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bDepartamento de Matemática (IME), Universidade de São Paulo, São Paulo, SP,
Brazil, 05508-090

Abstract

Let Λ be an artin algebra, A and C be full subcategories of the category
of finitely generated Λ-modules consisting of indecomposable modules and
closed under predecessors and successors respectively. In this paper we relate,
under various hypotheses, the representation dimension of Λ to those of the
left support algebra of A and the right support algebra of C. Our results
are then applied to the classes of laura algebras, ada algebras and Nakayama
oriented pullbacks.
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Introduction

The aim of the Representation theory of artin algebras is to characterize
and to classify algebras using properties of module categories. The represen-
tation dimension of an artin algebra was introduced by Auslander [9] and he
expected that this invariant would give a measure of how far an algebra is
from being representation-finite. He proved that a non-semisimple algebra Λ
is representation-finite if and only if its representation dimension rep.dimΛ
is two. Iyama proved that the representation dimension of an artin algebra
is always finite (see [19]) and Rouquier has constructed examples of algebras
with rep.dimΛ = r for any r ≥ 0 (see [22]).
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Igusa and Todorov gave in [18] an interesting connection with the finitistic
dimension conjecture. They proved that if Λ has representation dimension
at most three then its finitistic dimension is finite.

Auslander proved in [9] that if Λ is a hereditary algebra, then rep.dimΛ is
at most three. Many other classes of algebras have representation dimension
at most three, as for example, tilted and laura algebras [7], trivial extensions
of hereditary algebras [14] and quasi-tilted algebras [21]. Other results can
be found also in [15, 25].

In order to calculate the representation dimension of an artin algebra Λ,
one reasonable approach would be to split the module category modΛ of
the finitely generated modules into pieces and calculate the representation
dimension of algebras associated to each piece. In this sense, we consider
for a full subcategory C of indΛ closed under successors its support algebra
ΛC, in the sense of [2], and for a full subcategory A of indΛ closed under
predecessors its support algebra AΛ. Our two main theorems (2.6 and 4.2)
relate rep.dimΛ with rep.dimAΛ or rep.dim ΛC when A and C satisfy some
additional hypotheses.

Before stating our first main theorem, we need to recall some definitions.
Let Λ be an artin algebra and indΛ be a full subcategory of modΛ consisting
of one representative from each isomorphism class of indecomposable mod-
ules. A trisection of indΛ is a triple of disjoint full subcategories (A,B, C)
such that indΛ = A∪B ∪C and Hom(C,B) = Hom(C,A) = Hom(B,A) = 0,
see [1]. We say that B is finite if it contains only finitely many objects of
indΛ. We denote by LΛ and RΛ, respectively, the left and the right parts
of modΛ in the sense of [16] (or see section 1.2 below). For the definition
of covariantly and contravariantly finite subcategories, we refer the reader to
[12] (or see section 1.3 below).

The first theorem is the following:

Theorem. Let Λ be a representation-infinite artin algebra and (A,B, C) be
a trisection of indΛ with B finite.

(a) If C ⊆ RΛ and addC is covariantly finite, then

rep.dimΛ = max{3, rep.dimAΛ}.

(b) If A ⊆ LΛ and addA is contravariantly finite, then

rep.dimΛ = max{3, rep.dimΛC}.
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As consequences of this theorem we prove that the class of ada algebras,
introduced and studied in [3], has representation dimension at most three
(Corollary 5.3), and give another proof of the theorem (4.1) in [7] saying
that strict laura algebras have representation dimension at most three.

If C is not necessarily contained in RΛ and A is not necessarily contained
in LΛ the second theorem gives a relationship between the representation
dimension of Λ and those of AΛ and of ΛC. For this, however, we have
to assume that indΛC is closed under successors or indAΛ is closed under
predecessors.

For a full subcategory X of indΛ, we denote by X c = indΛ \ X its com-
plement.

Theorem. Let Λ be an artin algebra with a trisection (A,B, C) of indΛ. If

(a) (A ∪ indΛC)
c is finite and indΛC is closed under sucessors

or

(b) (indAΛ ∪ C)c is finite and indAΛ is closed under predecessors,

then,
rep.dimΛ ≤ max{rep.dimAΛ, rep.dimΛC}.

As a consequence of this second theorem we prove that ifR is the Nakayama
oriented pullback [20] of the morphisms A → B and C → B, then we have
rep.dimR ≤ max{rep.dimA, rep.dimC} (Corollary 5.8).

This paper is organized as follows. The first section is dedicated to pre-
liminaries with some definitions and useful results. Section 2 and section
4 are the proofs of the first and second theorems, respectively. Section 3
studies the relation of the representation dimension of an algebra with the
representation dimension of the support algebras of the complements of left
and right parts; this study is useful for the proof of the result concerning ada
algebras. Finally, section 5 contains applications of the main results: laura
algebras, ada algebras and Nakayama oriented pullbacks.

1. Preliminaries

In this first section, we recall some well-known definitions that we use in
this text.
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1.1. Notation

In this paper, all algebras are artin algebras. For an algebra Λ, we denote
by modΛ the category of all finitely generated right Λ-modules and by indΛ
a full subcategory of modΛ consisting of exactly one representative from
each isomorphism class of indecomposable modules. For a Λ-module M ,
we denote by Λ(−,M) the functor HomΛ(−,M). For a subcategory C of
modΛ we write M ∈ C to express that M is an object in C. We denote
by addC the full subcategory of modΛ with objects the finite direct sums of
summands of modules in C and, if M is a module, we abbreviate add{M} as
addM . We denote the projective (or injective) dimension of a module M as
pdΛM(or idΛM , respectively). We say that C is finite if it has only finitely
many isomorphism classes of indecomposable Λ-modules and we say that C is
cofinite if Cc is finite. We say that Λ is a representation-finite algebra if
indΛ is finite. It is representation-infinite otherwise. We denote by GenM
(or CogenM) the full subcategory of modΛ having as objects all modules
generated (or cogenerated, respectively) by M . We denote by τΛ = DTr and
τ−1

Λ = TrD the Auslander-Reiten translations.
For an algebra that is determined by a quiver QΛ we denote by ei the

idempotent associated to the vertex i ∈ (QΛ)0 and by eΛ =
∑

i∈(QΛ)0
ei its

identity. In this case, we denote by Pi, Ii and Si the projective, injective and
simple, respectively, associated to the vertex i ∈ (QΛ)0.

For further definitions and facts on modΛ, we refer to [8, 11].

1.2. Subcategories closed under predecessors

Given M,N ∈ indΛ, a path from M to N in indΛ is a sequence of non-
zero morphisms M = X1 → X2 → · · · → Xt = N (t ≥ 1) where Xi ∈ indΛ
for all i. In this case, we say that M is a predecessor of N and that N is a
successor of M .

We say that A is closed under predecessors if, whenever M is a pre-
decessor of N with N ∈ A, then M ∈ A. Dually, we define subcategory
closed under successors.

For a module M , we denote by SuccM the full subcategory of indΛ con-
sisting of all successors of any indecomposable summand of M . This category
is, of course, closed under successors. Dually we denote by PredM the full
subcategory of indΛ consisting of all predecessors of any indecomposable
summand of M .
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We recall from [16] that the right part RΛ of modΛ is the full subcate-
gory of indΛ defined by

RΛ = {M ∈ indΛ | idΛN ≤ 1 for each successor N of M}.

Clearly, RΛ is closed under successors. Dually, the left part,

LΛ = {M ∈ indΛ | pdΛN ≤ 1 for each predecessor N of M}

is a full subcategory of indΛ closed under predecessors.
Another way to produce subcategories closed under predecessors is by

means of trisections [1]. A trisection of indΛ is a triple of disjoint full
subcategories (A,B, C) of indΛ such that indΛ = A∪B∪C and Hom(C,B) =
Hom(C,A) = Hom(B,A) = 0. If (A,B, C) is a trisection of indΛ then the
subcategory A is closed under predecessors and C is closed under successors.
Also, B is convex in indΛ, that is, if M = M1 → M2 → · · · → Mt−1 →
Mt = N is a path in indΛ with M,N ∈ B then Mi ∈ B for all i = 1, ..., t.

1.3. Covariantly and contravariantly finite subcategories

The notions of contravariantly and covariantly finite subcategories were
introduced in [12, 13]. Let X be an additive full subcategory of modΛ. We
say that X is contravariantly finite if for any Λ-module M , there is a
morphism fM :XM → M with XM ∈ X such that any morphism f :X →
M with X ∈ X factors through fM . Dually we define covariantly finite
subcategories and X is called functorially finite if it is both contravariantly
and covariantly finite. Finally, following [10], X is called homologically
finite if it is contravariantly finite or covariantly finite. For instance, if C
is a finite or cofinite subcategory of indΛ, then addC is functorially finite in
modΛ (see [12]). In particular, for a module M ∈ modΛ, the category addM
is functorially finite.

If X is an additive subcategory of modΛ, closed under extensions, then a
module M ∈ X is called Ext-projective in X if Ext1

Λ(M,−)|X = 0. Dually,
a module N to be Ext-injective in X if Ext1

Λ(−, N)|X = 0. If (X ,Y) is a
torsion pair, then M ∈ X is Ext-projective in X if and only if τΛM ∈ Y and
N ∈ Y is Ext-injective in Y if and only if τ−1

Λ N ∈ X (see [13]).
LetA be a full subcategory closed under predecessors of indΛ then C = Ac

is closed under successors and in this case (addC, addA) is a split torsion
pair. Denote by E the direct sum of a full set of representatives of the
indecomposable Ext-injective modules in A and by F the direct sum of a
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full set of representatives of the indecomposable Ext-projective modules in
C. We need the following particular case of the main result of [23].

Lemma 1.1. Let A be a full subcategory closed under predecessors of indΛ
and C = Ac. The following conditions are equivalent:

(a) addA is contravariantly finite.

(b) addA = CogenN for some N ∈ modΛ.

(c) addA = CogenE.

(d) addC is covariantly finite.

(e) addC = GenM for some M ∈ modΛ.

(f) addC = GenF . �

Let C be a full subcategory of indΛ closed under successors such that
addC is covariantly finite. Denote by F the direct sum of all indecomposable
Ext-projective modules in C and by N the direct sum of all indecomposable
injective Λ-modules lying in C.

Lemma 1.2 ([6] (5.3)). Let C be a full subcategory of indΛ closed under
successors. Assume that addC is covariantly finite. Then:

(a) F is convex if and only if C ⊆ RΛ.

(b) If, moreover, addC contains all the injective Λ-modules, then C ⊆ RΛ

if and only if Λ is tilted having F as a slice module. �

Note that, by [7] (2.1), the algebra Λ is tilted if and only if it has a convex
tilting module. For properties of tilted algebras we refer to [8].
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1.4. Support algebras

Let A be a full subcategory of indΛ closed under predecessors. Following
[2], we define its support algebra AΛ to be the endomorphism algebra of
the direct sum of a full set of representatives of the isomorphism classes of
the indecomposable projectives lying in A. Let C be a full subcategory of
indΛ closed under successors, we define dually the support algebra ΛC of C.
Note that modAΛ and modΛC are full subcategories of modΛ. We have the
following properties from [6] (4.1).

Lemma 1.3. Let A be a full subcategory of indΛ closed under predecessors
and C a full subcategory of indΛ closed under successors.

(a) All indecomposable Λ-modules lying in A have a natural structure of
indecomposable AΛ-modules;

(b) The indecomposable projective AΛ-modules are just the indecomposable
projective Λ-modules lying in A;

(c) For any indecomposable AΛ-module M we have pd(AΛ)M = pdΛM and
id(AΛ)M ≤ idΛM ;

(a’) All indecomposable Λ-modules lying in C have a natural structure of
indecomposable ΛC-modules;

(b’) The indecomposable injective ΛC-modules are just the indecomposable
injective Λ-modules lying in C;

(c’) For any indecomposable ΛC-module M we have id(ΛC)M = idΛM and
pd(ΛC)M ≤ pdΛM . �

1.5. Representation dimension

A module M is called a generator of modΛ if any projective Λ-module
belongs to addM , it is called a cogenerator of modΛ if any injective Λ-
module belongs to addM and it is called a generator-cogenerator of modΛ
if it is both a generator and a cogenerator of modΛ.

Definition 1.4. Let Λ be a non-semisimple artin algebra. The representa-
tion dimension rep.dimΛ of Λ is the infimum of the global dimensions of
the algebras EndM where M is a generator-cogenerator of modΛ.
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For the original definition of representation dimension and further details,
we refer to [9]. The characterization given above as definition appears in the
same paper.

Recall that a morphism f :M → N is said to be right minimal if
any morphism g such that fg = f is an isomorphism. Let X be an ad-
ditive full subcategory of modΛ. A right X -approximation of M is a
morphism f :X → M with X ∈ X such that the sequence of functors

Λ(−, X) → Λ(−,M) → 0 is exact in X . A morphism f is a minimal
right X -approximation of M if it is a right X -approximation of M and
also a right minimal morphism.

Remark 1.5. An additive full subcategory X of modΛ is contravariantly
finite if and only if any module M ∈ modΛ has a right X -approximation.

Consider X̄ ∈ modΛ and X = addX̄. Let f :X → M be a right X -
approximation of M . By [11] (I.2.2) there exists a decomposition X = X ′ ⊕
X ′′ such that f |X′ :X ′ → M is right minimal and f |X′′ = 0. Moreover f
factors through f |X′ , that is, there exists l:X → X ′ such that f = fX′ ◦ l.
Therefore fX′ is also a right X -approximation of M and so it is a minimal
right X -approximation of M .

Definition 1.6. Let Λ be an artin algebra and X be an additive full subcate-
gory of modΛ. An X -approximation resolution of length r of a module
M is an exact sequence 0 → Xr → Xr−1 → · · · → X1 → M → 0 such that
Xi ∈ X for each i, and the induced sequence of functors

0→ Λ(−, Xr)→ Λ(−, Xr−1)→ · · · → Λ(−, X1)→ Λ(−,M)→ 0

is exact in X .

Note that if (∗) 0 → Xr
ϕr→ Xr−1 → · · · → X2

ϕ2→ X1
ϕ1→ M → 0 is

an X -approximation resolution of M then ϕ1 and each restriction ϕi:Xi →
Kerϕi−1 are right X -approximations. We are using, by abuse of notation,
the same notation for the morphism ϕi and for the restriction of ϕi over its
image. If each of these morphisms is right minimal, we say that (∗) is a
minimal X -approximation resolution.

For a Λ-module X̄, each module has a minimal right addX̄-approximation.
Then we can construct a minimal addX̄-approximation resolution for each
module in modΛ.

8



Lemma 1.7. Let X̄ and M be Λ-modules in modΛ. If there exists an addX̄-
approximation resolution of length r of M then there exists a minimal addX̄-
approximation resolution of length at most r of M .

Proof. Let 0 → Xr
ϕr→ Xr−1 → · · · → X2

ϕ2→ X1
ϕ1→ M → 0 be an

addX̄-approximation resolution of length r of M . We can construct an exact

sequence 0 → K → X ′r+1

ψr+1→ X ′r
ψr→ X ′r−1 → · · · → X ′2

ψ2→ X ′1
ψ1→ M → 0

where each ψi (over its image) is a minimal right addX̄-approximation. Then,
for i ∈ {1, 2, · · · , r + 1}, there exist fi:Xi → X ′i such that the diagram

0 // 0 // 0 //

fr+1

��

Xr
ϕr //

fr

��

· · · // X2
ϕ2 //

f2

��

X1
ϕ1 //

f1

��

M // 0

0 // K // X ′r+1

ψr+1 // X ′r
ψr // · · · // X ′2

ψ2 // X ′1
ψ1 // M // 0

is commutative. By minimality of each ψi we have that each fi is a retraction
and, in particular, we have X ′r+1 = 0. This completes the proof. �

Remark 1.8. It follows from this lemma that, if there exists an addX̄-
approximation resolution of length r of M , then we can assume that it is
minimal.

Definition 1.9. A Λ-module X̄ is said to have the r-approximation prop-
erty if each indecomposable Λ-module has an addX̄-approximation resolution
of length at most r.

Theorem 1.10 (see [14, 15, 25]). For an artin algebra Λ, rep.dimΛ ≤
r + 1 if and only if there exists a generator-cogenerator of modΛ satisfy-
ing the r-approximation property. �

Auslander proved in [9] that Λ is representation-finite if and only if
rep.dimΛ ≤ 2. Thus, if Λ is representation-infinite, then rep.dimΛ ≥ 3.

An important class of algebras which has representation dimension at
most 3 is the class of tilted algebras as demonstrated in [7]. There, it is proved
that if T is a convex tilting module of a tilted algebra Λ then Λ⊕DΛ⊕ T is
a generator-cogenerator having the 2-approximation property. Here, we use
some arguments from this paper in Lemma 2.2 below.

Many other classes of algebras have been shown to have representation
dimension at most 3, see, for instance [7, 9, 14, 15, 21, 25].

9



2. Proof of the first theorem

The next trivial corollary of Lemma 1.1 will be useful in the sequel.

Corollary 2.1. Let (A,B, C) be a trisection of indΛ such that B is finite.
Then addC is covariantly finite if and only if addA is contravariantly finite.

Proof. This follows immediately from Lemma 1.1 and the finiteness of B. �

Let C ⊆ RΛ be a full subcategory of indΛ closed under successors such
that addC is covariantly finite. Denote by F the direct sum of all indecompos-
able Ext-projectives in addC and by N the direct sum of all indecomposable
injective Λ-modules lying in C.

Lemma 2.2. Let C ⊆ RΛ be a full subcategory of indΛ closed under suc-
cessors such that addC is covariantly finite. For each M ∈ C, there exists
a short exact sequence 0 → F2 → F1 ⊕ I1 → M → 0 with I1 ∈ addN and
F1, F2 ∈ addF that is an add(F ⊕ N)-approximation resolution of length 2
of M .

Proof. Since C ⊆ RΛ by Lemma 1.3 we have C ⊆ R(ΛC). And since addC
contains all the injective ΛC-modules it follows from Lemma 1.2 that ΛC is a
tilted algebra and F is a convex tilting ΛC-module.

Since addC = GenF ⊆ Gen(F ⊕ N), then by [7] (1.4), for any M ∈ C
there exists an exact sequence 0→ K → F1⊕ I1 →M → 0 with F1 ∈ addF ,
I1 ∈ addN such that the short sequence

0→ Λ(−, K)→ Λ(−, F1 ⊕ I1)→ Λ(−,M)→ 0

is exact in add(F ⊕N). Now by [7] (2.2) (f), we have K ∈ addF and there-
fore we have an add(F ⊕N)-approximation resolution of length 2 of M . �

Lemma 2.3. Let Λ be an artin algebra and (A,B, C) a trisection of indΛ
with B finite, C ⊆ RΛ and assume addC is covariantly finite. Then,

rep.dimΛ ≤ max{3, rep.dimAΛ}.

Proof. Denote AΛ = A and suppose that rep.dimA = r + 1. Let X̄ be a
generator-cogenerator of modA which has the r-approximation property in
indA. Consider the following modules:
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- X̄ ′ the direct sum of all indecomposable summands of X̄ that lie in A;

- Z the direct sum of all indecomposable Λ-modules lying in B;

- F the direct sum of all indecomposable Ext-projectives in addC; and

- N the direct sum of all indecomposable injective Λ-modules lying in C.

We will prove that M̄ = X̄ ′ ⊕ Z ⊕ F ⊕ N is a generator-cogenerator of
modΛ and that it has the max{2, r}-approximation property in indΛ.

Let P ∈ indΛ be a projective Λ-module. If P lies in A then P is a
projective A-module and so it is a summand of X̄ ′. If P lies in B then it is a
summand of Z. And, if P lies in C then P is an Ext-projective in addC and
so a summand of F . Thus M̄ is a generator of modΛ.

Let I ∈ indΛ be an injective Λ-module. If I lies in A then I is an injective
A-module and so it is a summand of X̄ ′. If I lies in B, then it is a summand
of Z. And if I lies in C, then it is a summand of N . Thus M̄ is a cogenerator
of modΛ.

In order to prove that M̄ has the max{2, r}-approximation property in
indΛ, consider M ∈ indΛ. If M ∈ addM̄ , there is nothing to do, then we
can assume that M /∈ addM̄ and, in this case, M ∈ A ∪ C.

If M ∈ A, then M is an A-module. Let

(1) 0→ Xr
ϕr→ Xr−1 → · · · → X2

ϕ2→ X1
ϕ1→M → 0

be an addX̄-approximation resolution of length r in modA. Then, since
HomΛ(L,N) = HomA(L,N) for any L,N ∈ A, the sequence of functors

(2) 0→ Λ(−, Xr)→ Λ(−, Xr−1)→ · · · → Λ(−, X1)→ Λ(−,M)→ 0

is exact in addX̄. Since addX̄ ′ ⊆ addX̄, it follows that (2) is exact in addX̄ ′.
The sequence (2) is zero in add(Z ⊕ F ⊕N) because all the indecomposable
summands of Z⊕F⊕N are in B∪C and A is closed under predecessors. This
proves that (2) is exact in addM̄ and therefore (1) is an addM̄ -approximation
resolution of length r of M .

If M ∈ C, then, by Lemma 2.2, there exists an add(F⊕N)-approximation
resolution of length 2 of M :

(3) 0→ F2 → F1 ⊕ I1 →M → 0
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with F1, F2 ∈ addF ⊆ addM̄ and I1 ∈ addN ⊆ addM̄ . Let L ∈ indΛ be a
summand of X̄ ′ ⊕ Z. If L is a projective Λ-module, then 0 → Λ(L, F2) →
Λ(L, F1 ⊕ I1)→ Λ(L,M)→ 0 is exact. If L is not projective, then τΛL /∈ C,
because C is closed under successors and L /∈ C, while F2 ∈ addC so we have

Ext1
Λ(L, F2) ∼= DHomΛ(F2, τΛL) = 0.

Therefore, we have that the short sequence

0→ Λ(−, F2)→ Λ(−, F1 ⊕ I1)→ Λ(−,M)→ 0

is exact in add(X̄ ′ ⊕ Z) and so (3) is an addM̄ -approximation resolution of
length 2 of M . This proves that rep.dimΛ ≤ max{3, r + 1} and completes
the proof. �

Lemma 2.4. Let A be a convex full subcategory of indΛ and 0→ X
f→ Y

g→
Z → 0 be an exact sequence in addA. If K is an Ext-injective in addA which
is a summand of X, then it is isomorphic to a summand of Y .

Proof. Let p:X → K and i:K → X be the natural morphisms such that
p ◦ i = 1K . There exists a commutative diagram with exact rows

0 // X

p

��

f // Y

��

g // Z

1Z

��

// 0

0 // K // Q // Z // 0

where Q is the pushout of f and p. By convexity, Q is in addA. Since K is
Ext-injective in addA then the exact sequence 0→ K → Q→ Z → 0 splits.
So we have the following commutative diagram with exact rows

0 // X

p

��

f // Y“
h1
h2

”
��

g // Z

1Z

��

// 0

0 // K “
1
0

”// K ⊕ Z // Z // 0

By the commutativity we have
(

h1

h2

)
f =

(
1
0

)
p, that is h1 ◦ f = p. So

h1 ◦ f ◦ i = p ◦ i = 1K . This proves that h1:Y → K is a retraction and
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therefore K is isomorphic to a summand of Y . �

Lemma 2.5. Let A be a full subcategory of indΛ closed under predecessors
and X̄ ∈ modΛ. If f :X → M is a minimal right addX̄-approximation of
M , then Ker f has no Ext-injective direct summand in addA.

Proof. Let K be a direct summand of Ker f which is Ext-injective in addA.
By the last lemma, K is also a direct summand of X. But f(K) = 0 and
this is a contradiction with the minimality of f by [11] (I.2.3). �

Theorem 2.6. Let Λ be a representation-infinite artin algebra and (A,B, C)
be a trisection of indΛ with B finite.

(a) If C ⊆ RΛ and addC is covariantly finite, then

rep.dimΛ = max{3, rep.dimAΛ}.

(b) If A ⊆ LΛ and addA is contravariantly finite, then

rep.dimΛ = max{3, rep.dimΛC}.

Proof. We will only prove part (a) because (b) is dual.
By Lemma 2.3, we have rep.dimΛ ≤ max{3, rep.dimAΛ}.
On the other hand, suppose rep.dimΛ = s + 1. Note that s ≥ 2 because

Λ is a representation-infinite algebra. Let M̄ be a generator-cogenerator of
modΛ which has the s-approximation property in indΛ. Denote A = AΛ,
B′ = B ∩ indA and C ′ = C ∩ indA. Then (A,B′, C ′) is clearly a trisection of
indA with B′ finite. Consider the following modules:

- M̄ ′ the direct sum of all indecomposable summands of M̄ that lie in A;

- E the direct sum of all indecomposable Ext-injectives in addA which
are not injective in modΛ;

- Z the direct sum of all indecomposable A-modules lying in B′;

- F the direct sum of all indecomposable Ext-projectives in addC ′; and
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- N the direct sum of all indecomposable injective A-modules lying in
C ′.

We will prove that the A-module X̄ = M̄ ′⊕E⊕Z⊕F ⊕N is a generator-
cogenerator of modA and that it has the s-approximation property in indA.

If P ∈ indΛ is a projective A-module, then P is a projective Λ-module
lying in A and so P is a summand of M̄ ′. Let I ∈ indA be an injective
A-module. If I lies in A then I is an Ext-injective in addA and so I is a
summand of M̄ ′ if it is injective in modΛ, or I is a summand of E if it is not
injective. If I lies in B′ then it is a summand of Z and if I lies in C ′ then it
is a summand of N . Therefore X̄ is a generator-cogenerator of modA.

To prove that X̄ has the s-approximation property consider M ∈ indA
such that M /∈ addX̄. Then M ∈ A ∪ C ′.

By Corollary 2.1, since addC is covariantly finite in modΛ, then addA
is contravariantly finite in modΛ and hence it is contravariantly finite in
modA. Now, since (A,B′, C ′) is a trisection of indA with B′ finite, then
addC ′ is covariantly finite in modA. Note that C ′ is closed under successors
in indA and, by Lemma 1.3, we have C ′ ⊆ RA. Therefore, if M ∈ C ′, by
Lemma 2.2, there is an exact sequence in modA

0→ F2 → F1 ⊕ I1 →M → 0

with F1, F2 ∈ addF ⊆ addX̄ and I1 ∈ addN ⊆ addX̄ such that the short
sequence

0→ A(−, F2)→ A(−, F1 ⊕ I1)→ A(−,M)→ 0

is exact in add(F ⊕N).
Let L ∈ indA be a summand of M̄ ′ ⊕ Z ⊕ E then L /∈ C ′. If L is a

projective A-module, then

0→ A(L, F2)→ A(L, F1 ⊕ I1)→ A(L,M)→ 0

is exact. If L is not A-projective, then τAL /∈ C ′ because C ′ is closed under
successors while F2 ∈ addC ′ so we have

Ext1
A(L, F2) ∼= DHomA(F2, τAL) = 0.

Therefore, the short sequence

0→ A(−, F2)→ A(−, F1 ⊕ I1)→ A(−,M)→ 0

14



is exact in add(M̄ ′ ⊕ Z ⊕ E) and so 0 → F2 → F1 ⊕ I1 → M → 0 is an
addX̄-approximation resolution of length 2 of M .

If M ∈ A consider an addM̄ -approximation resolution of M :

(1) 0→Ms
ϕs→Ms−1 → · · · →M2

ϕ2→M1
ϕ1→M → 0.

Since M ∈ A and A is closed under predecessors each Mi ∈ addA and so each
Mi ∈ addM̄ ′ ⊆ addX̄. Since addM̄ ′ ⊆ addM̄ and indA is a full subcategory
of indΛ then the induced sequence

(2) 0→ A(−,Ms)→ A(−,Ms−1)→ · · · → A(−,M1)→ A(−,M)→ 0

is exact in addM̄ ′.
The sequence (2) is zero in add(Z ⊕ F ⊕ N) because A is closed under

predecessors and Z ⊕ F ⊕N ∈ add(B ∪ C).
Finally let L ∈ addE be an indecomposable module and denote Ki =

Kerϕi for i ∈ {1, ..., s−1}. Since L is Ext-injective in addA and not injective
then τ−1

Λ L /∈ A and since M is not Ext-injective (because M /∈ addX̄) then
τ−1

Λ M ∈ A. Therefore HomΛ(τ−1
Λ L, τ−1

Λ M) = 0 and so HomΛ(L,M) = 0. If
f :L→M is a morphism, then there exist an injective Λ-module I and mor-
phisms f1:L→ I, f2: I →M such that f = f2 ◦ f1. Since I is a summand of
M̄ then Λ(I,M1)→ Λ(I,M)→ 0 is exact, so there is a morphism g: I →M1

such that ϕ1 ◦ g = f2, that is f = ϕ1 ◦ (g ◦ f1) = HomΛ(L, ϕ1)(g ◦ f1) and
therefore 0 → Λ(L,K1) → Λ(L,M1) → Λ(L,M) → 0 is exact. Because
of Remark 1.8 and Lemma 2.5, we can assume that each Ki ∈ addA (for
i ∈ {1, ..., s − 1}) has no Ext-injective summand, so the same argument is
valid replacing M by Ki. Therefore for each i ∈ {1, ..., s − 1} the sequence
0 → Λ(L,Ki+1) → Λ(L,Mi+1) → Λ(L,Ki) → 0 is exact. This proves that
the sequence (2) is exact in addE and so (1) is an addX̄-approximation reso-
lution of length s of M . This proves that rep.dimA ≤ s+ 1 = rep.dimΛ and
completes the proof of the theorem. �

Corollary 2.7. Let Λ be a representation-infinite algebra.

(a) If A is a cofinite full subcategory of indΛ closed under predecessors,
then rep.dimΛ = rep.dim AΛ.

(b) If C is a cofinite full subcategory of indΛ closed under successors, then
rep.dimΛ = rep.dim ΛC.
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Proof. For (a) just take B = Ac and C = ∅. Since A is cofinite and indΛ is
infinite then A ⊆ indAΛ is infinite. Therefore rep.dim AΛ ≥ 3.

The item (b) is dual. �

Example 2.8.

Let k be a field and Λ be the k-algebra given by the quiver

4
γ

������
5εoo 8

~~~~~~~

1 2αoo 3
β1oo

β2

oo 6
δ

oo

^^====

7
λ

oo 9oo

10

``@@@@@

bound by the relations βiα = γβi = δβi = εγ = λδ = 0, for i = 1, 2.
The algebra Λ is representation-infinite and so rep.dimΛ ≥ 3. The right

part RΛ consists of all the successors of τ−1P4 and addRΛ is covariantly
finite. The left part is LΛ = {P1, P2, S2, P3}. Its support algebra (LΛ)Λ is
given by the objects 1, 2 and 3, that is, (LΛ)Λ is a tilted algebra that has the

quiver 1 2αoo 3
β1oo

β2

oo bound by βiα = 0 with i = 1, 2. Denote A = ind (LΛ)Λ

which consists of all predecessors of S3 (and so it is infinite). In this case, it
is easy to see that (A, (A ∪RΛ)c,RΛ) is a trisection of indΛ and (A ∪RΛ)c

is finite. By Theorem 2.6, rep.dimΛ = rep.dimAΛ. But AΛ = (LΛ)Λ and so
rep.dimΛ = 3.

3. The left and right parts and representation dimension

As a direct consequence of Theorem 2.6, we have the next corollary.

Corollary 3.1. Let Λ be a representation-infinite artin algebra.

(a) If C ⊆ RΛ is a full subcategory of indΛ closed under successors such
that addC is covariantly finite, then

rep.dimΛ = max{3, rep.dim (Cc)Λ}.
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(b) If A ⊆ LΛ is a full subcategory of indΛ closed under predecessors such
that addA is contravariantly finite, then

rep.dimΛ = max{3, rep.dim Λ(Ac)}.

Proof. For (a) just take A = Cc and B = ∅. The item (b) is dual. �

From this, we can prove a stronger result that does not require that the
subcategory is homologically finite.

Proposition 3.2. Let Λ be a representation-infinite artin algebra.

(a) If C ⊆ RΛ is a subcategory closed under successors, then

rep.dimΛ = max{3, rep.dim (Cc)Λ}.

(b) If A ⊆ LΛ is a subcategory closed under predecessors, then

rep.dimΛ = max{3, rep.dim Λ(Ac)}.

Proof. If each projective indecomposable Λ-module lies in Cc then Λ = (Cc)Λ.
Otherwise, let D = SuccY where Y is the sum of all projective indecom-
posable Λ-modules lying in C. Then D is a full subcategory of RΛ closed
under successors. Denote by F the sum of all the Ext-projective inde-
composable modules in addD. Since Y is Ext-projective in addD we have
that D = SuccY ⊆ SuccF . But F ∈ addD and so SuccF ⊆ D, be-
cause D is closed under successors. Therefore D = SuccF . By [2] (8.2),
we have that addD is covariantly finite. By Corollary 3.1, it follows that
rep.dimΛ = max{3, rep.dim (Dc)Λ}. Finally, for a projective indecomposable
Λ-module P , we have P ∈ C if and only if P ∈ D, so P /∈ C if and only if
P /∈ D and then (Cc)Λ = (Dc)Λ and this completes the proof of (a). The item
(b) is dual. �

Corollary 3.3. If Λ is a representation-infinite artin algebra, then

rep.dimΛ = max{3, rep.dim (RΛ)cΛ} = max{3, rep.dim Λ(LΛ)c}.

�
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Applying the last corollary to the algebra B = (RΛ)cΛ we conclude that

rep.dimΛ = max{3, rep.dim B(LB)c}

and so the representation dimension of Λ depends just on an algebra that is
a subcategory of (RΛ)cΛ and of Λ(LΛ)c .

4. Proof of the second theorem

Now, even when C is not necessarily in RΛ and A is not necessarily in LΛ

we can still find a relation between the representation dimension of Λ and
the representation dimensions of AΛ and of ΛC. For this, however, we need
to suppose that indΛC is closed under successors or indAΛ is closed under
predecessors. To illustrate this hypothesis, we show an example.

Example 4.1.

In Example 2.8 we have that ind (LΛ)Λ consists of all predecessors of S3, that
is ind (LΛ)Λ = PredS3 and so it is closed under predecessors. In the same

example we have that Λ(RΛ) is the hereditary algebra

8

~~~~~~~

4 5oo 6oo 7oo 9oo

10

``@@@@@

and the module 6
5 3 /∈ ind Λ(RΛ) is a successor of S5 ∈ ind Λ(RΛ) so it is not

closed under successors.

Theorem 4.2. Let Λ be an artin algebra with a trisection (A,B, C) of indΛ.
If

(a) (A ∪ indΛC)
c is finite and indΛC is closed under sucessors

or

(b) (indAΛ ∪ C)c is finite and indAΛ is closed under predecessors,

then,
rep.dimΛ ≤ max{rep.dimAΛ, rep.dimΛC}.
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Proof. Suppose that rep.dimAΛ = r + 1 and rep.dimΛC = s + 1. Let Ȳ be
a generator-cogenerator of modAΛ which has the r-approximation property
in indAΛ and let X̄ be a generator-cogenerator of modΛC which has the s-
approximation property in indΛC. Suppose (a) and consider the following
modules:

- Ȳ ′ the direct sum of all indecomposable summands of Ȳ that lie in A
but not in indΛC, and

- Z the direct sum of the all indecomposable modules lying in (A ∪
indΛC)

c.

We will prove that M̄ = Ȳ ′⊕Z⊕ X̄ is a generator-cogenerator of modΛ and
it has the max{r, s}-approximation property in indΛ.

Let P ∈ indΛ be a projective Λ-module. If P lies in A\ indΛC, then P is
a projective AΛ-module and it is a summand of Ȳ ′. If P lies in (A∪ indΛC)

c,
then it is a summand of Z. And if P lies in indΛC, then P is a projective
ΛC-module and so it is a summand of X̄. Let I ∈ indΛ be an injective Λ-
module. If I lies in A \ indΛC, then I is a injective AΛ-module and it is a
summand of Ȳ ′. If I lies in (A∪ indΛC)

c, then it is a summand of Z. And if
I lies in indΛC, then I is an injective ΛC-module and so it is a summand of
X̄. Therefore M̄ is a generator-cogenerator of modΛ.

Consider M ∈ indΛ such that M /∈ addM̄ . Then M ∈ A ∪ indΛC.
Suppose M ∈ A ⊆ indAΛ such that M /∈ indΛC. There is an addȲ -

approximation resolution of length r in modAΛ:

(1) 0→ Yr
ϕr→ Yr−1 → · · · → Y2

ϕ2→ Y1
ϕ1→M → 0.

Since A is closed under predecessors and indΛC is closed under successors
then any Yi belongs to addȲ ′ ⊆ addM̄ . Since modAΛ is a full subcategory
of modΛ, the induced sequence

(2) 0→ Λ(−, Yr)→ Λ(−, Yr−1)→ · · · → Λ(−, Y1)→ Λ(−,M)→ 0

is exact in addȲ ′.
Since A \ ind ΛC is closed under predecessors and each indecomposable

summand of Z ⊕ X̄ is not in A \ ind ΛC, then the sequence (2) is zero in
add(Z ⊕ X̄). This proves that (2) is exact in addM̄ . Then (1) is an addM̄ -
approximation resolution of M .
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If M ∈ indΛC, there exists an addX̄-approximation resolution of length
s in modΛC:

(3) 0→ Xs
ψs→ Xs−1 → · · · → X2

ψ2→ X1
ψ1→M → 0.

Since indΛC is a full subcategory of indΛ, the induced sequence

(4) 0→ Λ(−, Xs)→ Λ(−, Xs−1)→ · · · → Λ(−, X1)→ Λ(−,M)→ 0

is exact in addX̄. We have Ni = Kerψi ∈ modΛC, for i ∈ {1, ..., s − 1}.
Let N ∈ indΛC be a non-injective summand of N1, then since indΛC is closed
under successors we have τ−1

Λ N ∈ indΛC and so

Ext1
Λ(Ȳ ′ ⊕ Z,N) ∼= DHomΛ(τ−1

Λ N, Ȳ ′ ⊕ Z) = 0.

Then the short sequence

0→ Λ(−, N1)→ Λ(−, X1)→ Λ(−,M)→ 0

is exact in add(Ȳ ′⊕Z). The same argument holds true replacing M by Ni for
i ∈ {1, ..., s−1} and this proves that the sequence (4) is exact in add(Ȳ ′⊕Z)
and so (3) is an addM̄ -approximation resolution of M . Therefore

rep.dimΛ ≤ max{r + 1, s+ 1}.

The proof with the hypothesis (b) is dual. �

Example 4.3.

In Example 2.8 we exhibit a trisection (LΛ, (LΛ∪RΛ)c,RΛ) of indΛ with
(LΛ ∪ RΛ)c infinite. There ind (LΛ)Λ = PredS3 is closed under predecessors
and (ind (LΛ)Λ∪RΛ)c is finite. So, by Theorem 4.2 (b), we have rep.dimΛ ≤
max{rep.dim (LΛ)Λ, rep.dimΛ(RΛ)}. Now, because Λ(RΛ) is hereditary, (LΛ)Λ
is tilted and Λ is representation-infinite, we have rep.dimΛ = 3.

5. Applications

5.1. Laura algebras

Following [4], we say that an artin algebra Λ is a laura algebra if LΛ∪RΛ

is cofinite in indΛ and it is a strict laura algebra if it is a laura but is not
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quasi-tilted. If Λ is a strict laura then Λ is left and right supported (see
[5] (4.4)), that is, addLΛ is contravariantly finite and addRΛ is covariantly
finite, respectively. As a first application of Theorem 2.6, we give another
proof of the result of [7] (4.1) saying that if Λ is a strict laura algebra then
rep.dimΛ ≤ 3.

Corollary 5.1. If Λ is a laura algebra, then rep.dimΛ ≤ 3.

Proof. If Λ is quasi-tilted, this follows from [21], hence we can assume that
Λ is strict. Since Λ is left supported then addLΛ is contravariantly finite
and by [5] (5.1) we have that (LΛ)Λ is a product of tilted algebras and so
rep.dim (LΛ)Λ ≤ 3. By Corollary 2.1, as (LΛ,B,RΛ \ LΛ) is a trisection of
indΛ where B = (LΛ ∪RΛ)c is finite then add(RΛ \ LΛ) is covariantly finite.
By Lemma 2.3, we have rep.dimΛ ≤ max{3, rep.dim (LΛ)Λ} = 3. �

Let Λ be a strict laura algebra such that LΛ ∩RΛ = ∅, then (LΛ,B,RΛ),
where B = (LΛ ∪ RΛ)c is finite, is a trisection of indΛ. On the other hand,
if E denotes the sum of all indecomposable Ext-injective modules of addLΛ,
then X̄ = A ⊕ DA ⊕ E is a generator-cogenerator of A = (LΛ)Λ having
the 2-approximation property, by [7](2.3). Then, in this case, the generator-
cogenerator constructed in Lemma 2.3 coincides with the one constructed in
[7] (4.1).

5.2. Ada algebras

As a second application, we consider the class of ada algebras introduced
in [3]. An artin algebra Λ is called an ada algebra if Λ⊕DΛ ∈ add(LΛ∪RΛ).
We have that for an ada algebra the representation dimension is less or equal
to 3. This follows from the next consequence of Proposition 3.2.

Theorem 5.2. Let Λ be a representation-infinite artin algebra. If Λ ∈
add(LΛ ∪RΛ), then rep.dimΛ = 3.

Proof. For C = RΛ \ LΛ by the Proposition 3.2 we have rep.dimΛ =
max{3, rep.dim (Cc)Λ}. But, in this case, a projective P lies in Cc if and only
if P ∈ LΛ. Then, (Cc)Λ = (LΛ)Λ. Moreover by [5](2.3) the algebra (LΛ)Λ is a
product of quasi-tilted algebras and then, by [21], we have rep.dim (LΛ)Λ ≤ 3.
Therefore rep.dimΛ = 3. �

Corollary 5.3. If Λ is an ada algebra then rep.dimΛ ≤ 3. �
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5.3. Nakayama oriented pullbacks

In this section, all algebras are basic, associative, finite dimensional alge-
bras with identities over an algebraically closed field k.

Let A, B and C be algebras and let f : A → B and g : C → B be
morphisms. The pullback of f and g is the algebra R = {(a, c) ∈ A × C :
f(a) = g(c)}. Consider the case where A = kQA/IA, C = kQC/IC and
QB is a full and convex subquiver of QA and of QC such that IA ∩ kQB =
IC ∩ kQB =: IB. In this case, the algebra B = kQB/IB ∼= eBAeB ∼= eBCeB
is a common quotient of A and of C. Let R be the pullback of the canonical
projections A → B and C → B. The following lemma describes the bound
quiver of R in terms of the bound quivers of A, B and C.

Lemma 5.4 (see [17, 20]). Let QR be the pushout of the inclusion maps
QB → QA and QB → QC, and consider the ideal IR = IA + IC + I where I
is the ideal generated by all paths linking (QA)0 \ (QB)0 and (QC)0 \ (QB)0.
Then R ∼= kQR/IR. �

It is easily seen that every indecomposable A-module has an R-module
structure. We can assume that indA is contained in indR. Similarly we can
assume that indB ⊆ indC ⊆ indR.

Definition 5.5 (see [20]). Let R ∼= kQR/IR be the pullback of A→ B and
C → B. Then R is a Nakayama oriented pullback if its bound quiver
(QR, IR) satisfies the following conditions:

(i) There is no path from (QB)0 to (QC)0 \ (QB)0 and from (QA)0 \ (QB)0

to (QB)0.

(ii) B is an hereditary Nakayama algebra and the connected components
QB1, QB2, . . ., QBr of QB are of the form QBi = ai,ti → ai,ti−1

→
· · · → ai,1 with 1 ≤ i ≤ r and ti ≥ 1.

(iii) In QB only sources are target of arrows of (QC)1\(QB)1 and only sinks
are sources of arrows of (QA)1 \ (QB)1.

(iv) No minimal relation of R has its origin in (QB)0.
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By the shape of (QR, IR), we have that, for any i ∈ (QC)0, the injective
R-module associated to i coincides with the injective C-module associated to
i. And, for any i ∈ (QB)0, the injective A-module associated to i coincides
with the injective B-module associated to i.

So we have the following remark.

Remark 5.6. If M is a C-module then idRM = idCM , that is, the injective
dimention of M over R coincides with the injective dimension of M over C.
And, if M is a B-module then idAM = idBM .

It follows from [17, 20] that indR = indA∪ indC and indB = indA∩ indC
and, moreover, we have that indC is closed under successors and indA is
closed under predecessors.

Now, we have an application of Proposition 3.2.

Corollary 5.7. Let R be a representation-infinite Nakayama oriented pull-
back of A→ B and C → B.

(a) If C is hereditary then rep.dimR = max{3, rep.dimA}.

(b) If A is hereditary then rep.dimR = max{3, rep.dimC}.

Proof. Denote C = indC \ indB which is closed under successors, so by
Remark 5.6, as C is hereditary, it follows that C ⊆ RR. By Proposition
3.2, we have that rep.dimR = max{3, rep.dim (Cc)R}. But Cc = indA and so

(Cc)R = A. This shows that rep.dimR = max{3, rep.dimA}.
The proof of (b) is dual. �

Finally, as an application of Theorem 4.2, we have a more general result
for Nakayama oriented pullbacks.

Corollary 5.8. Let R be the Nakayama oriented pullback of A → B and
C → B. Then rep.dimR ≤ max{rep.dimA, rep.dimC}.

Proof. If A and C are representation-finite algebras, then so is R, because
indR = indA∪ indC. Suppose that A is representation-infinite. In Theorem
4.2, take A = indA \ indB, B = ∅ and C = indC. Then RC = C and
rep.dimR ≤ max{rep.dimAR, rep.dimC}.

Note that AR = AA and that, for M ∈ indB, by Remark 5.6, we have
idAM = idBM = 1 because B is hereditary. So indB ⊆ RA and since A is a
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representation-infinite algebra, then, by Proposition 3.2, we have rep.dimA =
max{3, rep.dimAA} and so rep.dimAA ≤ rep.dimA.

Therefore, rep.dimR ≤ max{rep.dimA, rep.dimC}.
A similar proof holds if we suppose that C is representation-infinite.

�

Example 5.9.

Let R be the algebra given by the quiver
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bound by the relations βiα = γβi = δβi = εγ = λδ = 0, for i = 1, 2. We
can see R as a Nakayama oriented pullback where B is given by 2 3αoo , A

is given by 1 2
oo
oo 3αoo and C is given by
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bound by the same relations as R. Because A is hereditary then rep.dimA =
3. The algebra C is the same as in Example 2.8 and so rep.dimC = 3. By
the last corollary we have rep.dimR = 3.
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