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Université du Québec à Montréal
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Abstract

In the cases A and Ã, we describe all seeds obtained by sequences
of mutations from an initial seed. In the Ã case, we deduce a lin-
ear representation of the group of mutations which contains as entries
all cluster variables obtained after an arbitrary sequence of mutations
(this sequence is an element of the group). Nontransjective variables
correspond to certain subgroups of finite index. A noncommutative
rational series is constructed, which contains all this information.

1 Introduction

Recall that a representative function f on a group G is a function from
G into some field K which is the composition of a linear representation of
G → Kn×n followed by a linear form on Kn×n. Equivalently, the set of
translates f.g, g ∈ G (with the natural right action of G: (f.g)(g1) = f(gg1)
for any g, g1 in G), spans a finite dimensional subspace of the vector space
of functions on G. See [27] I.1, [1, 17].

As an example, take the additive groupG = Z. A representative function
on this group is a sequence indexed by Z which satisfies a linear recursion
which works in both directions (for example the Fibonacci sequence extended
to negative integers).

The interest of representative functions is illustrated for example by:
the theorem of Peter-Weyl, which asserts that the representative functions
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on a compact group are dense in the space of continuous functions on this
group (see [29], where representative functions are called matrix elements);
their role in the theory of affine algebraic groups, see [27, 1]; the theorem of
Kleene-Schützenberger which asserts that representative functions on a free
monoid coincide with noncommutative rational series, see [8]. Moreover,
representative functions on an algebra (a generalization of that on groups)
are the elements of the dual coalgebra of this algebra, or Sweedler dual, see
[28, 1, 17].

Since we need a slightly more general notion of representative functions
(with values in a ring instead of a field), we have developed this in an
Appendix.

We give some definitions and results from the theory of cluster algebras of
Fomin and Zelevinsky [22]. Let Q0 be a quiver with set of vertices {1, . . . , n},
with a variable xi associated to each vertex. This data is called the initial
seed, denoted by S0. A seed is a couple S = (Q, (y1, . . . , yn)), where Q is
a quiver with set of vertices {1, . . . , n} and where y1, . . . , yn generate the
field Q(x1, . . . , xn) (in particular, they are algebraically independent over
Q, since the transcendence degree of Q(x1, . . . , xn) is n); yi is called the i-th
cluster variable of S, or the variable at vertex i, and denoted by yi(S). Such
a seed is obtained from the initial seed by a sequence of operations called
mutations.

Mutation at vertex i on a seed has the following property: it replaces the
quiver Q by another quiver with the same vertex set, and with a new cluster
variable at vertex i (that is, yi), the others being unchanged. Mutation at
vertex i is involutive, which means that if one performs it twice then one
recovers the original seed. Denote by µi the mutation at vertex i.

Consider the group generated by the set {µ1, . . . , µn}, subject to the
relation that the generators are involutive. We call this group the group of
mutations, denoted by M . It acts naturally on seeds. If m is an element of
this group, and S a seed, we denote by Sm the seed obtained by applying
the sequence of mutations determined by m to the seed S.

Suppose that the initial quiver Q is of type Ãn−1 with an acyclic orienta-
tion (note that Ãn−1 has n vertices). Fix i. We shall show that the function
fromM into Q(x1, . . . , xn), which associates to m the i-th cluster variable of
Sm
0 , is a representative function of the mutation group. Moreover, we show

that if y is a fixed nontransjective cluster variable, then the set of m ∈ M
such that yi(S

m
0 ) = y is a finite union of cosets of a normal subgroup of

finite index of the mutation group.
Our objective is to describe precisely the mutated seeds in type Ã. Note

that the mutated quivers of type Ã are known, see [6] (see for example Figure
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2 in that article) or [2]. What we add to these descriptions is the explicit
computation of the cluster variables associated to each vertex. This is done,
on one hand, by embedding the cyclic part of the mutated quiver into an
SL2-tiling of the plane, which contains all transjective cluster variables; and
on the other hand, by describing the remaining parts of the quiver in terms
of continuant trees, which are tree-like graphs whose vertices are indexed by
signed continuant polynomials; the latter give directly the nontransjective
cluster variables. The signed continuant polynomials are a variant of the
continuant polynomials. They have been considered implicitly by Coxeter
[16] Eq. (7.5), in [7], and explicitly by Grégoire Dupont, in [18] where he
uses them to study the regular cluster variables. He also gives a version with
coefficients in [19] and applies them to the study of positivity of the regular
cluster variables in [20].

As a byproduct of the concept of continuant trees, which are shown to
correspond to triangulations of an n+3-gon, we obtain a description of the
mutated seeds in type An. This may be of some interest, since it presents
some novelty, and is completely elementary. The mutation formula turns
out to be a consequence of a formula on continuants polynomials, which
goes back to Euler. Mutated quivers in type An are known, see [11].

2 Preliminaries

2.1 Signed continuants polynomials

The ordinary continuant polynomials, already considered by Euler, are de-
fined, for any elements a1, . . . , an of a ringR by the recursion pn(a1, . . . , an) =
pn−1(a1, . . . , an−1)an + pn−2(a1, . . . , an−2), with initial conditions p−1 := 0
and p0 := 1. See [30] p.133, [14] p.116, [25] p.302, [8] p.186. The terminol-
ogy comes from their link with continued fractions as shows the following
identity, valid if R is commutative and if the inversions are defined in R:

p(a1, . . . , an)

p(a2, . . . , an)
= a1 +

1

a2 +
1

. . . +
1

an

. (1)

The signed continuant polynomials are a variant of the continuant polyno-
mials. They are defined as follows. Let a1, . . . , an be as above. Define for
n ≥ 1,

qn(a1, . . . , an) = qn−1(a1, . . . , an−1)an − qn−2(a1, . . . , an−2), (2)
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setting q−1 := 0 and q0 := 1. We omit indices when possible, writing simply
q(x1, . . . , xn) for qn(x1, . . . , xn). Let us now consider the particular SL2

matrices

Q(a) :=

(

0 −1
1 a

)

.

One has the following result, see [7] 8.1.

Lemma 2.1.

Q(a1)Q(a2) · · ·Q(an) =

(

−q(a2, . . . , an−1), −q(a2, . . . , an)
q(a1, . . . , an−1), q(a1, . . . , an)

)

. (3)

It follows from this matrix equation that one has also

q(a1, . . . , an) = a1q(a2, . . . , an)− q(a3, . . . , an). (4)

The q’s satisfy the following identity (a consequence of [16] Eq.(7.4)),
which is a variant of Eq.(1) and which holds under the same assumptions:

q(a1, . . . , an)

q(a2, . . . , an)
= a1 −

1

a2 −
1

. . . −
1

an

.

Indeed, this holds for n = 1. Assume that it holds for n. Then the continued
fraction for n+ 1 is equal by induction to

a1−
1

q(a2,...,an+1)
q(a3,...,an+1)

= a1−
q(a3, . . . , an+1)

q(a2, . . . , an+1)
=
a1q(a2, . . . , an+1)− q(a3, . . . , an+1)

q(a2, . . . , an+1)
.

Thus the statement follows from Eq.(4).
It will be useful to adopt the following notation, which avoids the use

of indices: let w be a finite sequence of elements of the ring R (a word
on R). For example, w = a1 · · · an (not the product in the ring); then we
write q(w) for q(a1, . . . , an). If u, v are two such sequences, we denote by
uv their concatenation. Then we have the following result, valid when R is
commutative, which is assumed from now on.

Lemma 2.2. Let u, v, w be words on R and a, b be in R. Then

q(uav)q(vbw) = q(u)q(w) + q(uavbw)q(v).

In the case of ordinary continuants polynomials, there is an analogue of
this identity, due to Euler and given in [25] Eq.(6.134) p.303.
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Proof. We prove first this equation when w = 1 (empty word), that is
q(uav)q(vb) = q(u) + q(uavb)q(v). We adopt the notation Q(u) for the
matrix product corresponding to u. Then we have by Eq.(3):

Q(uavb) =

(

∗ ∗
q(uav) q(uavb)

)

, Q(vb) =

(

∗ ∗
q(v) q(vb)

)

, Q(ua) =

(

∗ ∗
q(u) ∗

)

.

Thus

Q(ua) = Q(uavb)Q(vb)−1 =

(

∗ ∗
q(uav) q(uavb)

)(

q(vb) ∗
−q(v) ∗

)

.

Thus q(u) = q(uav)q(vb)−q(uabv)q(v) which proves the lemma when w = 1.
Suppose now that w is of length 1, that is w = c, c ∈ R. Then the

left-hand side of the equation in the lemma is by Eq.(2) equal to

q(uav)q(vbc) = q(uav)((q(vb)c − q(v)) = q(uav)q(vb)c − q(uav)q(v).

By the w = 1 case and by Eq.(2), this is equal to

q(u)c + q(uavb)q(v)c − q(uav)q(v) = q(u)c+ (q(uavb)c − q(uav))q(v)

= q(u)c + q(uavbc)q(v),

which proves the w = c case.
Otherwise, we may write w = w′cd for c, d in R. Then by Eq.(2)

q(uav)q(vbw) = q(uav)q(vbw′cd) = q(uav)(q(vbw′c)d− q(vbw′))

= q(uav)q(vbw′c)d − q(uav)q(vbw′)

By induction (cases w = w′ and w = w′c), this is equal to

q(u)q(w′c)d + q(uavbw′c)q(v)d − q(u)q(w′)− q(uavbw′)q(v)

= q(u)(q(w′c)d− q(w′)) + (q(uavbw′c)d− q(uavbw′))q(v)

= q(u)q(w′cd) + q(uavbw′cd)q(v) = q(u)q(w) + q(uavbw)q(v).

Lemma 2.3. Suppose that

Q(a1)Q(a2) · · ·Q(an+3) = −1.

Then for any i with 1 ≤ i ≤ n+3, we have q(a1, . . . , ai−1) = q(ai+1, . . . , an+2).

Proof. By hypothesis, we have (Q(a1) · · ·Q(ai−1))
−1 = −Q(ai) · · ·Q(an+3).

Using Eq. (3) and the fact that the matrices have determinant 1, we obtain
(

q(a1, . . . , ai−1) ∗
∗ ∗

)

= −

(

−q(ai+1, . . . , an+2) ∗
∗ ∗

)

.
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2.2 Continuant trees

We call pre-continuant tree a planar quiver T which is constructed from a
planar binary, not necessarily complete, tree τ as follows:

• An edge between a node and its left son is oriented towards this node;

• an edge between a node and its right son is oriented towards this son;

• If a node has two sons, then an arrow from the right son towards its
left son is created.

See Figure 1 for an example, disregarding the labels. These quivers are
already known: they are described in [11] and [2] (Th.2.7). Their tree-like
shape comes from the classification of the tilted algebras of the linearly
oriented quivers An, see [26]. The additional arrows from right to left sons
arise because of [3, 10].

Note that since the original tree τ is planar, we may use for T the
terminology of planar binary trees: subtree at a vertex (which is a pre-
continuant tree), left and right son, father...

Now we call continuant tree a pre-continuant tree T together with a
labelling of its vertices by words on R, as follows:

• the length of the label of a vertex is the number of vertices of the
subtree having this vertex as root;

• if a vertex is a left (resp. right) son, then its label is a prefix (resp.
suffix) of its father;

• finally, to each vertex labelled u is associated the signed continuant
polynomial q(u).

See Figure 1 for an example. Note that a continuant tree is completely
determined by the underlying pre-continuant tree together with the label w
(of length equal to the number of vertices) of the root. For later use, we call
this continuant tree a w-continuant tree, or a (a1, . . . , an)-continuant tree,
if w = a1 . . . an.

2.3 Mutation of a continuant tree outside the root

Recall the definition of the mutation of a quiver; to each vertex k of this
quiver is associated an element yk ∈ R, called variable at k. We assume that
the quiver has no cyclic path of length 1 or 2. The mutation at a vertex k
is performed as follows (see [22] or e.g. [24] 3.2.):
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abcdefg

ab

a

defg

de

e

g

Figure 1: A continuant tree

• Reverse all arrows incident with k.

• For each pair of arrows i→ k → j, add an arrow i→ j.

• Remove pairs of opposite arrows, until no such pair exists.

Now, the variables of the new quiver are the same at each vertex, except at
vertex k where the new variable y′k (the mutated variable) must satisfy the
exchange relation

yky
′
k =

∏

i→k

yi +
∏

k→j

yj,

where the products are taken over all arrows ending or starting at k, respec-
tively. Note that uniqueness of y′k is ensured if R has no zero divisors, an
hypothesis which will be made in the sequel.

Assume now that T is a continuant tree. The variables at the vertices
of T are the corresponding continuant polynomials, that is, if k is a vertex
with associated word u, then the variable at k is q(u).

Lemma 2.4. Mutation of a continuant tree at a vertex k which is not the
root gives another continuant tree.

Proof. The lemma is illustrated in Figure 2, where only the vertices involved
in the mutation are represented. The vertex k is the one with uav on the
left and the one with vbw on the right. By inspection and by definition
of mutation, it is seen that the quiver on the right is mutated from the
quiver at vertex k. The mutation formula for the labels is a consequence
of Lemma 2.2, which ensures the existence of the mutated variable. Note
the limiting cases where some vertices among u, v, w are missing; that is,
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uavbw

uav

u v

w

uavbw

u vbw

v w

Figure 2: mutation of a continuant tree at a vertex different from the root

the corresponding word is empty: they are still covered by this proof since
the continuant polynomial q(x) equals 1 if x is the empty word. Moreover,
the mutation from right to left in Figure 2 follows from the the fact that
mutation is an involution.

2.4 SL2-tilings of the plane

Following [5], we call SL2-tiling of the plane a mapping t : Z2 7→ K, for
some field K, such that, for any x, y in Z,

∣

∣

∣

∣

t(x, y) t(x+ 1, y)
t(x, y + 1) t(x+ 1, y + 1)

∣

∣

∣

∣

= 1.

Here we represent the discrete plane Z2 with matrix-like coordinates, so
that the y-axis points downwards, and the x-axis points to the right. Note
that the x-coordinates therefore represent the column indices, and the y
coordinates represent the row indices.

y

x

?

-

(x, y) (x+ 1, y)
• •

Figure 3: Coordinates conventions
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An example is given below, with K = Q.

1 1 1 1
1 1 2 3 4
1 2 5 8 11
1 3 8 13 18

... ... 1 1 4 11 18 25 ...
1 2 9 25 41 57
1 3 14 39 64 89

1 1 1 1 1 1 4 19 53 87 121
1 1 1 1 2 3 4 5 6 25 119 332 545 758
1 2 3 4 9 14 19 24 29 121 576 1607 2368 3669 ...

... ... ...

Here is another example, with K the field of fractions over Q in the variables
a, b, c, d, e, f, . . ..

· · ·
d+b+bce

cd
1+ce
d

e f

· · · b c d 1+df
e

· · ·

a 1+ac
b

b+d+acd
bc

bce+b+bdf+dac+d2acf+d+d2f
bcde

· · ·

2.5 Tameness

Note that an SL2-tiling of the plane, viewed as an infinite matrix, has nec-
essarily rank at least 2. Following [7], we say that the tiling is tame if its
rank is 2.

Given three successive columns C0, C1, C2 of a tame SL2-tiling t, there
is a unique coefficient α such that

C0 + C2 = αC1. (5)

This follows from the fact that the adjacent 2 by 2 minors are equal to
1. We call α the linearization coefficient of column C1. Similarly for rows.

The following result extends Eq.(5) (obtained for n = 1).

Lemma 2.5. Let t be a tame SL2-tiling of the plane and C0, . . . , Cn+1

successive columns of t, with linearization coefficients α0, . . . , αn+1. Then
for any i in {1, . . . , n}

q(αi+1, . . . , αn)C0 + q(α1, . . . , αi−1)Cn+1 = q(α1, . . . , αn)Ci.
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Proof. We use the identity Cj = −q(α2, . . . , αj−1)C0 + q(α1, . . . , αj−1)C1,
which follows from Eq.(∗) in the proof of Proposition 5.4 in the Appendix,
and from Eq.(3).

Suppose first that i = 1. Then

q(α2, . . . , αn)C0+Cn+1 = q(α2, . . . , αn)C0−q(α2, . . . , αn)C0+q(α1, . . . , αn)C1

= q(α1, . . . , αn)C1,

which proves the identity for i = 1. Suppose now that i > 1. Then we have
by Lemma 2.2 (with u equal to the empty word, a = α1, v = α2 · · ·αi−1,
b = αi, w = αi+1 · · ·αn):

q(α1, . . . , αi−1)q(α2, . . . , αn) = q(αi+1, . . . , αn)+q(α1, . . . , αn)q(α2, . . . , αi−1).

Thus we obtain

q(αi+1, . . . , αn)C0 + q(α1, . . . , αi−1)Cn+1

= q(αi+1, . . . , αn)C0 + q(α1, . . . , αi−1)(−q(α2, . . . , αn)C0 + q(α1, . . . , αn)C1)

= (q(αi+1, . . . , αn)− q(α1, . . . , αi−1)q(α2, . . . , αn))C0

+q(α1, . . . , αi−1)q(α1, . . . , αn)C1

= −q(α1, . . . , αn)q(α2, . . . , αi−1)C0 + q(α1, . . . , αi−1)q(α1, . . . , αn)C1

= q(α1, . . . , αn)(−q(α2, . . . , αi−1)C0 + q(α1, . . . , αi−1)C1)

= q(α1, . . . , αn)Ci.

It has been shown in [7] (in the more general case of SLk-tilings) that
tameness of SL2-tilings is characterized by the fact that the infinite matrix
of 2 by 2 minors is of rank 1. This is important for the proof of the next
result.

Corollary 2.6. For n,m ≥ 0, let (aij)0≤i≤n+1,0≤j≤m+1 be a connected sub-
matrix of a tame SL2-tiling t. Let β0, . . . , βn+1 denote the linearization
coefficients of the corresponding rows of t and α0, . . . , αm+1 denote those of
the corresponding columns. Then

det(

(

a00 a0,m+1

an+1,0 an+1,m+1

)

) = q(β1, . . . , βn)q(α1, . . . , αm).
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Proof. We suppose first that n = 0. Denote

Cj =

(

a0,j
a1,j

)

.

Then we have by Lemma 2.5, q(α2, . . . , αm)C0 + Cm+1 = q(α1, . . . , αm)C1.
Thus

det(C0, Cm+1) = q(α1, . . . , αm) det(C0, C1) = q(α1, . . . , αm),

since t is an SL2-tiling.
Now, in the general case, it follows from [7], Prop.4, that the determinant

of the corollary is equal to the product

det(

(

a00 a0,m+1

a1,0 a1,m+1

)

) det(

(

a00 a0,1
an+1,0 an+1,1

)

),

which proves the corollary, by the first part.

2.6 Frontier

We call frontier a bi-infinite sequence

. . . ξ−2x−2ξ−1x−1ξ0x0ξ1x1ξ2x2ξ3x3 . . . (6)

where ξi ∈ {x, y} and xi are elements of K∗, for any i ∈ Z. It is called
admissible if there are arbitrarily large and arbitrarily small i’s such that
ξi = x, and similarly for y; in other words, none of the two sequences (ξn)n≥0

and (ξn)n≤0 is ultimately constant. The xi’s are called the variables of the
frontier.

Each frontier may be embedded into the plane: the variables label
points in the plane, and the x (resp. y) determine a bi-infinite discrete
path, in such a way that x (resp. y) corresponds to a segment of the
form [(a, b), (a+ 1, b)] (resp [(a, b), (a, b− 1)]); recall the coordinate conven-
tions, see Figure 2.4. For example, the path corresponding to the frontier
. . . x−4xx−3yx−2yx−1yx0xx1xx2yx3xx4xx5 . . . is given in Figure 4.

We need the following notation of [5]. Let

M(a, x, b) =

(

a 1
0 b

)

and M(a, y, b) =

(

b 0
1 a

)

.

Given an admissible frontier, embedded in the plane as explained pre-
viously, let P ∈ Z2. Then we obtain a finite word, which is a factor of the
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.
.

.
x3 x4 x5

x0 x1 x2
...

x−1

...

x−2

...
x−4 x−3 · · · · · · P

.
.

Figure 4: A frontier

frontier, by projecting the point P horizontally and vertically onto the fron-
tier. We call this word the word of P . It is illustrated in Figure 4, where the
word of the point P is x−3yx−2yx−1yx0xx1xx2yx3xx4. We define the word
of a point only for points below the frontier; for points above, the situation
is symmetric and we omit this case.

Theorem 2.7. Given an admissible frontier, there exists a unique tame
SL2-tiling t of the plane over K, extending the embedding of the frontier into
the plane. It is defined, for any point P below the frontier, with associated
word x0ξ1x1ξ2...ξn+1xn+1, where n ≥ 1, xi ∈ K∗ and ξi ∈ {x, y}, by the
formula

t(P ) =
1

x1x2...xn
(1, x0)M(x1, ξ2, x2) · · ·M(xn−1, ξn, xn)(1, xn+1)

T . (7)

The existence of the tiling, together with the formula, is from [5]. The
uniqueness and the tameness follow from [7] (uniqueness was proved in [5]
under some extra assumption on K). Note that ξ1 = y and ξn+1 = y, by
definition of the word associated to P .

For later use, we introduce the notation

M(x1ξ2x2 · · · xn−1ξnxn) =M(x1, ξ2, x2) · · ·M(xn−1, ξn, xn).

As a particular case of the previous construction, consider a frontier hav-
ing period n; this means that it can be written in the form ∞(x1ξ1 . . . xnξn)

∞.
Then the associated tiling has the period determined by the vector (p,−q),
where p (resp. q) is the number of x’s (resp. of y’s) among ξ1, . . . , ξn. Note
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that p+q = n. Moreover, the sequence of the linearization coefficients of the
columns of the tiling has the period p, and the sequence of the linearization
coefficients of the rows has the period q. This follows from the fact that the
tiling is invariant under translation by the vector (p,−q) since the frontier
has this property.

3 Case Ã

We call Ãn−1-quiver an acyclic quiver of type Ã with n vertices; that is, an
acyclic quiver such that the underlying undirected graph is an n-gon.

3.1 The mutated quivers

The description of the mutated quivers of type Ã are known, see [6] (see for
example Figure 2) or [2]. Our description below is equivalent to it.

A decorated Ã-quiver is a planar quiver G with set of vertices {1, . . . , n},
obtained from its subgraph Q, which is a Ãr-quiver, 1 ≤ r ≤ n − 1, called
the cyclic part of G, as follows: there is a subset of the set of arrows of Q
such that to each arrow x→ y in this subset is associated a pre-continuant
tree, which is connected to Q by its root r via the two arrows y → r → x.

See Figure 5 for an example of a decorated Ã-quiver: the arrows of Q
are boldfaced.

We verify that the mutation at vertex j of G yields also a decorated
Ã-quiver; we denote it by G′, with its cyclic part Q′.

a) Suppose first that j is a vertex in Q. Let i, k be the vertices adjacent to
j in Q. If in Q these three vertices form a path of length 2, i → j → k
say, then Q′ is obtained by suppressing j in Q and replacing these two
arrows by an arrow i→ k; the pre-continuant tree corresponding to the
new arrow i→ k of Q′ is obtained by taking the new root j, and putting
the tree of i → j as the left subtree and the tree of j → k as the right
subtree;

b) If in Q one has i → j ← k or i ← j → k, then these two arrows are
reversed in Q′; the corresponding pre-continuant trees are exchanged:
more precisely, if there is a pre-continuant tree with root l such that
i ← l ← j (or i → l → j), then, after mutation, it becomes so that we
have j ← l← k (or j → l→ k);
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Figure 5: A decorated Ã-quiver with n = 19 vertices
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Figure 6: Mutation at 7

c) Suppose now that j is a vertex in G \Q; that is, j is a vertex on one of
the pre-continuant trees, T say. If j is not the root of T , we apply the
construction of Subsection 2.3;

d) If j is a root, then denote by i, k the adjacent vertices in Q, with i ←
j ← k. Note that we have i→ k in Q. Then Q is replaced by Q′, which
has the new vertex j, with new arrows i → j → k, and by suppressing
the arrow i → k. The pre-continuant tree corresponding to the arrow
i→ j (resp. j → k) in Q′ is the left (resp. right) subtree of T .

Note that the mutations of type a) are inverse of those of type d), and
that the inverses of mutations of type b) (or c)) are of the same type. As
an example of case d), see Figure 6 which is obtained by mutation at vertex
7 of Figure 5. Case a) is obtained by reversing this mutation. An example
of case b) is seen in Figure 7, which is obtained by mutation at vertex 5 of
Figure 5.

3.2 Elementary properties of decorated Ã-quivers

Consider a decorated Ã-quiver with n vertices and cyclic part Q. We asso-
ciate to each arrow of Q a natural positive number that we call its length:
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Figure 7: Mutation at 5

it is 1 if this arrow has no associated pre-continuant tree, and it is l if this
arrow has a pre-continuant tree with l − 1 vertices. For example, in Figure
5, the arrow 4→ 3 has length 1 and the arrow 4→ 1 has length 8.

For later use, we need to consider other points than the vertices in G; we
call them points: a point is either a vertex of Q, or a point on an arrow of Q
such that its distance to the vertices of this arrow is an integer, considering
the previous definition of length. For example the arrow 4→ 1 on the Figure
5 has 7 points on it, together with its two vertices.

We denote by p (resp. q) the sum of the lengths of the clockwise oriented
(counter-clockwise) arrows. Then p + q = n. It is straightforward to verify
that p and q are invariant under mutation. We call p, q the parameters of
G.

Note also that, as it was observed in Subsection 2.2, that each pre-
continuant tree of G will become naturally a continuant tree once we asso-
ciate to the corresponding arrow of Q, of length l, a sequence of length l− 1
on the ring R. This will be done in the next subsection.

For this we fix a planar Ãn−1-quiver, denoted by G0 and called the initial
quiver, with set of vertices {1, . . . , n} and arrows of the form i → i + 1 (in
which case we let ξi = x) or i ← i + 1 (in which case we let ξi = y), with
i+ 1 taken mod n; moreover, there are p clockwise oriented arrows and q

16



counterclockwise oriented arrows, p + q = n. Note that this is a particular
decorated Ã-quiver, with no attached pre-continuant trees, and therefore
with all arrows of length 1; its parameters are p, q.

We associate to G0 the SL2-tiling t as in [5]. In other words we consider
the frontier ∞(x1ξ1 . . . xnξn)

∞ where xi is the initial variable attached to
vertex i.

Note that this tiling t is periodic modulo the vector (p,−q) and that the
sequence of the linearization coefficients of the columns (resp. rows) of t is
periodic of period p (resp. q). See Subsection 2.6.

Given two points on the same horizontal line in Z2, call linearization
sequence between them the word (the finite sequence) formed by the column
linearization coefficients of t for the columns lying strictly between them,
scanning in increasing order of the x-coordinate. Similarly, for two points
lying on the same vertical line.

3.3 Embedding of a decorated Ã-quiver into Z2

An embedding of a decorated Ã-quiver G into Z2 is a universal covering
of its cyclic part Q, contained in the Euclidean plane, which respects the
length of arrows, and which respects the orientation; that is, in such a way
that clockwise (resp. counter-clockwise) oriented arrows of length l of Q
correspond to horizontal (resp. vertical) segments of the form [(u, v), (u +
l, v)] (resp. [(u, v), (u, v + l)]) with u, v integers.

We denote by π(i) the set of points in Z2 which correspond to the vertex
i ∈ G. This set of points is by construction of the form A + Z(p,−q), for
some A ∈ Z2.

For example, Figure 8 shows an embedding of the quiver of Figure 5.
In this figure, we have represented the pre-continuant trees of G, which
however are not formally part of the embedding and which are represented
for a better understanding.

Now, we see that in an embedded decorated Ã-quiver G, all pre-continuant
trees of G become continuant trees: indeed, to each clockwise (resp. counter-
clockwise) arrow, associate to it the sequence of column (resp. row) lineariza-
tion coefficients between A and B, where A→ B is one of the corresponding
arrows in the embedding. There are infinitely many arrows, but by period-
icity, this is well-defined. We call this sequence the linearization sequence
of the arrow; it depends on the embedding. For later use, note that this
dependence is modulo the subgroup of Z2 generated by the vectors (p, 0)
and (0, q); indeed, the column (resp. row) linearization coefficients have pe-
riod p (resp. q). Hence, if we translate correspondingly the embedding, the
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Figure 8: Embedding of Figure 5

linearization sequences of arrows do not change.
Recall the definition of points of G given in Subsection 3.2. Clearly, the

mapping π may be extended to the arrows of Q, hence to the points of G,
by respecting the length.

An embedding π of G being given there is a unique point P = P (G,π) in
Z2 defined as follows: it is the intersection of the bi-infinite path defined by
π and the x-axis, and which has the smallest x-coordinate (the intersection
may be a segment). We denote by ξ(G,π) the x-coordinate of P . Note that
P corresponds to a unique point on the cyclic part Q of G, that we denote
by u(G,π).

Lemma 3.1. Let u be a point on G. Then for each vertex k on the cyclic
part of G,there is a vector (i, j) ∈ Z2 such that π(k) = π(u)+(i, j)+Z(p,−q)
for any embedding π of G.

Proof. This follows because the covering respects the lengths of arrows and
their orientations.

We now describe how the embeddings are modified by mutations. We
refer to the cases a) to d) in Subsection 3.1:
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a) the new embedding is obtained by suppressing the vertices corresponding
to j in the covering and by gluing the arrows i → j and j → k into a
unique one i→ k;

b) in the embedding of G, the points I, J,K corresponding to i, j, k form
three consecutive vertices of a rectangle; then J is replaced by the fourth
point;

c) the new embedding is the same as the old one;

d) this is the reversal of case a).

As examples, see Figure 9, which is the embedding of Figure 6 and which is
obtained from Figure 8 by a type d) mutation on vertex 7; and Figure 10,
which is the embedding of Figure 7 and which is obtained from Figure 8 by
a type b) mutation on vertex 5.

Lemma 3.2. Given a decorated Ã-quiver with a distinguished point u, one
may define the mutation at vertex j of the couple (G,u) in such a way
that the mutated couple (G′, u′) satisfies: for each embedding π of G with
u(G,π) = u, mutated at vertex j into (G′, π′), one has u(G′, π′) = u′.
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Figure 10: Mutation at 5: embedding

In other words, the distinguished point of G corresponding to an embed-
ding π is mutated independently of π itself.

Proof. This is verified as follows: the point u(G,π) is invariant except if
the mutation is of type b) and if the point P = P (G,π) is on the coun-
terclockwise arrow a of Q (the cyclic part of G) incident to j; in this case
the x-coordinate ξ(G,π) of P is increased or decreased by the length of the
clockwise arrow incident to j, depending if j is the tail or the head of these
two arrows; moreover, if u is at distance l1 of j, with l = l1 + l2 equal to the
length of the arrow a, then u′ is on the counter-clockwise arrow incident to
j in the mutated graph G′, at distance l2 of j.

See for example Figure 8 and Figure 10 (mutation at 5 of Figure 8), with
P on the arrow 5 → 6 in Figure 8 (thus the x-axis intersects this arrow);
then after mutation, P is in Figure 10 on the arrow 3→ 5.

3.4 The mutated seeds in type Ã

Using the notations of Subsection 3.2, we start with the initial quiver G0

and we let t be the corresponding SL2-tiling. Recall that G0 has p clock-
wise arrows and q counter-clockwise arrows, with p + q = n, which is
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the number of vertices of G0. We let S0 denote the initial seed, that is,
S0 = (G0, {x1, . . . , xn}).

Theorem 3.3. Each seed S = (G, {y1, . . . , yn}) in the mutation class of S0
is obtained as follows: for some decorated Ã-quiver G with parameters p, q
and some embedding π of G, the i-th cluster variable yi of S is:

• if i is on the cyclic part of G, then yi is equal to t(π(i)), where t is the
SL2-tiling associated to S0;

• if i is a vertex of one of the continuant trees of G, then yi is equal to
the variable associated to this vertex.

In order to understand this result, note that the tiling t is periodic mod-
ulo the vector (p,−q), since so is its frontier; and the set π(i) is of the form
A+Z(p,−q) for some point A, by definition of an embedding; hence t(π(i))
is well-defined. Moreover, as seen in Subsection 3.2, each pre-continuant
tree of G becomes naturally a continuant tree, once an embedding of G is
given.

To illustrate the theorem, consider Figure 8: the vertices of G that
appear as points in the covering (that is, 2,6,5,3,4,1) have as variables the
images under t of these points. The other ones correspond to the second
case in the theorem: for example, let a, b, c, d, e, f, g be the sequence of
column linearization coefficients corresponding to the seven columns lying
strictly between the columns of 4 and that of 1; then the vertex 7 gets the
variable q(abcdefg), the vertex 10 gets q(defg), 8 gets q(ab) and 12 gets
q(e) (compare with Figure 1).

Proof. It is enough to prove that: (i) the initial seed is obtained in this
way and that: (ii) the statement is compatible with mutations. For (i),
this follows by choosing the initial embedding π0 in such a way that the
corresponding covering of G0 = Q0 (G0 is equal to its cyclic part; there are
no pre-continuant trees in G0) is the frontier of the tiling. The latter has
been constructed in such a way that this is possible.

We prove now (ii). Suppose that the mutation at j is of type d). By
symmetry, we may assume that i → k is a clockwise oriented arrow of
Q. Let A,C denote two points in the embedding π on the same hori-
zontal which correspond to i and k respectively (the reader may use Fig-
ure 8 with i = 4, j = 7, k = 1, and A,C corresponding to 4 and 1).
Let α1, . . . , αr, β, γ1, . . . , γs be the column linearization coefficients for the
columns stricly lying between A and C, with r (resp. s) equal to the number
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of vertices of the left (resp. right) subtree of the continuant tree correspond-
ing to this arrow (in the figure r = 2, s = 4); denote by a (resp. b) the roots
of these subtrees (in the figure, a, b correspond to 8,10). Then the vari-
ables at i, k, j, a, b are respectively: t(A), t(C), q(α1, . . . , αr, β, γ1, . . . , γs),
q(α1, . . . , αr), q(γ1, . . . , γs). Moreover the arrows incident to j are j → i,
j → b, k → j, a → j. After mutation, j is on the cyclic part Q′ part of
the mutated quiver G′ and corresponds to a point B in the new embedding
located between A and C at distance r of A (see Figure 8, with B corre-
sponding to 7); hence the mutated variable at j is t(B). Thus we must verify
that

t(B)q(α1, . . . , αr, β, γ1, . . . , γs)

= t(A)q(γ1, . . . , γs) + t(C)q(α1, . . . , αr).

This is Lemma 2.5.
Suppose now that the mutation is of type b). We may by symmetry

assume that the arrows are of the form j → k and j → i. Let A,B,C be
three consecutive points in the embedding π corresponding to i, j, k. See
Figure 8 with i, j, k equal to 6, 5, 3 and A,B,C the corresponding points.
Denote by α1, . . . , αr (resp. β1, . . . , βs) the linearization coefficients of the
columns (resp. rows) stricly lying between B and C (resp. B and A). Let D
be the fourth point of the rectangle on A,B,C (in Figure 10, D corresponds
to 5). Let a (resp. b) be the root of the tree of the arrow j → k) (resp. j → i)
(in Figure 8, a, b correspond to 19, 16). Then we have the arrows a → j
and b→ j. The variables in G at i, j, k, a, b are respectively t(A), t(B), t(C),
q(α1, . . . , αr), q(β1, . . . , βr); after mutation, the variable at j becomes t(D).
Thus we have to verify that

t(B)t(D) = t(A)t(C) + q(α1, . . . , αr)q(β1, . . . , βs).

This is Corollary 2.6.
A type a) mutation is the reverse of a type d) mutation and is treated

similarly. The case of a type c) mutation follows from Lemma 2.4.

3.5 Transjective/Nontransjective variables

It follows from the previous theorem that the cluster variables either appear
as elements of the SL2-tiling, or as continuant polynomials of the lineariza-
tion coefficients of the tiling; actually, only finitely many of them are of the
latter form, since the pre-continuant trees appearing on decorated Ã-quivers
are in finite number and since the sequences of linearization coefficients of

22



the tiling are periodic. We shall see below that these two cases are mutually
exclusive.

Let Q be a finite acyclic quiver and K an algebraically closed field. We
denote by KQ the path algebra of Q, by modKQ the category of finitely
generated right KQ-modules and by Db (modKQ) the bounded derived cat-
egory over modKQ. Let τ denote the Auslander-Reiten translation and [1]
the shift in Db (modKQ). The cluster category CQ of Q is defined to be the
orbit category of Db (modKQ) under the action of the automorphism τ−1[1],
see [9]. The Auslander-Reiten quiver Γ (CQ) of CQ has a unique component
containing all the objects in KQ[1], that is, the shifts of the indecomposable
projective KQ−modules. This component is the transjective component Γtr

of Γ (CQ) and its objects are called transjective. If Q is a Dynkin quiver, then
Γ (CQ) = Γtr . Otherwise, Γtr is isomorphic to the repetition quiver ZQ of
Q, and Γ (CQ) has infinitely many additional, so-called regular, components
which are either stable tubes (if Q is euclidean), or of type ZA∞ (if Q is
wild). Now, it is shown in [13] that there exists a bijection X? (called canon-
ical cluster character) between the isomorphism classes of indecomposable
objectsM in CQ which have no self-extensions and the cluster variables XM .
A cluster variable which is the image of a transjective object in CQ under the
canonical cluster character is called transjective. The others will be called
nontransjective.

Lemma 3.4. Let Q be a quiver of type Ã with p clockwise oriented arrows
and q counterclockwise oriented arrows. Then there are exactly p(p − 1) +
q(q − 1) nontransjective cluster variables.

Proof. According to the description of the cluster category CQ, the nontran-
sjective cluster variables are in bijection with the regular indecomposable
objects in CQ without self-extensions lying in the stable tubes. Now such an
indecomposable lies necessarily in one of the two exceptional tubes of ranks
p and q. Using the fact that the tubes are standard, it is easily seen that
the tube of rank p (resp. q) contains exactly p(p−1) (resp. q(q−1)) objects
without self-extensions.

Theorem 3.5. The transjective cluster variables are exactly those appearing
on the SL2-tiling. The nontransjective variables are exactly those appearing
on the continuant trees of the decorated Ã-graphs.

Proof. It is known [4] that the transjective variables are exactly those that
are obtained by mutating only on sources or on sinks of the quivers. Now,
as already observed in [5], the variables appearing on the SL2-tiling are
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obtained by this kind of mutations, hence are all transjective. Thus the
nontransjective variables all appear on the continuant trees. Hence it suffices
to show that the number of variables on the continuant trees is at most
p(p− 1)+ q(q− 1). Now, the sequence of column linearization coefficients is
periodic of period p; and the variables on the continuant trees corresponding
to columns are of the form q(α1, . . . , αk) with 1 ≤ k ≤ p − 1, since p is
the maximum length of a clockwise oriented arrow in the cyclic part of a
decorated Ã-quiver in the mutation class of G0, because it has necessarily
parameters p, q; hence there are at most p(p− 1) such variables. This ends
the proof, since the case of rows is symmetric.

As in the Introduction, let M denote the group generated by the set
{µ1, . . . , µn} of mutations, subject to the relations µ2i = 1.

Theorem 3.6. Let i ∈ {1, . . . , n}. Let y be a nontransjective cluster vari-
able. The set of m ∈ M such that yi(S

m
0 ) = y is a union of cosets of a

subgroup of finite index of M .

Proof. Consider the set of decorated Ã-quivers in the mutation class of G0,
with embedding considered modulo the subgroup H of Z2 generated by the
vectors (p, 0) and (0, q). This set is finite. By a remark made in Subsection
3.3, the continuant trees attached to G using π depend only on π mod H.
Now M acts on this finite set. Moreover, yi(S

m
0 ) = y is equivalent to the

fact that G0.m = G satisfies: i is a vertex of one of the continuant trees of
G and to this vertex is associated the variable y.

Observe that the transjective variables are given, following [5], by For-
mula (7) in Theorem 2.7; this formula gives at the same time positivity and
the Laurent phenomenon. We conclude this subsection by giving a similar
formula for nontransjective variables. We limit ourselves to the case where
these variables are obtained as continuant polynomials of column lineariza-
tion coefficients, the case of rows being symmetric.

Given a finite set of consecutive columns of the SL2-tiling associated to
a frontier, we call word of this set the word that codes the intersection of
the frontier with this set of columns, augmented with the first step to its
left and the first to its right; note that these steps are both horizontal. For
example the word of the set of columns containing the variables from x0 to
x4 in Figure 4 is

x−4xx−3yx−2yx−1yx0xx1xx2yx3xx4xx5.
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Theorem 3.7. Consider an SL2-tiling t associated to some frontier with
variables in K. Let C1, . . . , Ck be k successive columns of t, with lineariza-
tion coefficients α1, . . . , αk. Let w = x0ξ1 · · · ξnxn+1 be the word associated
to this set of columns. Then the continuant polynomial q(α1, . . . , αk) is equal
to

1

x1x2...xn
(x0, 1)M(x1, ξ2, x2) · · ·M(xn−1, ξn−1, xn)(1, xn+1)

T .

In order to prove this theorem, we need the following lemma.

Lemma 3.8. Let x1, . . . , xn, y1, . . . , yp be nonzero elements of K. Then

1

x1 · · · xny1 · · · yp
M(x1yx2 · · · yxnxy1yy2 · · · yyp)

=
1

x1 · · · xn
M(x1yx2 · · · yxn)

(

1
y1

)

1

y1 · · · yp
(xn, 1)M(y1yy2 · · · yyp)−

(

0 0
1 0

)

Proof. We have

M(x1yx2 · · · yxnxy1yy2 · · · yyp) =M(x1yx2 · · · yxn)M(xnxy1)M(y1yy2 · · · yyp).

Now

M(xnxy1) =

(

xn 1
0 y1

)

=

(

xn 1
xny1 y1

)

−

(

0 0
xny1 0

)

=

(

1
y1

)

(xn, 1)− xny1

(

0 0
1 0

)

.

Moreover

M(x1yx2 · · · yxn)

(

0 0
1 0

)

M(y1yy2 · · · yyp)

=

(

x2 0
1 x1

)

· · ·

(

xn 0
1 xn−1

)(

0 0
1 0

)(

y2 0
1 y1

)

· · ·

(

yp 0
1 yp−1

)

=

(

0 0
x1 · · · xn−1y2 · · · yp 0

)

.

Putting all this together, we obtain the lemma.

Proof. (Theorem 3.7) Consider first the case k = 1, that is, there is only the
column C1. Then

w = x0xx1yx2 . . . yxnxxn+1.
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Note that x1 is in column C1. Let P be the point in the discrete plane at
the right of the point on the frontier which is labelled by the variable x1.
Then the linearization coefficient α1 of column C1 is equal to x0+t(P )

x1
. Now,

the word associated to P (as in Subsection 2.6) is x1yx2 . . . yxnxxn+1. Thus
by Th. 2.7, we have

t(P ) =
1

x2 · · · xn
(1, x1)M(x2, y, x3) · · ·M(xn−1, y, xn)(1, xn+1)

T .

Let

A =

(

b
d

)

=M(x1, y, x2) · · ·M(xn−1, y, xn)(1, xn+1)
T .

Then, since the second row of M(x1, y, x2) is (1, x1), we have t(P ) =
d

x2···xn
.

Since M(x1, y, x2) · · ·M(xn−1, y, xn) is a product of lower triangular matri-
ces, its (1,1)-entry is by definition of M(a, y, b) equal to x2 · · · xn. Thus
b = x2 · · · xn. Now (x0, 1)A is equal to x0b + d. Divided by x1 · · · xn, this
gives

x0b+ d

x1 · · · xn
=
x0x2 · · · xn + d

x1 · · · xn
=
x0 +

d
x2···xn

x1
= α1.

This proves the result for k = 1.
We now verify that the expression rk = r(α1, . . . , αk) in the theorem

satisfies the recursion (2), first for k = 2 then for k ≥ 3. This will end the
proof.

Let C1, C2 be two successive columns, with α1, α2 as respective lineariza-
tion coefficients. Then the words associated to the sets of columns {C1},
{C2} and {C1, C2} are respectively

x0xx1yx2 · · · yxnxy1, xnxy1yy2 · · · yypxz, x0xx1yx2 · · · yxnxy1yy2 · · · yypxz

for some integers n, p. Thus r1 = (1/x1 · · · xn)(x0, 1)M(x1yx2 · · · xn)(1, y1)
T

and r2 = (1/x1 · · · xny1 · · · yp)(x0, 1)M(x1yx2 · · · xnxy1 · · · yp)(1, z)
T . Now

multiply the identity of the lemma at the left by (x0, 1) and at the right by
(1, z)T . We obtain r2 at the left-hand side. On the right-hand side we have
r1α2 − 1, since by the first part of the proof

α2 =
1

y1 · · · yp
(xn, 1)M(y1yy2 · · · yyp)(1, z)

T

and since

(x0, 1)

(

0 0
1 0

)

(1, z)T = 1.
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Thus r2 = r1α2 − 1.
Let C1, C2, . . . , Ck be k successive columns. Then the words associated

to the three sets of columns {C1, . . . , Ck−2}, {C1, . . . , Ck−1}, {C1, . . . , Ck}
are respectively of the form

wxx1, wxx1yx2 · · · yxnxy1, wxx1yx2 · · · yxnxy1yy2 · · · yypxz,

for some word w and some natural integers n, p. Moreover, the word asso-
ciated to {Ck} is

xnxy1yy2 · · · yypxz.

Thus
rk−2 = (1/X)(x0, 1)M(w)(1, x1)

T ,

rk−1 = (1/Xx1 · · · xn)(x0, 1)M(wx1yx2 · · · xn)(1, y1)
T

and

rk = (1/Xx1 · · · xny1 · · · yp)(x0, 1)M(wx1yx2 · · · xnxy1 · · · yp)(1, z)
T ,

where x0 is the first letter of w and where X is the product of all the
variables in w, except x0. We multiply the identity of the lemma at the left
by (1/X)(x0, 1)M(wxx1) and at the right by (1, z)T . We obtain an identity
whose left-hand side is rk; its right-hand side is equal to rk−1αk−rk−2, since
by the first part of the proof

αk =
1

y1 · · · yp
(xn, 1)M(y1yy2 · · · yyp)(1, z)

T ,

because M(wxx1) = M(w)M(z0xx1) (where z0 is the last letter of w), and
since

(

z0 1
0 x1

)(

0 0
1 0

)

(1, z)T = (1, x1)
T .

3.6 A linear representation of the mutation group

Recall that M denotes the group of mutations. We have a right action of
M on the finite set G of decorated Ã-graphs with n vertices and parameters
p, q; this action is defined on the generators (the mutations) in Subsection
3.1. We denote by G.m this action, for G ∈ G and m ∈ M . Likewise (see
Subsection 3.3), M acts on the right on the set of couples (G,π), where π
is an embedding of G into Z2. Note that, by definition of the mutations, we
have a compatibility condition between both actions: (G,π).m = (G.m, π′).
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Denote by G0 the finite set of couples (G,u), G ∈ G, where u is a point of
G. There is a natural action ofM on the couples (G,u) ∈ G0, that we denote
by (G,u).m for m ∈ M . This action has been defined on the generators at
the end of Subsection 3.3.

To G and π as above, we have associated in Subsection 3.3 a point
u = u(G,π) of G. The following lemma is a consequence of an observation
at the end of Subsection 3.3.

Lemma 3.9. For any m ∈M , one has u((G,π).m) = (G,u).m.

We now define a function δ : G0×M → Z[x, x−1], where M is the group
of mutations. This mapping is defined as follows: let (G,u) ∈ G0, m ∈ M ;
let π be some embedding of G ∈ G into Z2 such that u = u(G,π); and
define (G′, π′) = (G,π).m; let i = ξ(G′, π′) − ξ(G,π); then δ((G,u),m) is
the Laurent monomial xi. This is well-defined, that is, does not depend on
the chosen embedding π satisfying u = u(G,π).

From this construction follows

Lemma 3.10. One has for any m,m′ ∈M ,

δ((G,u),mm′) = δ((G,u),m)δ((G,u).m,m′).

We can now define a linear representation of the group of mutations.

Lemma 3.11. For m ∈M , define a matrix µ(m), indexed by G0 as follows:
for any (G,u) ∈ G0, the ((G,u), (G,u).m)-entry is equal to δ((G,u),m). The
other entries are 0. Then µ is a homomorphism fromM into GLN (Z[x, x−1]),
where N is the cardinality of G0.

Proof. The matrix µ(m) has exactly one nonzero entry in each row and each
column, and this entry is a Laurent monomial. Hence it is inGLN (Z[x, x−1]).
The fact that it is a homomorphism follows from the above equation.

Theorem 3.12. Let k ∈ {1, . . . , n}. Then the function

M → R = Z[x±1
1 , . . . , x±1

n ],m 7→ yk(S
m
0 )

is a representative function of the group of mutations M with values in R.

Proof. We define the initial embedding π0 of the initial seed S0 as at the
beginning of the proof of Th. 3.3. Let u0 = u(G,π). Define λ ∈ R1×G0 by
λ(Q0,u0) = xi0 , where i0 = ξ(Q0, π0), while the other components of λ are 0.

Define now γ ∈ RG0×1 by: if k is not on the cyclic part of G, then γ(G,u) = 0;
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if k is on the cyclic part of G, choose some vector (i, j) ∈ Z2 such that for
any embedding π of G, π(k) = u(G,π) + (i, j) + Z(p,−q) (see Lemma 3.1);
then let γ(G,u) = xiyj.

It is seen that then one has λµ(m)γ = xiyj where (Q0, π0).m = (G,π),
with π(k) = (i, j)+Z(p,−q) if k is on the cyclic part of G, and = 0 otherwise.
Call φ the representative function φ(m) = λµ(m)γ of M with value in
Z[x±1, y±1].

Now, by Prop.5.1 and Prop.5.4, the composition ψ = t ◦ φ is a represen-
tative function of M with value in R such that ψ(m) is equal, by Th.3.3 to
yk(S

m
0 ) if k lies in the cyclic part of Q0.m, and = 0 otherwise. Moreover the

set of m ∈M such that k does not lie in the cyclic part of Q0.m and has as
associated variable a fixed variable y is by Th.3.6 a finite union of cosets of
a normal subgroup of M ; thus the theorem follows from Corollary 5.3.

3.7 A noncommutative rational series

Consider the free monoidM generated by the set of mutations {µ1, . . . , µn}.
In this monoid consider the subset L of words m that do not contain two
successive occurrences of the same letter.

Theorem 3.13. Let k ∈ {1, . . . , n}. The series
∑

m∈L yk(S
m
0 )m is rational

over the ring Z[x±1
1 , . . . , x±1

n ].

Proof. This follows from the Kleene-Schützenberger theorem, see [8], Th.7.1:
a series is rational if and only it is a representative function of the monoidM.
It implies that the series

∑

yk(S
m
0 )m, where the sum is over all elements m

ofM, is rational over the ring Z[x±1
1 , . . . , x±1

n ]. Now, by Hadamard product
with the language L (which is a rational language), the series of the theorem
is rational (Cor. III.2.3 in [8]).

In view of the positivity conjecture of [22] and the rationality over N of
the sequences considered in [5], it is legitimate to ask if the series of the
theorem is also rational over the semiring N[x±1

1 , . . . , x±1
n ]. We show by a

counterexample that this is not true in general.
Indeed, consider the Ã2-quiver with the arrows 1 → 2 → 3 and 1 → 3.

The corresponding function δ is shown in Figure 11, with the following
conventions: ijk denotes the decorated Ã2-quiver with arrows i → j → k
and i → k with no attached pre-continuant tree; ik denotes the decorated
Ã1 quiver with a double arrow i → k and with a one node pre-continuant
tree j attached by the arrows i← j ← k. Note that, due to the special form
of these quivers, the distinguished point u(G,π) is always equal to i. On the
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figure, an arrow from vertex a to vertex b labelled µi/x
l means that a.µi = b

(action of the mutations on the set G) and δ(a, µi) = xl (we use here the
formalism of input/output automata); we have represented only one half of
the arrows: to the previous arrow is associated the reverse arrow b→ a with
label µi/x

−l.
All this allows to compute the function δ. For example, let w(p, q) =

(µ1µ2µ3)
pµ2µ1µ2(µ3µ2µ1)

q. Then we have

123.w(p, q) = 321, δ(123, w(p, q)) = x3px2x3q = x3p+2+3q.

This implies that starting from the initial seed (123, {x1, x2, x3}) and initial
embedding π0, and applying the sequence of mutations w(p, q) gives the seed
((321, {y1, y2, y3}), and the embedding π with π(1) = π0(1) + (3p + 3q, 0).

Suppose now that the series S(x1, x2, x3) of the theorem is, for k = 1,
rational over the semiring N[x±1

1 , . . . , x±1
n ]. Then replacing each variable xi

by 1, we obtain a series T = S(1, 1, 1) which is rational over the series N.
Since the set of w(p, q), p, q ∈ N is a rational language, the series W =
∑

(T,w(p, q))w(p, q) is also rational over N, see [8] Cor. III.2.3. Hence the
set of words w(p, q) whose coefficient in W is 1 must be a rational language,
by [8] Cor. III.2.7. Now, the SL2-tiling over N obtained by replacing the
variables by 1 has 1’s only on its frontier (compare with the SL2-tiling give
on p.3152 in [5]); moreover the only linearization coefficient which come into
play here is 2. Hence this language is the set of words w(p, p): this set is
well-known to be not a rational language.

4 Case An

4.1 Mutation of a continuant tree at the root

We show that, under suitable hypothesis (which are satisfied in the case
An), each continuant tree has at least two structures of continuant tree, if
one changes the parameters.

Lemma 4.1. Let a1, . . . , an+3 be a sequence of elements of R such that

Q(a1)Q(a2) · · ·Q(an+3) = −1.

Let G be a continuant tree with root labelled by the word a1 · · · an. Then for
some k with 1 ≤ k ≤ n, G has a leaf labelled k and there is a continuant
tree G′ isomorphic to G as labelled quiver, with the root of G′ corresponding
to k in G.
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Figure 11: The function δ

The lemma is illustrated by Figure 12, which shows the same quiver as
the one in Figure 1: at the left the nodes get new words, which give the
same continuant polynomials thanks to lemma 2.3 (under the hypothesis
Q(abcdefghij) = −1; for example, q(i) = q(abcdefg), and also q(defg) =
q(ijab) since Q(defghijabc) = −1); at the right, this quiver is shown to be
a continuant tree.

Proof. In order to prove the lemma, we associate to the continuant tree a tri-
angulation of an n+3-gon whose vertices are labelled by a1, . . . , an+3 in this
order: to each node ai . . . aj of the continuant tree, associate the diagonal
joining the vertices ai−1 and aj+1, with the indices taken modulo n + 3; in
particular, the root will give the diagonal from an+1 to an+3. The construc-
tion is illustrated in Figure 13: this triangulation corresponds to the tree of
Figure 1, but also to the tree of Figure 12, right part. Inspection of this ex-
ample shows that for a given triangulation, one obtains a corresponding tree
for each isolated vertex (that is, a vertex without incident diagonal), which
corresponds to the root of that tree. Since each triangulation has at least
two isolated vertices, the lemma follows if one takes into account the iden-
tity on continuant polynomials given by Lemma 2.3: indeed, the hypothesis
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Figure 12: The tree of Figure 1 viewed differently

of this lemma implies that Q(ai)Q(ai+1) · · ·Q(an+3)Q(a1) · · ·Q(ai−1) = −1,
so that q(ai · · · aj) = q(aj+2 · · · an+3a1 · · · ai−2).

4.2 The mutated seeds in type A

Consider the Dynkin diagram An, with vertex set {1, . . . n}, edge set {{i, i+
1}, i = 1, . . . , n−1}. We give to this diagram some orientation, obtaining the
initial quiver Q0, which determines the initial seed S0 = (Q0, {x1, . . . , xn}).

The following result is essentially due to Conway and Coxeter, see [15]
(18) p. 91 and p. 177-178.

Theorem 4.2. There exists a sequence a1, . . . , an+3 of Laurent polynomi-
als in the initial variables, with coefficients in N, such that the equality in
Lemma 2.3 holds and that each mutated seed is a continuant tree with root
(ai+1, . . . , ai+n), for some i = 1, . . . , n+ 3, with indices taken mod n+ 3.

Proof. By Lemmas 2.4 and 4.1, a mutated continuant tree is still a con-
tinuant tree. Thus it is enough by Lemma 2.3 to show that there exists a
sequence as in the statement such that the initial seed S0 is a continuant tree
of the form described in the statement. Consider the frieze with variables
associated to the quiver Q0, see [5] 8.2, [12] Section 5. Its period is n + 3.
The lemma follows from the same method as in [7] 8.1, with N replaced by
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Figure 13: The triangulation corresponding to the continuant trees of Fig-
ures 1 and 12, right part

the semiring N[x±1
i ], using the formula of [7] which gives the value of each

entry of the tiling using a continuant polynomial.

Note that mutation of a continuant tree corresponds to the classical
flip of a triangulation: in some quadrilateral, replace one diagonal by the
opposite one. This is illustrated in Figure 14: the triangulation on the right
part corresponds (this correspondance is explained in the proof of 4.1) to
the continuant tree on the left part, which, when mutated at vertex abcde
gives the continuant tree of Figure 1, corresponding to the triangulation of
Figure 13: the two triangulations are obtained by exchanging the diagonals
hc and jf . This is a particular case of a general construction indicated in
[21] 12.2, see also [12] Section 5. Our approach however is different and
quite elementary.

5 Appendix: representative functions

Fix a commutative ring R. Let A,B be R-algebras. We say that a function
f : A → B is representative over R with values in B if there exists a
natural integer n, an R-algebra homomorphism µ : A→ Bn×n, a row matrix
λ ∈ B1×n and a column matrix γ ∈ Bn×1 such that for any a ∈ A

f(a) = λµ(a)γ.
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Figure 14: Another continuant tree and its associated triangulation

This definition may seem too general1, but it is justified by the following
result.

Proposition 5.1. The composition of two representative functions is rep-
resentative.

Proof. Let A,B,C be three R-algebras and f : A → B, g : B → C be
representative functions. We have for any a ∈ A f(a) = λµ(a)γ, where the
notations are as above; and for any b ∈ B, g(b) = κν(b)δ where for some
natural integer p, ν is a R-algebra homomorphism B → Cp×p, κ ∈ C1×p

and δ ∈ Cp×1.
1. For a matrix M ∈ Bq×r, denote by ν(M) the matrix in (Cp×p)q×r

by replacing each entry of M by its image under ν. Note that if M,N are
matrices over B whose product is defined, then ν(MN) = ν(M)ν(N). Note
that, under p × p-block decomposition, the rings (Cp×p)q×r and Cpq×pr are
canonically isomorphic, and we identify them.

2. Define the mapping π : A → (Cp×p)n×n by π(a) = ν(µ(a)). Then
by 1., π is a ring homomorphism and ν(λ)π(a)ν(γ) = ν(λ)ν(µ(a))ν(γ) =
ν(λµ(a)γ) = ν(f(a)). Thus g ◦ f(a) = κν(f(a))δ = κν(λ)π(a)ν(γ)δ. This
shows that g ◦ f is a representative function A → C, since κν(λ) is a row
vector of size 1 × np, π a ring homomorphism A → Cnp×np and ν(γ)δ a
column vector of size np× 1.

1It could even be more general, by replacing rings by semirings, with applications in
Automata Theory and Tropical Geometry
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Given a group G and an R-algebra B, we say that a function f from
G into B is representative with values in B if the natural extension of this
function to the group algebra RG is representative. In other words, there
exists a homomorphism µ : G → GLn(B), a row vector λ ∈ B1×n and a
column vector γ ∈ Bn×1 such that f(g) = λµ(g)γ for any g ∈ G.

These definitions fit also with the classical case. If A is a K-algebra,
K a field, then a linear mapping A → K is representative in the classical
sense if and only if it is representative over K with values in K, in the above
meaning. In particular, a function from a group G (or a semigroup) into
K is representative (see [1] p.72) if and only if the linear mapping from the
group algebra KG into K that it defines is representative over K with values
in K (see [17] Ex.1.5.11 p. 41).

By diagonal sum of matrices, it is easily seen that the sum of two rep-
resentative functions is representative. Moreover, if f is a representative
function defined on a group G and a an element of the group, the function
h(g) = f(ag) is also representative; we denote it by h = f.a.

Lemma 5.2. Let R be a commutative ring and B an R-algebra, G a group,
H a subgroup of finite index and f a representative function of H over R
with values in B. Define for any g ∈ G, φ(g) = f(g) if g ∈ H, = 0 otherwise.
Then φ is a representative function of G with values in B.

Proof. This is proved by mimicking the matrix construction of an induced
character. We know the existence of a group homomorphism µ from H into
the group GLn(B), a row matrix λ ∈ B1×n, a column matrix γ ∈ Bn×1 such
that for h ∈ H, one has f(h) = λµ(h)γ. Let x1, . . . , xd be representatives
of the left classes gH of G mod H. For j = 1, . . . , d and g in G, let i = g.j
and hj ∈ H be such that gxj = xihj ; they are uniquely defined by this
equation. Define the square matrix R(g) of size nd, with d× d blocks of size
n as follows: the (i, j)-block is µ(hj); all other blocks are zero. It is then
classical that R is a group homomorphism from G into GLnd(B). We may
assume that x1 = 1. Then the (1, 1)-block of R(g) is nonzero if and only if
g is in H, in which case it is equal to µ(g). Define the 1 × nd-row matrix
L = (λ, 0, . . . , 0) and the the nd × 1-column matrix C = (γT , 0, . . . , 0)T .
Then φ(g) = LR(g)C and φ is a representative function of G with values in
B.

Corollary 5.3. Let R be a commutative ring, B an R-algebra, G a group,
and H a subgroup of finite index. For each left coset C of G mod H, with
representative aC , let fC be a representative function of the group H with
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values in B. Define the function f on G by f(g) = fC(h) if g ∈ C, g = aCh.
Then f is a representative function of G with values in B.

Proof. Let the function hC be equal to fC on H and 0 elsewhere; it is
representative by the lemma. Now f is the sum over all cosets C of the
functions hC .a

−1
c , which proves the corollary.

Proposition 5.4. Let t be the SL2-tiling of the plane over the field K
associated to a periodic frontier (see Subsection 2.6). Let R be the subring
of K generated by the variables of the frontier and their inverses. Then the
function Z2 → R, (x, y) 7→ t(x, y) is a representative function of the group
Z2 with values in R.

Lemma 5.5. Consider a function Z2 → R, (x, y) 7→ s(x, y) which is of the
following form: s(x, y) is the (1, 1)-coefficient of the matrix AyBCx, where
A,B,C are fixed square matrices of the same size over the commutative ring
R, with A,C invertible. Then s is a representative function of the group Z2

with values in R.

Proof. Consider the free R-moduleM of square matrices of the given size
over R. Then the group Z2 acts on it by (x, y).M = AyMCx. Then t(x, y) =
φ((x, y).B), where φ is the linear form onM which maps M onto its (1, 1)-
coefficient. Taking a basis ofM, we obtain that t is representative.

Corollary 5.6. Let n, p be positive integers and si,j, 0 ≤ i ≤ n− 1, 0 ≤ j ≤
p− 1 be representative functions of the group Z2 into R. Define t : Z2 → R,
t(x, y) = sr1,r2(q1, q2) if x = nq1 + r1 and y = pq2 + r2 (Euclidean division
of x by n and of y by p). Then t is representative.

Proof. Let H be the subgroup of Z2 generated by the vectors (n, 0) and
(0, p). Then we obtain the corollary by applying Corollary 5.3.

Proof. (Proposition 5.4) We know by Th.2.7 that the tiling is tame; moreover
the bi-infinite sequence of column (resp. row) linearization coefficients is
periodic. Denote by (αj)j∈Z (resp. (βi)i∈Z this sequence and let n (resp.p)
be its period.

Observe that these coefficients belong to R; this follows indeed from
Th. 2.7 and from the fact that for each three adjacent columns, one may
find three points A,B,C on them, on the same horizontal line, and such
that A,B are on the frontier; then the linearization coefficient of the middle
column is t(A)+t(C)

t(B) , which is in R since t(A) and t(B) are variables of the

frontier and t(C is given by Eq.(7).
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Denote by Cj the j-th column of the tiling. Then Cj+2 = −Cj +
αj+1Cj+1. This implies, with the matrix notation Q(α) of Subsection 2.1,
that (Cj , Cj+1)Q(αj+1) = (Cj+1, Cj+2). It follows that for any natural in-
teger j, one has

(∗) (C0, C1)Q(α1 . . . αj) = (Cj , Cj+1),

if we denote Q(α1 . . . αj) = Q(α1) · · ·Q(αj).
Now, we have αj+n = αj. It follows that for any natural integers q, r,

we have (C0, C1)[Q(α1) · · ·Q(αn)]
qQ(α1) · · ·Q(αr) = (Cnq+r, Cnq+r+1).

We claim that this is even true for any integer q. Indeed, an equality
similar to (∗) holds for negative indices: for j > 0,

(C0, C1)Q(α0)
−1 · · ·Q(α−i+1)

−1 = (C−j , C−j+1).

From this the claim follows by induction on negative q.
Now, similar calculations apply to rows. Putting this together, we obtain

that for any integers x, y with x = nq1 + r1, y = pq2 + r2, one obtains that
the matrix

(

t(x, y) t(x+ 1, y)
t(x, y + 1) t(x+ 1, y + 1)

)

is equal to

Q(βr1 . . . β1)[Q(βp . . . β1)]
q2

(

t(0, 0) t(0, 1)
t(1, 0) t(1, 1)

)

[Q(α1 . . . αn)]
q1Q(α1 . . . αr2).

Note that

[Q(α1 . . . αn)]
q1Q(α1 . . . αr2) = Q(α1 . . . αr2)[Q(αr2+1αr2+2 . . . αr2)]

q1 ,

and similarly for the β’s. This implies the proposition, by Lemma 5.5 and
Corollary 5.6.

6 Conjectures

We conjecture that Th. 3.6, Th. 3.12 and Th. 3.13 extend to all Euclidean
diagrams. Note that for Dynkin diagrams, these extensions are immediate
since the mutation classes of seeds are finite, by Fomin and Zelevinsky’s
finite type classification [23].

37



References

[1] E. Abe, Hopf algebras, Cambridge University Press, 1980.
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