+2

⑧⑧⑧⑧⑧
❄❄

❄❄
❄

⑧⑧⑧⑧⑧

❄❄❄❄❄

λp−1

��

⑧⑧⑧⑧⑧

❄❄❄❄❄

λp−2

��

⑧⑧⑧⑧⑧

❄❄❄❄❄

λ2

��

⑧⑧⑧⑧⑧

❄❄❄❄❄

λ1

��
2

δp
����
��
��
��
��

3
δp−1

oo p−1 p
δ2

oo

1 p+1γ
oo

δ1

``❇❇❇❇❇❇❇❇❇❇ 		

α

✒✒✒✒✒✒✒✒✒
⑧⑧⑧⑧⑧
❄❄

❄❄
❄

β
oo

where the triangles are branches, possibly empty, bound by αδ1 · · · δp = αγ, βγ =
0, λiδi+1 = 0 for all i such that 1 ≤ i < p, and the branch relations.

Proof. Assume C is a tilted algebra of euclidean type which is not constricted. Then
there exists an arrow γ : x → y such that dimkC(x, y) ≥ 2. Since C is tame, we
actually have dimkC(x, y) = 2. In particular, C is representation-infinite. Applying
Ringel’s theorem, we get that C is, up to duality, a domestic tubular extension of a
unique tame concealed full convex subcategory K of C. On the other hand, let K ′ be
the convex envelope of the points x, y in C. Then K ′ is of the form

•

yytt
tt
tt
tt
tt
tt

•
oo

• •
oo

•

tt❥❥❥❥
❥❥❥❥

❥❥❥ •
oo

• •
oo

y xγ
oo

ee❏❏❏❏❏❏❏❏❏❏❏❏
jj❚❚❚❚❚❚❚❚❚❚❚

with dimkK
′(x, y) = 2. Note that K ′ is a full convex subcategory of C, hence it is

tilted (because of [Ha1, III.6.5 p.146]). Applying Lemma 2.4 to K ′, we deduce that K ′

is of the form

•

tt❥❥❥❥
❥❥❥❥

❥❥❥ •
oo

• •
oo

y xγ
oo

jj❚❚❚❚❚❚❚❚❚❚❚

Since K ′ is hereditary, we get that K ′ = K. The statement now follows by considering
the possible branch extensions of K. �

LEMMA 4.3 Let B be a cluster-tilted algebra of euclidean type. Assume that there
exists no constricted tilted algebra C such that B = C̃. Then B is a cluster-tilted algebra
of type Ã of one of the following forms or their duals:

12



(i)

4

⑧⑧⑧⑧⑧

❄❄
❄❄

❄2 oo β
1

ǫ

::oo δ
oo

γ

(ii)

⑧⑧⑧⑧⑧

❄❄❄❄❄

λp−1

��

⑧⑧⑧⑧⑧

❄❄❄❄❄

λp−2

��

⑧⑧⑧⑧⑧

❄❄❄❄❄

λ2

��

⑧⑧⑧⑧⑧

❄❄❄❄❄

λ1

��
2

δp
����
��
��
��
��

µp−2

44

3
δp−1

oo p−1

µ1

44

p
δ2

oo

1

ǫ

33

µp−1

88

p+1γoo
δ1

``❇❇❇❇❇❇❇❇❇❇
p+2

⑧⑧⑧⑧⑧
❄❄

❄❄
❄βoo

where the triangles are cluster-tilted algebras of type A, possibly empty, bound by βγ = 0,
γǫ = 0, ǫβ = 0, and, in the case (ii), by the additional relations λiδi+1 = 0, δi+1µi = 0,
µiλi = 0.

Proof. Let B be cluster-tilted of euclidean type. Because of [ABS1], there exists a
tilted algebra C such that

B = C̃ = C ⋉ Ext2(DC,C).

The hypothesis says that C is not constricted. Because of Lemma 4.2, C is given by
one of the bound quivers in (1) or (2) above. We examine these cases separately.

(1) Assume C is given by the quiver

3

⑧⑧⑧⑧⑧

❄❄
❄❄

❄

4

⑧⑧⑧⑧⑧

❄❄
❄❄

❄

5

⑧⑧⑧⑧⑧

❄❄
❄❄

❄

2
||

α

②②②②②②②②②②②②②oo β ❴❴❴❴❴❴❴❴❴❴bb

ǫ

❋❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋1
oo δ
oo

γ
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where the triangles are branches, possibly empty, bound by αδ = 0, βδ = βγ, ǫγ = 0
and the branch relations. Observe that, if one of the branches is empty, then it has no
root and consequently, the arrow from that root to the point 2 does not exist.

We consider the following subcases:
(1a) Assume none of the branches rooted at 3,4,5 is empty. In this case, we refer

to C as C1. Then the corresponding cluster-tilted algebra B is of the form

3

⑧⑧⑧⑧⑧

❄❄
❄❄

❄

4

⑧⑧⑧⑧⑧

❄❄
❄❄

❄

5

⑧⑧⑧⑧⑧

❄❄
❄❄

❄

2
||

α

②②②②②②②②②②②②②oo β ❴❴❴❴❴❴❴❴❴❴bb

ǫ
❋❋

❋❋
❋❋

❋❋
❋❋

❋❋

1
oo δ
oo

γ

ν

88

λ ,,

µ 22

where the triangles are cluster-tilted algebras of type A, and there are, additionally,
the relations of C1 and the relations λα = −νβ, νβ = µǫ, δλ = 0, δν = γν and γµ = 0.

Now, this algebra B can be written as B=C̃ ′
1, where C ′

1 is given by the quiver

3

⑧⑧⑧⑧⑧

❄❄
❄❄

❄

4

⑧⑧⑧⑧⑧

❄❄
❄❄

❄

5

⑧⑧⑧⑧⑧

❄❄
❄❄

❄

2
||

α

②②②②②②②②②②②②②oo β ❴❴❴❴❴❴❴❴❴❴bb

ǫ
❋❋

❋❋
❋❋

❋❋
❋❋

❋❋

1

ν

88

λ ,,

µ 22

where the triangles are again branches, bound by relations λα = −νβ, νβ = µǫ.
This is easily seen to be a representation-finite tilted algebra of type D̃ (indeed,

one can simply construct the Auslander-Reiten quiver of the algebra and identify a
complete slice). In particular, C ′

1 is constricted, a contradiction.
(1b) Assume that the branch rooted, say at 4, is empty while the other two are not.

In this case, we refer to C as C2. Then the cluster-tilted algebra B is of the form

14



3

⑧⑧⑧⑧⑧

❄❄
❄❄

❄

5

⑧⑧⑧⑧⑧

❄❄
❄❄

❄

2
ww

α
♦♦♦♦♦♦♦♦♦♦♦gg

ǫ

❖❖❖
❖❖❖

❖❖❖
❖❖1

oo δ
oo

γ

λ
**

µ

44

where the triangles are cluster-tilted algebras of type A, bound by the relations of C2

and the additional relations λα = 0, δλ = 0, γµ = 0, µǫ = 0.
Again, the algebra B can be written as B = C̃ ′

2, where C ′
2 is given by the quiver

3

⑧⑧⑧⑧⑧

❄❄
❄❄

❄

5

⑧⑧⑧⑧⑧

❄❄
❄❄

❄

2
ww

α
♦♦♦♦♦♦♦♦♦♦♦gg

ǫ

❖❖❖
❖❖❖

❖❖❖
❖❖1

λ
**

µ

44

where the triangles are branches, bound by λα = 0, µǫ = 0 and the branch relations.
This is easily seen to be a representation-finite tilted algebra of type Ã (see, for instance,
[AS]), thus C ′

2 is constricted, another contradiction.
(1c) If at least two of the branches, say at 4 and 5, are empty, then we are left with

the quiver (i) of the statement.
(2) Assume C is given by the quiver

p+2

⑧⑧⑧⑧⑧
❄❄

❄❄
❄

⑧⑧⑧⑧⑧

❄❄❄❄❄

λp−1

��

⑧⑧⑧⑧⑧

❄❄❄❄❄

λp−2

��

⑧⑧⑧⑧⑧

❄❄❄❄❄

λ2

��

⑧⑧⑧⑧⑧

❄❄❄❄❄

λ1

��
2

δp
����
��
��
��
��

3
δp−1

oo p−1 p
δ2

oo

1 p+1γ
oo

δ1

``❇❇❇❇❇❇❇❇❇❇ 		

α

✒✒✒✒✒✒✒✒✒
p+3

⑧⑧⑧⑧⑧
❄❄

❄❄
❄βoo

where the triangles are branches, possibly empty, bound by αδ1 · · · δp = αγ, βγ = 0,
λiδi+1 = 0 for all 1 ≤ i < p, and the branch relations.

We consider the following subcases.
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(2a) Assume that none of the branches rooted at p+1, p+2 is empty. In this case,
we refer to C as C3. Then the corresponding cluster-tilted algebra is of the form

p+2

⑧⑧⑧⑧⑧
❄❄

❄❄
❄

⑧⑧⑧⑧⑧

❄❄❄❄❄

λp−1

��

⑧⑧⑧⑧⑧

❄❄❄❄❄

λp−2

��

⑧⑧⑧⑧⑧

❄❄❄❄❄

λ2

��

⑧⑧⑧⑧⑧

❄❄❄❄❄

λ1

��
2

δp
����
��
��
��
��

µp−2

44

3
δp−1

oo p−1

µ1

44

p
δ2

oo

1

ǫ

33

δ

44µp−1

88

p+1γoo
δ1

``❇❇❇❇❇❇❇❇❇❇ 		

α

✒✒✒✒✒✒✒✒✒
p+3

⑧⑧⑧⑧⑧
❄❄

❄❄
❄βoo

where the triangles are cluster-tilted algebras of type A, bound by the relations of C3

and the additional relations ǫβ = δα, γǫ = 0, δ1 · · · δpδ = γδ and µiλi+δi+2 · · · δpδαδ1 · · · δi =
0, δi+1µi = 0, for all i.

Now, this algebra can be written as B = C̃ ′
3, where C ′

3 is given by the quiver

p+2

⑧⑧⑧⑧⑧
❄❄

❄❄
❄

⑧⑧⑧⑧⑧

❄❄❄❄❄
⑧⑧⑧⑧⑧

❄❄❄❄❄
⑧⑧⑧⑧⑧

❄❄❄❄❄

2

δp
����
��
��
��
��

µp−2

44

3
δp−1

oo p−1

µ1

55

p
δ2

oo

1

ǫ

33

δ

44µp−1

88

p+1
��

α

✡✡✡✡✡✡✡✡✡✡
p+3

⑧⑧⑧⑧⑧
❄❄

❄❄
❄βoo

with the inherited relations. This is again seen to be a representation-finite tilted
algebra of type D̃. In particular, it is constricted, a contradiction.

(2b) If at least one of the branches, say at p+2 is empty, then we are left with the
quiver (ii) of the statement. �

Observe that in the proof of Lemma 4.3, in each of the cases (1a), (1b) and (2a), we
have replaced the original non-constricted tilted algebra C1, C2 and C3 by a constricted
one C ′

1, C
′
2 and C ′

3, respectively.

LEMMA 4.4 With the above notation, for each i ∈ {1, 2, 3}, we have nB,Ci
= nB,C′

i

and HH1(Ci) ∼= HH1(C ′
i).

Proof. The first statement follows immediately from the description of the relations
in the respective algebras. Thus nB,C1

= nB,C′

1
= 1, nB,C2

= nB,C′

2
= 2 and nB,C3

=
nB,C′

3
= 1.
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It suffices to show the second statement. We consider each of the cases as in the
proof of Lemma 4.3.

(1a) Let D1 be the full convex subcategory of C1 (and C ′
1) generated by all points

except the point 1. Then D1 is a representation-finite tilted algebra and C1 (or C ′
1) is a

one-point coextension (or extension, respectively) of D1 by an indecomposable module.
This module being a rigid brick, we deduce immediately from Happel’s sequence [Ha2,
5.3] that

HH1(C1) ∼= HH1(D1) ∼= HH1(C ′
1).

(1b) Let D2 be the full convex subcategory of C2 (and C ′
2) generated by all points

except the point 1. Then D2 is a representation-finite tilted algebra and C2 (or C ′
2)

is a one-point coextension (or extension, respectively) of D2 by the direct sum of two
Hom-orthogonal, rigid bricks X,Y such that Ext1D2

(X,Y ) = 0 and Ext1D2
(Y,X) = 0.

Again Happel’s sequence yields

HH1(C2) ∼= HH1(D2) ∼= HH1(C ′
2).

(2a) Let D3 be the full convex subcategory of C3 (and C ′
3) generated by all points

except the points 1, 2, · · · , p. Then there is a sequence

C3 = E0 ) E1 ) · · · ) Ep = D3,

where Ei is a one-point coextension of Ei+1. Moreover, each Ei is a direct product
of representation-finite tilted algebras and the coextension module is a direct sum of
rigid bricks with supports in distinct connected components of Ei. Similarly, there is a
sequence

C ′
3 = Fp ) Fp−1 ) · · · ) F0 = D3,

where Fi+1 is a one-point extension of Fi. Moreover, each Fi is a direct product of
representation-finite tilted algebras and the extension module is a direct sum of rigid
bricks with supports in distinct connected components of Fi. Therefore easy inductions
yield

HH1(C3) ∼= HH1(D3) ∼= HH1(C ′
3).

�

LEMMA 4.5 Let B = C̃ be a non-hereditary cluster-tilted algebra of type Ã of one of
the forms of Lemma 4.3 and R a system of relations for C. Then

(i) If B is of the form (i), then HH1(B) = k|R|+2

(ii) If B is of the form (ii), then HH1(B) = k|R|+1

17



Proof. (i) We use the formula of [CS], as applied to our special situation in [AR,
Proposition 5.1]

dimkHH
1(B) = dimk Z(B)− |Q̃0 //N |+ |Q̃1 //N | − |(Q̃1 //N)e| − dimk ImRg.

Here, Z(B) is the centre of B, so dimk Z(B) = 1. Next, Q̃0 //N is the set of non-zero
oriented cycles in (Q̃, Ĩ) (where, as usual, B = kQ̃/Ĩ) including points. Then

|Q̃0 //N | = |Q̃0| = |Q0|.

Thirdly, Q̃1 //N is the set of pairs (α,w), where α ∈ Q̃1 and w is a non-zero path (of
length ≥ 0) parallel to α. This consists of all pairs (α,α), with α ∈ Q̃1 and the two
pairs (δ, γ), (γ, δ) arising from the double arrow

1 2
γ

oo
δoo .

Thus, |Q̃1 //N | = |Q̃1|+ 2.
Since it is shown in [AR, Proof of Proposition 5.1] that Rg = 0, there remains to

compute

(Q̃1 //N)e = (Q̃1 //N) \
(
(Q̃1 //N)g ∪ (Q̃1 //N)a

)
.

Here:

1. (Q̃1 //N)g is the set of all pairs (α,w) ∈ Q̃1 //N where w is either a point or a
path starting or ending with the arrow α. Therefore

(Q̃1 //N)g = {(α,α) | α ∈ Q̃1}.

2. (Q̃1 //N)a is the set of all pairs (α,w) ∈ Q̃1 //N where, in each relation where
α appears, replacing α by w yields a zero path. Therefore

(Q̃1 //N)a = {(α,α) | α ∈ Q̃1} ∪ {(δ, γ)}.

This implies that

|(Q̃1 //N)| − |(Q̃1 //N)e| = |(Q̃1 //N)g ∪ (Q̃1 //N)a| = |Q̃1|+ 1.

Therefore

dimkHH
1(B) = 1− |Q̃0|+ |Q̃1|+ 1

= 1− |Q0|+ |Q1|+ |R|+ 1

= |R|+ 2,
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because |Q̃1| = |Q1|+ |R| and |Q0| = |Q1|.
(ii) For this case again dimk Z(B) = 1 and |(Q̃0 //N)| = |Q̃0| = |Q0|. Here

Q̃1 //N = {(α,α) | α ∈ Q̃} ∪ {(γ, δ1 · · · δp)}.

Now, as before
(Q̃1 //N)g = {(α,α) | α ∈ Q̃1},

while
(Q̃1 //N)a = {(α,α) | α ∈ Q̃1},

so that
|(Q̃1 //N)| − |(Q̃1 //N)e| = |(Q̃1 //N)g ∪ (Q̃1 //N)a| = |Q̃1|.

Therefore

dimkHH
1(B) = 1− |Q̃0|+ |Q̃1|

= 1− |Q0|+ |Q1|+ |R|

= |R|+ 1,

because |Q̃1| = |Q1|+ |R| and |Q0| = |Q1|. �

Note that the previous proof can also be done applying the formula in [RR].

5 Hochschild cohomology of tame cluster-tilted

algebras

We need a few results from [AR] and [ABIS] which we now recall. Let B be a split
extension of a subalgebra C by a two-sided bimodule CEC , that is, let B have the
k-vector space structure of C ⊕ E with the multiplication given by

(c, x)(c′, x′) = (cc′, cx′ + xc′ + xx′)

for (c, x), (c′, x′) ∈ B. Then there exists a short exact sequence of C − C-bimodules

0 // E // B
p // C // 0

where p : (c, x) 7→ c is an algebra morphism, and there is a morphism q : c 7→ (c, 0)
of C − C- bimodules (but also of algebras) such that pq = idC . Thus, in particular,
a trivial extension B = C ⋉ E is a split extension such that E2 = 0. We recall the
following result from [AR].
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LEMMA 5.1 [AR, Lemma 4.1] If B is a split extension of C, then there exists a
morphism ϕ : HH1(B) → HH1(C) given by [δ] 7→ [pδq].

The morphism ϕ is shown in [ABIS] to be surjective in case C is a tilted algebra
and B is its relation-extension. In fact we have

THEOREM 5.2 [ABIS, Theorem 3.5] Let B be the trivial extension of a tilted algebra
C by the relation bimodule E = Ext2C(DC,C), then there exists a short exact sequence
of vector spaces

0 // HH1(B,E) // HH1(B)
ϕ // HH1(C) // 0.

In the sequel we always write E = Ext2C(DC,C). Our objective in this section is
to prove the following theorem.

THEOREM 5.3 Let B be a tame cluster-tilted algebra, and C a tilted algebra such
that B = C ⋉ E. Then there exists a short exact sequence of k-vector spaces

0 // knB,C // HH1(B)
ϕ // HH1(C) // 0.

Applying Theorem 5.2, it suffices to prove that HH1(B,E) = knB,C . We set n =
nB,C for simplicity. Our first task is to prove that HH1(B,E) can be written in a
simpler form. This is achieved in the following two statements.

LEMMA 5.4 Let B = C⋉E with C a tilted algebra, then Der0(B,E) = Der0(C,E)⊕
EndCe E.

Proof. Let δ ∈ Der0(B,E), then we can define two k-linear maps d : C → E and
f : E → E by

d(c) = δ(c, 0) for all c ∈ C,

f(x) = δ(0, x) for all x ∈ E,

that is, d = δ|C and f = δ|E .
We first prove that d : C → E is a normalized derivation. Indeed, let c, c′ ∈ C then

d(cc′) = δ(cc′, 0) = δ((c, 0)(c′ , 0))
= (c, 0)δ(c′ , 0) + δ(c, 0)(c′ , 0)
= cd(c′) + d(c)c′.

On the other hand, d(ei) = δ(ei, 0) = 0 for every i.
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Next, we prove that f : E → E is a morphism of C − C-bimodules. Let c ∈ C and
x ∈ E, then

f(cx) = δ(0, cx) = δ((c, 0)(0, x))
= (c, 0)δ(0, x) + δ(c, 0)(0, x)
= cf(x) + d(c)x = cf(x)

because d(c), x ∈ E and E2 = 0. Similarly, f(xc) = f(x)c.
We have shown that Der0(B,E) = Der0(C,E) + EndCe E. But now Der0(C,E) ⊆

Homk(C,E) while EndCe E ⊆ Homk(E,E) and we have an obvious direct sum decom-
position

Homk(B,E) = Homk(C,E) ⊕Homk(E,E).

Therefore Der0(B,E) = Der0(C,E) ⊕ EndCe E. �

PROPOSITION 5.5 Let B = C ⋉ E with C a tilted algebra, then HH1(B,E) =
HH1(C,E) ⊕ EndCe E.

Proof. Because of Lemma 5.4, we have a direct sum decomposition Der0(B,E) =
Der0(C,E)⊕EndCe E. We prove that it induces a direct sum decomposition Int0(B,E) =
Int0(C,E) ⊕ 0 on the level of the inner derivations, that is, if δ ∈ Int0(B,E) then
d = δ|C ∈ Int0(C,E) while f = δ|E = 0.

Assume δ ∈ Int0(B,E) then there exists (c, x) ∈ B = C ⊕ E such that δ = δ(c,x),
that is, for all (c′, x′) ∈ B, we have

δ(c′, x′) = (c, x)(c′, x′)− (c′, x′)(c, x)
= (cc′, xc′ + cx′)− (c′c, x′c+ c′x)
= (cc′ − c′c, cx′ − x′c+ xc′ − c′x).

But δ(c′, x′) ∈ E. Therefore cc′−c′c = 0, or cc′ = c′c. Since c′ is an arbitrary element of
C, this means that c is in the center of C. Now C is a tilted algebra, so it is triangular
and therefore c = λ is a scalar. But then

δ(c′, x′) = xc′ − c′x ∈ E.

Now, let d = δ|C and f = δ|E . Then, for all x
′ ∈ E, we have

f(x′) = δ(0, x′) = 0

so that f = 0, as desired. On the other hand, d(c′) = δ(c′, 0) = xc′ − c′x = [x, c′], that
is, d = [x,−] ∈ Int0(C,E). This establishes our claim. But then we have

HH1(B,E) = Der0(B,E)
Int0(B,E) ≃ Der0(C,E)⊕EndCe E

Int0(C,E)⊕0

≃ Der0(C,E)
Int0(C,E) ⊕ EndCe E

= HH1(C,E) ⊕ EndCe E.
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We shall now prove that if C is constricted then HH1(C,E) = 0. Our proof will
use essentially the tameness of B, which implies that C is a tilted algebra of Dynkin
or euclidean type.

LEMMA 5.6 Assume that C is tilted and constricted, and that B = C ⋉ E is tame.
Then HH1(C,E) = 0.

Proof. It suffices to prove that Der0(C,E) = 0. Assume thus that α : i → j is an old
arrow, then δ ∈ Der0(C,E) implies δ(α) = eiδ(α)ej ∈ eiEej . Now, assume w ∈ E is
non-zero, then eiwej contains a new arrow β and we have the following situation

i

u
���^

�^
�^
�^
�^

α // j

y
β // x

v

@@@�
@�
@�

@�
@�

with β a new arrow and u, α, v old. Let ρ =
∑

i λiwi be the relation in C corresponding
to β. Because C is triangular, at least one of the paths u or v is nontrivial. We have
four cases to consider.

(i) If the paths u and v share no arrows with any of the wi then the bound quiver
of the full subcategory of C generated by i, j and all the points lying on the
summands of ρ, contains a sequential walk w1u

−1αv−1w1, a contradiction to
Lemma 2.4.

(ii) The paths u, v cannot be in the situation of intersecting one of the wi but sharing
neither the last arrow of u nor the first arrow of v. Indeed, assume that this
happens, say, with u (the case where it happens with v is treated similarly).
Then we have u = u′γu′′ with γ a subpath of w1, that is, w1 = w′γw′′

i

u′

)))i)i
)i)i

)i)i
)i)i

)i)i
)i)i

)i
α // j

y b

w′′

ff

u′′

xx
a

γoo o/ o/ o/ o/ o/ o/ o/ x
w′

oo o/ o/ o/ o/ o/ o/ o/

v

AA
A�
A�
A�
A�
A�

Then ρ is monomial because, otherwise, letting c be any point of w2 distinct from
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x, y, we have a wild full subcategory of C

i //

��

j

a x

OO

��

oo

c

a contradiction.

Next, u 6= 0 implies u′′ 6= 0 and the fact that ρ is a relation implies w′′ 6= 0. But
C cannot contain two tame concealed full subcategories (namely, corresponding
to the cycles (u′′)−1w′′ and u′(w′)−1vα−1). Therefore, there is a relation linking
u′′ and w′′. In particular, both have length at least two. Because of [AS2, 4.7]
we must have b = a. On the other hand, we have a 6= x, because otherwise α
is parallel to u′v which contradicts our assumption that C is constricted. This
shows that C contains a full subcategory D of the form

i
α //

γ

��

j

d
µ

����
��
��
��

a

ν
����
��
��
��

λoo x
δoo

OO

y c
ζ

oo

where we have γλµ 6= 0 and δνζ = 0 (thus δν 6= 0, νζ 6= 0) and there is a relation
linking λµ and νζ. Because D contains no wild full subcategory and must satisfy
[AS2, 4.7] we must have δλ = 0 and γν = 0. LetD′ be the full convex subcategory
of D consisting of all points except y. Then D′ is the one-point coextension of
a tame hereditary algebra of type Ã2,2 by two indecomposable regular modules
lying on two different tubes of rank 2. Therefore, applying [Ri, 4.7], we get that
D′ is a tilted algebra of type Ã3,3 having a complete slice in the postprojective
component. Now D is the one-point coextension of D′ by an indecomposable D′-
module M such that HomD′(M, Id) 6= 0 and HomD′(M, Ic) 6= 0. Then M maps
nontrivially into two different tubes of D′ and so M is postprojective. Therefore
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D is a tilted algebra of wild type

·

��✁✁
✁✁
✁✁
✁

·oo

· ·

^^❂❂❂❂❂❂❂

��✁✁
✁✁
✁✁
✁

·oo

·

^^❂❂❂❂❂❂❂
·oo

a contradiction.

(iii) If the paths u and v share the last arrow of u and the first arrow of v with two
different wi, say w1 and w2, then, in particular, ρ is not a monomial relation. We
then have the following situation

i

u1

���T
�T
�T
�T
�T
�T
�T
�T
�T
�T
�T
�T
�T
�T

α // j

a

v2

???�
?�

?�
?�

?�

w′

ww w7
w7 w7

w7 w7
w7 w7

w7

y x

v1
__
_�
_�
_�
_�

w′′

ww w7
w7 w7

w7 w7
w7 w7

w7 w7

b

u2

^^
^�
^�
^�
^�

with u = u1u2, v = v1v2, w1 = w′′u2 and w2 = v1w
′. Assume first that ρ is not a

binomial relation. Then C contains a full subcategory C ′ of the form

i

��✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮

α // j

a

@@��������

ww♦♦♦
♦♦♦

♦♦♦
♦♦♦

♦♦

y •
oo

b

^^❂❂❂❂❂❂❂

and, since C ′ is wild, we get a contradiction to the tameness of B. Therefore
ρ is binomial. Consider the full subcategory H of C generated by the points
i, j, a, y, b. Then H is hereditary of type Ã and C contains a full subcategory
C ′ = H[M ], where M is the indecomposable H-module with semisimple socle
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Sy ⊕ Sj (or, Sy ⊕ Sj ⊕ Sj if u1 is trivial) and such that M/ soc(M) = Sa ⊕ Sb.
Then M ∼= (Pa ⊕ Pb)/Py

∼= τ−1Py is postprojective, and hence C ′ = H[M ] is a
tilted algebra of wild type, a contradiction.

(iv) If the paths u and v share the last arrow of u and the first arrow of v with the
same wi, say w1, then we have the following situation

i

u1

���^
�^
�^
�^
�^

α // j

b
u2

�� �@
�@
�@
�@
�@

a
w′

oo o/ o/ o/
v2

@@
@�
@�

@�
@�

@�

y xoo o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

v1
^^ ^�
^�
^�
^�
^�

with u = u1u2, v = v1v2, w = v1w
′u2. If both u2 and v1 are non-trivial, then

C contains a wild full subcategory. Thus u2 or v1 is trivial. Assume that u2 is
trivial, then y = b and u = u1 (the case where v1 is trivial is entirely similar). If
ρ is not a monomial relation, or the path v1 contains more than one arrow, then
C contains a wild full subcategory. Therefore, ρ is monomial and v1 consists of
one arrow γ. We have the following situation

i

u=u1

"""b
"b

"b
"b

"b
"b

α // j

y = as a = a0
w′

oo o/ o/ o/
v2

<<
<|

<|
<|

<|
<|

<|

x

γ
cc●●●●●●●●●

Let H denote the full subcategory of C generated by the points i, j, a = a0,
a1, . . . , as = y. Then H is hereditary of type Ã, and C contains a full subcategory
C ′ = H[M ], where M is the H-module with top Sa and socle Sas−1

⊕ Sj (or,
Sas−1

if v2 is trivial). Then M is regular lying in an exceptional tube. In this

case, C ′ = H[M ] is wild, except for s = 1 in which case it is tilted of type Ã, see
[AS]. Then we have the following situation

i

u
'''g

'g'g
'g'g

'g'g
'g'g

α // j = a
δ

yyttt
tt
tt
tt
t

y = a1 x

γ
bb❉❉❉❉❉❉❉❉

In particular, the potential has a summand of the form w1 = γδβ, hence B has
a relation of the form βγ = 0. But then eiwej = 0 as required.
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We next study the C − C-bimodule endomorphisms of E. The following notation
will be useful. If u is a subpath of a path v we shall say that u divides v and write u|v.
In particular, if an arrow α (or a point x) lies on the path v, then we write α|v (or x|v,
respectively). We use the symbol 6 | in the obvious way.

We recall from [ABIS] that, if S1, · · · ,Sn are the distinct equivalence classes of new
arrows, and Ej is the C − C-bimodule generated by the elements of Sj, then we have
E = ⊕n

j=1Ej (see [ABIS, 4.3]).

LEMMA 5.7 Let C be constricted and E = ⊕n
i=1Ei be the decomposition induced

from the arrow equivalence relation then, for every new arrow α in Ei and every δ ∈
HomCe(Ei, E), we have

δ(α) = λαα

for some scalar λα ∈ k.

Proof. Let us denote by {α1, · · · , αn} the set of all new arrows and by {ρα1
, · · · , ραn}

the set of corresponding relations in C so that the potential is

W =
n∑

i=1

ραi
αi.

We may assume that the equivalence class [α1] of α1 is {α1, · · · , αr} with r ≤ n. For
any i with 1 ≤ i ≤ r and δ as in the statement, we clearly have

δ(αi) =
∑

j

λijuijαjvij

where λij ∈ k, and uij, vij are paths in C such that αi and uijαjvij are parallel.
We claim that λik = 0 when k 6= i, and this implies δ(αi) = λiiαi because C is

triangular. Without loss of generality, let i = 1 and assume that k 6= 1, then ραk
6= ρα1

and hence there exists an arrow γk such that γk|ρα1
but γk 6 |ραk

. Deriving the potential
W yields

∂γk(W ) =
∑

s∈S,t∈T,t6=k

wstαtw
′
st ∈ Ĩ

that is, the arrow αk does not appear in the above sum. There exists a summand of
∂γk(W ) which is a minimal relation in Ĩ which contains α1 but not αk. Further, because
[α1] = {α1, · · · , αr}, those αt which appear in this minimal relation are such that t ≤ r.
Let thus this minimal relation be

ρ =
∑

s∈S′,t∈T ′,t6=k,1∈T ′

wstαtw
′
st.
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Applying our morphism δ : Ei → E yields

0 = δ(ρ) =
∑

s,t,j

λtjwstutjαjvtjw
′
st.

The summands for which t = 1, j = k are of the form

λ1kws1u1kαkv1kw
′
s1.

The arrow αk belongs to the cycle αkραk
in the potential W and therefore the above

summands contain each a subpath of the form uαkv, where vǫu (for some arrow ǫ :
x → y) is a subpath dividing ραk

. We split the proof into several cases.

(i) x|v1k and y|u1k. Then we have the following situation

•

ws1

�� �?
�?
�?
�?
�?

•

γkoo

a
u′

1k

�� �@
�@
�@
�@
�@

α1 // b

w′

s1

__
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y
u

�� �@
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�@

x

v′
1k

^^ ^�
^�
^�
^�
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ǫoo

c
αk // d

v

^^ ^�
^�
^�
^�
^�

where u1k = u′1ku and v1k = vv′1k. In this case, we have the relation ρα1
which

involves the path w′
s1γkws1 and perhaps other paths from b to a in C. Now, the

paths v′1k, u
′
1k cannot both be trivial, because otherwise B would contain a 2-cycle

formed by the arrows α1 and ǫ. On the other hand, v′1k and u′1k do not share
arrows with the summands of ρα1

(because of their directions). We consider
the full subcategory of C generated by all the points lying on the summands
of ρα1

and the points x, y. We thus get a contradiction to Lemma 2.4 since
(w′

s1γkws1)u
′
1kǫ

−1v′1k(w
′
s1γkws1) is a sequential walk.

(ii) x|w′
s1 and y|ws1. Then we have the following situation

•

ws1

y

�� �?
�?
�?
�?
�?
�?
�?
�?
�?
�?
�?

•

γkoo

• •

ǫoo

•
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α1 //
•

w′

s1

x

``
` 
` 
` 
` 
` 
` 
` 
` 
` 
` 
` 

•

αk //
•

v1k
__
_�
_�
_�
_�
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a contradiction to the hypothesis that C is constricted. Notice that ǫ 6= γk
because ǫ|ραk

while γk 6 |ραk
.

(iii) x|w′
s1 and y|u1k. Then we have the following situation

•
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�@
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•
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// b

w
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y
u

�� �@
�@
�@
�@
�@

c
αk // d

v1k
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where u1k = u′1ku, w
′
s1 = ww′ and v = v1kw. Because C is constricted, there

must be a relation in C on the longer path from x to y. This relation together
with the arrow ǫ yields a contradiction to Lemma 2.4.

(iv) x|v1k and y|ws1. This case is symmetric to the previous one.

This shows that we have no such terms in the sum and therefore λ1k = 0. This
completes the proof of the lemma. �

COROLLARY 5.8 With the above notation, HomCe(Ei, Ej) = 0 whenever i 6= j.

LEMMA 5.9 For every i, we have that EndCe Ei = k.

Proof. Assume Ei =< α1 > and [α1] = {α1, · · · , αr}. Because of Lemma 5.7, we
have, for δ ∈ EndCe Ei

δ(αi) = λiαi

for some scalar λi ∈ k. Now there exists a strongly minimal relation containing the
arrow α1, let it be

ρ =
∑

j∈J

µjwjαjw
′
j .

Applying δ yields

0 = δ(ρ) =
∑

j∈J

µjλjwjαjw
′
j .
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Subtracting from this the relation λ1ρ we get

∑

j∈J\{1}

µj(λj − λ1)wjαjw
′
j = 0.

Because ρ is strongly minimal, we get λj = λ1, for every j ∈ J \{1}. Because the arrow
equivalence is transitive, we get λj = λ1 for every j ∈ {1, · · · , r}. �

Now we are ready to prove Theorem 5.3.

Proof. If C is hereditary, then B = C, nB,C = 0 and HH1(B) = HH1(C). If not,
assume first that C is constricted. Because HH1(C,E) = 0, it suffices to prove that
EndCe E = kn. But we have also shown that

HomCe(Ei, Ej) =

{
0 if i 6= j
k if i = j.

This implies immediately the statement.
Otherwise, C is, up to duality, of one of the forms (i) (ii) of Lemma 4.2. As observed

in the proof of Lemma 4.3, we have two distinct cases:
(a) Either one can replace the non-constricted algebra C by a constricted algebra C ′

such that nB,C = nB,C′ and HH1(C) ∼= HH1(C ′) because of Lemma 4.4. The statement
then follows from the previous argument applied to B and C ′.

(b) Otherwise B is, up to duality, of one of the forms (i) (ii) of Lemma 4.3. Note
that there exist several tilted algebras C having B as a relation-extension. However,
because of Lemma 3.2, the cardinality |R| of a system of relations R for each such tilted
algebra C is independent of the choice of C. Moreover, in this case, nB,C = |R|, by
Lemma 3.3.

Using Lemma 4.5, it suffices to prove that, if C is of the form (i), then HH1(C) = k2

and, if C is of the form (ii), then HH1(C) = k. This follows from another straightfor-
ward application of Happel’s sequence. �

EXAMPLE 5.10 Let C be the tilted algebra of euclidean type Ã2,2 given by the quiver

2
β

����
��
��
��

1 4

α
^^❃❃❃❃❃❃❃❃

γ
����
��
��
��

3
δ

^^❃❃❃❃❃❃❃❃
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bound by the relations αβ = 0 and γδ = 0. The corresponding cluster-tilted algebra B
is given by the quiver

2
β

����
��
��
��

1
σ

//
ǫ // 4

α
^^❃❃❃❃❃❃❃❃

γ
����
��
��
��

3
δ

^^❃❃❃❃❃❃❃❃

bound by the relations αβ = βǫ = ǫα = 0 and γδ = δσ = σγ = 0. Note that B is not
schurian so the results from [AR] cannot be used. The arrow equivalence class in this
example consists of the two new arrows ǫ and σ, and therefore the relation invariant
nB,C is equal to 2. Now Theorem 5.3 implies that HH1(B) ∼= HH1(C)⊕ k2 ∼= k3.

The following result has been proved for schurian cluster-tilted algebras in [AR,
Corollary 3.4]. The statement is inspired from Skowroński’s famous question [S, Prob-
lem 1]: For which algebras is simple connectedness equivalent to the vanishing of the
first Hochschild cohomology group?

THEOREM 5.11 Let B = kQ̃/Ĩ be a cluster-tilted algebra. Then HH1(B) = 0 if and
only if B is hereditary with ordinary quiver a tree.

Proof. By [ABS3], the cluster repetitive algebra is a Galois covering of B with infinite
cyclic group Z. Moreover it is connected if and only if B is not hereditary (because of
[ABS3, 1.4, Lemma 5]). Assume thus that B is not hereditary. Because of the universal
property of the Galois covering, there exists a group epimorphism

π1(Q̃, Ĩ) → Z.

Let k+ denote the additive group of the field k. The previous epimorphism induces a
monomorphism of abelian groups

Hom(Z, k+) → Hom(π1(Q̃, Ĩ), k+)

which, composed with the canonical monomorphism Hom(π1(Q̃, Ĩ), k+) → HH1(B) of
[PS, Corollary 3], yields a monomorphism Hom(Z, k+) → HH1(B).

Therefore, if B is not hereditary, we have HH1(B) 6= 0. On the other hand, if B is
hereditary, then, because of [Ha2, 1.6], we have HH1(B) = 0 if and only if the quiver
Q̃ of B is a tree. �
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6 The representation-finite case

Throughout this section, let B be a representation-finite cluster-tilted algebra. We
present easy methods to compute the relation invariant nB,C and thus HH1(B) in this
case. Let Q̃ be the quiver of B and let n be the number of points in Q̃.

Choose a tilted algebra C such that B = C⋉Ext2C(DC,C). The number of relations
in C is the dimension of Ext2C(SC , SC), where SC is the sum of a complete set of
representatives of the isomorphism classes of simple C-modules. We say that a relation
r in B is a new relation if it is not a relation in C. It has been shown in [AR, Corollary
3.3] that in this case nB,C is equal to the number of relations in C minus the number
of new commutativity relations in B, and, moreover,

HH1(B) = knB,C .

In particular, the integer nB,C does not depend on the choice of the tilted algebra C,
and therefore we shall denote it in the rest of this section by nB. The objective of this
section is to show that one can read off the integer nB from the quiver Q̃ of B.

Recall from [BGZ] that a chordless cycle in Q̃ is a full subquiver induced by a set of
points {x1, x2, . . . , xp} which is topologically a cycle, that is, the edges in the chordless
cycle are precisely the edges xi xi+1.

LEMMA 6.1 The number of chordless cycles in Q̃ is equal to the number of zero
relations in C plus twice the number of commutativity relations in C.

Proof. Consider the map {relations in C} → {new arrows in B} that associates to
a relation ρ ∈ Ext2C(Si, Sj) the new arrow α(ρ) : j → i. By [BR, Corollary 3.7], every
chordless cycle contains exactly one new arrow, and therefore it suffices to show that
if ρ is a commutativity relation, then α(ρ) lies in precisely two chordless cycles in Q̃,
and if ρ is a zero relation, then α(ρ) lies in precisely one chordless cycle in Q̃.

If ρ is a commutativity relation, say ρ = c1 − c2 where c1, c2 are paths from i to
j in Q, then the concatenations α(ρ)c1 and α(ρ)c2 are two chordless cycles. Then it
follows from the fact that Q̃ is a planar quiver (see [CCS2, Theorem A1]), that α(ρ)
lies in precisely two chordless cycles.

Otherwise, ρ is a zero relation in C, and α(ρ)ρ is a chordless cycle in Q̃. We have
to show that α(ρ) does not lie in two chordless cycles. Suppose the contrary. Because
of [FZ2, Proposition 9.7], every chordless cycle in Q̃ is oriented. Therefore there exists
another path ρ′ from i to j in Q̃ such that α(ρ)ρ′ is a chordless cycle. If ρ′ is also a
path in Q, then ρ and ρ′ are two parallel paths whose difference ρ− ρ′ is not a relation
in C. This implies that the fundamental group of C is non-trivial, and this contradicts
the well-known fact that tilted algebras of Dynkin type are simply connected (see, for
instance, [L]). On the other hand, if ρ′ is a path in Q̃ but not in Q then it must contain
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at least one new arrow. But then the chordless cycle α(ρ)ρ′ contains two new arrows,
a contradiction to [BR, Corollary 3.7]. �

An arrow in Q̃ is called inner arrow if it is contained in two chordless cycles. Arrows
which are not inner arrows are called outer arrows.

LEMMA 6.2 The number of new inner arrows in B is equal to the number of com-
mutativity relations in C.

Proof. Each commutavity relation in C gives a new inner arrow in B. Conversely,
suppose that α is a new inner arrow in B and let ρ, ρ′ be the two paths in Q̃ such that
αρ and αρ′ are the chordless cycles. By [BR, Corollary 3.7], ρ and ρ′ contain no new
arrows, and hence ρ and ρ′ are paths in Q. Since the algebra C is simply connected, it
follows that ρ− ρ′ is a relation in C. �

LEMMA 6.3 The number of old inner arrows in B is equal to the number of new
commutativity relations in B.

Proof. We recall from [CCS2, BMR2] the description of B as a bound quiver algebra:
For any arrow α in Q̃ let Sα be the set of paths ρ in Q̃ such that ρα is a chordless cycle
and define

ρα =

{
ρ if Sα = {ρ}
ρ− ρ′ if Sα = {ρ, ρ′}.

Let I be the ideal in kQ̃ generated by the relations ∪α∈(Q̃)1
{ρα}. Then

B = kQ̃/I.

Because of the previous remarks, commutativity relations are in bijection with inner
arrows. If the relation is new, then the arrow is old and if the arrow is new then the
relation is old. �

We are now able to prove the main theorem of this section.

THEOREM 6.4 Let B be a representation-finite cluster-tilted algebra and Q̃ the
quiver of B. Then nB equals the number of chordless cycles in Q̃ minus the num-
ber of inner arrows in Q̃.

Proof. By definition, nB is the number of relations in C minus the number of new
commutativity relations in B. By Lemmata 6.1 and 6.2, the number of relations in C
is equal to the number of chordless cycles minus the number of new inner arrows in Q̃.
On the other hand, the number of new commutativity relations in B is equal to the
number of old inner arrows in Q̃, because of Lemma 6.3. Therefore

nB = number of chordless cycles in Q̃− number of inner arrows in Q̃.

�
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COROLLARY 6.5 If Q̃ is connected then

nB = 1 + number of outer arrows in Q̃− n.

Proof. Because of [CCS2, Theorem A1] the quiver Q̃ is planar. In particular,
every arrow lies in at most two chordless cycles. Hence one can associate a simplicial
complex on the 2-dimensional sphere to the quiver Q̃, in such a way that Q0 is the
set of points, Q1 the set of edges and the set of chordless cycles is the set of faces of
the simplicial complex except the face coming from the “outside” of the quiver (the
unbounded component of the complement when embedded in the plane). Using Euler’s
formula, we see that the number of chordless cycles in Q̃ is equal to 1+ |(Q̃)1| − |(Q̃)0|,
and then Theorem 6.4 yields

nB = 1 + (|(Q̃)1| − number of inner arrows in Q̃)− |(Q̃)0|,

and the statement follows. �

REMARK 6.6 If Q̃ is not connected then

nB = number of connected components of Q̃

+ number of outer arrows in Q̃− n.

As an application, we show the following corollary on deleting points. Let x ∈ (Q̃)0,
and ex ∈ B the associated idempotent. Then B/BexB is cluster-tilted and the quiver
of B/BexB is obtained from Q̃ by deleting the point x and all arrows adjacent to x,
see [BMR3, Section 2]. Define the Hochschild degree of x to be the integer

degHH(x) = nB − nB/BexB

COROLLARY 6.7

degHH(x) = number of chordless cycles going through x
− number of inner arrows on the chordless cycles going through x

Proof. Using Theorem 6.4, we get that degHH(x) is equal to the number of chordless
cycles that are adjacent to x minus the number of inner arrows in Q̃ plus the number
of inner arrows in QB/BexB . Now α is an inner arrow in Q̃ which is not an inner arrow

in QB/BexB , precisely if α lies on two chordless cycles in Q̃ at least one of which goes
through x. �

EXAMPLE 6.8 The following quiver is the quiver of a cluster-tilted algebra of type
E8.
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1 //

��✍✍
✍✍
✍✍
✍

2 //

��✍✍
✍✍
✍✍
✍

3

��✍✍
✍✍
✍✍
✍

4 // 5

XX✵✵✵✵✵✵✵

��

6

XX✵✵✵✵✵✵✵

7

OO

8oo

The quiver has 4 chordless cycles and 2 inner arrows, so Theorem 6.4 yields

HH1(B) = k4−2 = k2.

On the other hand, the quiver has 9 outer arrows, so, using Corollary 6.5, we also get

HH1(B) = k1+9−8 = k2.

The point 2 has Hochschild degree 2− 1 = 1, by Corollary 6.7. So HH1(B/Be2B) = k.
The quiver of B/Be2B is the following.

1

��✍✍
✍✍
✍✍
✍

3

��✍✍
✍✍
✍✍
✍

4 // 5

XX✵✵✵✵✵✵✵

��

6

7

OO

8oo

Observe that Remark 6.6 applies here: the number of connected components is 2, the
number of outer arrows is 6, and n = 7. Thus we get nB = 2 + 6− 7 = 1.
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