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Abstract. We introduce a category of cluster algebras with �xed initial seeds. This category
has countable coproducts, which can be constructed combinatorially, but no products. We char-
acterise isomorphisms and monomorphisms in this category and provide combinatorial methods
for constructing special classes of monomorphisms and epimorphisms. In the case of cluster
algebras from surfaces, we describe interactions between this category and the geometry of the
surfaces.
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Introduction

Cluster algebras are particular commutative algebras which were introduced by Fomin and
Zelevinsky in [12] in order to provide a combinatorial framework for studying total positivity and
canonical bases in algebraic groups. Since then, a fast-growing literature focused on the numerous
interactions of these algebras with various areas of mathematics like Lie theory, Poisson geometry,
representation theory of algebras or mathematical physics. The study of the cluster algebras
as algebraic structures in themselves can essentially be found in the seminal series of articles
[12, 13, 4, 14] and their ring-theoretic properties were recently studied in [16].

For a long time, an obstacle to the good understanding of cluster algebras was that they are
de�ned recursively by applying a combinatorial process called mutation. However, the interactions
of cluster algebras with either the (combinatorial) Teichmüller theory or the representation theory
of algebras led to various closed formulae which enlightened the structure of cluster algebras, see
[22, 9, 26, 18].

In order to get a better comprehension of cluster algebras, the next step is thus to de�ne a
categorical framework for their study. Therefore, one has to �nd what are the �right� morphisms
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between cluster algebras. The most natural idea is to look at ring homomorphisms which commute
with mutations. For bijective morphisms from a coe�cient-free skew-symmetric cluster algebra to
itself, this gave rise to the notion of cluster automorphisms, introduced in [3]. However, in more
general settings this idea turns out to be slightly too restrictive in order to get enough morphisms
between non-isomorphic cluster algebras.

In this article, we slightly relax this �rst idea and propose a similar de�nition of cluster morphism
between arbitrary skew-symmetrisable cluster algebras of geometric type (with non-invertible co-
e�cients) with a �xed initial seed. Such a morphism should commute with mutations, but also
either carries an initial variable of the �rst algebra to an initial variable of the second, or to an
integer. We also allow to send frozen variables to exchangeable ones (see De�nition 2.2).

With this notion of morphisms, we obtain a category Clus whose objects are cluster algebras
of geometric type with a �xed initial seed. This category has countable coproducts but has no
products in general. We prove that in Clus, the isomorphisms are the bijective morphisms, the
monomorphisms are the injective morphisms while the epimorphisms are not necessarily surjective.

Inspired by the interactions between geometry and the combinatorics of cluster algebras associ-
ated with surfaces in the sense of [11], we de�ne for arbitrary cluster algebras concepts of gluings
and cuttings which provide natural classes of monomorphisms and epimorphisms in Clus (see
Sections 5 and 7).

We also study specialisations of cluster variables in this categorical context. We prove that
the usual specialisations of frozen variables to 1 yield epimorphisms in Clus. More surprisingly,
for cluster algebras from surfaces or for acyclic cluster algebras, we prove that specialisations of
exchangeable cluster variables also give rise to epimorphisms in Clus, see Section 6.1.

Organisation of the article. After a brief section recalling our conventions, Section 1 recalls the
principal de�nitions on cluster algebras which we will use along the article. We use the terminology
rooted cluster algebras to emphasize the fact that the cluster algebras are considered with a �xed
choice of initial seed.

In Section 2, we introduce the category Clus whose objects are the rooted cluster algebras and
whose morphisms are the so-called rooted cluster morphisms. We also introduce in this section
the notion of cluster ideal in a cluster algebra, which is a ring-theoretic ideal such that the corre-
sponding quotient can be endowed with a cluster algebra structure. Then we introduce the notion
of ideal cluster morphism (see De�nition 2.11), which is well-behaved with respect to both the
ring theoretic and the combinatorial structures of the cluster algebras. We ask whether all rooted
cluster morphisms are ideal, see Problem 2.12.

Section 3 is devoted to the study of isomorphisms in Clus, generalising previous results of [3] on
cluster automorphisms. Roughly speaking, the main result of this section states that two rooted
cluster algebras are isomorphic if and only if they have isomorphic or opposite initial seeds, see
Theorem 3.9 for the precise statement.

Section 4 is devoted to the study of monomorphisms in Clus. We show that monomorphisms
in Clus are injective morphisms (Proposition 4.3) and that such morphisms are necessarily ideal
(Corollary 4.5). We also show that there is a monomorphism from a rooted cluster algebra to
another if the initial seed of the �rst one can be �embedded� in the initial seed of the second one,
see Lemma 4.4. This allows us to show that, at the level of cluster algebras arising from marked
surfaces, an embedding of marked surfaces yields a monomorphism in Clus.

Section 5 concerns the study of products and coproducts in Clus and their interactions with the
geometry of surfaces. We show that Clus admits countable coproducts which, roughly speaking,
correspond to taking the cluster algebra with a block-diagonal exchange matrix whose blocks are
the exchange matrices of the cluster algebras involved in the coproduct, see Lemma 5.1. We
also show that Clus does not admit products in general (Proposition 5.4). Then, we introduce
the notion of amalgamated sum of cluster algebras which, in the context of cluster algebras from
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marked surfaces, corresponds to considering the cluster algebras associated to the amalgamated
sum of the corresponding surfaces, see 4.2.

Section 6 is devoted to the study of epimorphisms in Clus. These are not necessarily surjective,
see Remark 6.1. We are particularly interested in a special family of ring homomorphisms, which
we call specialisations, consisting in specialising certain initial cluster variables to 1. We show that
these specialisations yield ideal epimorphisms in certain cases and ask whether this is the case in
general or not, see Problem 6.10. We also introduce a combinatorial process called cutting, which
allows one to construct epimorphisms between various cluster algebras. In the context of cluster
algebras from marked surfaces, we show that this corresponds to cutting a marked surface along
certain arcs of the initial triangulation, see Section 7. Along the way, we also prove in this section
a general result stating that in any cluster algebra, the only Laurent monomials in cluster variables
belonging to a given cluster are the �honest� monomials, see Lemma 6.4.

Notations

In this article, every ring A has an identity 1A and every ring homomorphism A−→B is assumed
to send the identity 1A to the identity 1B . We denote by Ring the category of rings with ring
homomorphisms.

If I is a countable set, we denote by MI(Z) the ring of locally �nite matrices with integral
entries indexed by I×I (we recall that a matrix B = (bij)i,j∈I is locally �nite if for every i ∈ I, the
families (bij)j∈I and (bji)j∈I have �nite support). We say that B is skew-symmetrisable if there
exists a family of non-negative integers (di)i∈I such that dibij = −djbji for any i, j ∈ I. If J ⊂ I,
we denote by B[J ] = (bij)i,j∈J the submatrix of B formed by the entries labelled by J × J .

If I and J are sets, we use the notation I \ J = {i ∈ I | i 6∈ J} independently of whether J is
contained in I or not. By a countable set we mean a set of cardinality at most ℵ0.

If R is a subring of a ring S, and if X ⊂ S is a set, we denote by R[X ] the ring of all polynomials
with coe�cients in R evaluated in the elements of S. Note that this is not necessarily isomorphic
to a ring of polynomials.

We recall that a concrete category is a category whose objects have underlying sets and whose
morphisms between objects induce maps between the corresponding sets.

In order to make some statements clearer, it might be convenient for the reader to use a com-
binatorial representation of the skew-symmetrisable locally �nite matrices as valued quivers. If
B ∈ MI(Z) is a locally �nite skew-symmetric matrix, we associate with B a valued quiver QB
whose points are indexed by I and such that for any i, j ∈ I, if bij > 0 (so that bji < 0), then we
draw a valued arrow

i
(bij ,−bji) // j

in QB . As B is skew-symmetrisable the valued quiver QB has no oriented cycles of length at most
two. In the case where B is skew-symmetric, if i, j ∈ I are such that bij > 0, we usually draw bij
arrows from i to j in QB instead of a unique arrow with valuation (bij ,−bji).

1. Rooted cluster algebras

In this section we recall the de�nition of a cluster algebra of geometric type. As opposed to the
initial de�nition formulated in [12], we consider non-invertible coe�cients.

1.1. Seeds and mutations.

De�nition 1.1 (Seeds). A seed is a triple Σ = (x, ex, B) such that :

(1) x is a countable set of undeterminates over Z, called the cluster of Σ ;
(2) ex ⊂ x is a subset of x whose elements are the exchangeable variables of Σ ;
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(3) B = (bxy)x,y∈x ∈ Mx(Z) is a (locally �nite) skew-symmetrisable matrix, called the ex-
change matrix of Σ.

The variables in x \ ex are the frozen variables of Σ. A seed Σ = (x, ex, B) is coe�cient-free if
ex = x and in this case, we simply write Σ = (x, B). Such a seed is �nite if x is a �nite set.

Given a seed Σ, the �eld FΣ = Q(x | x ∈ x) is called the associated ambient �eld.

De�nition 1.2 (Mutation). Given a seed Σ = (x, ex, B) and an exchangeable variable x ∈ ex,
the image of the mutation of Σ in the direction x is the seed

µx(Σ) = (x′, ex′, B′)

given by

(1) x′ = (x \ {x}) t {x′} where

xx′ =
∏
y∈x ;
bxy>0

ybxy +
∏
y∈x ;
bxy<0

y−bxy .

(2) ex′ = (ex \ {x}) t {x′}.
(3) B′ = (b′yz) ∈Mx(Z) is given by

b′yz =

{
−byz if x = y or x = z ;
byz + 1

2 (|byx|bxz + byx|bxz|) otherwise.

For any y ∈ x we denote by µx,Σ(y) the variable corresponding to y in the cluster of the seed
µx(Σ), that is, µx,Σ(y) = y if y 6= x and µx,Σ(x) = x′ where x′ is de�ned as above. If there is no
risk of confusion, we simply write µx(y) instead of µx,Σ(y).

The set x′ is again a free generating set of FΣ and the mutation is involutive in the sense that
µx′ ◦ µx(Σ) = Σ, for each x ∈ ex.

De�nition 1.3 (Admissible sequence of variables). Let Σ = (x, ex, B) be a seed. We say that
(x1, . . . , xl) is Σ-admissible if x1 is exchangeable in Σ and if, for every i ≥ 2, the variable xi is
exchangeable in µxi−1 ◦ · · · ◦ µx1(Σ).

Given a seed Σ = (x, ex, B), its mutation class is the set Mut (Σ) of all seeds which can be
obtained from Σ by applying successive mutations along �nite admissible sequences of variables.
In other words,

Mut (Σ) = {µxn ◦ · · · ◦ µx1
(Σ) | n > 0 and (x1, . . . , xn) is Σ-admissible} .

Two seeds in the same mutation class are mutation-equivalent.

1.2. Rooted cluster algebras.

De�nition 1.4 (Rooted cluster algebra). Let Σ be a seed. The rooted cluster algebra with initial
seed Σ is the pair (Σ,A ) where A is the Z-subalgebra of FΣ given by :

A = A (Σ) = Z

x | x ∈ ⋃
(x,ex,B)∈Mut (Σ)

x

 ⊂ FΣ.

The variables (exchangeable variables and frozen variables respectively) arising in the clusters of
seeds which are mutation-equivalent to Σ are the cluster variables (or the exchangeable variables
and frozen variables respectively) of the rooted cluster algebra (Σ,A ). We denote by XΣ the set
of cluster variables in (Σ,A ).

In order to simplify notations, a rooted cluster algebra (Σ,A ) is in general simply denoted by
A (Σ) but one should keep in mind that a rooted cluster algebra is always viewed together with its
initial seed.
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Remark 1.5. This de�nition authorises seeds whose clusters are empty. Such seeds are called
empty seeds and by convention the rooted cluster algebra corresponding to an empty seed is Z.

Example 1.6. If Σ = (x, ∅, B) has no exchangeable variables, then

A (Σ) = Z[x | x ∈ x]

is a polynomial ring in countably many variables.

Remark 1.7. In the original de�nition of cluster algebras given in [12], the frozen variables are
supposed to be invertible in the cluster algebra. However, it is known that cluster variables in
a cluster algebra of geometric type are Laurent polynomials in the exchangeable variables with
polynomial coe�cients in the frozen ones (see for instance [13, Proposition 11.2]). Therefore, the
cluster algebra structure can essentially be considered without inverting the coe�cients. Also,
several �natural� examples of cluster algebras arise with non-invertible coe�cients, as for instance
cluster algebras arising in Lie theory as polynomial rings (see [16, �6.4]) or cluster structures on
rings of homogeneous coordinates on Grassmannians (see [17, �2.1] or Section 6.5).

Of course, if one wants to recover the initial de�nition from ours, it is enough to localise the
cluster algebra at the frozen variables. Nevertheless, some of our results (in particular the crucial
Lemma 4.1) require that frozen variables be non-invertible.

1.3. Rooted cluster algebras from surfaces. In this article, we are often interested in the
particular class of rooted cluster algebras associated with marked surfaces in the sense of [11]. We
recall that a marked surface is a pair (S,M) where S is an oriented 2-dimensional Riemann surface
and M is a �nite set of marked points in the closure of S such that each connected component
of the boundary ∂S of the surface S contains at least one marked point in M . We also assume
that none of the connected components of (S,M) is a degenerate marked surface, that is, a surface
which is homeomorphic to one of the following surfaces :

• a sphere with one, two or three punctures,
• an unpunctured or a once-punctured monogon,
• an unpunctured digon or an unpunctured triangle.

All curves in (S,M) are considered up to isotopy with respect to the set M of marked points.
Therefore, two curves γ and γ′ are called distinct if they are not isotopic. Two curves γ and γ′

are called compatible if there exist representatives of their respective isotopy classes which do not
intersect in S \M .

An arc is a curve joining two marked points in (S,M) which is compatible with itself. An arc
is a boundary arc if it is isotopic to a connected component of ∂S \M , otherwise it is internal.

A triangulation of (S,M) is a maximal collection of arcs which are pairwise distinct and com-
patible. The arcs of the triangulation cut the surface into triangles (which may be self-folded).

With any triangulation T of (S,M) we can associate a skew-symmetric matrix BT as in [11].
For the convenience of the reader, we recall this construction in the case where T has no self-folded
triangles (for the general case we refer the reader to [11, �4]). For any triangle ∆ in T , we de�ne
a matrix B∆, indexed by the arcs in T and given by

B∆
γ,γ′ =

 1 if γ and γ′ are sides of ∆ and γ′ follows γ in the positive direction ;
−1 if γ and γ′ are sides of ∆ and γ′ follows γ in the negative direction ;
0 otherwise.

The matrix BT is then given by

BT =
∑
∆

B∆

where ∆ runs over all the triangles in T .
In terms of quivers, the quiver QT corresponding to BT is the quiver such that :
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• the points in QT are the arcs of T ,
• the frozen points in QT are the boundary arcs of T ,
• there is an arrow γ−→ γ′ if and only if γ and γ′ are sides of a same triangle and γ′ follows
γ in the positive direction,

• a maximal collection of 2-cycles is removed.

Example 1.8. Figure 1 shows an example of quiver obtained from a triangulation of a hexagon.
Points in white correspond to frozen variables and points in black correspond to exchangeable
variables. The dashed arrows, joining frozen points, are precisely those which we remove in the
simpli�cation of the seed (see De�nition 3.5).

Figure 1. The quiver of a triangulation of a hexagon.

Then, we can associate with T the seed ΣT = (xT , exT , BT ) where :

• xT is indexed by the arcs in T ;
• exT is indexed by the internal arcs in T ;
• BT is the matrix de�ned above.

The rooted cluster algebra associated with the triangulation T is therefore A (ΣT ).
It is proved in [11] that if T and T ′ are two triangulations of (S,M), then ΣT and ΣT ′ can

be joined by a sequence of mutations. Therefore, up to a ring isomorphism, A (ΣT ) does not
depend on the choice of the triangulation T and is called the cluster algebra A (S,M) associated
with (S,M), see [11] for further details.

More generally, it is possible to associate to a marked surface a cluster algebra with an arbitrary
choice of coe�cients and not only the coe�cients arising from the boundary arcs considered above.
However, for geometric statements (see for instance Sections 4.1, 6.3 or 7.3), it is usually more
natural to consider coe�cients associated with the boundary arcs.

Finally, in order to avoid technicalities, we only consider untagged triangulations but all the
results we present can easily be extended to the case of tagged triangulations.

2. The category of rooted cluster algebras

2.1. Rooted cluster morphisms.

De�nition 2.1 (Biadmissible sequences). Let Σ = (x, ex, B) and Σ′ = (x′, ex′, B′) be two seeds
and let f : FΣ−→FΣ′ be a map. A sequence (x1, . . . , xn) ⊂ A (Σ) is called (f,Σ,Σ′)-biadmissible
(or simply biadmissible if there is no risk of confusion) if it is Σ-admissible and if (f(x1), . . . , f(xn))
is Σ′-admissible.

We �x two seeds Σ = (x, ex, B) and Σ′ = (x′, ex′, B′).
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De�nition 2.2 (Rooted cluster morphisms). A rooted cluster morphism from
A (Σ) to A (Σ′) is a ring homomorphism from A (Σ) to A (Σ′) such that :
(CM1) f(x) ⊂ x′ t Z ;
(CM2) f(ex) ⊂ ex′ t Z ;
(CM3) For every (f,Σ,Σ′)-biadmissible sequence (x1, . . . , xn), we have

f(µxn ◦ · · · ◦ µx1,Σ(y)) = µf(xn) ◦ · · · ◦ µf(x1),Σ′(f(y))

for any y in x.

We sometimes say that f commutes with biadmissible mutations if it satis�es (CM3).

Remark 2.3. A rooted cluster morphism may send a frozen cluster variable to an exchangeable
cluster variable whereas (CM2) prevents the opposite from happening.

Remark 2.4. Given an explicit ring homomorphism f between two rooted cluster algebras,
(CM3) is di�cult to check since it requires to test every biadmissible sequence, and there are
in general in�nitely many. However, we shall see that for instance for isomorphisms, it is some-
times possible to simplify this situation (see Lemma 3.8).

Proposition 2.5. The composition of rooted cluster morphisms is a rooted cluster morphism.

Proof. We �x three rooted cluster algebras A1,A2 and A3 with respective initial seeds Σ1,Σ2 and
Σ3 where Σi = (xi, exi, B

i) and consider rooted cluster morphisms f : A1−→A2 and g : A2−→A3.
The composition g ◦ f is a ring homomorphism from A1 to A3. Moreover, we have :

(CM1) (g ◦ f)(x1) = g(f(x1)) ⊂ g(x2 t Z) ⊂ x3 t Z ;
(CM2) (g ◦ f)(ex1) = g(f(ex1)) ⊂ g(ex2 t Z) ⊂ ex3 t Z ;
(CM3) Let (x1, . . . , xn) be a ((g ◦ f),Σ1,Σ3)-biadmissible sequence. We claim that (x1, . . . , xn)

is (f,Σ1,Σ2)-biadmissible and that (f(x1), . . . , f(xn)) is (g,Σ2,Σ3)-biadmissible. Indeed,
since f satis�es (CM2), an exchangeable variable x ∈ ex1 is sent either to an exchange-
able variable in ex2 or to an integer. If f(x) ∈ Z, because g is a ring homomorphism,
then g(f(x)) ∈ Z and therefore (g ◦ f)(x) is not exchangeable, a contradiction. Thus,
(x1, . . . , xn) is (f,Σ1,Σ2)-biadmissible. It follows that (f(x1), . . . , f(xn)) is Σ2-admissible
and therefore, as (g(f(x1)), . . . , g(f(xn))) is Σ3-admissible, the sequence (f(x1), . . . , f(xn))
is (g,Σ2,Σ3)-biadmissible.

Now, since f satis�es (CM3), for every i such that 1 ≤ i ≤ n and any x ∈ x1, we have

f(µxi ◦ · · · ◦ µx1(x)) = µf(xi) ◦ · · · ◦ µf(x1)(f(x)).

and, since g satis�es (CM3), for any (g,Σ2,Σ3)-biadmissible sequence (y1, . . . , yn) and
any i such that 1 ≤ i ≤ n and y ∈ x2, we have

g(µyi ◦ · · · ◦ µy1(y)) = µg(yi) ◦ · · · ◦ µg(y1)(g(y)).

Then, as f(x1) ⊂ x2 t Z, we get

(g ◦ f)(µxi ◦ · · · ◦ µx1
(x)) = µ(g◦f)(xi) ◦ · · · ◦ µ(g◦f)(x1)((g ◦ f)(x))

for any x ∈ x so that (g ◦ f) satis�es (CM3).

Thus, g ◦ f : A1−→A3 is a rooted cluster morphism. �

Therefore, we can set the following de�nition :

De�nition 2.6. The category of rooted cluster algebras is the category Clus de�ned by :

• The objects in Clus are the rooted cluster algebras ;
• The morphisms between two rooted cluster algebras are the rooted cluster morphisms.
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Remark 2.7. One should observe the importance of the condition (CM2) in the proof of Proposi-
tion 2.5 in order to obtain well-de�ned compositions of rooted cluster morphisms. If this condition
is removed from the de�nition of a rooted cluster morphism, one can easily construct examples of
rooted cluster morphisms whose composition is not a rooted cluster morphism.

For instance, consider Σ1 = (x, x, [0]), Σ2 = (x, ∅, [0]) and Σ3 =

(
(x, y), (x, y),

[
0 1
−1 0

])
.

Let f denote the identity in Q(x) and let g denote the canonical inclusion of Q(x) in Q(x, y).
By construction f and g satisfy (CM1) and not (CM2). Since there are neither non-empty
(f,Σ1,Σ2)-biadmissible sequences nor non-empty (g,Σ2,Σ3)-biadmissible sequences, f and g sat-
isfy (CM3). The composition g ◦ f also satis�es (CM1) and (x) is (g ◦ f,Σ1,Σ3)-biadmissible.
However,

(g ◦ f)(µx(x)) =
2

x
6= 1 + y

x
= µ(g◦f)(x)((g ◦ f)(x)).

Therefore, g ◦ f does not satisfy (CM3).

2.2. Ideal rooted cluster morphisms.

De�nition 2.8 (Image seed). Let f : A (Σ)−→A (Σ′) be a rooted cluster morphism. The image
seed of Σ under f is

f(Σ) = (x′ ∩ f(x), ex′ ∩ f(ex), B′[f(x)]).

Lemma 2.9. Let f : A (Σ)−→A (Σ′) be a rooted cluster morphism and let (y1, . . . , yl) be an
f(Σ)-admissible sequence. Then (y1, . . . , yl) is Σ′-admissible and

µyl ◦ · · ·µy1,f(Σ)(y1) = µyl ◦ · · ·µy1,Σ′(y1).

Proof. Let Σ = (x, ex, B) and Σ′ = (x′, ex′, B′). Because µy1
(B′[f(x)]) = B′[µy1

(f(x))], it is
enough to prove the statement for l = 1 and to proceed by induction. By de�nition, exchangeable
variables in f(Σ) are exchangeable in Σ′. Now, if y1 is f(Σ)-admissible, we have

µy1,f(Σ)(y1) =
1

y1

 ∏
b′zy1

>0

z∈x′∩f(x)

zb
′
zy1 +

∏
b′zy1

<0

z∈x′∩f(x)

z−b
′
zy1

 .

Because y1 is exchangeable in f(Σ), there exists some x1 ∈ ex such that y1 = f(x1) and we have

µx1,Σ(x1) =
1

x1

 ∏
bux1

>0
u∈x

ubux1 +
∏

bux1
<0

u∈x

u−bux1

 .

Therefore, since f satis�es (CM3), we get

µy1,Σ′(y1) = f(µx1,Σ(x1)) =
1

y1

 ∏
bux1>0
u∈x

f(u)bux1 +
∏

bux1<0
u∈x

f(u)−bux1

 .

And by de�nition

µy1,Σ′(y1) =
1

y1

 ∏
b′zy1

>0

z∈x′

zb
′
zy1 +

∏
b′zy1

<0

z∈x′

z−b
′
zy1

 .

Therefore, b′zy1
= 0 for any z ∈ x′ \ f(x) so that µy1,Σ′(y1) = µy1,f(Σ)(y1). �
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Lemma 2.10. Let f : A (Σ)−→A (Σ′) be a rooted cluster morphism. Then A (f(Σ)) ⊂ f(A (Σ)).

Proof. Let Σ = (x, ex, B) and Σ′ = (x′, ex′, B′). We have to prove that any cluster variable in
A (f(Σ)) belongs to f(A (Σ)). Fix an arbitrary cluster variable y ∈ A (f(Σ)), then there exists an
f(Σ)-admissible sequence (y1, . . . , yl) such that y = µyl ◦ · · · ◦ µy1

(y1).
We claim that any f(Σ)-admissible sequence (y1, . . . , yl) lifts to an (f,Σ, f(Σ))-biadmissible

sequence (x1, . . . , xl). If l = 1, then y1 = f(x1) for some x1 ∈ ex and thus (x1) is biadmissible.
Assume now that for k < l the sequence (y1, . . . , yk) lifts to a biadmissible sequence (x1, . . . , xk).
Then yk+1 is exchangeable in µyk ◦ · · · ◦ µy1(f(Σ)) and thus there exists some x ∈ ex such that
yk+1 = µyk ◦ · · · ◦ µy1

(f(x)). Because f satis�es (CM3), we get

yk+1 = f(µxk ◦ · · · ◦ µx1(x)).

Therefore, xk+1 = µxk ◦ · · · ◦µx1
(x) is exchangeable in µxk ◦ · · · ◦µx1

(Σ) and (y1, . . . , yk+1) lifts to
(x1, . . . , xk+1). The claim follows by induction.

If l = 0, then by de�nition of f(Σ), the elements in the cluster of f(Σ) belong to f(A (Σ)). If
l ≥ 0, then it follows from the claim that (y1, . . . , yl) lifts to an (f,Σ, f(Σ))-biadmissible sequence
(x1, . . . , xl) in A (Σ). Moreover, we have

y = µyl ◦ · · · ◦ µy1,f(Σ)(y1)

= µf(xl) ◦ · · · ◦ µf(x1),f(Σ)(f(x1))

= µf(xl) ◦ · · · ◦ µf(x1),Σ′(f(x1))

= f(µxl ◦ · · · ◦ µx1,Σ(x1)) ∈ f(A (Σ)).

where the third equality follows from Lemma 2.9 and the last one from the fact that f satis�es
(CM3). �

De�nition 2.11 (Ideal rooted cluster morphism). A rooted cluster morphism f : A (Σ)−→A (Σ′)
is called ideal if A (f(Σ)) = f(A (Σ)).

We shall meet along the article several natural classes of rooted cluster morphisms which are
ideal (see for instance Corollary 4.5 or Proposition 6.9). However, we do not know whether or not
every rooted cluster morphism is ideal. We may thus state the following problem :

Problem 2.12. Characterise the rooted cluster morphisms which are ideal.

Example 2.13. Consider the seeds

Σ =

(x1, x2, x3), (x2),

 0 1 0
−1 0 1

0 −1 0

 and Σ′ =

(y1, y2, y3), (y1, y2, y3),

 0 1 0
−1 0 1

0 −1 0


and the ring homomorphism

f :


FΣ −→ FΣ′

x1 7→ 1
x2 7→ y1

x3 7→ y2

The only (f,Σ,Σ′)-biadmissible sequence to consider is (x2) and

f(µx2
(x2)) = f

(
x1 + x3

x2

)
=

1 + y2

y1
= µy1

(y1) = µf(x2)(f(x2))

so that f is a rooted cluster morphism A (Σ)−→A (Σ′). Moreover we have

f(Σ) =

(
(y1, y2), (y1)

[
0 1
−1 0

])
.
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Therefore

A (Σ) = Z[x1, x2, x3,
x1 + x3

x2
] and A (f(Σ)) = Z[y1, y2,

1 + y2

y1
]

so that A (f(Σ)) = f(A (Σ)) and therefore f is ideal.

De�nition 2.14 (Rooted cluster ideal). A (ring theoretic) ideal I in a rooted cluster algebra
A (Σ) is called a rooted cluster ideal if the quotient A (Σ)/I can be endowed with a structure of
rooted cluster algebra such that the canonical projection is a rooted cluster morphism.

Proposition 2.15. Let f : A (Σ)−→A (Σ′) be an ideal rooted cluster morphism. Then Ker(f) is
a rooted cluster ideal.

Proof. Let f : A (Σ)−→A (Σ′) be an ideal rooted cluster morphism. Then f induces a ring
isomorphism

A (Σ)/Ker(f) ' f(A (Σ)) = A (f(Σ))

endowing A (Σ)/Ker(f) with a structure of rooted cluster algebra with initial seed f(Σ).
Moreover, since f is a rooted cluster morphism, the morphism f̄ : A (Σ)−→A (f(Σ)) induced

by f is also a rooted cluster morphism and therefore A (Σ)−→A (Σ)/Ker(f) is a rooted cluster
morphism. �

3. Rooted cluster isomorphisms

In this section we characterise isomorphisms in Clus which we call rooted cluster isomorphisms.
These results are generalisations of those obtained in [3] for coe�cient-free skew-symmetric cluster
algebras. We recall that an isomorphism in Clus is an invertible morphism.

We start with a general lemma on surjective morphisms :

Lemma 3.1. Let Σ = (x1, ex1, B
1) and Σ2 = (x2, ex2, B

2) be two seeds and f : A (Σ1)−→A (Σ2)
be a surjective ring homomorphism satisfying (CM1). Then x2 ⊂ f(x1) and ex2 ⊂ f(ex1).

Proof. Let z ∈ x2. Since f is surjective, there exists y ∈ A (Σ1) such that f(y) = z. According
to the Laurent phenomenon, there exists a Laurent polynomial L such that y = L(x|x ∈ x1).
Therefore, z = f(y) = L(f(x)|x ∈ x1). Since f satis�es (CM1), we know that f(x1) ⊂ x2 t Z. If
z 6∈ f(x1), since x2 is a transcendence basis of FΣ2 , we get a contradiction. Therefore, z ∈ f(x1)
and thus x2 ⊂ f(x1).

Fix now z ∈ ex2. According to the above discussion, we know that f−1(z) ∩ x1 6= ∅. Since
f is surjective, there exists X ∈ A (Σ1) such that f(X) = µz,Σ2

(z). Now we know that X ∈
Z[x1 \ex1][ex±1

1 ]. Therefore, if f−1(z)∩ex1 = ∅, then f−1(z)∩x1 ⊂ (x1 \ex1) and therefore, X is
a sum of Laurent monomials with non-negative partial degree with respect to any t ∈ f−1(z)∩x1.
Therefore, f(X) is a sum of Laurent monomials with non-negative partial degree with respect to
z, a contradiction since µz,Σ2

(z) = f(X) is the sum of two Laurent monomials with partial degree
-1 with respect to z. Therefore f−1(z) ∩ ex1 6= ∅ so that ex2 ⊂ f(ex1). �

Corollary 3.2. Let Σi = (xi, exi, B
i) be a seed for i ∈ {1, 2} and let f : A (Σ1)−→A (Σ2) be

a bijective ring homomorphism satisfying (CM1). Then f induces a bijection from x1 to x2. If
moreover f satis�es (CM2), then f induces a bijection from ex1 to ex2.

Proof. Since f is injective and satis�es (CM1), it induces an injection x1−→x2. Since f is also
surjective, it follows from Lemma 3.1 that x2 ⊂ f(x1) and ex2 ⊂ f(ex2). Therefore, f induces a
bijection from x1 to x2. If moreover f satis�es (CM2), then f induces an injection from ex1 to
ex2 and thus it induces a bijection from ex1 to ex2. �

De�nition 3.3 (Isomorphic seeds). Two seeds Σ = (x1, ex1, B
1) and Σ2 = (x2, ex2, B

2) are called
isomorphic if there exists a bijection φ : x1−→x2 inducing a bijection φ : ex1−→ ex2 and such
that b2φ(x),φ(y) = b1xy for every x, y ∈ x1. We then write Σ1 ' Σ2 and B1 ' B2.
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De�nition 3.4 (Opposite seed). Given a seed Σ = (x, ex, B), the opposite seed is

Σop = (x, ex,−B).

De�nition 3.5 (Simpli�cation of a seed). Given a seed Σ = (x, ex, B), we set B = (bxy)x,y∈x ∈
Mx(Z) where

bxy =

{
0 if x, y ∈ x \ ex
bxy otherwise.

The simpli�cation of the seed Σ is de�ned as Σ = (x, ex, B).

Remark 3.6. In terms of valued quivers, simplifying the seed simply corresponds to removing all
the arrows between the frozen points. An example is shown in Figure 1 where the arrows between
frozen points are shown dashed.

It is customary in the literature to prevent the existence of arrows between frozen vertices.
However it turns out that allowing these arrows (which do not interact with the cluster algebra
structure in any way) is convenient for several purposes considered in this article, as for instance for
de�ning a cluster algebra from another by freezing certain non-frozen variables or from a subsurface
of a marked surface.

De�nition 3.7 (Locally rooted cluster morphism). Let Σ1 = (x1, ex1, B
1) and

Σ2 = (x2, ex2, B
2) be two seeds. A ring homomorphism f from A (Σ1) to

A (Σ2) is called a locally rooted cluster morphism if it satis�es (CM1), (CM2) and
(CM3loc): for any x ∈ ex1 and any y ∈ x1, we have, f(µx,Σ1

(y)) = µf(x),Σ2
(f(y)).

As we now prove, for bijective ring homomorphisms, it is possible to simplify considerably the
condition (CM3) (compare [3, Proposition 2.4]).

Lemma 3.8. Let Σ1 and Σ2 be two seeds and let f : A (Σ1)−→A (Σ2) be a bijective locally rooted
cluster morphism. Then :

(1) f is a rooted cluster morphism ;
(2) Σ1 ' Σ2 or Σ1 ' (Σ2)op.

Proof. For i ∈ {1, 2}, we set Σi = (xi, exi, B
i). Let f be as in the hypothesis. It follows from

Corollary 3.2 that f induces bijections from x1 to x2 and from ex1 to ex2.
For every x ∈ ex1, we have

f(µx(x)) = f

 1

x

 ∏
z∈x1 ;
b1xz>0

zb
1
xz +

∏
z∈x1 ;
b1xz<0

z−b
1
xz




=
1

f(x)

 ∏
z∈x1 ;
b1xz>0

f(z)b
1
xz +

∏
z∈x1 ;
b1xz<0

f(z)−b
1
xz

 .

Because f satis�es (CM3loc), we have

f(µx(x)) = µf(x)(f(x))

=
1

f(x)

 ∏
f(z)∈x2 ;

b2f(x)f(z)>0

f(z)b
2
f(x)f(z) +

∏
f(z)∈x2 ;

b2f(x)f(z)<0

f(z)−b
2
f(x)f(z)
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and because x2 is algebraically independent, we get b1xz = b2f(x)f(z) for any x ∈ ex1 and any z ∈ x1

or b1xz = −b2f(x)f(z) for any x ∈ ex1 and any z ∈ x1, that is, B1 ' B2 or B1 ' (−B2). Therefore,

Σ1 ' Σ2 or Σ1 ' (Σ2)op.
Since the mutations in A (Σ1) and A (Σ2) are entirely encoded in the simpli�cations Σ1 and Σ2

of the exchange matrices, it follows easily that f is a rooted cluster morphism. �

Theorem 3.9. Let A (Σ1) and A (Σ2) be two rooted cluster algebras. Then A (Σ1) and A (Σ2)

are isomorphic in Clus if and only if Σ1 ' Σ2 or Σ1 ' Σ
op

2 .

Proof. AsClus is a concrete category, an isomorphism f : A (Σ1)−→A (Σ2) is necessarily bijective.

Therefore, Corollary 3.2 and Lemma 3.8 imply that f induces a bijection x1
∼−→ x2 such that

B1 ' B2 or B1 ' (B2)op. Moreover, it also follows from Corollary 3.2 that f is a bijection

ex1
∼−→ ex2 so that it induces an isomorphism of seeds Σ1 ' Σ2 or Σ1 ' Σ

op

2 .

Conversely, if Σ1 ' Σ2 or Σ1 ' Σ
op

2 , we consider the bijection σ : x1−→x2 inducing the
isomorphism of seeds. It thus induces naturally a ring isomorphism fσ : FΣ1

−→FΣ2
and it is

easily seen that fσ is a rooted cluster isomorphism. �

Corollary 3.10. The isomorphisms in Clus coincide with the bijective rooted cluster morphisms.

Proof. As Clus is a concrete category, isomorphisms are bijective. Conversely, if we consider a
bijective rooted cluster morphism A (Σ1)−→A (Σ2), then it follows from Lemma 3.8 that f induces

an isomorphism of seeds Σ1 ' Σ2 or Σ1 ' Σ
op

2 so that f is an isomorphism in Clus. �

Corollary 3.11. Let A (Σ1) and A (Σ2) be two rooted cluster algebras and let f : A (Σ1)−→A (Σ2)
be a rooted cluster isomorphism. Then the following hold :

(1) any Σ1-admissible sequence is (f,Σ1,Σ2)-biadmissible ;
(2) any Σ2-admissible sequence lifts to a unique (f,Σ1,Σ2)-biadmissible sequence ;
(3) f(XΣ1

) = XΣ2
. �

Remark 3.12. For non-bijective morphisms, one can �nd locally rooted cluster morphisms which
are not rooted cluster morphisms. For instance, let Σ1 = (x1, ex1, B

1) and Σ2 = (x2, ex2, B
2)

where

ex1 = x1 = {x1, x2, x3} , ex2 = x2 = {u1, u2} ,

B1 =

 0 1 0
−1 0 −1

0 1 0

 and B2 =

[
0 1
−2 0

]
and consider the ring homomorphism

π :

 Q(x1, x2, x3) −→ Q(u1, u2)
x1, x3 7→ u1

x2 7→ u2.

Then

π(µx1(x1)) = π(µx3(x3)) = π

(
1 + x2

x1

)
=

1 + u2

u1
= µu1

(u1)

and

π(µx2
(x2)) = π

(
1 + x1x3

x2

)
=

1 + u2
1

u2
= µu2

(u2)

so that π commutes with biadmissible sequences of length one.
However

µx2
(x1) =

{
x1, x

′
2 =

1 + x1x3

x2
, x3

}
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(µx1
◦ µx2

)(x1) =

{
1 + x2 + x1x3

x1x2
, x′2, x3

}
and

(µx′2 ◦ µx1 ◦ µx2)(x1) =

{
1 + x2 + x1x3

x1x2
,

1 + x2

x1
, x3

}
but

µu2
(x2) =

{
u1, u

′
2 =

1 + u2
1

u2

}
(µu1

◦ µu2
)(x2) =

{
1 + u2 + u2

1

u1u2
, u′2

}
and

(µu′2 ◦ µu1 ◦ µu2)(x2) =

{
1 + u2 + u2

1

u1u2
,

1 + 2u2 + u2
2 + u2

1

u2
1u2

}
.

so that

π

(
1 + x2

x1

)
=

1 + u2

u1
6= 1 + 2u2 + u2

2 + u2
1

u2
1u2

and thus π is not a rooted cluster morphism between the cluster algebras A (Σ1) and A (Σ2).

Note that the morphism π is induced by the folding of the quiver QB1 : 1 2oo // 3
with respect to the automorphism group exchanging 1 and 3. For general results concerning the
interactions of foldings with cluster algebras, we refer the reader for instance to [8].

Remark 3.13. a) Two rooted cluster algebras associated with mutation-equivalent seeds are
not necessarily isomorphic in the category Clus since mutation-equivalent seeds are in
general neither isomorphic nor opposite.

b) The cluster automorphisms considered in [3] correspond in our context to rooted cluster
isomorphisms from A (Σ) to itself when Σ is �nite, skew-symmetric and coe�cient-free.
The groups of cluster automorphisms have been computed for seeds associated with Dynkin
or a�ne quivers, see [3, �3.3].

c) A strong isomorphism A (Σ1)−→A (Σ2) in the sense of [13] is a rooted cluster isomorphism
such that Σ1 ' Σ2.

4. Rooted cluster monomorphisms

We recall that a monomorphism in a category is a morphism f such that for all morphisms g
and h such that fg = fh, then g = h.

Lemma 4.1. Let Σ = (x, ex, B) be a seed, let y ⊂ x and let Θ = (y, ∅, C) be another seed.
Then the canonical ring homomorphism FΘ−→FΣ induces an injective rooted cluster morphism
A (Θ)−→A (Σ).

Proof. The canonical ring homomorphism FΘ−→FΣ sends x to x for any x ∈ y therefore, it
satis�es (CM1) and (CM2). Moreover, since there are no exchangeable variables in Θ, it au-
tomatically satis�es (CM3). We thus only have to prove that it induces a ring homomorphism
A (Θ)−→A (Σ), and this is clear because A (Θ) = Z[x | x ∈ y] ⊂ Z[x | x ∈ x] ⊂ A (Σ). �

Remark 4.2. In order for Lemma 4.1 to hold, it is necessary to consider non-invertible coe�cients
because if the image of a frozen variable is exchangeable then the image of its inverse would have
to be the inverse of the exchangeable variable, which is not in the cluster algebra.

Proposition 4.3. Monomorphisms in Clus coincide with injective rooted cluster morphisms.
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Proof. Let Σi = (xi, exi, B
i) be seeds for 1 ≤ i ≤ 3 and consider rooted cluster morphisms

A (Σ1)
g //
h
// A (Σ2)

f // A (Σ3) .

Since Clus is a concrete category, every injective morphism in Clus is a monomorphism. We thus
only need to prove the converse.

Let f be a non-injective rooted cluster morphism. Because it satis�es (CM1), we get f(x2) ⊂
x3 t Z. If f(x2) ⊂ x3 and if the restriction of f to x2 is injective, f sends a transcendence basis
of FΣ2 to an algebraically independent family in FΣ3 and therefore, it induces an injective ring
homomorphism FΣ2−→FΣ3 so that it is itself injective, a contradiction. Thus, there are two cases
to consider :

• there exists x ∈ x2 such that f(x) ∈ Z,
• there exist x, y ∈ x2 such that x 6= y and f(x) = f(y).

In the �rst case, it follows from Lemma 4.1 that we can consider the rooted cluster morphisms
h, g : Z[x]−→A (Σ2) given by g(x) = x and h(x) = f(x) ∈ Z. Then fh(x) = fg(x) = f(x) so that
fh = fg but g 6= h. Thus f is not a monomorphism in Clus.

In the second case, it also follows from Lemma 4.1 that we can consider the rooted cluster
morphisms h, g : Z[x, y]−→A (Σ2) given by g(x) = h(y) = x and g(y) = h(x) = y. Thus, fg = fh
but g 6= h and therefore f is not a monomorphism in Clus. �

As a consequence, the study of monomorphisms in Clus restricts to the study of injective rooted
cluster morphisms.

Lemma 4.4. Let Σ1 = (x1, ex1, B1) and Σ2 = (x2, ex2, B
2) be two seeds and let f :

A (Σ1)−→A (Σ2) be an injective rooted cluster morphism. Then f induces an isomorphism of

seeds Σ1 ' f(Σ1) or Σ1 ' (f(Σ1))op.

Proof. As f is injective and satis�es (CM1), we have f(x1) ⊂ x2 and since it satis�es (CM2),
we have f(ex1) = ex2 ∩ f(x1). Let x ∈ ex1. Since f satis�es (CM3), we have f(µx,Σ1(x)) =
µf(x),Σ2

(f(x)) so that∏
y∈x1,
b1xy>0

f(y)b
1
xy +

∏
y∈x1,
b1xy<0

f(y)−b
1
xy =

∏
z∈x2,

b2f(x)z>0

zb
2
f(x)z +

∏
z∈x2,

b2f(x)z<0

z−b
2
f(x)z .

Therefore, b2f(x)z = 0 for any z 6∈ f(x1) and either b2f(x)z = b1xy for any y ∈ x1 such that f(y) = z

or b2f(x)z = −b1xy for any y ∈ x1 such that f(y) = z, which proves the lemma. �

Corollary 4.5. Any injective rooted cluster morphism is ideal.

Proof. Let Σ = (x, ex, B) and Σ′ = (x′, ex′, B′) be two seeds and let f : A (Σ)−→A (Σ′) be an
injective rooted cluster morphism. As a cluster algebra does only depend on the simpli�cation
of the seed, we can assume that both Σ = Σ and Σ′ = Σ′. According to Lemma 4.4, f induces
an isomorphism of seeds Σ ' f(Σ) or Σ ' f(Σ). It follows that every Σ-admissible sequence is
(f,Σ,Σ′)-biadmissible.

In order to prove that f is ideal, it is enough to prove that for any cluster variable x in A (Σ),
the variable f(x) is an element in A (f(Σ)). Let thus z be a cluster variable in A (Σ). Then either
z is a frozen variable in Σ and thus f(z) is a frozen variable in f(Σ) and we are done, or there
exists a Σ-admissible sequence (x1, . . . , xl) such that z = µxl ◦ · · · ◦ µx1

(x) for some x ∈ ex. Then
(x1, . . . , xl) is (f,Σ,Σ′)-biadmissible and because f satis�es (CM3), we get

f(z) = f(µxl ◦ · · · ◦ µx1,Σ(x)) = µf(xl) ◦ · · · ◦ µf(x1),Σ′(f(x))
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but it follows from Lemma 2.9 that

µf(xl) ◦ · · · ◦ µf(x1),Σ′(f(x)) = µf(xl) ◦ · · · ◦ µf(x1),f(Σ)(f(x)).

Therefore, f(z) is a cluster variable in A (f(Σ)) and thus f(A (Σ)) ⊂ A (f(Σ)). The reverse
inclusion follows from Lemma 2.10 and therefore f is ideal. �

As a byproduct of the proof of Corollary 4.5, we obtain :

Corollary 4.6. Let Σ1,Σ2 be two seeds and f : A (Σ1)−→A (Σ2) be an injective rooted cluster
morphism. Then :

(1) any Σ1-admissible sequence is (f,Σ1,Σ2)-biadmissible,
(2) f(XΣ1) ⊂XΣ2 . �

We recall that a seed Σ = (x, ex, B) is called :

• of �nite cluster type if XΣ is �nite,
• acyclic if the valued quiver obtained by deleting the arrows between frozen vertices in QB
has no oriented cycles,

• mutation-�nite if the mutation class of the exchange matrix of B is �nite.

Corollary 4.7. Let Σ1,Σ2 be two seeds and f : A (Σ1)−→A (Σ2) be an injective rooted cluster
morphism. Then :

(1) If Σ2 is of �nite cluster type, then so is Σ1 ;
(2) If Σ2 is acyclic, then so is Σ1 ;
(3) If Σ2 is mutation-�nite, then so is Σ1.

Proof. The �rst assertion is a consequence of Corollary 4.6. The second assertion follows from
Lemma 4.4 and from the fact that a subquiver of an acyclic (valued) quiver is acyclic. The third
assertion follows from Lemma 4.4 and from the fact that a full subquiver of a mutation-�nite
(valued) quiver is mutation-�nite. �

4.1. Monomorphisms arising from triangulations of the n-gon. For any integer m ≥ 3, we
denote by Πm the m-gon whose points are labelled cyclically from 1 to m. For m ≥ 4, the cluster
algebra A (Πm) (with coe�cients associated with boundary arcs) is a cluster algebra of type Am−3.

We construct by induction a family {Tm}m≥3 where each Tm is a fan triangulation of Πm. We
start with the triangle Π3 whose points are denoted by 1,2 and 3. For any m ≥ 3, the triangulation
Tm+1 of Πm+1 is obtained by gluing a triangle along the boundary arc joining m to 1 in Tm and
the new marked point introduced by this triangle is labelled by m+1, as shown in the �gure below.

1

2

3 1

2

3 1

2

3 1

2

3

4 4 4

5 5

6

T3 T4 T5 T6

For any m ≥ 4, we denote by Σm the seed associated with Tm in A (Πm). Cluster variables
in A (Πm) are identi�ed with the arcs joining two marked points in Πm and for any i and j such
that 1 ≤ i < j ≤ m, we denote by xij the variable corresponding to the arc joining i to j.
The exchangeable variables are thus the variables corresponding to internal arcs. The exchange
relations given by the mutations in A (Πm) are the so-called Plücker relations :

xijxkl = xikxjl + xilxkj for 1 ≤ i < j < k < l ≤ m.
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For any m′ ≥ m, the inclusion of Tm in Tm′ de�nes a natural ring monomorphism jm,m′ :
FΣm−→FΣm′ . Since arcs (or internal arcs) in Tm are sent to arcs (or internal arcs, respec-
tively) in Tm′ , then jm,m′ satis�es (CM1) and (CM2). Moreover, since exchange relations in
A (Πm) and A (Πm′) correspond to Plücker relations in Πm and Πm′ respectively, it is easily seen
that jm,m′ satis�es (CM3). Finally, since every admissible sequence of variables in A (Πm) is
(jm,m′ ,Σm,Σm′)-biadmissible, it follows from the fact that jm,m′ preserves the Plücker relations
that it commutes with biadmissible mutations and that jm,m′(A (Πm)) ⊂ A (Πm′).

Therefore, for m < m′, we have exhibited an injective rooted cluster morphism

jm,m′ : A (Πm)−→A (Πm′).

Example 4.8. Consider the cluster algebra A (Π4) whose cluster variables are shown on the square
below.

1 2

34

x1,2

x3,4

x1,4 x2,3

x1,3

x2,4

Then
A (Π4) = Z[xij | 1 ≤ i < j ≤ 4]/(x13x24 = x12x34 + x14x23).

Now consider the cluster algebra A (Π5). It has 4 additional cluster variables, two are exchange-
able and two are frozen. We show these new variables on the picture below.

5

1 2

34

x2,5

x3,5

x1,5

x4,5

Then

A (Π5) = Z[xij | 1 ≤ i < j ≤ 5]/(xijxkl = xikxjl + xilxkj for 1 ≤ i < j < k < l ≤ 5).

In particular, the canonical morphism j4,5 : Q(xij | 1 ≤ i < j ≤ 4)−→Q(xij | 1 ≤ i < j ≤ 5) in-
duces an injective ring homomorphism A (Π4)−→A (Π5) which is a rooted cluster monomorphism
A (ΣT4

)−→A (ΣT5
).

De�nition 4.9 (Full subseed of a seed). Given a seed Σ = (x, ex, B) where x = (xi, i ∈ I) and
given a subset J ⊂ I, we set Σ|J the seed with cluster x|J = (xi, i ∈ J), with exchangeable variables
ex|J = ex ∩ x|J and exchange matrix B[J ]. Such a seed is called a full subseed of Σ.

Remark 4.10. If Σ′ is a full subseed of Σ, the canonical morphism FΣ′−→FΣ does not necessarily
induce an injective rooted cluster morphism A (Σ′)−→A (Σ). For instance, if Σm denotes the
coe�cient-free seed associated with the quiver

Qm : 1−→ 2−→ · · ·−→m

for any m ≥ 1, then the canonical inclusion ι : FΣm−→FΣm+1 does not induce a rooted cluster
morphism A (Σm)−→A (Σm+1) because

ι (µxm,Σm(xm)) = ι

(
1 + xm−1

xm

)
6= xm−1 + xm+1

xm
= µxm,Σm+1

(xm).
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We now describe a combinatorial operation on seeds which allows one to construct a class of
injective rooted cluster morphisms.

4.2. Amalgamated sum of seeds. Let Σ1 = (x1, ex1, B
1) and Σ2 = (x2, ex2, B

2) be two seeds
and A (Σ1), A (Σ2) be the corresponding rooted cluster algebras.

Let ∆1 ⊂ (x1 \ ex1) and ∆2 ⊂ (x2 \ ex2) be two (possibly empty) subsets such that there is an
isomorphism of seeds Σ1|∆1

' Σ2|∆2
. In this case, we say that Σ1 and Σ2 are glueable along ∆1

and ∆2.
Let ∆ be a family of undeterminates in bijection with ∆1 and ∆2. We set

x1

∐
∆1,∆2

x2 = (x1 \∆1) t (x2 \∆2) t∆.

As ∆1 and ∆2 consist of frozen variables, ex1 and ex2 are naturally identi�ed with two disjoint
subsets of x1

∐
∆1,∆2

x2 and we set

ex1

∐
∆1,∆2

ex2 = ex1 t ex2.

With respect to the partitions xi = (xi \ ∆i) t ∆, for any i ∈ {1, 2} the matrix Bi can be
written :

Bi =

[
Bi11 Bi12

Bi21 B∆

]
where the matrices are possibly in�nite.

We then set

B1
∐

∆1,∆2

B2 =

 B1
11 0 B1

12

0 B2
11 B2

12

B1
21 B2

12 B∆


De�nition 4.11 (Amalgamated sum of seeds). With the above notations, the amalgamated sum
of A (Σ1) and A (Σ2) along ∆1,∆2 is the rooted cluster algebra A (Σ) where Σ = (x, ex, B) with :

(1) x = x1

∐
∆1,∆2

x2 ;

(2) ex = ex1

∐
∆1,∆2

ex2 ;

(3) B = B1
∐

∆1,∆2
B2.

We use the notations

Σ = Σ1

∐
∆1,∆2

Σ2 and A (Σ) = A (Σ1)
∐

∆1,∆2

A (Σ2).

Remark 4.12. In terms of valued quivers, the amalgamated sum of exchange matrices corre-
sponds to the amalgamated sum of valued quivers. For instance, the following �gure shows an
example of amalgamated sum over the subquivers in the shaded area where points corresponding
to exchangeable (or frozen) variables are black (or white, respectively).

∆ ∆ ∆

QB QB′ QB
∐

∆ B′
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Lemma 4.13. Let Σ1 and Σ2 be two seeds which are glueable along subsets ∆1 and ∆2 as above
and let Σ = Σ1

∐
∆1,∆2

Σ2. Then for any i such that i ∈ {1, 2}, the morphism FΣi−→FΣ induced

by the inclusion induces an injective rooted cluster morphism A (Σi)−→A (Σ).

Proof. By construction of Σ, the canonical morphism ji : FΣi−→FΣ is injective and satis�es
(CM1) and (CM2). We now prove by induction on l that any Σ1-admissible sequence of length
l is (j1,Σ1,Σ)-biadmissible and that j1 commutes with mutations along biadmissible sequences of
length l.

Let x ∈ ex1. Then j1(x) = x ∈ ex so that (x) is (j1,Σ1,Σ)-biadmissible and therefore mutating
in Σ1 gives

µx(x) =
∏

y∈x1 ;
b1xy>0

yb
1
xy +

∏
y∈x1 ;
b1xy<0

y−b
1
xy

and, since bzy = 0 for any z ∈ (x1 \∆) ⊃ ex1 and any y ∈ x2 \∆, mutating in Σ gives

µx,Σ(x) =
∏
y∈x ;
bxy>0

ybxy +
∏
y∈x ;
bxy<0

y−bxy

=
∏

y∈(x1\∆1)t∆ ;
bxy>0

ybxy +
∏

y∈(x1\∆1)t∆ ;
bxy<0

y−bxy

=
∏

y∈x1 ;
b1xy>0

yb
1
xy +

∏
y∈x1 ;
b1xy<0

y−b
1
xy

= j1(µx,Σ1
(x))

and thus j1 is a locally rooted cluster morphism.
Assume now that we proved the claim for any k < l and let Σ(k) = µxk ◦ · · · ◦ µx1

(Σ) and

Σ
(k)
1 = µxk ◦ · · · ◦µx1

(Σ1). We denote by B(k) = (b
(k)
xy ) (or B1,(k) = (b

1,(k)
xy )) the exchange matrix of

Σ(k) (or Σ
(k)
1 , respectively). By the induction hypothesis, the cluster x(k) of Σ(k) is x

(k)
1 t(x2\∆)t∆

where x
(k)
1 t∆1 is the cluster of Σ

(k)
1 . Then an easy induction proves that

b(l)xy =

{
0 if x ∈ x

(k)
1 and y ∈ x2 \∆

b
1,(l)
xy if x, z ∈ x

(k)
1 t∆.

Because j1 commutes with sequences of biadmissible mutations of length k, any variable xk+1

exchangeable in Σ
(k)
1 is also exchangeable in Σ(k) and a similar calculation proves that for any such

exchangeable variable xk+1, the morphism j1 commutes with µxk+1
◦ · · · ◦ µx1

. �

Remark 4.14. If ∆1 and ∆2 do not consist of frozen variables, then the canonical morphism
FΣi−→FΣ may not satisfy (CM3). Indeed, if one considers the seeds

Σ1 =

(
(x1, x2), (x1, x2),

[
0 1
−1 0

])

Σ2 =

(
(x2, x3), (x3),

[
0 1
−1 0

])
so that

Σ = Σ1

∐
x2,x2

Σ2 =

(x1, x3, x2), (x1, x3, x2),

 0 0 1
0 0 −1
−1 1 0

 .
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Then mutating along x2 in Σ1 gives 1+x1

x2
whereas mutating along x2 in Σ gives x1+x3

x2
. Therefore,

the canonical morphism FΣ1
−→FΣ does not satisfy (CM3).

If Σ1 = (x1, ex1, B
1) and Σ2 = (x2, ex2, B

2) are glueable along ∆1,∆2 and if we denote by ∆
the common image of ∆1 and ∆2 in Σ = Σ1

∐
∆1,∆2

Σ2 = (x, ex, B), then the compositions of the
canonical ring homomorphisms

Z[∆] ' Z[∆1]−→A (Σ1) and Z[∆] ' Z[∆2]−→A (Σ2)

induce Z[∆]-algebra structures on A (Σ1) and A (Σ2). Also the inclusion Z[∆] ⊂ A (Σ) induces a
Z[∆]-algebra structure on A (Σ). Then we have the following proposition :

Proposition 4.15. The canonical ring homomorphism Z[∆][x±1
1 ] ⊗Z[∆] Z[x±1

2 ]−→Z[∆][x±1] in-
duces an isomorphism of Z[∆]-algebras :

A

Σ1

∐
∆1,∆2

Σ2

 ' A (Σ1)⊗Z[∆] A (Σ2).

Proof. Let φ : Z[∆][x±1
1 ]⊗Z[∆] Z[∆][x±1

2 ]−→Z[∆][x±1] denote the canonical ring homomorphism.
Then, as we saw in the proof of Lemma 4.13, considering the �same� sequences of mutations in

the cluster algebras A (Σ1)⊗Z[∆]A (Σ2) and A
(

Σ1

∐
∆1,∆2

Σ2

)
show that φ induces a well-de�ned

surjective ring homomorphism A (Σ1) ⊗Z[∆] A (Σ2)−→A
(

Σ1

∐
∆1,∆2

Σ2

)
. This homomorphism

is injective since φ is so. �

5. Coproducts, products and amalgamated sums

5.1. Coproducts of rooted cluster algebras.

Lemma 5.1. The category Clus admits countable coproducts.

Proof. Let I be a countable set and let {A (Σi)}i∈I be a countable family of rooted cluster algebras.

For any i ∈ I, we set Σi = (xi, exi, B
i) and

Σ =
∐
i∈I

Σi = (x, ex, B)

where

x =
⊔
i∈I

xi, ex =
⊔
i∈I

exi,

and B is the block-diagonal matrix whose blocks are indexed by I and such that for any i ∈ I,
the i-th diagonal block is Bi. Then B is locally �nite and thus Σ is a well-de�ned seed. For any
i ∈ I, we denote by ji the canonical inclusion FΣi−→FΣ, which clearly induces a rooted cluster
morphism A (Σi)−→A (Σ).

Now assume that there exists a rooted cluster algebra A (Θ) and for any i ∈ I a rooted cluster
morphism gi : A (Σi)−→A (Θ). In order to prove that A (Σ) is the coproduct of the A (Σi) with
i ∈ I, we need to prove that there exists a unique rooted cluster morphism h : A (Σ)−→A (Θ)
such that h ◦ ji = gi for any i ∈ I. It is easily seen that such a rooted cluster morphism h exists
if and only if there exists a ring homomorphism h : FΣ−→FΘ satisfying h(x) = gi(x) for any
i ∈ I. This latter condition de�nes precisely one ring homomorphism h : FΣ−→FΘ and therefore,
h exists and is unique. �

Corollary 5.2. The full subcategory of Clus formed by rooted cluster algebras associated with
�nite seeds has �nite coproducts.
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Remark 5.3. In the case of cluster algebras arising from marked surfaces, this can be topologically
interpreted by saying that if (S,M) is a marked surface, with connected components S1, . . . , Sn
and with Mi = M ∩ Si for any 1 ≤ i ≤ n, then A (S,M) is the coproduct of the A (Si,Mi) in
Clus. Indeed, for any 1 ≤ i ≤ n, let Ti be a triangulation of (Si,Mi). Then T =

⊔
i Ti is a

triangulation of (S,M) and it follows immediately from the de�nitions that ΣT =
∐n
i=1 ΣTi so

that A (ΣT ) =
∐n
i=1 A (ΣTi).

5.2. Products of rooted cluster algebras.

Proposition 5.4. Clus does not generally admit products.

Proof. The proof consists of the construction of an example of two rooted cluster algebras whose
product is not de�ned in Clus. We consider the rooted cluster algebras associated with the seeds
Σ1 = ((t1), ∅, [0]) and Σ1 = ((t2), ∅, [0]), so that A (Σ1) = Z[t1] and A (Σ2) = Z[t2]. Assume that
there exists a product in Clus

A (Σ)

p1

{{

p2

##
Z[t1] Z[t2].

with Σ = (x, ex, B). For any i ∈ {1, 2}, the morphism pi is a rooted cluster morphism so that

pi(x) ⊂ {ti} t Z and pi(ex) ⊂ Z.
Consider the seed Σ′ = ((x), ∅, [0]) and for any i ∈ {1, 2}, let fi : Z[x]−→Z[ti] be the ring

homomorphism sending x to ti. Then fi is a rooted cluster morphism A (Σ′) = Z[x]−→A (Σ) for
any i ∈ {1, 2}.

By de�nition of the product, there exists a unique rooted cluster morphism h : A (Σ′)−→A (Σ)
such that the following diagram commutes:

A (Σ′)

h

��
f1

��

f2

��

A (Σ)

p1{{
p2 ##

Z[t1] Z[t2].

In particular, for any i ∈ {1, 2}, there exists xi ∈ x such that pi(xi) = ti.
Now consider the seed Σ′ = ((v1, v2), ∅, [0]) so that A (Σ′) = Z[v1, v2]. For any i ∈ {1, 2},

let fi : A (Σ′)−→A (Σi) be de�ned by fi(vj) = δijtj where δij is the Kronecker symbol. Then
each fi is a rooted cluster morphism. Again by de�nition of product, there exists a unique rooted
cluster morphism h : A (Σ′)−→A (Σ) such that the above diagram commutes. Since h satis�es
(CM1), for any i ∈ {1, 2}, we have h(vi) = xi for some xi ∈ x such that pi(xi) = pi(x

′
i) = ti.

If xi, x
′
i ∈ x are such that pi(xi) = ti, then the morphism given by h(vi) = h(x′i) induces a

rooted cluster morphism A (Σ′)−→A (Σ) and by uniqueness, h = h′ and thus xi = x′i. Also, as
(p1 ◦ h)(v1) = t1 and (p1 ◦ h)(v2) = 0, we have h(v1) 6= h(v2). Therefore, we obtained exactly
two elements h(v1) = x1 and h(v2) = x2 in x such that p1(x1) = t1, p2(x1) = 0, p1(x2) = 0 and
p2(x2) = t2 and these elements are distinct.

Now consider again the seed Σ′ = ((x), ∅, [0]) and fi : Z[x]−→Z[ti] the morphism sending x to
ti for any i ∈ {1, 2}. Let h be the unique morphism such that the above diagram commutes. Then,
by commutativity of the left triangle, we get h(x) = x1 and by commutativity of the right triangle,
we get h(x) = x2, a contradiction. Therefore, A (Σ1) and A (Σ2) have no product in Clus. �
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5.3. Amalgamated sums. In this subsection, we prove that the amalgamated sums of seeds yield
pushouts of injective morphisms in Clus.

Let Σ1 = (x1, ex1, B
1) and Σ2 = (x2, ex2, B

2) be two seeds and let ∆1, ∆2 be (possibly empty)
subsets of x1 and x2 respectively such that Σ1 and Σ2 are glueable along ∆1,∆2. We recall that
necessarily ∆1 and ∆2 consist of frozen variables.

For any k = 1, 2, it follows from Lemma 4.1 that we have a natural injective rooted cluster
morphism :

ik : Z[∆]−→A (Σk)

and from Lemma 4.13 that we have a natural injective rooted cluster morphism

jk : A (Σk)−→A (Σ1)
∐

∆1,∆2

A (Σ2).

Proposition 5.5. With the previous notations, the diagram

Z[∆]
i1 //

i2

��

A (Σ1)

j1

��
A (Σ2)

j2
// A (Σ1)

∐
∆1,∆2

A (Σ2)

is the amalgamated sum of i1 and i2 in Clus.

Proof. One must �rst prove that the diagram commutes. Let x be a variable in the cluster ∆ of
Σ1

⋂
∆1,∆2

Σ2. Then i1 identi�es canonically x with a variable x1 in ∆1 and i2 identi�es canonically
x with a variable x2 in ∆2. But j1 and j2 then identify canonically x1 and x2 with the variable x
viewed as an element in x1

∐
∆1,∆2

x2. Thus the diagram commutes.
Let now Σ be a seed such that there exists a commutative diagram in Clus

A (Σ1

⋂
∆1,∆2

Σ2)
i1 //

i2

��

A (Σ1)

f1

��
A (Σ2)

f2

// A (Σ).

We show that there exists a unique rooted cluster morphism h : A (Σ1)
∐

∆1,∆2
A (Σ2)−→A (Σ)

such that the following diagram commutes :

(1) A (Σ1)
∐

∆1,∆2

A (Σ2)

h

��
A (Σ1)

j1 88

f1

// A (Σ) A (Σ2).

j2gg

f2

oo

For any k = 1, 2 we identify ∆k with ∆ ⊂ x1

∐
∆1,∆2

x2 via the morphism jk. It follows

from the commutativity of the �rst diagram that f1(x) = f2(x) for any x ∈ ∆. We thus set
h : FΣ1

∐
∆1,∆2

Σ2
−→FΣ via

h(x) =

 f1(x) = f2(x) if x ∈ ∆ ;
f1(x) if x ∈ x1 ;
f2(x) if x ∈ x2.
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Because f1 and f2 are rooted cluster morphisms, h is necessarily also a rooted cluster morphism
and therefore the diagram (1) commutes. Conversely, if h is a rooted cluster morphism such that
the diagram (1) commutes, then h is entirely determined by its values on x1

∐
∆1,∆2

x2 and it is
easily seen that h must be the above morphism. �

5.4. Topological interpretation of the amalgamated sums. In this subsection we prove that
amalgamated sums of cluster algebras of surfaces correspond to cluster algebras associated with
connected sums of surfaces.

Let (S1,M1) and (S2,M2) be marked surfaces in the sense of [11] and let ∂1 and ∂2 be boundary

components respectively of S1 and S2 such that there exists a homeomorphism h : ∂1
∼−→ ∂2

satisfying h(∂1 ∩M1) = ∂2 ∩M2.
We denote by

(S,M) = (S1,M1)
∐
∂1,∂2

(S2,M2)

the connected sum of S1 and S2 along h, that is, S is the surface obtained by gluing S1 and S2

along the homeomorphism h and M = (M1 \ (M1 ∩ ∂1))∪ (M2 \ (M2 ∩ ∂2))∪M∂ where M∂ is the
common image of ∂1 ∩M1 and ∂2 ∩M2 in the surface S (see for instance [21, p.8]). We denote by
∂ the common image of ∂1 and ∂2 in the surface S.

Remark 5.6. Even if (S1,M1) and (S2,M2) are unpunctured surfaces, the surface (S,M) may
have punctures, see for instance Figure 2.

Let T1 and T2 be triangulations of (S1,M1) and (S2,M2) respectively and let Σ1 and Σ2 be the
corresponding seeds. Then ∂1 is identi�ed with a subset of the frozen variables in Σ1 and ∂2 is
identi�ed with a subset of the frozen variables in Σ2. In the connected sum (S,M), the collection
T1 ∪ T2 de�nes a triangulation and we denote by Σ the associated seed. Then it follows from
Proposition 5.5 that

A (Σ∂) = A (Σ1)
∐
∂1,∂2

A (Σ2)

where the notation Σ∂ means that we have frozen the variables corresponding to ∂ in Σ

Corollary 5.7. In the category Clus, the rooted cluster algebra associated with the triangulation
T of S where the arcs in ∂ are frozen is the amalgamated sum over the polynomial ring Z[∂] of the
rooted cluster algebras A (Σ1) and A (Σ2) associated with the triangulations T1 and T2 induced by
T respectively on S1 and S2.

Example 5.8. Figure 2 shows such a gluing.

6. Surjective rooted cluster morphisms

We recall that an epimorphism in a category is a morphism f such that for all morphisms h and
g such that gf = hf , then g = h. In this section, we focus on surjective rooted cluster morphisms,
which are particular cases of epimorphisms since Clus is a concrete category.

Remark 6.1. As in the category Ring, epimorphisms in Clus are not necessarily surjective.
Indeed, if one considers the seeds

Σ1 = ((x1), ∅, [0]), and Σ2 = ((x1), (x1), [0]),

then it follows from Lemma 4.1 that the identity morphism FΣ1
= Q(x1)−→Q(x1) = FΣ2

induces
a rooted cluster morphism f : Z[x1] = A (Σ1)−→A (Σ2) = Z[x1,

2
x1

]. If Σ3 is another seed and

g, h : A (Σ2)−→A (Σ3) are such that hf = gf , then hf(x1) = gf(x1) so that h(x1) = g(x1) and
as g and h are ring homomorphisms, we also have h( 2

x1
) = g( 2

x1
) so that h = g. Therefore f is an

epimorphism.
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Figure 2. An example of connected sum of an annulus and a pair of pants along
a boundary and the induced triangulations.

As f is injective, it follows from Proposition 4.3 that it is a monomorphism in Clus and thus,
f is an example of a bimorphism (that is, both a monomorphism and an epimorphism) in Clus
which is not an isomorphism.

Proposition 6.2. Let Σ,Σ′ be two seeds and f : A (Σ)−→A (Σ′) be a surjective rooted cluster
morphism. Then :

(1) any Σ′-admissible sequence lifts to an (f,Σ,Σ′)-biadmissible sequence,
(2) XΣ′ ⊂ f(XΣ).

Proof. Let y ∈ ex′. According to Lemma 3.1, there exists x ∈ ex such that f(x) = y so that the
Σ′-admissible sequence (y) lifts to the (f,Σ,Σ′)-biadmissible sequence (x). Now let (y1, . . . , yl)
be a Σ′-admissible sequence. We prove by induction on l that (y1, . . . , yl) lifts to an (f,Σ,Σ′)-
biadmissible sequence. If l = 1, this follows from the above discussion. Otherwise, there exists
y ∈ x′ such that

yl = µyl−1
◦ · · · ◦ µy1

(y).

By the induction hypothesis, (y1, . . . , yl−1) lifts to an (f,Σ,Σ′)-biadmissible sequence (x1, . . . , xl−1)
and since f satis�es (CM3), we get

yl = µf(xl−1) ◦ · · · ◦ µf(x1)(x) = f(µxl−1
◦ · · · ◦ µx−1(x))

where x lifts y in ex. Therefore, if xl = µxl−1
◦ · · · ◦ µx−1(x), the sequence (x1, . . . , xl) lifts

(y1, . . . , yl). And moreover, yl ∈ f(XΣ), which proves the corollary. �

Corollary 6.3. Let Σ1 and Σ2 be two seeds and f : A (Σ1)−→A (Σ2) be a surjective rooted cluster
morphism. Assume that Σ1 is of �nite cluster type. Then Σ2 is of �nite cluster type.
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6.1. Specialisations. It is well-known that for any cluster algebra of geometric type A (Σ), spe-
cialising the frozen variables to 1 gives rise to the coe�cient-free cluster algebra associated with
the principal part of the exchange matrix of Σ, see for instance [14]. In this subsection, we study
the slightly more general case where an arbitrary cluster variable, frozen or not, is specialised to an
integer (which can essentially be assumed to be 1). If the considered cluster variable is frozen, then
one �nds natural surjective rooted cluster morphisms. More surprisingly, as we prove in certain
cases (and expect in general), specialising an exchangeable cluster variable to 1 also leads to rooted
cluster morphisms.

The following general lemma shows that in a given cluster algebra A , the only Laurent mono-
mials in the cluster variables of a �xed cluster x in A which belong to A are the (classical)
monomials.

Lemma 6.4. Let A be a rooted cluster algebra and let x be a cluster in A . Let m =
∏
x∈x x

dx

be a Laurent monomial in the variables in x, with dx ∈ Z for any x ∈ x. Then the following
conditions are equivalent :

(1) m is an element in A ;
(2) dx ≥ 0 for any x ∈ x ;
(3) m is a monomial in x.

Proof. Let Σ be a seed containing the cluster x. It is clear that the second and third assertions
are equivalent and that the second implies the �rst one. Therefore, we only have to prove that the
�rst one implies the second one. Assume that there exists some x ∈ x such that dx < 0. Because
the elements in A are Laurent polynomials in the exchangeable variables of x with polynomial
coe�cients in the frozen variables of x (see for instance [13, Proposition 11.2]), if dx < 0, then the
variable x is necessarily exchangeable. Let thus Σ′ = (x′, ex′, B′) = µxΣ with x′ = (x\{x})t{x′}.
Then the expansion of m in Σ′ is

m =
∏
y∈x\x

ydy

(
x′∏

bxz>0 z
bxz +

∏
bxz<0 z

−bxz

)−dx
.

In particular, m is not a Laurent polynomial in the cluster x′ and thus, according to the Laurent
phenomenon (see [12]), m does not belong to A . �

Let Σ = (x, ex, B) and let x ∈ x. We denote by Σ \ {x} the seed Σ|x\{x} = (x′, ex′, B′) where
x′ = x \ {x}, ex′ = ex \ {x} and b′yz = byz for any y, z 6= x in x′.

De�nition 6.5 (Simple specialisation). Let n ∈ Z. The simple specialisation of x to n is the ring
homomorphism :

σx,n :

 FΣ −→ FΣ\{x}
x 7→ n,
z 7→ z if z ∈ x \ {x} .

The following lemma shows that, except degenerate cases, the only value to which we can
specialise a (single) cluster variable is 1.

Lemma 6.6. Let Σ = (x, ex, B) be a seed, let x ∈ x and let n ∈ Z. Assume that σx,n induces
a ring homomorphism A (Σ)−→A (Σ \ {x}). If there exists some y ∈ ex such that bxy 6= 0, then
n ∈ {−1, 1}. If there exists some y ∈ ex such that bxy ∈ 2Z + 1, then n = 1.
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Proof. Let x ∈ x, x′ = x \ {x} and Σ′ = Σ \ {x}. Assume that there exists y ∈ ex such that
bxy 6= 0. Without loss of generality, we assume that bxy > 0. Then

σ(µy,Σ(y)) = σ

1

y

 ∏
bzy>0

zbzy +
∏
byz>0

zbyz



=
1

y

nbxy ∏
bzy>0

z 6=x

zbzy +
∏
byz>0

z 6=x

zbyz


=

1

y

nbxy ∏
b′zy>0

zb
′
zy +

∏
b′yz>0

zb
′
yz

 .

But

µy,Σ′(y) =
1

y

 ∏
b′zy>0

zbzy +
∏
b′yz>0

zbyz

 .

Thus, if σ induces a ring homomorphism between the rooted cluster algebras, we get σ(µy,Σ(y)) ∈
A (Σ \ {x}) and so the di�erence σ(µy,Σ(y))− nbxyµy,Σ′(y) also belongs to A (Σ \ {x}).

But

σ(µy,Σ(y))− nbxyµy,Σ′(y) =
1

y
(1− nbxy )

∏
b′yz>0

zb
′
yz

is a Laurent monomial in the cluster x′ such that the exponent of y is −1 < 0, with y ∈ ex.
Therefore, it follows from 6.4 that necessarily 1−nbxy = 0, that is, nbxy = 1 and thus n ∈ {−1, 1}.
If moreover bxy is odd, we necessarily have n = 1. �

Example 6.7. We exhibit an example where a simple specialisation to −1 does not induce a map
at the level of the corresponding cluster algebras. Consider the cluster algebras of respective types
A3 and A2 associated with the coe�cient-free seeds

Σ =
(

(x1, x2, x3), 1 // 2 3oo
)

and Σ′ =
(

(x1, x2), 1 // 2
)

and consider the simple specialisation σ = σx3,−1 of x3 to −1.
The image under σ of the cluster variable 1+x1x3

x2
is 1−x1

x2
. But if 1−x1

x2
is in A (Σ′), then, since

1+x1

x2
is in A (Σ′), we get 2

x2
∈ A (Σ′). Then the expansion of 2

x2
in the cluster (x1, x

′
2) of the seed

µ2(Σ′) is 2
x′2

1+x1
which is not a Laurent polynomial, a contradiction.

The following lemma shows that the study of simple specialisations in -1 can be reduced to the
study of simple specialisations to 1.

Lemma 6.8. Let Σ = (x, ex, B) be a seed and let x ∈ ex be such that bxy ∈ 2Z for any y ∈ ex.
Then σx,−1 is a rooted cluster morphism if and only if σx,1 is. Moreover, in this case σx,−1(a) =
±σx,1(a) for any a ∈XΣ.

Proof. Both σx,1 and σx,1 satisfy (CM1) and (CM2). Now we observe that a sequence of variables
is (σx,−1,Σ,Σ \ {x})-biadmissible if and only if it is disjoint from x, which is also the condition
for this sequence to be (σx,1,Σ,Σ \ {x})-biadmissible. Let a 6= x be an exchangeable variable
in Σ. Then, since bxy ∈ 2Z for any y ∈ ex, it follows that that σx,−1(µa,Σ(a)) = σx,1(µa,Σ(a)).
Moreover, if µaΣ = Σ′ = (x′, ex′, B′), then it follows from the mutation rule for exchange matrices
that b′xy ∈ 2Z for any y ∈ ex′. Therefore, by induction, σx,−1 satis�es (CM3) if and only if σx,1
does. Hence, it only remains to prove that σx,−1 induces a map A (Σ)−→A (Σ \ x) if and only if
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σx,1 does. This follows from the fact that σx,−1(a) ∈ {−σx,1(a), σx,1(a)} for any a ∈XΣ, which is
easily proved by induction. �

Proposition 6.9. Let Σ = (x, ex, B) be a seed and let x ∈ x. Then σx,1 induces an ideal surjective
rooted cluster morphism A (Σ)−→A (Σ \ {x}) if and only if it induces a ring homomorphism
A (Σ)−→A (Σ \ {x}).

Proof. Let σ = σx,1. Then σ clearly satis�es (CM1) and (CM2). In order to prove (CM3), it
is enough to notice that a Σ-admissible sequence (x1, . . . , xl) is (σ,Σ,Σ \ {x})-biadmissible if and
only if xk 6= x for any k such that 1 ≤ k ≤ l and to proceed by induction on l. It follows that σ
is a rooted cluster morphism if and only if σ induces a ring homomorphism A (Σ)−→A (Σ \ {x}).
Its surjectivity comes from the fact that any admissible sequence in Σ \ {x} can naturally be lifted
to a (σ,Σ,Σ \ {x})-biadmissible sequence. In order to prove that σ is ideal, it is enough to observe
that σ(Σ) = Σ \ {x} so that σ(A (Σ)) = A (Σ \ {x}) = A (σ(Σ)). �

6.2. Simple specialisations in general. In general, we expect that simple specialisations of
cluster variables to 1 induce rooted cluster morphisms.

Problem 6.10. Let Σ = (x, ex, B) be a seed and let x ∈ x. Then does σx,1 induce a surjective
ideal rooted cluster morphism A (Σ)−→A (Σ \ {x}) ?

Remark 6.11. The main di�culty for solving Problem 6.10 is to prove that σx,1 induces a map
A (Σ)−→A (Σ \{x}). We solve this problem for rooted cluster algebras associated with an acyclic
seed (Corollary 6.14), for a general family of cluster algebras associated with marked surfaces (The-
orem 6.15) and we show a very close result for cluster algebras admitting a 2-CY categori�cation
(Theorem 6.17).

We now prove that simple specialisations preserve upper and lower bounds of cluster algebras
in general.

Given a seed Σ = (x, ex, B), and given an element x ∈ ex, we denote by µx(ex) the set of
exchangeable variables in µx(Σ) so that Z[x \ ex][µx(ex)±1] is the set of Laurent polynomials in
the exchangeable variables of µx(Σ) with polynomial coe�cients in the frozen variables of µx(Σ).
We also set

ex′ =
⋃
x∈ex

µx(ex)

to be the set of all the exchangeable variables in the seeds obtained from Σ by applying exactly
one mutation.

Following [4], we set :

De�nition 6.12. (1) The lower bound of A (Σ) is

L (Σ) = Z[x \ ex][ex ∪ ex′].

(2) The upper bound of A (Σ) is

U (Σ) = Z[x \ ex][ex±1] ∩
⋂
x∈ex

Z[x \ ex][µx(ex)±1].

These are subalgebras of FΣ and we always have the inclusions L (Σ) ⊂ A (Σ) ⊂ U (Σ).

Proposition 6.13. Let Σ = (x, ex, B) be a seed and let x ∈ x. Then :

(1) σx,1(L (Σ)) ⊂ L (Σ \ {x}) ;
(2) σx,1(U (Σ)) ⊂ U (Σ \ {x}).
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Proof. If x is frozen, the result is clear. Therefore, we �x some exchangeable variable x in ex. In
order to simplify the notations, we set σ = σx,1.

Let z be a cluster variable in Σ. If z is frozen, then σ(z) = z so that σ(z) is both in the upper
and in the lower bounds of A (Σ \ {x}). Assume now that z is exchangeable. If z 6= x, we have

σ(µz,Σ(z)) = σ

1

z

 ∏
byz>0 ;
y∈x

ybyz +
∏

byz<0 ;
y∈x

y−byz




=
1

z

 ∏
byz>0 ;
y∈x\{x}

ybyz +
∏

byz<0 ;
y∈x\{x}

y−byz


= µz,Σ\{x}(z).

If z = x, we get

σ(µx,Σ(x)) = σ

 1

x

 ∏
bxy>0
y∈x

ybxy +
∏
bxy<0
y∈x

y−bxy


 =

∏
bxy>0
y∈x\{x}

ybxy +
∏
bxy<0
y∈x\{x}

y−bxy .

It easily follows that σ(L (Σ)) ⊂ L (Σ \ {x}) and σ(U (Σ)) ⊂ U (Σ \ {x}). �

Therefore, we can deduce from [4] the following corollary.

Corollary 6.14. Let Σ = (x, ex, B) be a �nite acyclic seed and x ∈ x. Then σx,1 induces an ideal
surjective rooted cluster morphism A (Σ)−→A (Σ \ {x}).

Proof. Since Σ is a �nite acyclic seed, it follows from [4, Theorem 1.20] that A (Σ) = L (Σ).
Therefore, σ(A (Σ)) = σ(L (Σ)) ⊂ L (Σ \ {x}) ⊂ A (Σ \ {x}). The result therefore follows from
Proposition 6.13. �

6.3. Specialisations for cluster algebras from surfaces. In this section, we prove that sim-
ple specialisations induce surjective rooted cluster morphisms for cluster algebras associated with
surfaces.

Given a marked surface (S,M) and an internal arc γ in (S,M), we denote by dγ(S,M) the
(non-necessarily connected) marked surface obtained by cutting (S,M) along γ. The arc γ induces
in dγ(S,M) two new boundary arcs which we denote by γ1 and γ2. Now if T is a triangulation of
(S,M), then

dγT = (T \ {γ}) t {γ1, γ2}
is a triangulation of dγ(S,M).

Figures 3 and 4 present examples of cuttings of surfaces along an arc.

Note that the seed ΣdγT di�ers from the seed ΣT \{xγ}. However, we have ΣdγT [T \{γ1, γ2}] =
ΣT [T \ {γ}].

Theorem 6.15. Let (S,M) be a marked surface, T be a triangulation of (S,M) and ΣT be
the seed associated with T . Then for any γ ∈ T which does not enclose a degenerate marked
surface, the simple specialisation of xγ to 1 induces an ideal surjective rooted cluster morphism
A (ΣT )−→A (ΣT \ {xγ}).
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γ
dγ

γ1 γ2

Figure 3. Cutting a disc with two punctures to get an annulus.

dγ

γ

γ1 γ2

Figure 4. Cutting an annulus to get a disc without punctures.

Proof. If γ is a boundary arc, then xγ is a coe�cient and the result is well-known, see [14]. We
may thus assume that γ is an internal arc.

According to Proposition 6.9, as σ = σxγ ,1 is a ring homomorphism, in order to prove that σ is
a rooted cluster morphism, it is enough to prove that the image of σ is contained in A (ΣT \{xγ}).
For this we only need to prove that σ(xη) ∈ A (ΣT \ {xγ}) for any (possibly tagged) arc η in
(S,M). For the sake of simplicity we only prove it for an untagged arc η. The case of tagged arcs
is a straightforward adaptation.

Let η be an arc in (S,M). Resolving the intersections of η with γ (using for instance the
resolutions described in [10] or more generally the skein relations described in [23]), we can write
xγxη as a linear combination of products of xθ where θ runs over a family of curves which do not
intersect γ.

Every curve which does not cross γ induces a curve in the surface dγ(S,M). Let τ denote the
specialisation of xγ1

and xγ2
to 1. Then, as γ1 and γ2 are boundary arcs, τ is a rooted cluster

morphism from A (ΣdγT ) to A (ΣdγT \ {xγ1
, xγ2
}) = A (ΣT \ {xγ}). Moreover, for any arc θ in

(S,M) which does not cross γ, we have σ(xθ) = τ(xθ).
Therefore, σ(xη) = σ(xγxη) is a linear combination of τ(xθ) where θ runs over a family of curves

which do not intersect γ. Now for each such curve, xθ is an element of the cluster algebra A (dγT )
and thus τ(xθ) is an element of the cluster algebra A (ΣT \ {xγ}).

The fact that σ is surjective is clear since any admissible sequence for ΣT \ {xγ} lifts to an
admissible sequence for ΣT . The fact that it is ideal comes from the fact that σ(ΣT ) = ΣT \
{xγ}. �

Example 6.16. Consider the once-punctured torus T1 and �x a triangulation T of T1. It has
three arcs which we denote by 1,2 and 3 and which we show as follows in the universal cover of
T1 :
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1
23

The seed corresponding to this triangulation is the coe�cient-free seed

ΣT =

(x1, x2, x3),

 0 2 −2
−2 0 2

2 −2 0

 .

Now, an arbitrary cluster variable in A (T1) corresponds to a certain arc. In this example we
choose for instance the curve η shown below. Let us cut T1 along the arc 1, which we show dashed.
Resolving intersections between η and 1, and applying skein relations we get xηx1 = x2x3 + x2xθ
where θ does not intersect the arc 1.

1
23

η

2

3

θ

2

= +

We can easily compute

xθ =
x2

1 + x2
2

x3

so that σx1,1(xθ) =
1+x2

2

x3
∈ A (Σ \ {x1}). Let us also give a geometric argument.

Cutting T1 along the arc 1, we get the annulus C1,1 with one marked point on each boundary
component and {2, 3} together with the two boundary arcs b and b′ induce a triangulation of C1,1.
The arc θ in T1 induces an arc in C1,1 and we denote by x′θ the corresponding cluster variable in
A (C1,1).

θ

b

b′

b

b′

Then, it follows directly from the various expansion formulae for cluster variables associated
with arcs (see for instance [29, 22] or [2]) that xθ is given by x′θ where the variables xb and xb′

corresponding to the two boundary components are identi�ed with x1. Indeed, a direct computation
gives

x′θ =
xbxb′ + x2

2

x3
.

In particular, if we specialise xb, x
′
b and x1 to 1, we still get equality. But the cluster algebra

associated with C1,1 whose frozen variables are specialised to 1 is nothing but the cluster algebra
associated with the seed A (ΣT \ {x1}).

6.4. Specialisations and additive categori�cations. More generally, we can provide a partial
answer to Problem 6.10 using the theory of cluster categories and cluster characters. For the
necessary background on this theory, we refer the reader to [20] and references therein.
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Philosophically speaking, the proof of the following theorem follows the lines of the proof of
Theorem 6.15 where, in the spirit of [5], objects in categories should be thought of as curves in
surfaces, extensions of objects as intersections of the corresponding curves and �Hall products� as
skein relations.

We say that a seed Σ = (x, ex, B) admits a 2-CY categori�cation if it is �nite, skew-symmetric
and if the quiverQ corresponding to the exchange matrix in Σ admits a Jacobi-�nite non-degenerate
potential. For instance, any �nite skew-symmetric seed which is mutation-equivalent to an acyclic
seed admits a 2-CY categori�cation, see [6, 1].

If Σ admits a 2-CY categori�cation, we denote by C (Σ) the (generalised) cluster category at-
tached to the quiver with potential (Q,W ), see [1]. We recall that the cluster character is a
certain map X? : Ob(C (Σ))−→Z[x \ ex][ex±1] which assigns to any object M in C (Σ) a Laurent
polynomial XM ∈ Z[x \ ex][ex±1] which actually belongs to the upper cluster algebra U (Σ), see
[24, 9].

We denote by CC(Σ) the cluster character algebra, that is, the subalgebra

CC(Σ) = Z[x \ ex][XM | M ∈ Ob(C (Σ))] ⊂ U (Σ).

It is known that A (Σ) ⊂ CC(Σ) and that the inclusion can be strict, see [28]. However, to the
best of our knowledge, it is not known whether the inclusion CC(Σ) ⊂ U (Σ) can be strict.

Theorem 6.17. Let Σ = (x, ex, B) be a seed which admits a 2-CY categori�cation. Then for any
x ∈ x, we have σx,1(CC(Σ)) ⊂ CC(Σ \ {x})⊗Z Q.

Proof. Without loss of generality we can assume that Σ = Σ is simpli�ed. Let C = C (Σ) denote
the corresponding cluster category. This is a Hom-�nite triangulated 2-CY category and we denote
its suspension functor by [1]. Let T =

⊕
y∈x Ty be a cluster-tilting object in C corresponding to

the seed Σ, see [15].
Let T⊥x be the full subcategory of C formed by the objects V such that HomC (Tx, V ) = 0.

Then it follows from [19] that C ′ = T⊥x /Tx[1] is a Hom-�nite 2-Calabi-Yau category and that
T ′ =

⊕
y∈x\{x} Ty is a cluster-tilting object in C ′.

We denote by X? (or X ′?, respectively) the cluster character associated to T on C (or to T ′ on
C ′, respectively).

Let σ = σx,1 be the simple specialisation of x to 1. Let M be an object in C . We prove by
induction on the dimension of HomC (Tx,M) that σ(XM ) is a �nite Q-linear combination of X ′Y
where Y runs over the objects of C ′.

Assume �rst that HomC (Tx,M) = 0, that is, M belongs to T⊥x . Then M can be decomposed
as M ⊕ Tx[1]m for some m ≥ 1 where M has no direct summand isomorphic to Tx[1]. Therefore,

σ(XM ) = σ(XM⊕Tx[1]m) = σ(XMX
m
Tx[1]) = σ(XM )σ(Xm

Tx[1]) = σ(XM )σ(xm) = σ(XM ).

Since M belongs to T⊥x , the object M belongs to T⊥x /Tx[1] and is thus identi�ed with an object
in C ′. Now it follows easily from the de�nition of the cluster characters that σ(XM ) = X ′

M
.

Therefore, σ(XM ) belongs to A (Σ \ {x}).
Assume now that HomC (Tx,M) 6= 0. Therefore,

Ext1
C (Tx[1],M) = HomC (Tx[1],M [1]) ' HomC (Tx,M) 6= 0.

Then it follows from [25] that the product (dim Ext1
C (Tx[1],M)XTx[1]XM ) is a Z-linear combination

of XY 's where Y runs over middle terms of non-split triangles of the form

(2) M−→Y−→Tx[1]−→M [1]

or of the form

(3) Tx[1]−→Y
a−→M

b−→ Tx[2].
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In other words, we have

(4) xXM =
∑
Y

nYXY

where (nY ) ⊂ Q is �nitely supported on a set of isoclasses of objects Y in C such that there exists
triangles of the form (2) or (3).

We claim that dim HomC (Tx, Y ) < dim HomC (Tx,M) for any Y such that nY 6= 0. Indeed,
assume �rst that Y is such that there exists a triangle of the form (2), that is,

Tx
α−→M

β−→ Y−→Tx[1]−→M [1].

Applying the homological functor HomC (Tx,−) to this triangle, we get the long exact sequence

EndC (Tx)
α∗−−→ HomC (Tx,M)

β∗−→ HomC (Tx, Y )−→ 0,

so that the post-composition by β yields an epimorphism HomC (Tx,M)
β∗−→ HomC (Tx, Y ). Since

the sequence is exact, we have Ker(β∗) = Im(α∗). Moreover, EndC (Tx)
α∗−−→ HomC (Tx,M) is

non-zero since α∗(1Tx) = α 6= 0. Therefore, dim HomC (Tx, Y ) < dim HomC (Tx,M) in this case,
as claimed.

Assume now that Y is such that there exists a triangle of the form (3), that is,

Tx[1]−→Y
a−→M

b−→ Tx[2].

Applying the homological functor HomC (Tx,−) to this triangle, we get the long exact sequence

0−→HomC (Tx, Y )
a∗−→ HomC (Tx,M)

b∗−→ HomC (Tx, Tx[2]).

Therefore, the post-composition by a yields an injection HomC (Tx, Y )
a∗−→ HomC (Tx,M). In order

to prove that the injection is proper, since the sequence is exact, we need to prove that the post-

composition HomC (Tx,M)
b∗−→ HomC (Tx, Tx[2]) is non-zero. Since C is 2-Calabi-Yau, we have the

commutative diagram

HomC (Tx,M)

∼
��

b∗ // HomC (Tx, Tx[2])

∼
��

DHomC (M,Tx[2])
Db∗ // DEndC (Tx[2])

where D = Homk(−,k) is the standard duality and EndC (Tx[2])
b∗−→ HomC (M,Tx[2]) is the pre-

composition by b. Since b is non-zero, b∗(1Tx[2]) 6= 0 and thus Db∗ is non-zero so that b∗ is non-zero.
This proves the claim.

Therefore, equality (4) allows one to write xXM as a Q-linear combination of elementsXY where
dim HomC (Tx, Y ) < dim HomC (Tx,M). If dim HomC (Tx, Y ) = dim Ext1

C (Tx[1], Y ) 6= 0, we can
again write xXY as a linear combination of cluster characters of objects for which the dimension
is strictly smaller. Proceeding by induction, there exists some n ≥ 1 such that xnXM is a Q-
linear combination of elements of the form XY where dim HomC (Tx, Y ) = 0. Therefore σ(XM ) =
σ(xnXM ) is a Q-linear combination of σ(XY ) with dim HomC (Tx, Y ) = 0. Hence, it follows from
the previous discussion that σ(XM ) belongs to the cluster character algebra CC(Σ \ {x}). �

Remark 6.18. Plamondon has developed a similar framework of cluster categories and cluster
characters for Jacobi-in�nite quivers with potential, see [27, 26]. This framework allows one to
deal with arbitrary skew-symmetric seeds. Our proof would generalise to this context if one is able
to prove the analogue of Palu's multiplication formula [25] in this context.
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The following example illustrates the fact appearing in the proofs of Theorems 6.15 and 6.17
that the simple specialisation of an exchangeable variable to 1 does not send a cluster variable to
a cluster variable in general, but rather sends it to a linear combination of elements in the cluster
algebra.

Example 6.19. Consider the coe�cient-free seed Σ = ((x1, x2, x3, x4), B) where

B =


0 0 0 1
0 0 0 1
0 0 0 1
−1 −1 −1 0


is the incidence matrix of the quiver Q of Dynkin type D4 where 4 is a sink.

We consider the specialisation of x4 to 1 so that we also consider the seed

Σ \ {x4} = ((x1, x2, x3), [0])

which is of type A1 ×A1 ×A1. In particular,

A (Σ \ {x4}) = Z
[
x1,

2

x1
, x2,

2

x2
, x3,

2

x3

]
⊂ Q(x1, x2, x3).

Consider the cluster variable in A (Σ)

x =
1 + x1x2x3 + 3x4 + 3x2

4 + x3
4

x1x2x3x4

which, in the context of [7, 6], corresponds to the cluster character of the indecomposable repre-
sentation of Q with dimension vector (1111).

Then

σx4,1(x) =
8

x1x2x3
+ 1 =

2

x1

2

x2

2

x3
+ 1

is the sum of 1 and the cluster monomial in A (Σ \ {x4}) corresponding to the cluster character of
the semisimple representation with dimension vector (111) of Q \ {4}.

Now consider the cluster variable in A (Σ)

z =
1 + 2x1x2x3 + x2

1x
2
2x

2
3 + 3x4 + 3x1x2x3x4 + 3x2

4 + x3
4

x1x2x3x2
4

which corresponds to the cluster character of the indecomposable representation of Q with dimen-
sion vector (1112).

Then

σx4,1(x) =
2

x1

2

x2

2

x3
+ 5 + x1x2x3.

is a linear combination of three distinct cluster monomials in A (Σ \ {x4}).

6.5. An example of multiple specialisation in zero. For any m ≥ 4, we denote by Gr2(m)
the set of planes in Cm and let C[Gr2(m)] denote its ring of homogeneous coordinates. It is known
that

C[Gr2(m)] ' A (Σm)⊗Z C
where Σm is the seed constructed in �4.1, see for instance[30] or [17, Chapter 2].. The cluster
variables in A (Πm) are identi�ed with the Plücker coordinates xk,l, with 1 ≤ k < l ≤ m in
C[Gr2(m)] in such a way that the Plücker coordinate xk,l corresponds to the arc joining k to l in
Πm, see [loc. cit.].

Let m,m′ be integers such that 4 ≤ m′ ≤ m. The choice of an inclusion of Cm′ into Cm induces
an embedding ι : Gr2(m′)−→Gr2(m) and thus an epimorphism of C-algebras :

ι∗ : C[Gr2(m)]−→C[Gr2(m′)].
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If x′k,l, with 1 ≤ k < l ≤ m′, are the Plücker coordinates on C[Gr2(m′)], then the morphism ι∗

is given by

ι∗(xk,l) =

{
x′k,l if l ≤ m′
0 if l > m′

for 1 ≤ k < l ≤ m.

Proposition 6.20. There exists a unique rooted cluster morphism πm,m′ : A (Σm)−→A (Σm′)
such that ι∗ = π ⊗Z 1C.

Proof. Consider the ring homomorphism πm,m′ : FΣm−→FΣm′ acting as ι∗ on the Plücker coor-
dinates. Then π de�nes a ring homomorphisms from A (Σm) to A (Σm′). Moreover, πm,m′ satis�es
(CM1) and (CM2) by construction.

Exchange relations in A (Σm) are given by

xijxkl = xikxjl + xilxjk

for any i, j, k, l such that 1 ≤ i < k < j < l ≤ m and similarly for A (Σm′). Thus, π sends exactly
the exchange relations involving only xk,l with 1 ≤ i < k < j < l ≤ m′ in A (Σm) to the same
exchange relations for x′k,l with 1 ≤ i < k < j < l ≤ m′ in A (Σm′). In other words, π commutes

with mutations along biadmissible sequences and thus satis�es (CM3).
For uniqueness, it is enough to observe that if such a morphism πm,m′ exists then it necessarily

acts as ι∗ on the Plücker coordinates and thus it is unique. �

7. Cuttings

In this section we introduce a combinatorial procedure, called cutting, which turns out to be
the inverse process of the amalgamated sums considered in Section 4.2. More precisely, these
cuttings provide epimorphisms in Clus which are retractions of the monomorphisms constructed
from amalgamated sums of rooted cluster algebras.

7.1. Cutting along separating families of variables.

De�nition 7.1 (Separating families). Let Σ = (x, ex, B) be a seed. If there exist a subset
∆ ⊂ (x\ex) and a partition x = x1tx2t∆ such that, with respect to this partition, the exchange
matrix B is of the form

B =

 B1
11 0 B1

12

0 B2
11 B2

12

B1
21 B2

21 B∆

 ,
then we say that ∆ separates x1 and x2 in Σ.

For j ∈ {1, 2}, we set dj∆Σ = (xj t∆, ex ∩ xj , B
j) where

Bj =

[
Bj11 Bj12

Bj21 Bj22

]
.

De�nition 7.2 (Cutting). Let Σ = (x, ex, B) be a seed and let ∆ be a separating family of
variables as above. The cutting of Σ along ∆ is the pair

d∆Σ = (d1
∆Σ, d2

∆Σ).

Example 7.3. Consider for instance the matrix

B =


0 1 0 0 −1
−1 0 0 0 1

0 0 0 1 −1
0 0 −1 0 1
1 −1 1 −1 0
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corresponding to the quiver

QB

1

3

2

4

5

with point 5 frozen. Then cutting along 5 gives two oriented 3-cycles with one frozen point each :

1 2

5

3 4

5

The following lemmata prove that cutting is the inverse operation of the amalgamated sum of
seeds.

Lemma 7.4. Let Σ1 and Σ2 be seeds which are glueable along ∆1 and ∆2 and let Σ =
Σ1

∐
∆1,∆2

Σ2. We denote by ∆ the subset of the cluster of Σ corresponding to ∆1 and ∆2. Then :

(1) ∆ separates x1 \∆ and x2 \∆ in Σ ;
(2) di∆Σ ' Σi for any i ∈ {1, 2}.

Proof. By de�nition, we have Σ = Σ1

∐
∆1,∆2

Σ2 = (x, ex, B) where x = (x1 \∆1)t (x2 \∆2)t∆,
ex = ex1 t ex2 and

B =

 B1
11 0 B1

12

0 B2
11 B2

12

B1
21 B2

21 B∆

 .
Therefore, for any i = 1, 2, the cluster of di∆Σ is xi \ ∆i t ∆, the exchangeable variables in this
cluster are the exchangeable variables in Σi (none of them belongs to ∆ by assumption) and the
exchange matrix of this seed is

Bi =

[
Bi11 B1

12

Bi21 B∆

]
.

Therefore, di∆ ' Σi. �

Conversely :

Lemma 7.5. Let Σ be a seed and ∆ a separating family of variables in Σ. Then d1
∆Σ and d2

∆Σ
are glueable along the respective images ∆1 and ∆2 of ∆ and

d1
∆Σ

∐
∆1,∆2

d2
∆Σ ' Σ.

Proof. We write Σ = (x, ex, B). Since ∆ is separating in Σ, there exists a partition x = x1tx2t∆
such that, adapted to this partition, B is given by

B =

 B1
11 0 B1

12

0 B2
11 B2

12

B1
21 B2

21 B∆


and since ∆ consists of frozen variables, ex = (ex ∩ x1) t (ex ∩ x2).

By de�nition, for i = 1, 2, we have di∆Σ = Σi where

Σi = (xi t∆, ex ∩ xi, B
i)
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with

Bi =

[
Bi11 B1

12

Bi21 B∆

]
.

It follows that Σ1 and Σ2 are glueable along ∆,∆ and thus

Σ1

∐
∆,∆

Σ2 ' (x, ex, B) = Σ.

�

7.2. Epimorphisms from cuttings. Let Σ be a seed and ∆ a separating family of variables in
Σ as above and set Σi = di∆Σ for any i ∈ {1, 2}.

Fix i ∈ {1, 2}. It follows from Lemmata 7.4, 7.5 and 4.13 that we have canonical monomorphisms
in Clus :

ji : A (Σi)−→A (Σ).

Consider the ring homomorphism :

pri :

 FΣ −→ FΣi

x 7→ x if x ∈ xi t∆,
x 7→ 0 if x ∈ xk for i 6= k.

Proposition 7.6. For any i ∈ {1, 2}, the ring homomorphism pri induces a rooted cluster epi-
morphism A (Σ)−→A (Σi) which is a retraction for ji.

Proof. We �rst observe that

pri(x) ⊂ xi t∆ t {0} and pri(ex) ⊂ (ex ∩ xi) t {0}
so that pri satis�es (CM1) and (CM2).

In order to prove that pri satis�es (CM3), we prove as in Lemma 4.13 that the (pri,Σ,Σi)-
biadmissible sequences are precisely the Σi-admissible sequences and that ∆ remains separating
along biadmissible mutations. It follows as in the proof of Lemma 4.13 that pri commutes with
biadmissible mutations and thus satis�es (CM3) and induces a surjective rooted cluster morphism
A (Σ)−→A (Σi).

Finally, as (pri ◦ ji)(x) = x for any x ∈ xi t∆, we get pri ◦ ji = 1A (Σi). �

In general, we state the following problem :

Problem 7.7. Determine which monomorphisms in Clus are sections.

7.3. Topological interpretation of cuttings. Let (S,M) be a marked surface. Assume that
there exists a collection ∆ of (internal or boundary) arcs in (S,M) which can be concatenated in
order to form a simple closed curve in (S,M) which delimits two non-degenerate marked subsurfaces
(S1,M1) and (S2,M2) in (S,M).

Consider a triangulation T of (S,M) containing ∆ as a subset. Then T induces two triangula-
tions T1 and T2 of (S1,M1) and (S2,M2) respectively in which ∆ corresponds to a set of boundary
arcs, that is, to frozen variables. We denote by Σ the seed corresponding to the triangulation T
and by Σ1, Σ2 the seeds corresponding respectively to the triangulations T1 and T2. Then ∆ is a
separating family of variables in Σ and

d∆(Σ) = (Σ1,Σ2).

In other words, cutting Σ along ∆ coincides with taking the seed associated with the triangulation
of the surface obtained by cutting (S,M) along ∆.

Example 7.8. Consider the following triangulation of the disc with two marked points on the
boundary and �ve punctures.
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Let ∆ denote the union of the four arcs which are dashed in the above �gure. Cutting the
surface along ∆ gives two new marked surfaces, namely an unpunctured annulus with two marked
points on a boundary and four marked points on the other and a disc with four marked points on
the boundary and one puncture. The triangulation of the above disc containing ∆ thus induces
triangulations of the two cut surfaces.

Then we clearly see that the cluster algebra associated with the initial surface where the arcs
in ∆ are frozen is the amalgamated sum over the respective images of ∆ of the two cut surfaces.
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