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ABSTRACT. Let A be a finite dimensional algebra over an algebraically closed
field. We define a coil in the Auslander-Reiten quiver of A to be a component
obtained from a stable wbe by a sequence of operations that we shall call
admissible. We shall show that, for every coil, there exists a triangular algebra
having this coil as a standard component of its Auslander-Reiten quiver. We also
give an axiomatic characterisation of coils. A multicoil consists of a finite number
of coils glued together by some directed pants. A multicoil algebra is an algebra
having the property that every cycle of non-zero non-isomorphisms between
indecomposables lies in a standard coil of a multicoil. Multicoil algebras are cycle-
finite and hence tame. We show here that a multicoil algebra is minimal
representation-infinite if and only if it is tame concealed.

Let k be an algebraically closed field, and A be a finite dimensional associative
k-algebra with an identity. We shall denote by mod A the category of finitely
generated right A-modules. It follows from a well-known result of Drozd [12]
that the representation theory of A belongs to one of two non-intersecting
classes: "wild", which contain the classical problem of reducing a pair of
matrices under simultancous conjugations, and "tame" in which
indecomposable finite dimensional modules occur, in each dimensiond 2 1, in
a finite number of discrete and a finite number of one-parameter families. If
there exists m € N such that the least number of these one-parameter families
is bounded, in cach dimension d, by d™, then A is said to be of polynomial
growth [22]. This class of tame algebras is at present believed to be the  most
accessible, and has been the subject of intensive research over the last few years
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(1,2, 3,6 16,17, 18, 21, 22, 23, 24, 25]. All these results have pointed out the
importance of the notion of tube [13, 21] for the representation theory of such
algebras: in fact, itis shown in [11] that for a representation-infinite tame algebra, all
but finitely many non-isomorphic indecomposable modules of dimension d belong to
homogeneous tubes. One of the main purposes of the present paper is to introduce
the notion of admissible operations, and a component obtained from a stable tube by a
sequence of admissible operations will be called a coil (observe that this use of the
term coil deviates from its use in [2]). We shall show that, for any coil, there exists a
triangular algebra (that is, an algebra having no oriented cycle in its ordinary quiver)
having this coil as a standard component of its Auslander-Reiten quiver. We shall
also characterise coils axiomatically. Namely, we shall describe a topological space,
called a crowned cylinder, to which the underlying topological space (as defined in
[19)) of a coil, modulo some projective-injective points, is homeomorphic. Then we
shall prove:

THEOREM (A). Let I' be a translation quiver without multiple arrows and
containing a cyclical path. Then T is a coil if and only if the following conditions are
satisfied:

(1)  LetI" denote the full translation subquiver of I’ consisting of all points
except those which are projective-injective middle terms of a mesh in I with three
middle terms. Then the underlying topological space of I" is homeomorphic to a
crowned cylinder.

(@)  For any mesh with three middle terms, none of which is projective-
injective, two of the middle terms lie on the mouth of T '

(3)  For any projective p € g, or injective q € I'(j, and any x € g, we
have dimy Homk(r) (p, x) £ 1, or dimy. Hom k(D) (x, @) < 1, respectively.

(4  For any projective p € [, or injective g € T, there exists a ray
starting at p, or a coray ending in g, respectively.

(5) The t-orbit of any projective, or injective, contains a point which
belongs to a cyclical path.

(6) - Thereexistsa length functionon T".

We shall then introduce the notion of a multicoil: it consists of a finite set of
coils glued together by some directed part. An algebra A will be called a multicoil
algebra if any cycle in mod A (that is, any oriented cycle of non-zero non-
isomorphisms between indecomposable modules) belongs to one standard coil of a
multicoil in the Auslander-Reiten quiver of A. Clearly, for such a cycle, no
morphism on the cycle lies in the infinite power of the radical of mod A and
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- conscquently, by [2] (1.4), any multicoil algebra is tame. In fact, it is shown in [3]
(4.6) that multicoil algebras are of polynomial growth. The class of multicoil
algebras contains all the best understood examples of algebras of polynomial growth
and finite global dimension, and it seems to be of fundamental interest for studying
the simply connected algebras of polynomial growth. In fact, it is shown in [25]
that, if A is such that every full convex subcategory is simply connected, then A is of
polynomial growth if and only if A is a multicoil algebra. Further, it is proved in
{26] that, if A has directing indecomposable projective modules, than A is tame if and
only if A is a multicoil algebra. The present paper is devoted to providing a setting
for the study of multicoil algebras. We shall show that maulticoil algebras are
triangular, then prove that a full convex subcategory of a multicoil algebra is a
multicoil algebra. This will allow us to show that the minimal representation-
infinite multicoil algebras coincide with the tame concealed algebras of [14,21] (note
that this characterisation is similar to the one obtained in [2] for a different concept of
coil).

THEOREM (B). Let A be a basic and cohnected finite dimensional algebra
over an algebraically closed field. The following conditions are equivalent:

{) A is a tame concealed algebra,

(i) A s a representation-infinite multicoil algebra and, for every 0 # 2=¢
€ A, A/AcA is represeniation-finite,

(i) A is a representation-infinite multicoil algebra and every proper full

convex subcategory of A is representation-finite.

This implies that any representation-infinite multicoil algebra contains a tame
concealed algebra as a full convex subcategory. Applying the above results in [3], we
show that indecomposable modules lying in a stable tube of a multicoil algebra have
as their support a tame concealed or a tubular algebra (in the sense of {21]). Thus the
structure of such indecomposables is completely described. Here, we shall prove the
following result on the structure of non-stable coils over multicoil algebras.

THEOREM (C). Let A be a multicoil algebra and I be a non stable coil in the
Auslander-Reiten quiver I’ A ©of A. Then there exists a tame concealed full convex
subcategory C of A and a stable tube T of I ¢ such that I" is obtained from T by a
sequence of admissible operations and the support algebra Supp I' of T is obtained
from C = Supp T by the corresponding sequence of onc-point extensions and
coextensions,
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In forthcoming papers [4, 5}, using the above theorem, we shall describe the
structure of indecomposable modules lying in a cyclical path of a coil in a multicoil
algebra.

The present paper is organised as follows. After a brief introductory section
(1), in which we fix the notations and recall the basic definitions, section (2) is
devoted to the description of admissible operations on finite dimensional algebras. In
section (3), we describe the corresponding admissible operations on translation quivers
and introduce the notions of coils and multicoil algebras. Section (4) is devoted to the
proof of theorem (A) and finally section (5) is devoted to the proofs of theorems ®)

and (C).
1. Notation and preliminary definitions.

1.1  Throughout this paper, k will denote a fixed algebraically closed field.
An algebra A will always mean an associative finite dimensional k-algebra with an
identity, and will be usually assumed to be basic and connected. For such an algebra
A, there exists a connected bound quiver Q A,I) and an isomorphism A = kQ A/I.
Equivalently, A = kQ /1 may be considered as a k-linear category. of which the object
class Ag is the set (Q A)O of points of Qa» and the set of morphisms A (x,y) from x
to y is the quotient of the k-vector space kQa (%, y) having as basis the set of paths in
Qa from x to y by the subspace I(x,y)=InkQ Al y), see [10]. A full subcategory
C of A will be called convex (in A) if any path in A with source and target in C lies
entirely in C. It is called giangular if Q¢ contains no oriented cycle.

By an A-module is always meant a finitely generated right A-module, and we
shall denote their category by mod A. For an A-module M, we denote by add M the
additive full subcategory of mod A consisting of the direct sums of indecomposable
summands of M. A gycle in mod A is a sequence of non-zero non-isomorphisms
MO—‘)MI—‘)“""Mt = My where the M, are indecomposable. A module M is called
directing if it lies on no cycle in mod A. Fori € (QA)O, we denote by S(i) the
corresponding simple A-module and by P(i) (respectively, 1(1)) the projective cover
(respectively, the injective envelope) of S(i). The dimension-vector of a module M is
the vector dim M = (dimy Hom 4 (P@), M)); ¢ (QA)O The suppeort Supp {(d)of a
dimension-vector d= (di)i c (Q )? is the full subcategory of A with object class {1 €
(QA)O d; # 0}. The support ot a module M is by definition the support of its

dimension-vector.

12 We shall use freely properties of the Auslander-Reiten translations T =
DTrand t A‘l = TrD (which we shall denote respectively by Tor 7L if no confusion
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is possible) and the Auslander-Reiten quiver I” A Of A, for which we refer to 7, 21].
We shall agree to identify the points in I A With the corresponding indecomposable A-
modules. Let I be a translation subquiver of I'y. We shall denote by ind I the full
subcategory of mod A determined by one representative of each point in I". We shall
say that I' is standard if ind " =$ k (I"), where the latter denotes the mesh category of
I, see [10]. The support Supp I" of I" is defined to be the full subcategory of A with
object class (i E(QAJO | (dim M); #0 for some M € l"o}.

A translation quiver I" is called a tube [13,21] if it contains a cyclical path and
if its underlying topological space is homeomorphic to s! x R* (when s! is the unit
circle, and R *the set of non-negative real numbers). A tube has only two types of
arrows: arrows pointing to infinity and arrows pointing to the mouth. This also
applics 1o sectional paths, this is, paths X)X —>...—Xp, in " such that x; | #
1x; 4 forall 0 <i<m. An infinite sectional path consisting of arrows pointing to
infinity (respectively, to the mouth) is called a ray (respectively, a coray). Itis not
hard to show that the composition of the morphisms of mod A determined by a
sectional path in a tube of I A is non-zero. Tubes containing no projectives or
injectives are called stable. In this paper, all tubes are assumed to be coherent with
length functions [13] (3) that is, are obtained from stable tubes by a finite number of
ray or coray insertions.

1.3 The one-point extension of the algebra A by the A-module XA is the
algebra

A[x]=[A 0]

X k

with the usual addition and multiplication of matrices. The quiver of A [X] contains
QA as a full subquiver and there is an additional (extension) point which is a source.
The A [X]-modules are usually identified with the triples (V, M, @), where V is a k-
vector space, M an A-module and ¢: V — Hom , (X, M) is a k-linear map. An
A [X]-linear map (V, M, @) =(V', M', ¢') is thus a pair (f, g), where f: V V' is k-
lincar and g: M —>M' is A-linear such that @' f = Hom  (X.g)@. One defines dually
the one-point coextension [X]A of A by X.

2. Construction of standard components.

2.1 In this section, we shall introduce admissible operations and show that,
under reasonable assumptions, these preserve the standardness of components. These
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admissible operations will in turn motivate the introduction of coils and of multicoil
algebras. Throughout this section, let A be an algebra, and T" be a standard
component of T's. For an indecomposable A-module X in T, called the pivot, we
shall define admissible operations depending on the shape of the support of the functor
Hom 5 X, Ypd T This is, by definition, the subcategory of ind I’ consisting of
the modules M such that Hom 5 (X, M) # 0 and whose non-zero morphisms are the
morphisms f: M—N such that Hom X,0H=0.

adl) Assume that Supp Hom A(X,-)l-mdr consists of an infinite sectional path
starting at X:

X:XO——)Xl——)Xz-)...

Let D denote the full txt lower triangular matrix algebra (with t 2 1) and Y denote the
tive D-module. We define the modified algebra

unique indecomposable projective-injec
=(AxD)[X @& Y], and the modified

A' of A to be the one-point extension A’
component I™ of I to be:

1 . .
kX ® Yj,‘l))forlzo, 1€j<t.
k, X;, 1)
and the morphisms are the obvious ones.
follows: T Z‘J = Zi'l,j-l ifi12 1,_] 2 2, T le =
22,25 =Pis projective, T X'o = Y,
provided X; is not an injective A-module,
remaining points of T (respectively, T'p), ' coincides with T (respectively, Tp)-

where Zij =
X' =
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Xl-l ifiz1, T Z()le Y_)‘l if
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The support of the functor Homy r-)(P -) will be called the rectangle determined by
P: it equals the full subquiver of l"' consisting of the points 2:l and X';, We shall say
that I" is obtained from I' (and I"p) by inszrting lhlsrecumglc

If t = 0, we define the modified algebra A’ 1o be the one-point extension A' =
A[X]. In this case, the rectangle determined by P consists solely of the ray formed by
the X''s: thus the modified component T is obtained from I" by a single ray
insertion.

ad2)  Assume that Supp Hom, (X.) 4 -~ consists of two sectional paths
starting at X, one infinite and the other finite with at least one arrow

Y« e Y)Y «X= Xg 2 X| 29Xy > ..

with t 2 1, so that, in particular, X is injective. We define the modified algebra A’ of
A 1o be the one-point extension A’ = A [X] and the modified component I of I" to be

where  Z;; =(k X; eYJ.[ ]) fori21,1<j<t

= (k, X;, foriz1
and the morphlsms are the obvious ones. The translation t' of I is defined as
follows: P =Xy is projective-injective, t' Z —ZI 1,j-1 ifiz2,j22, 1 lel
Xipifi21, v Z]J_Y.I' 111j22, X =Z;, l 22, TX5 =Y, 1t (1) X))
—X,pmwded X is not an injective A- module oLherwuse X' is mjcclwe in ", For
the remaining pomts of I, t' coincides with the lranslauon tof I'. The support of
IhcfunctorHomk(r-){P -) will be called the rectangle determined by P: it equals the
full subquiver of I consisting of the points Z and X';. We shall say that I'" is
obtained from I” by inserting this rectangle.
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r consists of two parallel sectional

ad3) Assume that Supp Hom 4 (X.-) fnd
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when ZiJ‘:(k, X; ® Yj,(ij)foriz L1<j<i
Xi=(k X;, 1)

and the morphisms are the obvious ones. The translation t' is defined as follows:
P =Xy is projective, t' Zij = Zi-l,j-l ifiz2,2<j<i, t Zi = Xi-l if i
21X =Y if 1 <<y, r'X'i=Zi_1’[ ifi>tg 1 Yj =X2if 2 <j <y,
T(ta X)) =X} if i > provided X is not an injective A-module, otherwise X' is
injective in . We note that X',_jis injective. For the remaining points of r,oo
coincides with the translation Ta Oof . The support of the functor Homk(rv) (P,-)
will be called the rectangle determined by P: it equals the full subquiver of I
consisting of the points Zij and X', We shall say that I is obtained from I by
inserting this rectangle.

The respective duals of ad1), ad2), ad3) will be denoted by ad1*) ad2®), ad3™.
These six operations will be called admissible. In the following lemmas, we shall
prove that the component of the Auslander-Reiten quiver of the modified algebra
containing the pivot is cqual to the modified component and, under suitable
assumptions, is standard.

22 LEMMA. In the case adl), the component of I o+ containing X
(considered as an A'module) is cqual to I” and is standard.

Proof. By construction, P is the only indecomposable projective A'-module
which is neither an indecomposable projective A-module, nor an indecomposable
projective D-module. Also, there are inclusion morphisms of X and Y as summands
of rad P, which are therefore irreducible in mod A’. Recall that, by [21} 2.5(5) p. 87,
e M 5 N s right minimal almost split in mod A, then (0, g):
{Ker ”()mAxD (X® Yg), M u - (0N, 0) (where u denotes the canonical
inclusion) is right minimal almost split in mod A",

*

I T e ’ - e
: S RS T e e v T T = 7R
SRl T - E g g
-3 TP R o 3 LUEICETP T s - w el
b e A M ST oo
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Let i = 0. The right minimal almost split morphism in mod A’ ending in

0, X;, 0) is given by (0, g) with g M - X, right minimal almost split in mod A.
Clearly, M = X;_; ® M where we agree that X_; = 0 and, for i>1,wehave X | €

add M. Since M is an A-module, Homy . p (Y, M) = 0 so
Ker Homp yp (X ® Y, g) = Ker Hom, (X, g) where Hom, (X, g):
Hom 4 (X, Xi ® M) —» Homp (X, X;). By our assumption on
Supp Homp (X, Wipdr> we have Homy (X, M) = 0 while Homp X, g):
Homy (X, Xi-l) — Hom 5 X, X is injective and so our right minimal almost split
morphism is (0, g): (0, M, 0) » 0, X, 0. In particular, the morphisms X; =
Xis1 remain irreducible in mod A'. Moreover, there exists no irreducible morphism
Xi —> U in mod A' with U % Zil* Xi+1: indeed, otherwise, UA' cannot be
projective, hence there exists an irreducible morphism 75U — X; in mod A', which
contradicts the above description of the right minimal almost split morphism of
mod A’ ending in Xj.

Applying again [21] 2.5 (5) p.87, we see that all irreducible morphisms in
mod D remain so in mod A". A straightforward induction on the construction of the
cokernel term in the respective sequences shows that we have indeed the almost split
sequences ending at the modules in the rectangle determined by P. There remains to
compute the almost split sequences starting at the X';. Assume there exists an
irreducible morphism X; — V in mod A, with V indecomposable. By [9] and our
assumption on Supp Hom s (X, Mipgr » we must have V=5 X or V5 TaXig
The left minimal almost split morphism starting at X; in mod A is thus
f: X;=Xi1 © 1;‘} X;_ from which we deduce a left minimal almost split
morphism: (1, £): X;~{Hom,p(X®Y. X;). Xi1, @ 7 2 X, Hom pp( X®Y, f)
=(k, Xi41- 1)® (0, TAlXivl» o). This completes the proof that I" is the component
of ['pr containing X.

In order to show the standardness of I, let ®: k(I') — indl" and ®" k(™M —
indI™ denote the canonical functors. By hypothesis, ® is an equivalence, and we want
to show that so is @'. Since @' is clearly dense, we must prove it is full and faithful,
that is, for all M, N € ind T, the functor @' induces an isomorphism
Homk(r) (M, N) = Hom+ (M, N).

Let F: k(I") — k(I'™) denote the k-lincar embedding which is the identity on all
objects and all arrows except arrows of the form X; — "c;\l X;.1> the image of which
is the corresponding sectional path. Let F:ind I — ind I be the functor induced by
F. We have a commutative diagram

In par

form

modu
Homy
D-mo

corres
assun
X -
X' =
for so
gv, w
Since

diagra
hand,

Conse

ind T,
the cc
comm
Hom,

In this
where
paths,
corres
and <
Homk




MULTICOIL ALGEBRAS

F

ind T —p ind T’

In particular, M, N € ind I" implies Homk(r-) (M,N) = Hom 5. (M, N).

If M is a D-module and Hom 4. (M, N) # 0, then N is a D-module or of the
form zij' Similarly, if N is a D-module and Hom 4. (M, N) # 0, then M is a D-
module. Hence, if M or N is a D-module, then @' induces the required isomorphism
Homk(r) (M,N) > HomA- (M, N). We may thus assume that neither M nor N isa
D-module.

We note that the morphisms zij - X'j in mod A’ indluccd by the
corresponding sectional paths in I are surjective. Moreover, if To X; 1 # 0, our
assumption on Supp Hom 4 (X,-)l;n4  implies that the irreducible morphism
X' - T Xj.1 in mod A is surjective and hence so is the irreducible morphism
X214 X;yinmod A". LetthusN e ind I"and M ¢ indT. ThenM:Zijorx'i
for some i, j. A non-zero morphism f: M—s N in mod A can always be written as f =
gv, where vi: M — ‘r;\l X;.1 is induced by the corresponding sectional path in I,
Since v belongs to the image of @', and so does g (by commutativity of the above
diagram), @' induces a surjection Homk(l-) (M, N) = Hom A' (M, N). On the other
hand, v is an epimorphism in mod A’ (by the above observations) and F' is faithful.
Consequently the above surjection is an isomorphism,

Dually, if : M - N i a non-zero morphism in mod A’ with M € ind NNe
indl".lhenfcanbcwriuenasl‘=uh.forsmneh: M - X; and u: X; = N induced by
the corresponding sectional path. Since u is a monomorphism, it follows from the
commutativity of the above diagram that @' induces the required isomorphism
H“"‘k(r‘) (M,N) 3 Hom 4. (M, N).

There remains to consider the case where both M and N belong to the rectangle.
In this case, a non-zero morphism f: M — N is mod A’ can be written as f= ugv + h,
where u: X_ - Nand v: M 1:..'\I Xs.1 are induced by the corresponding sectional
paths, BTA X - X, and h is zero or a composition of irreducible morphisms
corresponding to arrows in the rectangle. Since h, u, v belong to the image of @',
and so does g (by the previous considerations), @' induces a surjection
Homk(r) (M,N) - Hom . (M, N). Now h is non-zero in mod A’ if and only if it
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is non-zero in k(IM). Similarly, since u is injective and v is surjective in mod A'and
since F is faithful then ugy is non-zero in mod A’ if and only if it is non-7¢ro in
k(I"). Now, any non-zcro morphism {: M — N in k(I™) can be writien as f=ugv +h
with u, g, v, has above. Thus @' (H =0 implies 0 # @’ (h) = -® (ugv). But h does
not factor through modules in T, while g does. This contradiction shows that D’
induces an isomorphism HOInk(r~) (M, N) = Homy: (M, N). The proof of the

lemma is now complete.
REMARK. The above argument provides an alternative proof of (13} (2.3).

73 LEMMA. In the case ad?), the component of T containing X
(considercd as an A'-module) is equal 0 T Further, if the subquiver of T obtained by
deleting the arrows Y — r;\l Y;.q is sulch that its connected component r
containing X does not contain any of the Ty Yiq, thenT™is standard.

Proof. As in (2.2), the irreducible morphisms Xy Y. Y, and
Xg— Xy Xy = in mod A remain so in mod A'. We clearly have an almost
split sequence
: 0—>X0~>P@X1®Y1—>ZH~>O
in mod A'. Also the right minimal almost split morphisms ending at the X; and Yj
in mod A remain so in mod A", It follows from our hypothesis that Yj (j=2) has at
most two direct successors in mod A, namely Yj+l and Tp Yj-l- But this implies
that Y has at most two non-injective direct predecessors in mod A (thus in mod A,
by what has been said above). Therefore Yj has at most two non-projective direct
successors in mod A’ hence at most two direct successors in mod A'. Computing
inductively almost split sequences, We prove, as in (2.2), that " is indeed the
component of Tz containing X. .

Now for the proof of standardness, let T be as in the statement; there exists a
full embedding F: k (1"*) — k(™) inducing a commutative diagram

where Ul

The pro
(consid
deleting
contain
I
is Yl -
mod A’

fori >
almost

Since n

for 1:

inducti

R
LA
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. F
k(I" ) - k()

ind I’ g

where the standardness of T and the property assumed imply that @ is an equivalence.
-
The proof proceeds as in (2.2), replacing Thy I .

2.4, LEMMA, In the case ad3), the component of I' 5 containing X
(considered as an A-module) is equal to I™". Further, if the subquiver of I" obtained by
deleting the arrows Y; — tAl Y;.j is such that its connected component r
containing X does not contain any of the t,ql Yi.1, then I is standard.

Proof. By hypothesis, the only irreducible morphism is mod A starting at Y,
is Y, - Y, By [21] 2.5 (5) (6) p. 87 and 88, we have almost split sequences in
mod A’

O—)XU—)PGXIGYl*#Z“—bO
0—)P=X'0—+Z“ —bY-z—l‘U
00— xi - 4 XM ® 2“ . zi+l.l — 0

fori > 1. Also, Y| -» Z; is left minimal almost split so that we also have an

almost split sequence
0—!Y| —)Z“h)X'l -0

Since no other arrow starts at Yl. we also have almost split sequences

07 5Z;®Z,,,) 5 Ziy1 20
for 1> 1. The proof that the component of "o+ containing X is I is finished by
induction, and standardness is proved as in (2.2) and (2.3).

2.5. EXAMPLE. Let A be given by the quiver
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. Let B be the full convex subcategory of A

bound by Ao =0, oY= 0 ABy=
has as component a standard tube [ of the

consisting of all points except a. Then I'g

form

11 OOO

00
1 0
0 1 0
22 / 0™~ 111 / O\ QOO / )
1

1
0 1
0\122/ 0\111/ .

i

1 — to T 22 7 11\\ ol

l' / ll \022 / OO\ 1
! " % — < 0

ables are represented by their dimension-vectors and one identifies

where indecompos
extension of B by the indecomposable

e dotted lines. Then Ais a one-point

along th
in T of dimension-vector 14, The corresponding modified component I" is of the
form
11 00 11
1°-0 0750 1,1
OO 1 11

3. Coils and multicoil algebras.

3.L The admissible opera

wranslation quivers rather than on Auslander-Reiten compone

tions of (2.1) can be regarded as operations on
nts. The definitions of

the adm
done in

I
translat
<m,T

&

that eac
A coil

sense ¢
sequen
which ¢

such th

f

definiti
tube T’
C= A
operati
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the admissible operations adl) ad2) ad3) ad1*) ad2*) ad3*) for translation quivers are
done in the obvious manner, We refer the reader 1o [3] for the details. Let us recall

DEFINITION. A translation quiver is called a <oil if there exists a sequence of
translation quivers Fo: Ty T, = T such that Iy is a stable tube and, for each 0 < i
<m, I, is obtained from I'; by an admissible operation.

Thus, any stable tube is (trivially) a coil. A tube is a coil having the property
that cach admissible operation in the sequence defining it is of the form ad1) oradl*),
A coil without injectives (or without projectives) is a tube. A quasi-tube (in the
sense of [24]) is a coil having the property that each admissible operation in the
sequence defining it is of the form ad1), ad1 *). ad2) or ad2*). For examples of coils
which are not tubes, we refer to example (2.5) above (or to [3] (2.1)).

3.2. PROPOSITION. Let I be a coil. There exists a triangular algebra A
such Lhml‘isaslandardcomponmtof!‘k

Proof. Let T, [}, ..l =T be a sequence of translation quivers as in the
definition (3.1). Clearly, there exists a tame hereditary algebra C having the stable
tube Iy as a standard component. Inductively, we construct a sequence of algebras
C=Ag. Ay, ..A, = A such that Aj41 is obtained from A; by the admissible
operation with pivot in [j such that the component of [a,,, containing the pivot is
Fi41- T is easily seen that the conditions for standardness in (2.3) and (2.4) are
satisficd at cach step. This shows that T is a standard component of Fp. The
triangularity of A follows from the fact that A is obtained from a tame hereditary
algebra by a sequence of one-point extensions and coextensions.

3.3. It follows from the definition that coils share many properties with
tubes. For instance, all but finitely many points belong to a cyclical path. A point x
in a coil I will be said to belong to the mouth of I if x is the starting, or ending,
point of a mesh in I" with a unique middle term. Also, I'" contains a (maximal) tube
as a cofinite full translation subquiver. Arrows of this tube may thus be subdivided

into two classes: arrows pointing to the mouth and arrows pointing to infinity. An
infinite sectional path in I

a o o
X=ll —sz e FER _;xi -_’xi-ﬂ -
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such that, for some i 2 1, we have all o with i 2 ig pointing to infinity will be
called a ray starting at X, and denoted by [x, e[, Dually an infinite sectional path in I
B, B2 By

R s e e A

such that, for some iy 2 1, we have all B; with 210 pointing to the mouth will be
called a coray ending with ¥, and denoted by Jee, y). For example, it follows directly
from the definition of a coil thatif pe I'p is projective (respectively, ¢ € TQ is
injective), there exists a ray [p, el (respectively, a coray Joo, q1).

LEMMA. Let T be acoil. The full subquiver Iyof T consisting of those

points which belong to a cyclical path is also a coil.

Proof. Since ad2) ad2*) ad3) ad3*) only create points belonging to cyclical
paths, the points in AT, may only arise from adl) or ad1*). Also, I\Ty is the
disjoint union of translation quivers containing no cyclical path. LetA be a connected

component of T\ FY , considered as embedded in . By duality, we may assume that
there exists a projective point p€ (FY)O and a sectional path
cip=ag a7 in 'y from p to the mouth of T" such that A consists of
G. We must show that T* =T \ A is a coil. Let ® denote the full
wranslation subquiver of T consisting of those points X such that there exists a ray
faj.ol (for some i) passing through x. Clearly T’ is obtained from [M\® by
applications of adl). On the other hand, I'* may cquivalently be obtained from T\®,
, [ay, oof, ...[a, oo[. Repeating this

predecessors of

by successively inserting rays [2g oo
procedure for the other connected components of I'\ Ty, the lemma follows.

DEFINITION. A coil T 1s called proper if cach of its points belongs to a
cyclical path (that is, I = FY)'

Thus, for an arbitrary coil T', FY is the unique maximal proper subcoil of T, It
has the property that, for any two points x, y € (FY)()’ there always cxists a path from
Xty in FY _ Also, if x belongs to the mouth of a proper coil, there exists a unique

ray [x, > | and a unique coray e, x] passing through x.

314, DEFINITION. A rranstation quiver (I', T) is said 1o be a mulucoil it
contains a full ranstation subquiver I such that:

0] " is a disjoint union of coils.

(i)  Nopointin I\ T belongs to a cyclical path.

it
proper ¢t
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It follows from (3.3) that I may actually be assumed to be a disjoint union of
proper coils.

DEFINITION. An algebra A is said 10 be a multicoil algebra if, for any cycle
Mg M > .- Mt=MoinmodA.thcindecomposablemoduh3Mibelongm
one standard coil of a multicoil in CA-

Thus, a representation-finite algebra is a multicoil algebra if and only if it has a
directed module category. All the best understood examples of tame algebras of finite
global dimension are multicoil algebras: algebras tilting-cotilting equivalent to a
tame hereditary algebra or to a tubular algebra [1), tame tilted algebras of wild type
[15], iterated wbular algebras [18], or coil algebras in the sense of [2). We shall give
in (3.6) below an example of a multicoil algebra having a non-trivial multicoil as a
connected component of its Auslander-Reiten quiver (see also (3] (2.2)). By definition
of a multicoil algebra A, for any cycle in mod A, no morphism on the cycle lies in
the infinite power of the radical of mod A (that is, A is cycle-finite in the terminology
of [2]). Consequently, by [2] (1.4):

PROPOSITION. Let A be a multicoil algebra. Then A is tame,

REMARKS. (a) Actually, any multicoil algebra is of polynomial growth.
This will be shown in [3](4.6), using the results of the present paper.
(b) If a multicoil is a component of the Auslander-Reiten
Quiver of an algebra, then it contains finitely many coils. From now on,if Aisa
multicoil algebra, we shall briefly say "a coil in I" , " instead of " a coil in a multicoil
inTy"

3.5. PROPOSITION. Let A be a multicoil algebra. Then A is triangular
(thus gl.dim.A< ),

Proof. If this is not the case, there exists a cycle in mod A which consists of
projective modules, and this cycle lics in a standard coil I" (which may be assumed to
be proper) in I'a. Since I' is standard, there exists a cycle of projective objects in
k(I'). By (3.2), there exists a triangular algebra B and a component I in I'g such that
k(') = k(™). In particular, we obtain a contradiction since this implies that the
triangular algebra B contains a cycle of projective B-modules,

e TP O —

o S ———
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3.6. EXAMPLE. Let A be given by the quiver

bound by €8 =0, Av =0, oy = 0. There A is a multicoil algebra and T'p contains

the following multicoil

000
1 0 )
111 12
011 111 000 / ™\ 000 / \000
5 0 })oo ?11 811
OOO\ /OOO /

where we identify along the dotted lines and indecomposable m

by their dimension-vectors.

4. An axiomatic description of coils.

4.1. In this section, we shall characterise coils by means of a set of

the inductive construction of section (3). W

we call a crowned cylinder.
tition the unit interval {0, 11 int

rather than

topological space, which
For n > 1, we par

‘ 442} o
cach subinterval of the form |z "4n~ , consider the midpoint ¢; n

odules are represented

axioms
e start by describing 2

0 4n equal subintervals. For

=41+l construct a

semi-circle

the subsp:

points (x,

Such a st
the unit «
image of
circle itse

A
topologi
h(x) e X
followin;
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semi-circle contained in the upper half-plane with centre ¢; and radius 21; This yields
the subspace X of the upper half-plane with the usual topology consisting of the

) ] 4 4i+2 )
points (x, y) with x e [0, 1] such that, if 4“']‘5"5 an for some 0 < i < n,

x-ciP+yl< iz while if not, then y = 0

(x-ci)f +y {4 »theny = 0.

0o L 2 3 4 5 6 4n-4 4n-3 4n-2 4n-1_ |
4n  4n  4n  4n 4n 4n 4n 4n 4n 4n

Identifying the points 0 and 1, we obtain a topological space of the form

Such a space X will be called a crown. It is considered as a subspace of le. Clearly,
the unit circle S is homeomorphic to the subspace Xg of the crown X which is the
image of the unit interval. We shall agree, by abuse of fanguage, to consider the unit
circle itself as a crown (corresponding to n = 0).

A crowned cylinder E is, by definition, the quotient space obtained from the
topological sum of S x R* and a crown X by identifying (x. 1) ¢ S! x R* with
h(x) e XO {where h: st ., XO denotes a homeomorphism). In other words, E is the
following amalgamated sum ("pushout”)
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g! ——m X

: P (

i
S1 X R ———— E
where,

Thus, a crowned cylinder is a subspace of R3 of the form in this
18 ¢

) contain
S S

/ ] conditic
\/ (1

except ¢
terms.
cylinder
The reason for the introduction of crowned cylinders is the following. LetI" be L S
a coil, and I be the full translation subquiver of I’ consisting of all points except injective
those which are projective-injective middle terms of a mesh with three middle terms. d have dx(:
Then the underlying topological space iC'1 of T is homeomorphic to a crowned
cylinder. 5 (
Or a cor:
4.2. Letnow I be a translation quiver without multiple arrows, containing a S bel (¢
cyclical path, and let I" denote the full translation subquiver of " consisting of all i ongs
points except those which are projective-injective middle terms of a mesh with three ‘ «
middle terms. Assume that I is homeomorphic to a crowned cylinder. Then, :
clearly, a mesh in T has at most three middle terms. A mesh with exactly three o AV
middle terms will be called ¢xceptional, and a projective middle term of an exceptional tup!:crz)m
mesh will be called gxceptional projective. Other meshes and projectives will be ‘k an()[C’S
called ordinary. The set of points which are the starting, or ending, point of a mesh Sﬁtisfy{r
in T with a unique middle term will be called the mouth of T Thus an exceptional
mesh must have one of its middle terms on the mouth or projective-injective. On the
other hand, " contains a (maximal) tube as a cofinite full translation subquiver. We , +
may thus define rays and corays in I exactly as in (3.3). , potcont
Finally, we shall say that a function £: Ty — N is a length function (see 113D ot «
on [if: teont
P




MULTICOIL ALGEBRAS

For any x which is not projective
2Ax)+ 2x)= Y Ay)
yeEX
For any x which is projective
Ax)=1+ 2y
YEX

where, as usual, x™ denotes the set of immediate predecessors of x in I". Our objective
in this section is to prove the following:

THEOREM. Let I" be a translation quiver without multiple arrows and
containing a cyclical path. Then I' is a coil if and only if it satisfies the following
conditions:

(C1) Let ™ denote the full translation subquiver of I" consisting of all points
except those which are projective-injective middle terms of a mesh with three middle
terms. Then the underlying topological space of I is homeomorphic to a crowned
cylinder.

(C2) For any mesh with three middle terms, none of which is projective-
injective, two of the middle terms lie on the mouth of T".

(C3) For any projective p e g, or injective q € Iy, and any x € Iy, we

have dimk}{umk{r]p, x)<1,o0r dimy H"mk(l‘) (x, @) < 1 respectively.

(C4) For any projective p € [, or injective q € I, there exists a ray [p, oof,
oracoray |eo, q, respectively.

(C5) The t-orbit of any projective, or injective, contains a point which
belongs to a cyclical path.

(C6) There exists a length function £ on I

While the necessity follows by an easy induction on the number of admissible
operations (using (3.2) and the fact that all the axioms are trivially satisfied for stable
tubes), the sufficiency requires more work. In the remaining part of this section, I"
denotes a translation quiver without multiple arrows, containing a cyclical path, and
satisfying the axioms (C1) to (C6).

43 LEMMA. (i)Letpe Iy be projective, then Supp Homy (1-p, -) does

not contain all points of an exceptional mesh.
(i) Letq € [y be injective, then Supp Hﬂmk([‘l‘- q) does

not contain all points of an exceptional mesh.

Proof. This indeed follows from (C3).
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iver of T of the

44 LEMMA. Consider a mesh-complete translation subqu

V'form:

Then l(e) - 2(dy = £(f) - 2a)

£(a) + £(c). Moreover, by (2] 2.1),

Proof. We have £(b) = :
f). Hence £(a) + 2(c) + L) = () + &) + £(f) and

,2(5) + Ae) = £(c) + A(d) + 2(
the claim follows.

COROLLARY. Consider a mesh-complete translation subquiver of T of the

form.

where p is projective. Then at most one of a,
this is the case, and t is odd, then bl is injective, while, if tis

injective.

Proof. We shall show thatt odd and a; injective

teven and by injective yiel

and bt can be injective. Morcover, if
even, then a; 1s

yicld a contradiction. Dually,

d another contradiction. This would imply the statement.
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Assume ag is injective. Then  2(@a) - £c) =1, By the lemma,
A(by 1) = Ac,y) =1. By induction, and if t is odd. we get A@)) - 2c)) =1,
However, by (2] (2.1), we have 2(a)) + 2(b)) + 2(cg) = A(xg) + 2(c)).  Since |
A(by) = L(xg) + 1, we get 2(ap) + 2co) + 1 = 4(cy), hence the absurdity 2(cq) =-2. Y

BT TG TS S et o Bt

4.5. LEMMA. The mesh category k(I') contains no oriented cycle of
projectives.

.-:__-._...._.'____'_._ _'.__..._.'.‘.._‘_'__:.-_:-..‘..,.__...,:. — g

Proof. Let pg = Py = ... = Py =pg be such a cycle. We claim that there
exists another such cycle of projectives with each Py cither exceptional or else such
that there exist arrows  — x —» Pg. With g injective.

Let us consider Pp and define a point z as follows. If Pp s exceptional, let x
be its unique direct predecessor, and ¢ =t 'x be such that one of the direct predecessors
of ¢ is injective (this implies, by (C3), the existence of a coray Jeo, c]), then set z =
[P, =l M Jeo, ¢, If Pp is not exceptional, set z = Po-

Let us now consider the set of points y on the sectional path from z 1o the mouth
such that there exists a ray [y, «o[. This set is non-cmpty (it contains z). Lety be a
maximal element in this set (that is, closer to the mouth) and let [z, y]| denote the
sectional path from z 1o y. By (C1), for cach v on [z, y], there exists a ray [v, oof.
Let B denote the mesh-complete translation subquiver consisting of all points lying
on these rays. Then R ¢ Supp Homy(rXpg. -): indeed, this is clear if 7 = Po-
otherwise it follows from the fact that ¢ and exactly two of its direct predecessors
(namely, the one lying on [z, y], and the injective direct predecessor) belong 10
. Supp Homy (1 Xpg. -). By (4.3), R contains no exceptional mesh.

2 We claim that [y, «[ contains cither an arrow q —» x, with q injective and x a
direct predecessor of a projective p', or else a point x which is the direct predecessor of
a0 exceptional projective p'. Indeed, assume that this is not the case. Since
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Homk(r) Py pp* 0 then, by (C1) and the existence of the rays [v, e[ with v on (z,

y], we must have that p; belongs to {c, y]. Since Homk(r) ®; Pis) * Oforall 1< : where w
i< -2 and B consists of ordinary meshes, we deduce that py, .- Py belong all to mouth, a
{c, yl. This implies, by the definition of y and our hypothesis that [y, o contains no to infinit
point as required, that Homy 1) (P PY = 0, a contradiction. ! Fc
; of zg and

: where pa

pointing

o . j there exis

<

Note that p', as defined in the previous claim, is the unique projective having a
direct predecessor on {y, oo[. For, if this is not the case, the existence of the ray
{p', oo implies that we have one of the following two cases.

O-\ P, Wi
X E according
X ) (@)

q > Ugyg

ys = ag —

in particular, the projective p" is necessarily exceptional, and hence projective-
injective; we thus get a contradiction by (4.3), since the lower mesh lies in
Supp Homy(rkPo- -)-

Let i be such that the projectives py, - B belong to B, while pj, | € R .
Then either Py, = p', or the (only) morphism p; = Py factors through p'. 1 p; 4
= p',we replace Py, - Pipt by p', while if p; =Py factors through p', we replace
Pps Pi by p. In this way, we replace inductively the given cycle by a cycle of
projectives satisfying the required property. Actually, we have cven defined a cycle of

the form
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e D Pg P e D Zg =P s D Y P e =D Pga] P e

where we have sectional paths [P, zg] pointing to infinity, [z, ys] pointing to the
mouth, and [y, x¢] (where x is a direct predecessor of P41 On this cycle) pointing
to infinity.

For cach s, let ug = [yg_, oo N Joo, ¥gl- Then ug is clearly a direct predecessor
of zg and we have a cycle

DU =D YD D U D

where paths correspond to sectional paths, (ug, y] pointing to the mouth, [¥g gy )
pointing 1o infinity. If follows from the above discussion that for each v on [ug, ¥l
there exists a ray [v, e[ and a coray Jeo, v|.

We shall now show that £(ug,y) < £(ys) for all s. There are (wo cases
according as p¢, | is an ordinary or an exceptional projective.

(@) Assume Ps+1 is ordinary, Then there exist arrows
Q- Ugy) =X Pgyy With q injective.  Consider the sectional path
Ys =dp > ap > Ay =q > Ugy) — Pygy . Assume first that no a; is injective.

“sel

Then  2(q) + 2(b) = A(y) + 2c) and A(qQ) = 2(c) + Augyy) + 1. Hence
2(Q + 2(b) = 2(c) + 2(b) + Aug,y)+ 1 and 2Ay,) = 2(b) + Aug, ) + 1 > Aug, ).
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On the other hand, if i is the largest index < m such that a;_y is injective, we have as
before

Psel

22, 1) = Augy) + A(b) + 1. However, £(2j,1) = 2(a;) + 2(b) yields
2(a) = Augy ) + 1> 2(ug, ). Repeating this procedure over all injectives among

the a;, we deduce our statement.
(b)  Assume pg, g is exceptional. If no point on the sectional path from yg

0 Xg is injective,

s

we have, by [2] (2.1) Apest) + Lugq) = Ayy) + 2(z.1) and, by (4.4),
Apgyp) = 2(zg,1) + 1. Thus Ay,) = 2ug, ) + 1> 2(ug,y). On the other hand, if
there exists an injective on the sectional path from y to Xg, we let g be the injective

closer to pg, ¢ and a be the direct successor of g on this path.

We again
Ra) = £(
statement
Now we ¢

Ioo, ug ]
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Weagain have £(a) + Azgep) = Apgyp) + Aug,)and Lipg, | = Azg, 1)+ 1. Hence
2la) = Rlug, o+ 1. Continuing the argument as in (a) above, we deduce our
statement.

Now we shall define another cycle lying lower in I'. For each s, let y= lug. oof M

J o, “,\'+] .

TN

s
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We thus obtain a cycle
U S P R s = e > Ugyy e = ¥Yer1 -
with all paths sectional, [ug, y's) pointing to infinity and [y'g us+1‘ pointing to the
mouth. We have seen that the shown rectangle contains no exceptional mesh.
Consequently, we have L(y'g) < Auy) for alls.
By construction of our new cycle, there ar¢ no projectives on rays starting from
points on the cycle. On the other hand, ¥ { z(us)+z(y'5))<§! 2u )+ 49!

Now, for each s, letting ' | = ys oo} M Joo, y's+1], we obtain a third cycle
e Yl e W T = Yt e
lying lower in T', such that ¥ { ,2(u'5)+,2(y's)}<2{,t(us)+,2(y's)}. Continuing in this
way, we eventually obtain negative values, a contradiction.

REMARK. It follows from the proof that all projectives in T lic above some
cyclical path in I", and consequently I has only finitely many projectives.

4.6. Proof of the theorem. We shall show the sufficiency of the axioms by
induction on the number of projectives in I". Indeed, if T has neither projectives nor
injectives, then [ is a stable tube. By duality, we may assume that T” contains at
least one projective.

By (4.5), there exists a projective p € o such that Supp Homk(l—Xp, -)
contains no projective. Assume first that p is an ordinary projective and consider the
sectional path from p pointing to the mouth p = ag — a1 = - > v with a; lying
on the mouth. Let s be the largest index such that there exists a projective p' € o
and a sectional path {p', ag) pointing to infinity. We can clearly choose p' sO that 1ts
successors on [p', &g} arc not projective. Observe that Supp Homk(r“p', -) contains
no projective: indeed, by definition of s, no projective lies on a sectional path
pointing 10 infinity and passing through a_, s < r < t; moreover, by our assumption
on p, the sectional path {ay, eo[ contains no direct predecessor of a projective. Also, p
is necessarily ordinary: for, if p # p’, then Homk(rXp, p)=0, p les above the
sectional path [p, a} and hence it belongs 10 NO cyclical path (by (C1) and the fact
(hat at most one of the direct predecessors of plicsona cyclical path and then it lies
on the coray Jeo, a,1). Therefore T contains a mesh-complete {ranslation subquiver of
the form:

s

where po:

lying on
by I'y th
sectional
still satisf
Wi
projective
and we hg
As
vertices X
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where possibly p = p', by, =2, or by =bp,. Denote by R, the set of the points in I’
lying on sectional paths from the mouth to infinity passing through by, ... by, and
by Iy the translation quiver obtained from I' by deleting ®. and replacing the
sectional paths X; = ... = ¢; (if they exist) by arrows x; = ¢;, i 2 1. Clearly I'y
still satisfies the axioms and has at least one projective less than I'.

We may thus suppose that no sink in the full subcategory of k(") consisting of

projectives is ordinary. Let thus p be a sink in this category. Then p is exceptional
and we have two cases to consider.

Assume that p is injective. Then Supp Homy(r)p, -)is formed by the
vertices X, and zjofa mesh-complete translation subquiver of I" of the form.
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if Lis even,

il b s o b

sectional paths ¥; = Z;; = Yi41 by arrows ¥; = ¥jy1 (1 Si<t-1) and the sectional !
paths X; = ... =x'j = T x'; (if they exist) by arrows ;T 2y, i2t+ L,
Hence I is of the form

Clearly, Iy satisfies the axioms and has onc projective less than I'. This
finishes the proof of the theorem.

Full convex subcategories of multicoil algebras.

ph dd otp o o

5.1. In this section, we shall prove that a full convex subcategory of a
multicoil algebra is also a multicoil algebra. We shall deduce from this result the
characterisation of the minimal representation-infinite multicoil algebras, and the
structure of the non-stable coils in a multicoil algebra.

LEMMA. Let I be a coil in the Auslander-Reiten quiver I' 4 of a multicoil
algebra A. Then C = Supp I' is a full convex subcategory of A.

Proof. It follows casily from the inductive construction of coils that
Supp I" = Supp ry. where Iy denotes, as in section (3), the full subquiver of '
consisting of all points lying on a cyclical path. [f suffices thus to show that
C = Supp I’y is convex in A. This is done by the well-known convexity argument of

Denote by R, the set of the points in I” of the forms x'i.izo.zij.iz LS {i '
j<t,and by 'y the translation quiver obtained from I" by deleting R, . and replacing Wit
the sectional paths X; —» -~ = ¥, by arrows X; =¥ ¥j4| (0 <i<t-1) the iy

L
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e, for instance, [21(3.1)) using the fact that, since Ty is a coil in the

Bongartz (s¢
sms with a module in I“Y

multicoil algebra A, any cycle of non-zero non-isomorphi

must lie completely in Ty

5.2. REMARK. Let Abca multicoil algebra, and X be an indecompasable
A-module lying in a stable tube of T's. Then C = Supp ( @ 7' X) is a full convex
t20

subcategory of A.

5.3. LEMMA. Let A = B[X] be a multicoil algebra, with extension point a,
such that P(a) belongs to a proper coil T'in T 4. Then the full subcategory G of
ind T of the B-modules lying on a cycle in mod B is standard and its quiver is a coil.

Proof. By [81(3.5), if0 - L — M — N - 0is the almost split sequence in

mod A starting with L, where L is a B-module which is not injective in mod B, then

the almost split sequence in mod B starting with L is the lower row of the exact

commutative diagram
. 0 0
y A
K —m K
\’ !

I ,, g
O"’L"M”’N_’O

l !

0 0

where M’ and N' are the largest quotients of M and N, respectively, to be B-modules,
and the morphisms K — M', K — N’ are sections. The lemma follows by applying
this statement to compute the quiver of T by calculating the almost split sequences
starting at the indecomposable objects of T(and, in particular, at the X, in the

notation of (2.1)). The standardness of the new coil follows from the standardness of

I.

54. COROLLARY.Lct Abca multicoil algebra and I" be a coil in FaA-

Then Supp I contains a full convex subcategory C such of A that T is ob
ce of admissible operations and Supp ' is

tained from

a sincere stable tube 'y of I'- by a sequen

obtained fror
and coexiensi

Proof.
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I_n_i_ﬂ’_Q M det
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obtained from Supp I'} = C by the corresponding sequence of one-point extensions
and coextensions.

Proof. By induction on the number of projectives and injectives in I, using
(5.1) and (5.3). Assume that I" is obtained from I" by an admissible operation which,
by duality, may be taken 1o be the insertion of a projective (or projectives) and the
corresponding rectangle in I". By (5.1) D = Supp I is a full convex subcategory of
A. Itis obtained from D' = Supp I'"" by a one-point extension and, by (5.3), PY is a
standard coil in I'p.  Moreover, Supp [y=Suppl™ =D' is a full convex
subcategory of D, and D is obtained from D' by an admissible operation. The proof is
completed by induction.

5.5.DEFINITION. Let T be a coil, and M be a mouth module in I‘Y . The
mitre M determined by M is defined to be the full translation subquiver of T’
consisting of all modules N such that there exist sectional paths X — ... = N for
some X on the (unique) coray Jeo, M] and N —» ... — Y for some Y on the (unique)
ray [M, e,

LEMMA. Let A = B(X] be a multicoil algebra. If I' is a stable tube
containing at least one A-module which is not a B-module, there exists a mouth

module M € T’ such that M contains no B-module. Consequently, the full
subcategory of mod B consisting of the indecomposables in I" has finitely many non-
isomorphic indecomposables and contains no cycles.

Proof. Let P(a) be the unique indecomposable projective A-module which is
not a B-module. We shall prove the existence of a mouth module M e I such that
Homy (P(a), M) # 0. Let L € Supp Homa(P(a), -) hngr and Q denote the maximal
coray passing through L. If the mouth module on Q belongs to
Supp Homz(P(a), -) i nqr » We are done. If not, we may assume that L is chosen so
that, if L —» N is the arrow on Q , then Hom, (P(a), N) = 0. Let £ be the maximal
ray passing through L. We claim that Hom , (P(a), U)# 0 for all U € Xy Letf:
P(a) —» L be non-zero. Since T is a stable tube, the irreducible morphisms on ¥, are
injective. Hence the compositions of f with the morphisms determined by the
subpaths of ¥ starting with L are non-zero, and consequently Hom (P(a), U) # 0 for
alUe X lying between L and infinity. Consider the almost split sequence

09TtNSL®K-SN-0
Since Homy(P(a), L ® K)# 0, Homy (P(a), N)=0, then Hom(P(a), T N) 2 0.
Morcover, since the irreducible morphism K — N is injective, we have
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Homp (P(a), K)= 0. Using induction on the number of modules on ¥ from the
mouth to L, we deduce that Hom {P(a), U) # 0 for all U € X, between the mouth
and L. This proves the existence of the wanted mouth module M, and also shows that
the ray ¥ lies entirely in Supp Homa(P(a), -) g - Finally, since morphisms
induced by sectional subpaths of corays ending at a point on ¥, are surjective, and
P(a) is projective, then M lies entirely in Supp Homa(P(a), -) lipgr - Consequently,
Ker Homp, (P(a), -) hndr contains only finitely many non-isomorphic
indecomposables. Moreover, it contains no cycle because the mouth module of I
lying on % belongs to Supp HomA(P(a), -) linar- -

5.6. THEOREM. Let A be a multicoil algebra, and B be a full convex
subcategory of A. Then B is a multicoil algebra.

Proof. Since, by (3.5), A is triangular, it suffices to prove the statement in
case A is a one-point extension of B. Any cycle in mod B is also a cycle in mod A
and hence belongs to a standard coil in I" . Hence, it suffices to show that, if I"is a
standard coil in T, and g the full subcatory of ind T’ consisting of the B-modules in
I" which lie on a cycle in mod B, and if & « @3, then the quiver of g is a standard coil.

Let P(a) be the unique projective A-module which is not a B-module. Clearly,
the B-modules in I belonging to a cycle in mod B must belong to a cycle in 1"7 .
First, if Hom(P(a), -) kinar, = 0, then I, consists entirely of B-modules. Hence the
quiver of g is equal to I“y and thus is a coil (by (3.3)); further, it is standard because it
is so in mod A. We may thus assume that Homa(P(a), -) linar, # 0. If
P(a)e (T Y)O’ the statement follows from (5.3). If P(a) ¢ (FY)O and I is a stable tube,
the statement follows from (5.5) (g5 is empty in this case). There remains to consider
the case where P(a) & (Fy)g and I' is not a stable tube. There exists a sequence
I'{,Ty .., =T where I'y is a stable tube, and I';, ; is obtained from I'; by an
admissible operation. By (5.4), we may assume that Supp I'} is a full convex
subcategory of Supp FY , and the latter is obtained from the former by a sequence of
admissible operations. We shall show that, if Homa(P(a), -) 'indl"l # 0, then
Ker HomA(P(a), ) Linar. contains only finitely many non-isomorphic
indecomposable objects and no cycle in mod B (so that g = @). "

By (5.5), there exists a mouth module U € (I')g such that U lies entirely
outside Ker Hom 4(P(a), -) 'indl‘lo We claim that such a mitre exists for any T'; and is
determined by a mouth module which is not projective, lies on a cycle in [, and is
such that the almost split sequence ending at this module has indecomposable middle
term. Inducliv/e\ly, assume such a mitre exists for I'; ;. Since P(a) maps non-trivially
to modules in U, and a is a source, we cannot use as radical of a new projective any

il Bl

module froi

~ Supp Ho
taken minim
Ub X, (fc
indecomposz
U lies entire]
have Hom,
Xp = Zpj, X
m. The same
U =X, is the

In this latter ca
in I'; passes th
ending with V
we have, for an
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factors through
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module from G If we use adl), ad2) or ad3), with pivor X = X()' then G
~ Supp !'iomA(P(a), A)}im”«i comains a ray [Xm, > for some m, which may be
taken minimal with thig property. Considering U as a module in I, we clearly have
Udb Xy (for, if U X the almost split sequence ending in U has more than one
ndecomposable middle termy), Consequently, if we look at U as a module in I'; , then
Ulies entirely outside Ker Hom z(P(a), -) ‘indI‘i-' indecd, in the notation of (2.1), we
have HomA(P(a), Xp) #0 for p > m, and since wc have monomorphisms
R vmd Zpjs Xp = X', then Hom 4 (P(a), Zui) # 0 and Hom 4 (P(a), X'p)#0 for p >
m. The same argument carries over (o the cases ad2*), ad3*) and even adi*) cxcept if
W= Xy is the pivor.

. e ——
AN
~
\\M
s -
7 U=x,
O
L4
e XI
//
a7,
X,

I this Tatter case, let v be the mouth module in ', such that the ray starting with v
1 I, passes through U. Then Vv js not projective, and the almost split sequence
cnding with V hag indecomposable middle term. Using again the notation of/g?..l),
= have, for any m, j, cpimorphisms ij - X, X'y = X Thus the mitre V lies
entirely outside Ker Hom y(P(a), ‘)'indﬂ and we have proved our claim. By
mduction, such a mitre exists for I’y and hence, if Supp Hom y(P(a), -) *mdrl # 0,
then Ker Homu(P(a), ‘)}indﬂ has finitely many non-isomorphic indecomposable
ehrects and contains no cycle in mod B.

Fhere  remains  (he case  where  Homu(Pya), -) 'indrl =0 byt
Hum\(}"(a), -} bndr. # 0. We claim that any non-zcro morphism from P(a) (o I}{
Lters through modles notlying on a cycle, and belonging 10 a multicoi containing
© I this 15 not the case, and Homa(P(a), M) = 0 for M € (F'yy. there exists a
odvenee of irreducible morphisms .

f'( “I
M, SMip o M, »Mg =M
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and for each t, g P(a) > My is such that f; ... fig, # Oandall M, € (T'yo. We shall
show that this implies Homa(P(a), -) linar, * 0. a conwradiction. In any sequence as
before, we have infinitely many non-isomorphic M's: indeed, if an indecomposable N
occurs infinitely many times among the Mt's, there exist h; € rad End N such that
hy..hy 20 for all i > 1, a contradiction to the nilpotency of rad End N. This
implies that infinitely many M's do not belong to rectangles determined by
projectives in . Since, by hypothesis, Homa(P(a), -) lingr, = 0, we have that
infinitely many M,'s belong to a rectangle determined by an injective 1(b) (through
one of the operations ad1*) ad2*) or ad3*)). Actually, there exists tg € N such that,
for t > ty, all M belong to the same coray inside this rectangle and thus, in the
notation of (2.1), are of the form Z . for some j. Since a is a source, a # b and hence
Hom 4(P(a), S(b))= 0. But this implies that we may replace the Zp,; by the
corresponding X, . If these X | belong to a rectangle determined by another injective,
we repeat this reasoning. Since the coil contains at most finitely many injectives, we
thus obtain a factorisation through modules in 'y. This yields the required
contradiction and the proof of our claim. Let again M € (FY)O be such that
Hom A(P(a), M) # 0. A non-zero morphism P(a) — M must factor through modules
not lying on a cycle and belonging to the multicoil containing I. In particular, M
belongs to a rectangle determined by a projective P (c) in I'. This implies that the set
J= {j | Hom 4 (P(a), Yj) # 0} is not empty, where the Yj are as in (2.1), corresponding
to the projective P (¢). Each such Yj determines a ray [Y;, oo consisting of A-
modules which are not B-modules. Thus the B-modules inside I“Y form a coil
obtained from FY by deleting the rays [Yj, oof for all j &€ J. The proof is now
complete.

REMARK. The above reasoning yields an alternative proof of [2] (2.3).

5.7. We deduce the following characterisation of the minimal representation-
infinite multicoil algebras (compare with [2] (2.3)).

THEOREM. Let A be a basic and connected finite dimensional algebra over an
algebraically closed field. The following conditions are equivalent:

(i) A is a tame concealed algebra.

(i) A is a representation-infinite multicoil algebra, and, for every O#e
e A, A/AeA is representation-finite.

(iiiy A is a representation-infinite multicoil algebra, and every proper full
convex subcategory of A is representation-finite.
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Proof. As in [2], it suffices to prove that (iii) implies (1). Since A is 2
multicoil algebra, it is ame (3.4). By [11], there exists a vector d in the
Grothendieck group KO(A) of A such that infinitely many non-isomorphic
indecomposable modules lying in stable tubes of rank 1 have d as a dimension-vector.
Then C = Supp ¢ is, by (5.1), a full convex subcategory of A. Since C is
representation-infinite, the minimality of A implies that A = C, Therefore A has
stable tubes containing sincere indecomposables. By (3] (2.9), all coils in ['p are
standard tubes which contain either projectives or injectives but not both. Thus A is

a coil algebra in the sense of [2] and our statement follows from the main result 4.1
there.

5.8. COROLLARY. Let A be a representation-infinite multicoil algebra,
then A contains a tame concealed full convex subcategory.

Proof. Repeat the proof of [2] (4.2).

59. The following characterisation of non-stable coils in a multicoil algebra
uscs the main result (4.1) of [3], which 1S, in turn, a consequence of the above results,

THEOREM. Let A be a multicoil algebra and T be a non-stable coil of Fa
Then there exists a tame concealed full convex subcategory C of A and a stable tube
") of I such that T is obtained from I’} by a sequence of admissible operations and
Supp I is obtained from C = Supp I") by the corresponding sequence of one-point
extensions and coextensions,

Proof. By (54), A contains a full convex subcategory C such that T is
obiained from a sincere stable tube Iy of I'c by a sequence of admissible operations
and Supp I is obtained from Supp [} =Cby the corresponding sequence of one-point
¢xtensions and coextensions. Then, by (5.6), Cis a multicoil algebra and FC has a
sincere stable tube, Therefore, by [3] @.1), C is either tame concealed or tubular, We
claim that C is tame concealed. Suppose that C is tubular, Then, in the notation of
[211(5.2), we have that ind C is of the form Pyv Tyv (vq ‘J’q) vT v Q.
where P(«)+is 4 postprojective component, Q., a preinjective component and
Tpae Q u{0, ), are P (k)-families of wubes. Since I is 4 non-stable coil, A
contains a one-point extension or coextension of C by a module M whose restriction
‘WC w C lies in I'{. By duality, we may assume that it is a one-point extension.
Since A is tame (as a multicoil algebra), this one-point extension is also tame, and
tonsequently, by (3] (3.2), '} 1s a stable tube of the family 3 . But then '} is not

B o 0071 At bt o ke
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a sincere tube of [,
and different tubes of T are pairwise orthogonal, a con

IBRAHIM ASSEM AND ANDRZEJ SKOWRONSKI

because T, admits a tube containing an injective (see (211(5.2))
wradiction. Thus C is tame

concealed and this finishes our proof.
REFERENCES
1. ASSEM, L. and SKOWRONSKI, A. : Algebras with cycle-finite derived
categories, Math. Ann. 280 (1988) 441-463. -
2. ASSEM, 1. and SKOWROIQSKI, A. : Minimal representation-inﬁnitc coil
algebras, Manuscripta Math. 67 (1990) 305-331.
3. ASSEM, 1. and SKOWRONSKI, A. : Indecomposable modules over multicoil
algebras, Math. Scand. 71(1992),31-61.
4. ASSEM, 1. and SKOWRONKSKI, A. : Sincere indecomposable modules lying

in quasi-tubes, in preparation.

ASSEM, 1. and SKOWROI:ISKI, A.: Indecomposable modules lying in coils,

in preparation.

ASSEM, 1., NEHRING, J. and SKOWRONSKI, A. : Domestic trivial
extensions of simply connected algebras, Tsukuba J. Math., Vol. 13 No. 1

(1989), 31-72.

AUSLANDER, M. and REITEN, L. : Representation theory of artin algebras
111 and IV, Comm. Algebra 3 (1975), 739-294 and § (1977), 443-518.

AUSLANDER, M. and SMAL®, S.O. : Almost split sequences in
subcategories, J. Algebra 69 (1981), No. 2, 426-454.

BONGARTZ, K. : On a result of Bautista and Smalg on cycles, Comm.

Algebra 11 (18) (1983), 2123-2124.

5 o S N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21,

BONGA
theory, [

CRAWL
Math. Sc¢

DROZD
1979), L«

D'ESTE,
201.

HAPPEI
represent
(1983) 2.

KERNE!
No. 21, %

NEHRIM
extensior

NEHRIM
Thesis, M

DELAT
Algebra (

RIEDTM
Zuriick, ¢

RINGEL
Lecture }

RINGEL
Mathem:




15.

19.

20.

MULTICOIL ALGEBRAS 67

BONGARTZ, K. and GABRIEL, P. : Covering spaces in representation
theory, Invent. Math. 65 (1981/82) No.3, 331-378.

CRAWLEY - BOEVEY, W.: On ume algebras and BOCS's, Proc. London
Math. Soc., Vol. 56, No. 3 (1988) 451-483.

DROZD, Ju. : Tame and wild matrix problems, Proc. ICRA II (Ottawa,
1979), Lecture Notes in Mathematics 832, Springer, Berlin (1980), 240-258.

D'ESTE, G. and RINGEL, C. M. : Coherent tubes, J. Algebra 87 (1984) 150-
201.

HAPPEL, D. and VOSSIECK, D. : Minimal algebras of infinite
representation type with preprojective component, Manuscripta Math. 42
(1983) 221-243.

KERNER, O. : Tilling wild algebras, J. London Math. Soc. (2) 39 (1989)
No. 21, 29-47.

NEHRING, J. and SKOWRONSKI, A. : Polynomial growth trivial
extensions of simply connected algebras, Fund. Math. 132 (1989) 117-134.

NEHRING, J. : Trywialne rozszerzenia wielomianowego wzrostu, Ph.D.
Thesis, Nicholas Copernicus University (1989).

DE LA PENA, J.-A. and TOME, B. : Iterated tubular algebras, J. Pure Appl.
Algebra 64 (1990) 303-314.

RIEDTMANN, C. : Algebren, Darstellungskicher, Uberlagerungen und
Zuriick, Comment. Math. Helv. 55 (1980), No. 2, 199-224,

RINGEL, C.M. : Tame algebras, Proc. Worshop 1CRA 11 (Ottawa, 1979),
Lecture Notes in Mathematics 831, Springer, Berlin (1980) 137-287.

RINGEL, C.M.: Tame algebras and integral quadratic forms, Lecture Notes in
Mathematics 1099, Springer, Berlin (1984).

i s SRR SRS TS A S et




22.

23.

24.

25.

26.

IBRAHIM ASSEM AND ANDRZEJ SKOWRONSKI

SKOWRONSKI, A. : Group algebras of polynomial growth, Manuscripta
Math. 59 (1987), 499-516.

SKOWRONSKI, A. : Self-injective algebras of polynomial growth, Math.
Ann. 285 (1989), 177-199.

SKOWRONSKI, A. : Algebras of polynomial growth, Topics in Algebra,
Banach Center Publications, Vol. 26, Part 1, PWN, Warsaw (1990), 535-568.

SKOWRONSKI, A. : Standard algebras of polynomial growth, in preparation.
SKOWRONSKI, A. and WENDERLICH, M. : Artin algebras with directing

indecomposable projective modules, Preprint, Nicholas Copernicus University
(1992).

Mathématiques et Informatique
Université de Sherbrooke
Sherbrooke, Québec

Canada, J1K 2R1

Institute of Mathematics
Nicholas Copernicus University
Chopina 12/18

87-100 Torun

Poland

Canadian Mathe
Confetence Proc
Volume 14, 1993

Tt
M

ABsTrAC
the Bui
of adjo:
a theor
over an
has two
Green ¢
If the ¢
complet
of the I
of modu

This
main ingred;
and the F
decompositic
restriction .
whether the

about adjoin

1991
20C20, 18A 4
The first au
The detaile
publication «¢




