ON SPLIT BY NILPOTENT EXTENSIONS

IBRAHIM ASSEM AND DAN ZACHARIA

It is frequent in the representation theory of artin algebras to consider problems
of the following type: let A and R be artin algebras over a commutative artin ring
k, and assume that the category mod A of finitely generated right A-modules is
embedded in the category mod R of finitely generated right R-modules, then which
properties of mod R are inherited by mod A7 In this paper, we study this problem in
the following context: we let R and A be such that there exists a surjective algebra
morphism R — A, whose kernel @) is a nilpotent ideal of R. We say then that R
is a split-by-nilpotent extension of A by @, see [AM, AZ, F1, Ma, Mi]. We start
by considering some of the classes of algebras that have been extensively studied in
recent years in the representation theory of artin algebras, namely the quasi-tilted
algebras [HRS], the shod algebras [CL1], the weakly shod algebras [CL2], the left
and right glued algebras [AC1], and finally, the laura algebras [AC3, S]. Our first

main theorem says that, if R belongs to one of these classes, then so does A.

Theorem A: Let R be a split-by-nilpotent extension of A by Q. Then:
(a) If R is laura, then so is A.
(b) If R is left (or right) glued, then so is A.
(¢) If R is weakly shod, then so is A.
(d) If R is shod, then so is A.
(e) If R is quasi-tilted, then so is A.

We conjecture that, if R is a tilted algebra, then so is A. We prove here that this
conjecture is true in the case when R is a tame algebra (see (2.5) below). In order to
investigate the general case, we start with a given tilting R-module U, and we study
under which conditions U @pg A is a tilting A-module. Such a tilting R-module is
called restrictable. We show that this is indeed the case whenever Torf(U, A)=0
(see (3.2) below). This sufficient condition was obtained independently by Fuller
[F2] and Miyashita [M]. We recall that a tilting A- module T is extendable if T® 4 R
is a tilting R-module. The extendable tilting A-modules have been characterized
in [AM]. This leads us to our second main result:

Theorem B: The functors — @r A and — ®4 R induce mutually inverse bijections
between the class of the induced tilting R-modules U such that Torf(U, A) =0, and
the class of extendable tilting A-modules.

We conclude the paper by giving conditions which are equivalent to the condition
Tor?(U, A) =0, and with some remarks and examples.

This paper consists of three sections. Section 1 is devoted to some basic facts
about split-by-nilpotent extensions, section 2 to our theorem A, and section 3 to
our theorem B.
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2 IBRAHIM ASSEM AND DAN ZACHARIA

1. BASIC FACTS ON SPLIT BY NILPOTENT EXTENSIONS

1.1. Throughout this paper, all algebras are artin algebras over a commutative
artinian ring k. Unless otherwise specified, the modules are finitely generated right
modules. We use freely, and without further reference; properties of the module
categories and the almost split sequences as can be found, for instance, in [ARS,
R1]. Let A and R be two artin algebras. We say that R is a split extension of A
by the two-sided nilpotent ideal @, or briefly a split by nilpotent extension, if there
exists a split surjective algebra morphism 7 : R — A whose kernel @) is a nilpotent
ideal. This means that there exists a short exact sequence of A — A-bimodules

ki
e

-
g

0—=Q—R A—>0

where ¢ denotes the inclusion and o is an algebra map such that 7c = 14. In
particular, A is a k-subalgebra of R. Note that since @ is nilpotent, then @ is
contained in rad R so that rad A = rad R/Q.

1.2. Let R and A be as above. We have the change of rings functors — ®4 R :
modA — modR, — ®r A : mod R — mod A, Homy (R4,—) : mod A — mod R,
and Homp(Agr, —) : mod R — mod A. The image of the functor — ®4 R in mod R
(or of the functor Homu(Ra,—) in mod R) is called the subcategory of induced
(or coinduced, respectively) modules. We have the obvious natural isomorphisms
— ®4 Rr®r Aa = lnoda, and Hompg(Agr, Homs(Ra, —)) = Imoar. Moreover,
an indecomposable R-module X is projective (or injective), if and only if there
exists an indecomposable projective A-module P such that X = P @4 R (or an
indecomposable injective A-module I such that X = Homy (R, I) respectively).

Lemma. If A is a connected algebra, then so is R.

Proof. Since, for every two indecomposable projective A-modules P and P’, the fact
that Homy (P, P’) # 0 implies that Hompg(P ®4 R, P’ ®4 R) # 0, the statement
follows from the connectedness of A and from the fact that every indecomposable
projective R-module is induced from an indecomposable projective A-module. O

The converse is not true as we shall see in example (1.3) below.

1.3.  We now consider the case where R and A are finite dimensional algebras over
a field k given by quivers and relations and show that, in this case, the ideal @ is
generated by arrows in the quiver of R. Assume that R = kI'/I is a presentation
of R as a quiver with relations. We say that a set S of generators of @ is minimal,
if, for each p 4 I in .S, we have:

(a) If p is a path in T, then for each proper subpath p’ of p, p’+1 does not belong
to @); and

(b) If p = > cicm Aiw; with m > 2, the A; nonzero scalars and the w; paths in
I' of positive length, all having the same source and the same target, then for each
nonempty proper subset J C {1,2,...m}, we have that >"._; Ajw; + I is not in

Q.

Proposition. Let R = kT /I be a split extension of A by Q. Then @ has a minimal
set of generators and any such set consists of the classes modulo I of arrows of T'.

jEJ
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Proof. Let {p1,...ps} be the preimages modulo I of any finite set of generators of ).
Notice that the set {ezpiep 1 a,b € Ty, 1 < i < s} is a set of linear combinations of
paths having the same source and the same target in I'. Further, since ¢ C rad R,
all the paths involved in these linear combinations have length at least 1. Let
o= ElSjSm Ajw; belong to this set, with m > 2, and assume that o does not
satisfy condition (b) in the definition of minimality. Then there exists a nonempty
proper subset J C {1,...m}, such that, if o' = > . ; Ajw;, then o' + I € Q. Since
o =o'+ (o —0'), we may replace o by ¢’ in the above set of generators. Since the
sum defining o is finite, applying this procedure finitely many times yields another
finite set {oy,...,0,} where all linear combinations of at least two paths satisfy
condition (b). Furthermore, the set {o1 + I,..., 0, + I} generates Q.

Assume that o; is a path and that it does not satisfy condition (a). Then, there
exist paths wy, we and o, such that o/+7 isin @, and o; = wyciwa. This procedure
yields after at most finitely many steps the required minimal set of generators for
Q. Let thus {p1,...,p:} be the preimages modulo I of such a minimal set. We
now show that each p = p; is an arrow. Assume first that p = ElSjSm Ajw; with
m > 2. By minimality, w; ¢ @, for each j, thus Ajw;+1I is identified with a nonzero
element of A = R/Q. So > Ajw; + I belongs to A and it is nonzero in A since it is
nonzero in R. On the other hand, p 4+ @Q = Zl<j<m Ajwj + @ is zero in A = R/Q)
since p+ I € (). This is a contradiction if m > 2, so we have established that each
p 1s a path. Assume now that p is of length { > 2, thus p = a1 ...a., where the
«; are arrows. By minimality, «; ¢ @ for each j. Hence, for each j, a; + I can be
identified with a nonzero element of A. So (a1 +1) ... (ae+ ) =a1...ac+1 €A
and 1s nonzero in A since it is nonzero in K. On the other hand, p+ @ 1s zero in A
so p must be an arrow. O

Example. Let R = kT'/I, where T is the quiver

S
St

and [ is the ideal generated by o5 —~d. Let Q1 =< a+ 1,0+ 1 > and Ay = R/Q;.
Then it is easily seen that R is a split-by-nilpotent extension of A;. However, if we
let @2 =< o+ 1 > and As = R/Q2, then R is not a split-by-nilpotent extension
of Ay because A is not a subalgebra of R. Indeed, in this case, (y + I)(d + I) is
zero in A, but not in R. This shows that, if R = kT'/I, and we let @ be the ideal
generated by an arbitrary set of arrows in I', then R need not be a split extension

of R/Q) by Q.

1.4 Lemma Let R be a split extension of A by @ and let e be an idempotent of A.
The eRe 1s a split extension of eAe by eQe.

Proof. Clearly, eQe 1s an ideal of eRe and it 1s nilpotent since eQe C Q. The
map 7 : eRe — eAe defined by n'(e(a,q)e) = eae is a surjective algebra map
having the map eae — e(a,0)e as a section. Moreover, Ker 7’ contains eQe. Since
eRe = eAe @ eQe as k-modules, counting lengths yields the result. a
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2. INHERITED PROPERTIES IN SPLIT-BY-NILPOTENT EXTENSIONS

2.1. Throughout this section, R denotes a split extension of A by the nilpotent
ideal @. Tt follows from [AM](2.2) that if R is hereditary, then so is A. This section
is devoted to proving analogous results for other classes of algebras. We start with
the following lemma:

Lemma. Let M be an A-module. If pd Mp < 1, then pd(M ®4 R)r < 1.

Proof. (Compare [AZ](1.1)). Let P, ELN Py 22, 0 be a minimal projective presen-
tation of M as an A-module. By [AM](1.3), we have an induced minimal projective
presentation of M ®4 R over R:

f1OR fo®R
PPOaAR——FPhO4R——>M @4 R——0

Let now 0 — P, L> Py ~f—0> M — 0 denote a minimal projective resolution of

M over R. By [AM](1.3), Py = Py ®4 R and we have a commutative diagram with
exact rows

f1OR FfoQR

PPOGAR——— P R——— M@ R———0(
~ JoQR
0 P, Pyoa RO 0

where ppr: 2 @ (a,9) — za (for # € M,a € A,¢ € Q). In order to determine Py,
we consider the bottom exact sequence as a sequence of A-modules. As A-modules,
we have Py @4 R=Z Py ® (Po®a Q) and M @4 R=ZM & (M ®4 Q). As A-linear

j(;O 1 (% Q:|’ so that pM(fo ® R) = [fo O]
We deduce an isomorphism of A-modules P; = Ker [fo O] ~ QLM @ (Pyoa Q).
Let P be the projective cover of (Py ®4 @) in mod A. We have a projective cover
morphism in mod R, denoted by p: P ®4 R — Py ®a . Since Py is projective
and 4Qpg 1s a subbimodule of 4 Rpg, it follows that Py ®4 @ is an R-submodule
of Py ®4 R. Letting f denote the composition of the inclusion with p, we get a
commutative diagram with exact rows in mod R:

maps, pM = [1 O] and fo® R = [

f1QR fo®R
P R——————— PO R————— M@ R———0
hoeRr f JoQR
(Pl@P)®AR¥>PO®AR pJo81) o 0

where the bottom row is a (usually not minimal) projective presentation of Mp.
We claim that there exists a summand P’ of P such that we have a commutative
diagram with exact rows where the bottom row is a minimal projective presentation
of MR.
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f1OR FfoQR
PO R———— P @A R——>Mu R——0
f1®Rf fo®R
0—— > (P& P)o, R——"5 P pullo®) _ o 0

where f’ denotes the restriction of f to P’ ®4 R. In order to prove the claim, let
P be a summand of P; @ P such that

@R
0—>P/'®AR—>PO®AR”M” .y 0

is a minimal projective resolution of M over R. Tensoring this resolution with g A,
and using the fact that M4 = M @r A (because M is annihilated by @), we obtain
a commutative diagram with exact rows in mod A:

0 — Tor (M, A) pr L p ey 0

P, f1 Py fo M 0

Since P is a projective cover of Q% M, there exists an epimorphism P’ — P; in-
duced from f”. Hence there is a decomposition P = P; ¢ P’ and the claim follows.

Therefore, f1 @ R = [f1 ® R f’] [é] is the composition of two monomorphisms,

so 1t 1s also a monomorphism and we have pd M ®4 R < 1. |

2.2 Corollary Let M be an A-module.
(a) If pd Mp < 1, then pd M4 < 1.
(b) Ifid Mp < 1, then id M4 < 1.

Proof. (a) The previous lemma implies that pd(M ©®4 R)r < 1, and by [AM](2.2),
we get pd My < 1.

(b) Assume that id Mg < 1. Then pdz(DM) < 1. Observe that, as R-modules,
r(DM) and 4(DM) are isomorphic because M is annihilated by @, hence the
projective dimension in mod R of 4(DM) is at most one. By the first part of the
corollary, pd 4, (DM) < 1 as an A-module, hence id M4 < 1. d

2.3. Let C be an algebra and let ind C' denote a full subcategory of mod C' con-
sisting of a complete set of representatives of the isomorphisms classes of indecom-
posable C-modules. Following [HRS], we let Lo denote the full subcategory of
ind C' consisting of those indecomposable C-modules U such that, if there exists an
indecomposable C-module V' and a sequence of nonzero C-morphisms

V=V —Vi—...—V,=U
then pd Vi < 1. The subcategory R¢ is defined dually.

Lemma. Let M be an indecomposable A-module.
(a) If M ®4 R belongs to L, then M belongs to L 4.
(b) If M @4 R belongs to R, then M belongs to R 4.
(¢) If Homa (R, M) belongs to Ry, then M belongs to R 4.
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(d) If Homy (R, M) belongs to Lg, then M belongs to L4.

Proof. (a) Assume that we have a sequence of nonzero morphisms between inde-
composable A-modules:

L=Ly—Li—...— L,=M.

For each i, the R-module L;® 4 R is indecomposable and the induced R-homomorphism
iR :Li_1®4 R— L; ®4 R is nonzero. Thus we have an induced sequence of
nonzero morphisms between indecomposable R-modules:

L@ R=Log@4s R— L1 Qs R— ... — L, Q4 R=M®4 R

and, since M @4 R € Ly, we have pd(L ®4 R)r < 1. By [AM](2.2), we infer that
pd LA S 1.

(c) The proof is similar to the proof of (a).

(b) We have the following sequence of isomorphisms of k-modules:

Homp(M ©4 R,Homu(grRa, M)) = Homus (M ©4 R®p R, M)
= Homua(M @4 Ra, M)
= Homa (M @4 (A B Q), M)
=~ Homu (M, M) @ Homy (M @4 Q, M)

Since Homy (M, M) # 0, there exists a nonzero homomorphism of R-modules from
M ®a R to Homu (R, M). Since M @4 Risin Rp, we see that Homu (R, M) € Rp.
By (¢), M € Ra4.

(d) Similar to (c). d

2.4. We recall the following definitions. An artin algebra C' is called a laura
algebra if Lo U R is cofinite in ind €| see [AC2, S, RS]. An artin algebra C' is
called left (or right) glued if the class of all U in ind C' such that idU < 1 (or
pd U < 1 respectively), is cofinite in ind C', see[AC1]. Tt is called weakly shod if the
length of any path of nonzero morphisms between indecomposable modules from an
injective module to a projective module is bounded, see [CL2]. Tt is shod if for each
indecomposable C-module U, we have pdU < 1 or idU < 1, see [CL1]. Finally, C
is quasi-tilted if it is shod and gldim C < 2, see [HRS]. We are now able to prove
the main result of this section.

Theorem. (a) If R is laura, then so is A.
(b) If R is left or right glued, then so is A.
(¢) If R is weakly shod, then so is A.

(d) If R is shod, then so is A.
(e) If R is quasi-tilted, then so is A.

Proof. (a) We first observe that if M is an indecomposable A-module and M ¢
L4 UR4, then, by (2.3), the R-module M ®4 R ¢ Lrp URRp. Since R is a laura
algebra, Lr U Rpg is cofinite in ind R, hence £4 U R 4 is cofinite in ind A.

(b) The proof is similar since an algebra C' is left glued (or right glued) if and
only if R¢ (or L¢ respectively) is cofinite in ind C, see [AC2](2.2).

(c) Tt is proved in [AC3](1.4), that an algebra C' is weakly shod if and only if
the length of any path of nonzero morphisms between indecomposable C-modules
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from a module U ¢ L¢ to a module V' ¢ R¢ is bounded. Let Mg Iy My - I M,
be such a path in ind A with My & L4 and M,, ¢ R4. Then

Mooa R Myoa R 22 M, 04 R

is a path of nonzero morphisms in ind R. Moreover, by (2.3), My ®4 R ¢ Lg and
M, ®4 R ¢ Rpg. Since R is weakly shod, n is bounded.

(d) Let M be an indecomposable A-module. Since R is shod, pd M < 1 or
id Mp < 1. The result follows now from (2.2).

(e) By [HRS](IT.1.14) it suffices to show that if P is any indecomposable pro-
jective A-module, then P € L4. Since P ®4 R is an indecomposable projective
R-module and R is quasi-tilted, then P ® 4 R € Lg. The result follows now from
(2.3) O

Examples (a) Since, as observed in [AZ], one-point extensions are special cases
of split-by-nilpotent extensions, it follows from [AC3](3.4) that, if A is a tubular
algebra, and R is a laura algebra, then R must be quasi-tilted. The following
example shows that any of the remaining cases may occur. Let R be given by the
quiver

! 1 3 1
i TN
Y2 5 6

5 -~
Y / oz

4

where a;8; =0, v;6; = 0 for all ¢, 5, and 811 = 0. Then R is a laura algebra that
1s not weakly shod.

(1) Let @1 be the ideal of R generated by ds; then R is a split extension of
A1 = R/Q; by @1, and A; is a laura algebra but not weakly shod.

(2) Let Q2 be the ideal of R generated by oy, as; then R is a split extension of
As = R/Q2 by Q2, and A, is right glued but not weakly shod.

(3) Let Q3 be the ideal of R generated by f2,72; then R is a split extension of
As = R/Qs by Qs, and As is weakly shod but not shod.

(4) Let Q4 be the ideal of R generated by £1,~1; then R is a split extension of
As = R/Q4 by Qa, and Ay is shod but not quasi-tilted.

(5) Let @5 be the ideal of R generated by ay, as, 81, B2; then R is a split extension
of As = R/Qs by @5, and As is quasi-tilted, and even tilted.

(b) If R is simply connected, or has vanishing first Hochschild cohomology group,
it does not follow that this is the case for A. Let, for instance, R be given by the
fully commutative quiver

SN
. A .
=
° 1 °
and @ be the ideal of R generated by a and 5. Then R is a split extension of
A = R/Q) by Q. However, R is simply connected and has zero first Hochschild

cohomology group, while A is not simply connected and its first Hochschild coho-
mology group is nonzero.
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2.5. We conjecture that if R is a tilted algebra, then so is A. We have the following
lemma.

Lemma. Assume that A s connected. If R is a tilted algebra having a projective
(or injective) indecomposable module in a connecting component of its Auslander-
Reiten quiver, then A is tilted.

Proof. Since A is connected, so is R by (1.2). Moreover, by (2.4), A is quasi-
tilted. By [HRS](IT 3.4), the hypothesis implies that up to duality there exists
an indecomposable projective A-module P such that P ®4 R € Rr. By (2.3),
P4 € Ra. Another application of [HRS](IT 3.4) establishes the statement. O

2.6. Theorem Let R be a tame tilted algebra. Then so s A.

Proof. By [H](IT1.6.5), and by (1.2) and (1.4), we may assume that A and R are
both connected. Since R is tame, then so is A. Therefore, there exists a projective
or an injective indecomposable module in a connecting component of the Auslander-
Reiten quiver of R, see [R2]. By (2.5), A is tilted. d

3. RESTRICTABLE AND EXTENDABLE TILTING MODULES

3.1.  As in section 2, we assume that R is a split extension of A by the nilpotent
ideal . Motivated by our conjecture in (2.4), we study now the relationship
between the tilting A-modules and the tilting R-modules. We recall from [AM]
that given an A-module T, the induced module T ®4 R is a (partial) tilting R-
module if and only if T4 is a (partial) tilting A-module and that we also have
Homu (T ®4 Q,74T) = 0 = Homu (D(4Q), 74T). Such (partial) tilting modules
are then called extendable. We now consider the opposite problem, namely, given a
(partial) tilting R-module U, under which conditions is U @ A a (partial) tilting
A-module. We first give a sufficient condition. This condition has been obtained
independently by Fuller [F2], and Miyashita [M] using different proofs.

Lemma. Let f: P — X be a projective cover in mod R. Then f@ A: P®r A —
X ®r A is a projective cover in mod A.

Proof. Clearly, f®A is an epimorphism and P@g A is a projective A-module. More-

p o~ pIPO) = . PIPQ  ~ P/PQ ~__PIPQ o
over, top(POrA) = top(P/PQ) = 7507004 = BBy mai RIG) = (Prad B)/PG =
P/P-rad R = X/X -rad R = top(X ®4 R). This establishes the result. O

Remark. If P, Iy Py 18 X 5 0 is a minimal projective presentation in mod R, it
does not follow that
Prop AT Pyop AT X op A — 0

i1s a minimal projective presentation in mod A. Let for instance, R be given by the
quiver

and the relations afa = 0 and faf = 0, and let A be the hereditary subalgebra
with quiver
152
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Then the simple R-module S5 corresponding to the vertex 2 has a minimal projec-

tive presentation ey R fé es R f# Sy — 0, where the image of f; is the radical of
eaR. Applying — ®pg A yields a projective presentation

e AT e AP G on A0

However, Homy (e1 A4, e2A4) = 0. Hence f1 ® A = 0 and fy ® A is an isomorphism
So Or A = esA. It is easy to show that e; A = Tor?(Sz, A).

3.2, Lemma Let U be an R-module such that pdUgr < 1 and Torf(U, A) = 0.
Then:

(a) pd(U @ A)a < 1.

(b) TA(U QR A) = HOIHA(A, TRU).

Proof. (a) Let 0 — P, Iy Py 7417 25 0 be a minimal projective resolution of U over
R. In view of (3.1), the vanishing of Torf(U, A) implies that

(*) 0—>ﬁ1®RAfL®I>4ﬁ0®RAfL®I>4U®RA—>O

i1s a minimal projective resolution of U ®g A in mod A.
(b) Applying Homu(—, A) to the sequence (*) above, we obtain the following
commutative diagram with exact rows

HOHlA(ﬁo Rr A,A) —— HOHlA(ﬁl Rr A,A) —_— TI'(U ®R A)A —=0

HomR(ﬁo, Homu(rA, A)) —= HomR(ﬁl, Homyu (rA, A))
Hompg (P, Ag) ———— Hompg(P;, Ag) —— ExtR(U, A) —=0

where the bottom row is obtained by applying Hompg(—, A) to the given minimal
projective resolution of U/. Hence we have an isomorphism of A-modules

Tr(U ©p A)a = Extp(U, A)
and therefore we also get
Ta(U @p A) = DExty(U, A) = Hompg(a Ag, TrU)
because pd Ug < 1, see [R1]. O

3.3. The following is a sufficient condition for obtaining (partial) tilting modules
over A from (partial) tilting modules over R. Tt would be interesting to know
whether this condition 1s also necessary.

Theorem. Let Ur be a (partial) tilting restrictable module. Then U @p A is a
(partial) tilting A-module.
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Proof. By (3.2), pdU @gr A < 1. We prove that Extl (U @rp A, U @r A) = 0. We
have the following sequence of isomorphisms of k-modules:
DExth(U®r A, U @r A) = Homu (U ®r A, 74(U @r A))
= Homp(U,Homa(rA, 7a(U @r A)))
= Homp (U, Homy (r A, Homg (4 Ar, TrU)))
= Homp(U,Homp(rA ®4 Ar, TrRU))
=~ Homp(U,Homg(rAgr, TrRU)).
Applying the functor Hompg(—, 7rU) to the exact sequence of R — R-bimodules
0—Q—R—>A—0
yields a monomorphism of R-modules
0 — Hompg(rAgr, 7RU) — Hompg(R, TrU) = U
and we obtain an injection
0 — Hompg (U, Homg(r AR, TrU)) — Homp(U, 7rU) = D Exty (U, U).

Since Ext (U, U) = 0, we get that Ext) (U @r A, U @r A) =0, and so U @ A is
a partial tilting A-module. Finally, let 0 — R — U’ — U” — 0 be a short exact
sequence in mod R with U’ and U” in addU. Tensoring this sequence with rA
yields the exact sequence 0 - A - U’ @r A — U" @r A — 0 since Torf(U, A)=0.
Also, U'®r A and U"” @ A are both in add(U @ A) and this completes the proof

of the theorem.

d

3.4. We call a (partial) tilting R-module U restrictable if U® 4 R is a (partial) tilting
A-module. We have just shown that if Torf(U, A) =0, then U is restrictable. We
now prove the main result of this section.

Theorem. The functors — @ A and — ® 4 R induce mutually inverse bijections
between the class of the induced tilting R-modules U such that Torf(U, A) =0, and
the class of extendable tilting A-modules.

Proof. Assume that T is an extendable tilting A-module. We show first that
Tor?(T ®a4 R,A) = 0. Let 0 = P, > Py = T — 0 be a minimal projective
resolution of T over A. Using[AM](1.3), we have a minimal projective resolution of

T®4 Rin modR
00— PRAR— P4 R—T®4R—0

Applying — ®g A to this resolution yields a commutative diagram with exact rows

0 — Torf (T ©4 R, A) — P1®4 ROr A — Py©a ROr A
0 Py Py
hence Tor?(T ®4 R, A) = 0. Suppose now that Ugr = T ®4 R is an induced tilting

R-module such that Torf(U, A)=0. By (3.3), U ®r A =T is a tilting A-module
and it is clearly extendable. a
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3.5. We now discuss the torsion pair corresponding to a restrictable tilting R-
module U. We recall that if W is a tilting module over an algebra C', then W
determines a torsion pair (7(W), F(W), where T(W) = {Ve|Exts (W, V) = 0}
and F(W) = {Ve|Home (W, V) = 0}.

Proposition. Let U be a restrictable tilting R-module and let M be an A-module.
Then:

(a) Mg € F(U @gr A) if and only if Mg € F(U).

(b) My € T(U®r A) if and only if Mg € T(U).
Moreover, if (T(U),F(U) is a splitting torsion pair, then so is the torsion pair
(T(U @r A), F(U @r A))

Proof. (a) Homx (U @r A, M) = Hompg (U, Homa (4 Ar, M)) = Hompg (U, Mg).
(b) Exty(UorA, M) = DHom4 (M, 74(U®grA)) = DHoms (M, Hompg(rA, TrU))
>~ DHomu(M @4 Ar, 7rU)) = DHompg (M, trU) = Exth (U, U).

The last statement follows immediately. a

3.6. In what follows, we study the condition Torf(U, A) = 0. We start with the
following

Lemma. Let U be an R-module of projective dimension less or equal to one. Let
0= P — Py — U — 0 be a minimal projective resolution of Ugr. Then P1Q) =
Po@Q N Py if and only if the multiplication map U @ Q@ — UQ s an isomorphism.

Proof. Since pdUg < 1, applying U ®g — to the sequence of R — R-bimodules
0> @Q — R— A — 0 yields the exact sequence 0 — Torf(U, Q) — Torf(U, R)
hence we obtain Torf(U, Q) = 0. Applying —@rQ to the given projective resolution
of U, we obtain a commutative diagram with exact rows

0—=POrQ—>P,0pQ —=U®rRQ —=0

.

0 PiQ PyQ U®rQ@—=0

We also have the following exact sequence of R-modules:
0—>]30Qﬂl31 —>J30Q—>UQ—>0

Thus we get the following commutative diagram with exact rows:

0 PiQ PQ —=U®rA—=0
I
0——=P NPQ—=PQ UQ 0
where p(u ® ¢) = uq for w € U and ¢ € . The lemma follows. O

3.7. Lemma Let U be an R-module. The multiplication map U @ Q@ = U@ is an
isomorphism of R-modules if and only ifTorf(U, A)=0.
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Proof. Applying the functor U ®g — to the exact sequence of R — R-bimodules
0 —Q — R— A — 0 yields a commutative diagram with exact rows in mod R:

0—>Torf(U,A)—>U®RQ—>U®RR—>U®RA—>O
lp jg lg
0 e U U/ivQ ——0

where p is the multiplication map. Since p is surjective, the result follows. |

3.8. Combining the previous two lemmata we obtain the following

Corollary. Let U be an R-module such that its projective dimension is at most
one, and let 0 — Py — Py — U — 0 be a minimal projective resolution of Ur. The
following statements are equivalent:
(a) Torf (U, A) = 0.
(b) The multiplication map U @p Q — UQ is an isomorphism of R-modules.
(C) PlQIPQQﬂpl.
d

Remark. Assume that, in addition, U is a tilting R-module. Then the conditions
of the corollary are equivalent to the condition that D(grA) is generated by Ug.
This follows from the well-known isomorphism D Ext (U, DA) = Torf(U, A)

3.9. The next result holds for instance when R is hereditary and also in the case of
one point extensions.

Corollary. Assume that Q is projective as a left R-module. Then every (partial)
tilting R-module 1s restrictable.

Proof. This follows from condition (b) of (3.8). O

3.10. Examples (a) The following is an example of a restrictable tilting module
that is not induced. Let R be the hereditary algebra with quiver

and A be the hereditary subalgebra given by the quiver
1<-—2.

The APR-tilting module Ug = Tél(el R) @ e2 R is restrictable by (3.9). In order to
show that Ug 1s not induced, it suffices to show that the indecomposable module
Tél(el R) is not induced. Notice that the top of Tél(el R) is isomorphic to a sum
of two copies of Sy, and its socle is isomorphic to a sum of three copies of S7. Since
there are only three isomorphism classes of indecomposable A-modules of which
two are projective, it suffices to compute S; ® 4 R. The projective resolution

0—=e1A—esA— 5 —0
in mod A lifts to a projective resolution over the algebra R

0—etR—-esR— 504 R—0
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Hence S5 ®4 R 1s a two-dimensional uniserial R-module and is not isomorphic to
Tél(el R). Finally, we compute U @r A. The projective resolution

0= e1R— (e2R)? = ' (e1R) = 0
yields a minimal projective resolution in mod A:
0= e1A— (e24)? = R (e1R) @p A = 0

Therefore Tél(elR) Qr A= Sy @ ey A Since esR®p A = eq A, we conclude that
U XR A= SZ D (62A)2.

(b) We now give an example of a restrictable induced tilting module over R. Let
R be given by the quiver

subject to the relations nafna = 0, ay = 0, and let A be the subalgebra given by
the quiver

with ay = 0. It is easily verified that Ug = es R P es R P (g) &) (2) is a tilting

R-module. Applying the functor — ®g A to the minimal projective resolutions
0 —=2eR—esR— (g) —0

and

0—>e1R—esR— (2) —0

we see at once that Ug 1s restrictable. The same calculation shows that U @ g A =
eo AP e AP (g) ) (2) , which is a tilting A-module. Since it is easily verified that
U®r A®4 R=U, we infer that U is induced.

Aknowledgement: Both authors thank Flavio Coelho and Kent Fuller for many
interesting conversations.
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