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INTRODUCTION

Let A be an artin algebra. We are interested in studying the representation theory of A,
thus the category modA of finitely generated right A-modules. For this purpose, we fix
a full subcategory indA of modA having as objects exactly one representative from each
isomorphism class of indecomposable modules. Following Happel, Reiten and Smalø [19],
we define the left part LA to be the full subcategory of ind A with objects those modules
whose predecessors have projective dimension at most one. The right part is defined dually.
These classes, whose definition suggests the interplay between homological properties of
an algebra and representation theoretic ones, were heavily investigated and applied (see,
for instance, the survey [4]).

The initial motivation for this paper comes from the observations, made in [5, 2, 1],
that the left part of an arbitrary artin algebra closely resembles that of a tilted algebra.
Tilted algebras, introduced by Happel and Ringel in [20], are among the most important
and best understood classes of algebras. Many criteria allow to recognise whether a given
algebra is tilted or not. Most of them revolve around the existence of a combinatorial
configuration, called “complete slice” or “section” inside the module category, see [20, 15,
22, 13, 28, 29, 7]. Perhaps the most efficient is the Liu-Skowroński criterion: they define
(combinatorially) a so-called section in an Auslander-Reiten component and prove that, if
there exists a section satisfying reasonable algebraic conditions, then the algebra is tilted
(see [26, 30] or [9, (Chapter VIII)]). Surprisingly, however, as is shown in [1], none of the
known criteria seems to apply directly to the tilted algebras arising from the study of the
left part.

The first aim of this paper is to derive a more suitable version of the Liu-Skowroński
criterion, easier to apply in our case. For this purpose, we define a notion of left section in a
translation quiver by weakening one of the Liu-Skowroński axioms for section (see (2.1)).
Several known results for sections carry over to left sections, sometimes in a restricted
form (see, for instance, (2.2) and (3.2)). We thus obtain our first main theorem.

Theorem A. Let A be an artin algebra, and Σ be a left section in a component Γ of the
Auslander-Reiten quiver of A such that HomA

(
τ−1
A E′, E′′) = 0 for all E′, E′′ in Σ, then

A/AnnAΣ is a tilted algebra having Σ as complete slice.

If Σ is a section, then the condition that HomA(τ−1
A E′, E′′) = 0 for all E′, E′′ in Σ is

equivalent to several other conditions, notably that the component Γ which contains it is
generalised standard (see [26, 30]). This is not true for left sections. However, if Σ is a left
section, then this condition implies (but is not equivalent to say) that the full translation
subquiver Γ6Σ of Γ consisting of the predecessors of Σ in Γ is generalised standard.

As corollaries of the above theorem, we obtain, not only the Liu-Skowroński criterion,
but also the statements necessary for the study of the left part. If, in particular, Σ is a
left section which is convex in indA, then the condition of the theorem is satisfied so
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A/AnnAΣ is tilted (4.3). Also, if A is an algebra over an algebraically closed field, then
A/AnnAΣ coincides with the support algebra of Σ, which is a full convex subcategory of
A, see (4.5).

We next apply our criterion to the study of the left part. As shown in [5, 6, 2, 1], the
main tool in the proofs of the known results is the description of the Ext-injectives (in
the sense of [12]) in the left part LA. Here, we rather work with a full subcategory C
of LA which is closed under predecessors, and we prove that the most useful statements
about Ext-injectives in LA carry over to this context. This approach allows to work with
connected subcategories of LA (which is not connected in general). Also, this hypothesis
is optimal: easy examples show that the known techniques about LA do not carry over to
subcategories closed under predecessors which are not contained in LA (this more general
situation is addressed in a forthcoming work with Coelho and Trepode). This leads to our
second main theorem.

Theorem B. Let A be an artin algebra, and C ⊆ LA be a full subcategory closed under
predecessors, having E as subcategory of Ext-injectives. Let Γ be a component of the
Auslander-Reiten quiver of A. Then:

(a) If Γ ∩ E = ∅, then either Γ ⊆ C or Γ ∩ C = ∅.
(b) If Σ = Γ ∩ E 6= ∅, then Σ is a left section of Γ, convex in ind A. Moreover,

A/AnnAΣ is a tilted algebra having Σ as complete slice.

As corollaries, we obtain the first two main results of [1]. Following this line, we define
the support algebra of a subcategory C as above, thus generalising the notion of left support
algebra [5, 32]. As a consequence of the theorem, we describe completely the Auslander-
Reiten components which lie entirely inside C and, for those which intersect C , the part
which precedes the left section Σ. This is contained in (7.4)(7.5)(7.6), which generalise
the remaining results of [1]. In the last section, we introduce a new class of algebras, called
C -supported, modeled after the left supported algebras of [5] and we obtain, in (8.2)(8.8),
generalisations of the results of [5, 2].

Clearly, the dual results, for right sections and the right part, hold as well. For the sake
of brevity, we refrain from stating them, leaving the primal-dual translation to the reader.

1. PRELIMINARIES

1.1. Notation. Throughout this paper, all our algebras are basic and connected artin al-
gebras. For an algebra A, we denote by modA its category of finitely generated right
modules and by ind A a full subcategory of modA consisting of one representative from
each isomorphism class of indecomposable modules. Whenever we speak about a module
(or an indecomposable module), we always mean implicitly that it belongs to modA (or
to ind A, respectively). Also, all subcategories of modA are full and so are identified with
their object classes. We sometimes consider an algebra A as a category, in which the object
class A0 is a complete set {e1, e2, . . . , en} of primitive orthogonal idempotents and the set
of morphisms from ei to ej is eiAej . An algebra B is a full subcategory of A if there is an
idempotent e ∈ A, sum of some of the distinguished idempotents ei, such that B = eAe.
It is convex in A if, for any sequence ei = ei0 , ei1 , . . . , eit

= ej of objects in A such that
ei`

Aei`+1 6= 0 (with 0 ≤ ` < t) and ei, ej objects in B, then all ei`
lie in B. We denote

by Px (or Ix, or Sx) the indecomposable projective (or injective, or simple, respectively)
A-module corresponding to the idempotent ex.

A subcategory C of ind A is called finite if it has only finitely many objects. We some-
times write M ∈ C to express that M is an object in a subcategory C . We denote by
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addC the subcategory of modA with objects the direct sums of summands of modules in
C . Given a module M , we let pdM (or idM ) stand for its projective (or injective, respec-
tively) dimension. The global dimension of A is denoted by gl.dim. A and its Grothendieck
group by K0(A). For a module M , the support Supp (M,−) (or Supp (−,M)) of the
functor HomA(M,−) (or HomA(−,M)) is the subcategory of indA consisting of all X
such that HomA(M,X) 6= 0 (or HomA(X, M) 6= 0, respectively). We denote by GenM
(or CogenM ) the subcategory of modA having as objects all modules generated (or co-
generated, respectively) by M .

For an algebra A, we denote by Γ(modA) its Auslander-Reiten quiver and by τA =
DTr , τ−1

A = TrD its Auslander-Reiten translations. For further definitions and facts on
modA or Γ(modA), we refer to [9, 11]. For tilting theory, we refer to [9].

1.2. Paths. Let A be an algebra. Given M,N ∈ indA, a path from M to N in indA
(denoted by M  N ) is a sequence of non-zero morphisms

(∗) M = X0
f1 // X1

f2 // · · · // Xt−1
ft // Xt = N

(t ≥ 1) where Xi ∈ ind A for all i. We then say that M is a predecessor of N and N is a
successor of M . A path from M to M involving at least one non-isomorphism is a cycle.
A module M ∈ indA which lies on no cycle is directed. If each fi in (∗) is irreducible,
we say that (∗) is a path of irreducible morphisms, or path in Γ(modA). A path (∗)
of irreducible morphisms is sectional if τAXi+1 6= Xi−1 for all i with 0 < i < t. A
refinement of (∗) is a path in indA

M = X ′
0

// X ′
1

// · · · // X ′
s−1

// X ′
s = N

such that there exists an order-preserving injection σ : {1, . . . , t− 1} → {1, . . . , s− 1}
satisfying Xi = X ′

σ(i) for all i with 0 < i < t.
A subcategory C is closed under predecessors if, whenever M  N is a path in ind A

with N ∈ C , then M ∈ C . Equivalently, addC is the torsion-free class of a split torsion
pair. We define dually subcategories closed under successors, which generate torsion
classes of split torsion pairs.

Important examples are the left and right parts of modA, defined in [19]. The left part
is the full subcategory of ind A with object class

LA = {M ∈ ind A | for any L with L M , we have pd L ≤ 1} .

Thus, LA is closed under predecessors. The right part RA is defined dually and is closed
under successors. For properties of LA and RA, we refer to [4, 19].

2. LEFT SECTIONS IN TRANSLATION QUIVERS

2.1. In this section, (Γ, τ), or briefly Γ, denotes a translation quiver. Given x, y ∈ Γ0, a
path from x to y (denoted by x y) is a sequence of arrows

(∗) x = x0 // x1 // · · · // xt−1 // xt = y .

We say that x is a predecessor of y, or y is a successor of x. If y = x and t ≥ 1, this path
is a cycle. A full subquiver Σ of Γ is acyclic if it contains no cycle. It is convex (in Γ) if,
for any path (∗) with x, y ∈ Σ0, we have xi ∈ Σ0 for all i.

Definition. A full subquiver Σ of a translation quiver Γ is called a left section if:
(LS1) Σ is acyclic;
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(LS2) for any x ∈ Γ0 such that there exist y ∈ Σ0 and a path x  y, there exists a
unique n ≥ 0 such that τ−nx ∈ Σ0;

(LS3) Σ is convex in Γ.

Examples. (a) A full connected subquiver Σ of Γ is a section (see [25, 30] or else [9])
if it satisfies (LS1), (LS3) and:

(S2) For any x ∈ Γ0, there exists a unique n ∈ Z such that τnx ∈ Σ0.
Thus, any section is a left section.

(b) Our second example is the motivating one: let A be an artin algebra, LA be the
left part of modA, EA be the class of indecomposable Ext-injectives in addLA

and Γ be a component of Γ(modA) such that Γ ∩ EA 6= ∅. Then Γ ∩ EA is a left
section in Γ, but generally not a section [1].

(c) Other examples can be found in the directed part of a semiregular tube (or coil)
containing projectives. Let A be given by the quiver

◦
1

◦
2

βoo oo ◦
3

αoo //◦
4

//◦
5

bound by αβ = 0. The projective module P5 lies in a tube of the form

5

!!CC
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JJJ

3
2
1
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JJJ
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1

4
5
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1
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J
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2 2
1 1
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##HHHHH

3
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::tttt
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3
2 2 4
1 1

::tttt

$$JJJJJJ
·

2
1

;;vvvv

##HHH
HH

3
2 2 4
1 1 5

::tttt

$$JJJJJJ
·

;;vvvvvvvv

##HHH
HHH

HH

2 2
1 1

::ttttt
·

::tttttttt ·

where modules are represented by their Loewy series and one identifies along the
vertical dotted lines. The full subquiver with points { 4

5 , 4 } is a left section, but not
a section.

Lemma. Let Σ be a left section in a translation quiver Γ. Then:
(a) Σ intersects at most once each τ -orbit in Γ;
(b) every path between two points of Σ is sectional;
(c) if x ∈ Γ0 is injective and precedes Σ, then x ∈ Σ0;
(d) if x → y, x ∈ Σ0 and y is non-projective, then y ∈ Σ0 or τy ∈ Σ0;
(e) if x → y, y ∈ Σ0, then x ∈ Σ0 or τ−1x ∈ Σ0;
(f) if x ∈ Σ0 and y precedes Σ, then every path from x to y is sectional and y ∈ Σ0.

Proof. (a) Follows from the uniqueness in (LS2).
(b) Follows from (a).
(c) There exists n ≥ 0 such that τ−nx ∈ Σ0. Since x is injective, n = 0.
(d) Since y is non-projective, there is an arrow τy → x. By (LS2), there exists a unique

n ≥ 0 such that τ−n(τy) = τ1−ny ∈ Σ0. If n > 1, the path x → y  τ1−ny and
convexity yield y ∈ Σ0. Since τ1−ny ∈ Σ0, this contradicts (a). Hence n ∈ {0, 1},
as required.

(e) This is clear if x is injective. Otherwise, τ−1x is non-projective and we apply (d)
to the arrow y → τ−1x.
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(f) Since y precedes Σ, there exists n ≥ 0 such that τ−ny ∈ Σ0. Thus, a path x  y
induces a path x  y  τ−ny. By convexity, y ∈ Σ0. Hence n = 0 and the
sectionality of the path follows from (b).

�

2.2. Lemma. Let Σ be a left section in Γ. The full subquiver Γ6Σ of Γ consisting of
all predecessors of Σ in Γ is isomorphic to a full translation subquiver of ZΣ (and, in
particular, is acyclic).

Proof. Repeat the proof of [25, (3.2)] (or [9, (VIII.1.5)]) with the obvious changes. �

2.3. We give necessary and sufficient conditions for a left section to be a section.

Proposition. Let Σ be a left section in Γ. The following are equivalent:
(a) Σ is a section;
(b) every projective in Γ precedes Σ;
(c) for any projective p ∈ Γ0 such that there exist x ∈ Σ0 and a path x p, we have

p ∈ Σ0.

Proof. (a) implies (b). Since Σ is a section, Γ is fully embedded in ZΣ, and Σ cuts
each τ -orbit of Γ (see [25, (3.2)] or [9, (VII.1.5)]).

(b) implies (c). This follows from convexity.
(c) implies (a). We must show that Σ cuts each τ -orbit of Γ. For this, it suffices to

prove that, if x ∈ Σ0 and z ∈ Γ0 are in two neighbouring orbits, then Σ cuts
the τ -orbit of z (the statement then follows by induction). Assume that there exist
m ∈ Z and y in the τ -orbit of x such that we have an arrow τmx → y or y → τmx.
Assume also, without loss of generality, that |m| is minimal. There are three cases:

1) Suppose m > 0. If there is an arrow y → τmx, then there is a path y →
τmx  x, so Σ cuts the τ -orbit of y. If, on the other hand, there is an arrow
τmx → y, then there is an arrow y → τm−1x, contradicting minimality.

2) Suppose m < 0. If there is an arrow y → τmx, then there is an arrow
τm+1x → y, contradicting minimality. If, on the other hand, there is an arrow
τmx → y, then we have two cases. If y is projective, then the path x  
τmx → y and the hypothesis imply y ∈ Σ0, hence m = 0, a contradiction.
If y is non-projective, then there is an arrow τy → τmx, hence an arrow
τm+1x → τy, contradicting minimality.

3) Suppose m = 0. If there is an arrow y → x, then y ∈ Σ0 or τ−1y ∈ Σ0. If,
on the other hand, there is an arrow x → y, then we have two cases. If y is
projective, then y ∈ Σ0 by hypothesis. If y is non-projective, there is an arrow
τy → x which, by (2.1)(e), yields τy ∈ Σ0 or y ∈ Σ0.

�

3. LEFT SECTIONS AND TILTED ALGEBRAS

3.1. Let A be an artin algebra and Γ be a component of Γ(modA). Recall that the anni-
hilator of a full subcategory C of ind A is defined by AnnAC =

⋂
X∈C AnnAX .

Lemma. If Σ is a finite left section of Γ, then:
(a) AnnAΣ = AnnAΓ6Σ;
(b) Σ cogenerates Γ6Σ.

Proof. (a) Repeat the proof of [26, (2.1)], [30, (Lemma 3)], with the obvious changes.
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(b) Let X ∈ Γ6Σ and j : X ↪→ I be an injective envelope. Since no indecomposable
summand of I is a proper predecessor of Σ, then j factors through Σ.

�

3.2. The following is a “left” version of [26, (1.3)], [30, (Theorem 2)].

Proposition. Let Σ be a left section of Γ. The following are equivalent:

(a) HomA(E′, τAE′′) = 0 for all E′, E′′ ∈ Σ0;
(b) |Σ0| ≤ rkK0(A) and rad∞A (E′, E′′) = 0 for all E′, E′′ ∈ Σ0;
(c) Γ6Σ is generalised standard.

Proof. (a) implies (b). The first statement follows from Skowroński’s lemma
[9, (VIII.5.3)], [31, (Lemma 1)], and the second from the fact that, by [9, (VIII.5.4)],
any non-zero morphism in rad∞A (E′, E′′) factors through τAΣ.

(b) implies (c). Let X, Y ∈ Γ6Σ be such that rad∞A (X, Y ) 6= 0. For each i ≥ 0, there
exists a path in ind A

X = X0
f1 // X1

f2 // · · · fi // Xi
gi // Y

with all fj irreducible and gi ∈ rad∞A (Xi, Y ) such that gif1 · · · f1 6= 0 (see [27]).
We claim that there exists i such that Xi ∈ Σ0. Indeed, since Σ is finite, there exists
m ≥ 0 such that Xm ∈ Γ6Σ and Xm+1 /∈ Γ6Σ. We show that Xm ∈ Σ. If Xm is
injective, this follows from (2.1)(c). If not, consider the almost split sequence

0 // Xm
// Xm+1 ⊕ Z // τ−1

A Xm
// 0 .

Since Xm+1 /∈ Γ6Σ, τ−1
A Xm /∈ Γ6Σ. The conclusion follows from the fact that

Xm ∈ Γ6Σ, and so Σ cuts the τA-orbit of Xm.
We thus have rad∞A (Xm, Y ) 6= 0. By (3.1)(b), Y is cogenerated by Σ. There-

fore there exists E′ ∈ Σ such that rad∞A (Xm, E′) 6= 0, a contradiction.
(c) implies (a). Suppose that there exists a non-zero morphism E′ → τAE′′, with

E′, E′′ ∈ Σ. The hypothesis implies the existence of a path E′  τAE′′ in Γ,
hence a path E′  τAE′′ → ∗ → E′′. The convexity of Σ in Γ yields τAE′′ ∈ Σ,
a contradiction.

�

Remark. If Σ is a section then, by [26, (1.3)], [30, (Theorem 2)], the conditions of the
proposition are equivalent to saying that HomA(τ−1

A E′, E′′) = 0 for all E′, E′′ ∈ Σ, or
to the condition that Γ be generalised standard. However, there exist left sections lying in
non-generalised standard components but satisfying the condition of the proposition. Let
A be given by the quiver

◦ 4

◦
1

◦
2

βoo oo ◦
3

αoo

66mmmmmmm

((QQQQQQQ

◦ 5

bound by αβ = 0. The component containing the projective P3 is not generalised standard,
by [10, (3.2)], but the simple modules {S4, S5} form a left section in that component
satisfying the conditions of the proposition.



LEFT SECTIONS AND THE LEFT PART OF AN ARTIN ALGEBRA 7

3.3. Clearly, if Γ is generalised standard, so is Γ6Σ, hence Σ satisfies the equivalent con-
ditions of (3.2). We also have the following lemma.

Lemma. Let Σ be a left section of Γ such that HomA(τ−1
A E′, E′′) = 0 for all E′, E′′ ∈ Σ,

then Σ satisfies the equivalent conditions of (3.2).

Proof. Indeed, Skowroński’s lemma [9, (VIII.5.3)], [31, (Lemma 1)], ensures that |Σ0| ≤
rkK0(A). Let E′, E′′ ∈ Σ. Since, by [9, (VIII.5.4)], any non-zero morphism in
rad∞A (E′, E′′) factors through τ−1

A Σ, we infer that rad∞A (E′, E′′) = 0. �

3.4. Lemma. Let Σ be a left section of Γ satisfying the equivalent conditions of (3.2)
and let C = A/I , where I ⊆ AnnAΣ. Then all indecomposables in Σ lie in the same
component Γ′ of Γ(modC), Σ is a left section of Γ′ and Γ′6Σ = Γ6Σ is generalised
standard in modC.

Proof. Since I ⊆ AnnAΣ, then all indecomposables in Σ are C-modules. Now, recall
that, if C is a quotient of A and X , Y are two indecomposable C-modules such that there
is an irreducible morphism f : X → Y in modA, then f remains irreducible in modC.
Therefore, all indecomposables in Σ lie on the same component Γ′ of Γ(modC). On the
other hand, by (3.1), Γ6Σ ⊆ ind C hence Γ6Σ = Γ′6Σ and consequently Σ is a left section
in Γ′ as well. The last statement follows from the fact that rad∞C is contained in rad∞A . �

3.5. We recall the Liu-Skowroński criterion (see [26, (3.2)], [30, (Theorem 3)] or [9,
(VIII.5.6)]. Let A be an artin algebra having a section Σ such that HomA(E′, τAE′′) = 0
for all E′, E′′ ∈ Σ, then A/AnnAΣ is a tilted algebra having Σ as complete slice. If in
particular, Σ is faithful, then A is tilted having Σ as complete slice, and the component in
which Σ lies as connecting component.

Theorem. Let Σ be a left section in a component Γ of Γ(modA) such that
HomA(τ−1

A E′, E′′) = 0 for all E′, E′′ in Σ. Then B = A/AnnAΣ is a tilted algebra
having Σ as complete slice.

Proof. By (3.3), Σ satisfies the conditions of (3.2). In particular, Σ is finite so we can
set E =

⊕
U∈Σ U . By (3.4), all indecomposables in Σ lie in the same component Γ′

of Γ(modB) in which Σ is a left section such that Γ′6Σ = Γ6Σ and moreover, by (3.2),
HomB(E, τBE) = 0. We also have HomB(τ−1

B E,E) = 0: indeed, assume to the contrary
that there exist E′, E′′ ∈ Σ and a non-zero morphism τ−1

B E′ → E′′ then, since by [11,
(p. 186–7)], there exists an epimorphism τ−1

A E′ → τ−1
B E′, we get upon composing a non-

zero morphism τ−1
A E′ → E′′, a contradiction. In order to complete the proof, it suffices

to show that EB is a tilting B-module with H = EndEB hereditary. This is done as in [9,
(VIII.5.6)], but we include the proof for the benefit of the reader.

Since EB is faithful, then pdEB ≤ 1 and idEB ≤ 1, by [9, (VIII.5.1)]. Moreover,
Ext1B(E,E) = 0, whence E is a partial tilting module. Let f1, . . . , fd be a generating set
of the B-module HomB(B,E). Setting f = [f1, . . . , fd] : B → Ed, we have an exact
sequence

0 //BB
f //Ed //X //0 .

We claim that E⊕X is a tilting B-module. Since BB is projective, we have pdX ≤ 1. Ap-
plying successively HomB(−, E), HomB(X,−) and HomB(E,−) to the preceding exact
sequence yields respectively Ext1B(X, E) = 0, Ext1B(X, X) = 0 and Ext1B(E,X) = 0.
This establishes our claim.
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Assume now that Y is an indecomposable summand of X such that Y /∈ addE.
The exact sequence above yields a non-zero morphism E → Y . By [9, (VIII.5.4)],
HomB(τ−1

B E, Y ) 6= 0, hence Ext1B(Y, T ) 6= 0, a contradiction. This shows that X ∈
addE and therefore EB is a tilting module.

We now prove that H is hereditary. Let PH be an indecomposable projective H-module
and f : M → P be a monomorphism with M indecomposable. The tilting module
E determines a torsion pair

(
T (E),F (E)

)
in modB and another

(
X (E),Y (E)

)
in

modH . Since P ∈ Y (E), then M ∈ Y (E) hence there exist g : V → E′ with V ∈
T (E), E′ ∈ Σ ⊆ T (E) such that M ∼= HomB(E, V ), P ∼= HomB(E,E′) and f ∼=
HomB(E, g). Now, since M 6= 0, there exist an indecomposable projective H-module P ′

and a non-zero morphism f ′ : P ′ → M . Again, there exist E′′ ∈ Σ and g′ : E′′ → V
such that P ′ ∼= HomB(E,E′′), f ′ ∼= HomB(E, g′). Since ff ′ 6= 0, then gg′ 6= 0. If now
V /∈ Σ, then by [9, (VIII.5.4)], gg′ factors through τAE. But then HomH(E′′, τAE) 6= 0,
a contradiction which shows that V ∈ Σ, and thus completes the proof. �

3.6. Clearly, the Liu-Skowroński criterion follows directly from the above theorem. We
also have the following easy corollary.

Corollary. Let Σ be a left section in a generalised standard component Γ of Γ(modA).
Then A/AnnAΣ is a tilted algebra having Σ as complete slice.

3.7. Corollary. An algebra A is tilted if and only if it admits a faithful left section Σ such
that HomA(τ−1

A E′, E′′) = 0 for all E′, E′′ ∈ Σ.

3.8. Corollary. Let Σ be a left section in a component Γ of Γ(modA) such that every
projective in Γ precedes Σ and moreover HomA(E′, τAE′′) = 0 for all E′, E′′ ∈ Σ. Then
A/AnnAΣ is a tilted algebra having Σ as complete slice and Γ as connecting component.

Proof. By (2.3), Σ is a section. We apply the Liu-Skowroński criterion. �

4. LEFT SECTIONS CONVEX IN ind A

4.1. A full subcategory C of indA is called convex in ind A if, for any path

X = X0
//X1

// · · · //Xt = Y

in indA, with X, Y ∈ C , then Xi ∈ C for all i.

Lemma. Let Σ be a left section convex in ind A. Then HomA(τ−1
A E′, E′′) = 0 for all

E′, E′′ ∈ Σ.

Proof. If E′, E′′ ∈ Σ are such that HomA(τ−1
A E′, E′′) 6= 0, then we have a path E′ →

∗ → τ−1
A E′ → E′′ in indA. Convexity yields τ−1

A E′ ∈ Σ, a contradiction to (LS2). �

Remark. It is easy to find examples of left sections (even of sections) which satisfy the
conditions of (3.2), but are not convex in ind A. For instance, let A be the radical square
zero algebra with quiver

2◦

��;
;;

;;
;;

;

��;
;;

;;
;;

;

◦
3

AA��������

AA�������� ◦
1

oo oo

and E = I1 ⊕ S2 ⊕ P3. The set {I1, S2, P3} is a section in its component, and satisfies
HomA(τ−1

A E,E′) = 0, but is not convex in ind A.
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4.2. Corollary. Let A be an algebra having a left section convex in indA. Then
A/AnnAΣ is tilted having Σ as complete slice.

4.3. Recall from [21] that an A-module L (not necessarily indecomposable) is called di-
rected if there do not exist two indecomposable summands L′, L′′ of L, an indecomposable
non-projective module Nand a path in indA of the form

L′  τAN → ∗ → N  L′′.

Lemma. Let Σ be a left section convex in ind A, and E =
⊕

U∈Σ U . Then:

(a) E is a directed A-module;
(b) if E is sincere, then Σ is a section (and, actually, a complete slice);
(c) E is sincere if and only if it is faithful.

Proof. (a) If there exist E′, E′′ ∈ Σ, an indecomposable non-projective module N
and a path in ind A of the form

E′  τAN → ∗ → N  E′′,

then convexity implies N, τAN ∈ Σ, a contradiction.
(b) To show that Σ is a section, it suffices, by (2.3), to prove that, if P is a projective

module such that there exist E′ ∈ Σ and a path of irreducible morphisms E′  P ,
then P ∈ Σ. Since E is sincere, there exists E′′ ∈ Σ such that HomA(P,E′′) 6= 0.
Thus we have a path E′  P → E′′ in indA and convexity forces P ∈ Σ. Hence
Σ is a section. The second statement follows from the observation that any sincere
section which is convex in indA is a complete slice (see [28, 29]).

(c) This follows from (b).
�

4.4. Let Σ be a finite left section and E =
⊕

U∈Σ U . The support of Σ is the full subcat-
egory SuppΣ = eAe where e is the sum of those primitive idempotents ex of A such that
Eex 6= 0.

Lemma. Assume A is a finite dimensional algebra over an algebraically closed field, and
Σ is a left section convex in indA. Then SuppΣ is a full convex subcategory of A.

Proof. We slightly modify Bongartz’ convexity argument [16]. If SuppΣ is not convex,

there exists a path x0
α1 //x1

// · · · //xm−1
αm //xm in the quiver of A such that m ≥ 2,

x0, xm ∈ SuppΣ and xi /∈ SuppΣ for 1 ≤ i < m. Let α1 = β1, . . . , βs be all the arrows
from x0 to x1 and αm = γ1, . . . , γt be all those from xm−1 to xm. Let J be the two-
sided ideal of SuppΣ generated by all paths of the forms βiδ or δγj , then consider A′ =
SuppΣ/J . Since EJ = 0, then E is an A′-module. Denoting by P ′

x0
, I ′xm

, respectively,
the indecomposable projective A′-module at x0 and injective A′-module at xm, we have
HomA′(P ′

x0
, E) 6= 0 and HomA′(E, I ′xm

) 6= 0. Let
(

Sy

Sz

)
be the uniserial module of

length two having the simple Sy as top and Sz as socle. We get E′, E′′ ∈ Σ and a path in
ind A′ (hence in indA) of the form

E′ //I ′xm
//Sxm−1

//
(

Sxm−2
Sxm−1

)
// · · · //

(
Sx1
Sx2

)
//Sx1

//P ′
x0

//E′′ .

Since Σ is convex in ind A, we get Sxi
∈ Σ for all i, a contradiction. �
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4.5. Theorem. Let A be a finite dimensional algebra over an algebraically closed field,
and Σ be a left section convex in indA. Then SuppΣ ∼= A/AnnAΣ is a tilted algebra
having Σ as complete slice and is a full convex subcategory of A.

Proof. By (4.2), A/AnnAΣ is tilted and has Σ as complete slice. Also, by (4.4), SuppΣ is
a full convex subcategory of A. In particular, SuppΣ ∼= A/I(Σ), where I(Σ) is the two-
sided ideal of A generated by those primitive idempotents ex such that Eex = 0. Since
I(Σ) ⊆ AnnAΣ, it follows from (3.4) that all points of Σ lie in the same component Γ′ of
Γ
(
modA/I(Σ)

)
and Σ is a left section in Γ′. Further, Σ is convex in ind A/I(Σ), because

it is so in indA. By (4.2), Σ is a complete slice in A/I(Σ). We have established that each
of A/AnnAΣ and SuppΣ ∼= A/I(Σ) is tilted and that these algebras have Σ as common
complete slice. Therefore they are isomorphic (see, for instance, [9, (VIII.5.6)]). �

5. SUBCATEGORIES CLOSED UNDER PREDECESSORS

5.1. Throughout this section, C is a full subcategory of indA, closed under predecessors.
We first characterise the relative projectives and injectives in addC .

Lemma. Let P0 ∈ C . The following are equivalent:
(a) P0 is Ext-projective in add C (that is, Ext1A(P0,−)|C = 0).
(b) If 0 → L → M → N → 0 is a short exact sequence lying in addC , then the

induced sequence 0 → HomA(P0, L) → HomA(P0,M) → HomA(P0, N) → 0
is exact.

(c) Every short exact sequence of the form 0 → L → M → P0 → 0 splits.
(d) P0 is a projective A-module.

Proof. We prove that (c) implies (d) (the other implications are trivial). Let f : P → P0 be

a projective cover in modA. By hypothesis, the sequence 0 //Ker f //P
f //P0

//0
splits, so P0 is projective. �

5.2. Lemma. Let E0 ∈ C . The following are equivalent:
(a) E0 is Ext-injective in addC (that is Ext1A(−, E0)|C = 0).
(b) If 0 → L → M → N → 0 is a short exact sequence lying in addC , then the

induced sequence 0 → HomA(N,E0) → HomA(M,E0) → HomA(L,E0) → 0
is exact.

(c) Every short exact sequence of the form 0 → E0 → M → N → 0 with N ∈ addC
splits.

(d) τ−1
A E0 /∈ C .

Proof. The equivalence of (a), (b), (c) is trivial and that of (a), (d) follows from [12, (3.4)].
�

5.3. While the Ext-projectives in addC are perfectly characterised above, the same is not
true of the Ext-injectives. Let E denote the full subcategory of C (hence of ind A) with
objects the Ext-injectives in addC . Clearly, any injective A-module lying in C belongs
to E , but the converse is generally not true. Note also that we may have E = ∅ (take, for
instance, A hereditary and representation-infinite, and C consisting of all postprojective
modules).

Lemma. (a) For every E′, E′′ ∈ E , we have HomA(τ−1
A E′, E′′) = 0.

(b) |E | ≤ rkK0(A).
(c) E cuts each τA-orbit in Γ(modA) at most once.



LEFT SECTIONS AND THE LEFT PART OF AN ARTIN ALGEBRA 11

(d) Every path of irreducible morphisms contained in E is sectional.
(e) E contains no cycle of irreducible morphisms.

Proof. (a) Indeed, E′′ ∈ C , while τ−1
A E′ /∈ C .

(b) Follows from (a) and Skowroński’s lemma [9, (VIII.5.3)], [31, (Lemma 1)].
(c) Assume, E′, τ−t

A E′ ∈ E (with t > 0). We have a path of irreducible morphisms
E′ → ∗ → τ−1

A E′  τ−t
A E′. Since τ−t

A E′ ∈ C , we have τ−1
A E′ ∈ C , a

contradiction.
(d) Follows from (c).
(e) Let E0 → E1 → · · · → Et = E0 be a cycle of irreducible morphisms in E . By

the Bautista-Smalø theorem [14, 17], it is not sectional. Hence E1 = τ−1
A Et−1 or

there exists i with 1 ≤ i < t such that Ei+1 = τ−1
A Ei−1, thus contradicting (a).

�

5.4. Lemma.

(a) Let E′ = M0
f1 //M1

// · · ·
ft //Mt be a path in indA, with E′ ∈ E and Mt ∈ C .

If no fi factors through an injective module, then Mi ∈ E for all i.
(b) Let Γ be a component of Γ(modA) not containing injectives and such that Γ∩E 6=

∅. Then, for every M ∈ C , there exists a unique m ≥ 0 such that τ−m
A M ∈ E .

Proof. (a) Since Mt ∈ C , then Mi ∈ C for all i. Also, no Mi is injective and the
Auslander-Reiten isomorphism HomA(τ−1

A Mi−1, τ
−1
A Mi) ∼= HomA(Mi−1,Mi)

yields a non-zero morphism τ−1
A Mi−1 → τ−1

A Mi (for each i). This yields a path
τ−1
A E′ = τ−1

A M0 → τ−1
A M1 → · · · → τ−1

A Mt. Since τ−1
A E′ /∈ C , then τ−1

A Mi /∈
C for all i. Consequently, Mi ∈ E for all i.

(b) Since Γ contains no injectives (hence is right stable) but contains at least one Ext-
injective in addC (the set of which is finite, by (5.3)(b)), we may take ` > 0 so
that τ−`

A M succedes τ−1
A E′ /∈ C (for every E′ ∈ Γ∩ E ), then τ−`

A M /∈ C . Hence
there exists m ≥ 0 such that τ−m

A M ∈ C but τ−m−1
A M /∈ C . Thus τ−m

A M ∈ E .
Uniqueness of m follows from (5.3)(c).

�

5.5. Proposition. Let Γ be a component of Γ(modA) not containing injectives and such
that Σ = Γ ∩ E 6= ∅. Then Σ is a left section in Γ and A/AnnAΣ is a tilted algebra
having Σ as complete slice.

Proof. We check the axioms for a left section: (LS1) follows from (5.3)(e) and (LS3)
from (5.4)(a), then let M be a predecessor of Σ in Γ, we have M ∈ Γ ∩ C and so (LS2)
follows from (5.4)(b). The statement then follows from (5.3)(a) and (3.5). �

Remark. The statement is false if Γ contains injectives. Let A be given by the quiver

◦
1

◦
2

δoo ◦
3

βoo
γ

oo ◦
4

αoo

bound by αβ = 0, βδ = 0 and C be the full subcategory of indA having as objects all
non-preinjective modules. Then the only Ext-injective in addC is the projective-injective
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module P4 = I1 which lies in a tube

4
3
2
1

!!DD
DD

DD

3
2

%%JJJJJ
3
2
1

##GGGGG

==zzzzzz
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2

%%JJJJJ
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2

3 3
2 2
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99ttttt

''OOOOOO
3
2

;;wwwww

%%LLLLLL
4

3 3
2 2

99ttttt

''OOOOOO

·
77oooooo ·

99rrrrrr ·
77oooooo ·

Clearly, Γ ∩ E satisfies neither (LS2) nor (LS3).

This raises the question of finding the right conditions so that the statement of (5.5) stays
valid in a component containing injectives. As is easy to see, the condition is that every
object in C should have projective dimension at most one (or, equivalently, C ⊆ LA).

6. FULL SUBCATEGORIES OF LA

6.1. In this section, we assume that C is a full subcategory of LA, closed under predeces-
sors. The first result generalises [3, (1.5)].

Lemma. Let I be an indecomposable injective A-module.
(a) There exist at most rkK0(A) indecomposable modules N ∈ C such that there

exists a path I  N in ind A.
(b) Every such path is refinable to a path of irreducible morphisms.
(c) Every such path of irreducible morphisms is sectional.
(d) Every such module N ∈ C is Ext-injective in addC .

Proof. If I /∈ C , then no successor of I lies in C and the statement holds trivially. Assume
that I ∈ C has infinitely many successors in C . Then, for each s ≥ 0, there exists a path
in ind A

I = L0
// L1

// · · · // Ls−1
// Ls

with Li ∈ C for all i. An easy induction (as in [3, (1.5)]) shows that this path induces
another one

(∗) I = M0
f1 // M1

// · · · fi // Mi
// Lj

with j ≤ i, M` ∈ C and f` irreducible for all `, and f ′i 6= 0.
We prove that (∗) is sectional. If this is not the case, there exists a least i such that

the subpath I = M0  Mi is sectional and Mi+1 = τ−1
A Mi−1. In particular, by [17],

HomA(I,Mi−1) 6= 0, hence pd τ−1
A Mi−1 > 1. But Mi+1 ∈ C implies pd Mi+1 ≤ 1, a

contradiction.
Since I is injective, it is Ext-injective in addC . Moreover, HomA(I,Mi) 6= 0 implies

τ−1
A Mi /∈ C (because either Mi is injective or pd τ−1

A Mi > 1). Since Mi ∈ C , we infer
that Mi is Ext-injective for each i. Invoking (5.3)(b) finishes the proof. �

6.2. A module M ∈ C is called Ext-injective of the first kind if there exist an injective
module I and a path I  M in indA. We denote by E1 the class of Ext-injectives of the
first kind. An Ext-injective which is not of the first kind is of the second kind, and the
class of Ext-injectives of the second kind is denoted by E2 (= E \E1). The following result
generalises part of [5, (3.1)], [6, (3.1)].
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Corollary. Let M ∈ C . The following are equivalent:
(a) M is Ext-injective of the first kind;
(b) there exists an injective module I and a path of irreducible morphisms I  M ;
(c) there exists an injective module I and a sectional path of irreducible morphisms

I  M ;
(d) there exists an injective module I such that HomA(I,M) 6= 0.

Proof. That (a) implies (b) and that (b) implies (c) follow from (6.1), that (c) implies (d)
follows from [17] and finally (d) implies (a) is trivial. �

Remark. If C = LA, then Ext-injectives of the second kind are characterised as being
for instance, those M ∈ LA \ E1 such that there exists a projective module P /∈ LA

satisfying HomA(P, τ−1
A M) 6= 0 (see [5, (3.1)], [6, (3.1)]). No such characterisation is

known in general.

6.3. The next result generalises [5, (3.4)].

Proposition. Assume that E′ ∈ E and M ∈ C are such that there exists a path E′  M
in ind A. Then this path can be refined to a sectional path of irreducible morphisms and
M ∈ E . In particular, E is convex in ind A.

Proof. Let E′ = X0
f1 //X1

// · · ·
ft //Xt = M be the given path. We first show

that Xi ∈ E for each i. If no fi factors through an injective, this follows from (5.4)(a).
Otherwise, let i be minimal such that fi : Xi−1 → Xi factors through an injective I . We
thus have a subpath I → Xi  Xt = M . By (6.1), Xj ∈ E for j ≥ i. But, on the
other hand, we have another subpath E′ = X0  Xi−1 where, because of the minimality
of i, none of the morphisms factors through an injective. Since, for every j < i, we have
Xj ∈ C , we deduce from (5.4)(a) that Xj ∈ E .

This establishes the convexity of E in indA. There remains to show that each fi lies in
a finite power of the radical of modA. Indeed, if this is not the case for some fi, then, for
every s ≥ 1, the given path has a refinement

E′ = X0  Xi−1 = Y0 → Y1 → · · · → Ys = Xi  Xt = M.

By convexity in ind A, we have Y` ∈ E for each `. This contradicts (5.3)(b). �

6.4. Corollary. The modules in E are directed in ind A.

Proof. Let E′ = M0 → M1 → · · · → Mt = E′ be a cycle with E′ ∈ E . By (6.3), it can
be refined to a cycle of irreducible morphisms contained in E , contradicting (5.3)(e). �

6.5. Corollary. Let Γ be a component of Γ(modA) containing an injective. Then every
module of Γ ∩ C is directed.

Proof. Let M0 → M1 → · · · → Mt = M0 be a cycle with M0 ∈ Γ ∩ C . By [3, (1.4)],
there exist an injective module I ∈ Γ and a path I  M0. We compose this path with
two copies of the cycle to get a longer path from I to M0 which, by (6.3), is refinable to a
sectional path of irreducible morphisms, yielding a contradiction to [14]. �

6.6. Proposition. Let Γ be a component of Γ(modA) such that Γ ∩ E 6= ∅. Then:
(a) for every M ∈ Γ ∩ C , there exists a unique m ≥ 0 such that τ−m

A M ∈ E ;
(b) the number of τA-orbit of Γ ∩ C equals |Γ ∩ E | (hence is finite);
(c) Γ ∩ C contains no modules on a cycle between modules in Γ.
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Proof. (a) By (5.4), we may assume that Γ contains an injective. Suppose that, for any
` ≥ 0, we have τ−`

A M ∈ C . Then M is right stable (and not periodic, by (6.5)).
Since Γ contains an injective, there is a walk from this injective to the τA-orbit of
M . Among all such injectives, choose one, say I , such that there is a walk of least
length from I to the τA-orbit of M . Minimality implies that all modules on this
walk, except I , are right stable. Hence there exist s ≥ 0 and a path of irreducible
morphisms I  τ−s

A M . Since I ∈ E , we have τ−s
A M ∈ E by (6.3), hence

τ−s−1
A M /∈ C , a contradiction. Thus there exists m ≥ 0 such that τ−m

A M ∈ C
but τ−m−1

A M /∈ C , so τ−m
A M ∈ E . Uniqueness of m follows from (5.3).

(b) Let n be the number of τA-orbits of Γ∩C . By (a), n ≤ |Γ∩ E | ≤ rkK0(A). The
statement follows because each element of Γ ∩ E lies in exactly one τA-orbit of
Γ ∩ C .

(c) By (6.5), we may assume that Γ contains no injectives. Let

M0 → M1 → · · · → Mt = M0

be a cycle with M0 ∈ Γ ∩ C and all Mi ∈ Γ. Clearly, Mi ∈ C for all i. By (6.4),
Mi /∈ E for all i, and also no fi factors through an injective. Thus this cycle
induces a new one

τ−1
A M0 → τ−1

A M1 → · · · → τ−1
A Mt = τ−1

A M0

with τ−1
A Mi ∈ Γ ∩ C for all i. Repeating this procedure indefinitely, we get that,

for all m ≥ 0, the module τ−m
A M0 lies in Γ∩C and in a cycle. This contradicts (a).

�

6.7. Theorem. Let A be an artin algebra, and C ⊆ LA be a full subcategory closed
under predecessors, having E as subcategory of Ext-injectives. Let Γ be a component of
Γ(modA). Then:

(a) If Γ ∩ E = ∅, then either Γ ⊆ C or Γ ∩ C = ∅.
(b) If Σ = Γ ∩ E 6= ∅, then Σ is a left section of Γ, convex in indA. Moreover

A/AnnAΣ is tilted having Σ as complete section.

Proof. (a) Assume Γ ∩ E = ∅. If Γ contains a module in C and one not in C , then
there exists an irreducible morphism X → Y with X ∈ Γ ∩ C and Y ∈ Γ \ C .
Since Γ ∩ E = ∅, then X is not injective, so we have an irreducible morphism
Y → τ−1

A X . Since Y /∈ C , then τ−1
A X /∈ C . Thus X ∈ E , a contradiction.

(b) If Γ contains no injective, then Σ is a left section by (5.5) and is convex in ind A
by (6.3). If Γ contains an injective, then (LS1) follows from (5.3)(e), convex-
ity in ind A (hence (LS3)) follows from (6.3) and finally (LS2) follows easily
from (6.6)(a) (for, if M precedes Σ in Γ, then M ∈ Γ ∩ C ).

The last statement follows from (4.2).
�

6.8. Corollary. Let A be a finite dimensional algebra over an algebraically closed field,
C ⊆ LA be a full subcategory closed under predecessors, having E as subcategory of
Ext-injectives and Γ be a component of Γ(modA) such that Σ = Γ ∩ E 6= ∅. Then
SuppΣ ∼= A/AnnAΣ is a tilted algebra having Σ as complete slice and is a full convex
subcategory of A closed under successors.

Proof. By (4.5) and (6.7), it suffices to prove that SuppΣ is closed under successors. Let
x → y be an arrow with x ∈ SuppΣ. Then we have a non-zero morphism Py → Px. Also,
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there exists an embedding Px ↪→ Ē, with Ē ∈ addΣ. This yields a non-zero morphism
Py → E′ for some E′ ∈ Σ. Thus y ∈ SuppΣ. �

6.9. The next result generalises [1, (Theorem A)].

Corollary. Let A be an artin algebra, and Γ be a component of Γ(modA) which intersects
the class EA of Ext-injective indecomposables in addLA. Then:

(a) each τA-orbit of Γ ∩LA intersects EA exactly once;
(b) the number of τA-orbits of Γ ∩LA equals |Γ ∩ EA|;
(c) Γ ∩LA contains no modules lying on a cycle between modules in Γ;
(d) A/AnnA(Γ ∩ EA) is a tilted algebra having Γ ∩ EA as complete slice.

If, on the other hand, Γ ∩ EA = ∅ then either Γ ⊆ LA or Γ ∩LA = ∅.

Proof. This follows from (6.6) and (6.7). �

6.10. The following corollary generalises [1, (Theorem B)].

Corollary. With the notation of (6.7), if Σ = Γ ∩ E 6= ∅ and all projectives in Γ belong
to C , then:

(a) Σ is a section in Γ;
(b) Γ is generalised standard;
(c) A/AnnAΣ is a tilted algebra having Γ as connecting component and Σ as com-

plete slice.

Proof. By (6.7) and (2.3), Σ is a section in Γ. The rest follows. �

7. THE SUPPORT ALGEBRA

7.1. Definition. Let C be a full subcategory of LA, closed under predecessors. Its sup-
port algebra A(C ) is the endomorphism algebra of the direct sum of all indecomposable
projectives lying in C (that is, A(C ) = End

(⊕
Px∈C Px

)
).

Clearly, this generalises the left support of an artin algebra [5, (2.2)], [32, (3.1)]. Note
that A(C ) is a full subcategory of A, closed under successors (and hence convex).

Lemma. The support algebra A(C ) is a direct product of connected quasi-tilted algebras.

Proof. By the above remark, A may be written in matrix form[
A(C ) 0
M B

]
where M is a B-A(C )-bimodule. Moreover, C ⊆ indA(C ) for, if L ∈ C and Px is
an indecomposable projective such that HomA(Px, L) 6= 0, then Px ∈ C . By [5, (2.1)],
LA ⊆ LA(C ). Hence C ⊆ LA(C ). The statement follows because any indecomposable
projective A(C )-module (= projective A-module lying in C ) belongs to LA(C ). �

7.2. Let E denote the full subcategory of C consisting of the Ext-injectives in add C and
E =

⊕
U∈E U . Denote by F the direct sum of all indecomposable projectives which are

not (!) in C , and set T = E ⊕ F . We call a partial tilting A-module convex if the class of
its indecomposable summands is convex in ind A, see [7].

Lemma. (a) E is a convex partial tilting A-module.
(b) E is a convex partial tilting A(C )-module. In particular, |E | ≤ rkK0(A(C )).
(c) T is a partial tilting module.
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(d) T is a tilting A-module if and only if |E | equals the number of projectives in C or
if and only if E is a tilting A(C )-module.

(e) If T is a tilting A-module, then the associated torsion pair
(
T (T ),F (T )

)
is given

by F (T ) = add (C \ E ) and T (T ) = add (indA \F (T )).

Proof. (a) Since C ⊆ LA, then pdE ≤ 1. Clearly, Ext1A(E,E) = 0 so E is partial
tilting. Its convexity follows from (6.3).

(b) Since A(C ) is a full convex subcategory of A, and C ⊆ LA, then E is a partial
tilting A(C )-module. It is convex because any path in indA(C ) induces one in
indA.

(c) Since pd T ≤ 1, it suffices to observe that Ext1A(E,F ) ∼= DHomA(F, τAE) = 0,
because τAE ∈ addC while no indecomposable summand of F lies in C .

(d) This is clear.
(e) Assume M ∈ C \ E . If M /∈ F (T ), then HomA(T,M) 6= 0. Since no sum-

mand of F lies in C , HomA(F,M) = 0. Hence there exists E0 ∈ E such that
HomA(E0,M) 6= 0. By (6.3), M ∈ E , a contradiction. Thus C \ E ⊆ F (T ).
Conversely, let M ∈ F (T ) = Cogen τAT . There exist E′ ∈ E and a path
M → τAE′ → ∗ → E′. In particular, M ∈ E . On the other hand, M /∈ E since
E ⊆ addT . This shows the first statement. The second follows.

�

7.3. Lemma. If an indecomposable injective A(C )-module I precedes E , then I ∈ E .

Proof. This is clear if I is injective in modA. Assume it is not. Since I precedes E ,
then I ∈ C . But then τ−1

A I /∈ C (for, otherwise, τ−1
A I = τ−1

A(C )I , a contradiction to the
injectivity of I in modA(C )). Therefore I ∈ E . �

7.4. The following result generalises [1, (Theorem C)].

Theorem. Let A be an artin algebra and C ⊆ LA be a full convex subcategory closed
under predecessors, having E as subcategory of Ext-injectives. Let Γ be a component of
Γ(modA(C )) such that Σ = Γ ∩ E 6= ∅. Then:

(a) Σ is a section in Γ, convex in ind A(C );
(b) Γ is directed, and generalised standard;
(c) A(C )/AnnAΣ is a tilted algebra having Γ as connecting component and Σ as

complete slice.

Proof. (a) First, we show that there exists a unique component Γ′ of Γ(modA) which
contains Σ. Let indeed E1 → E2 be an irreducible morphism in modA(C ) with
E1, E2 ∈ Σ. By (6.3), it induces a path of irreducible morphisms E1  E2 in
modA. In particular, E1 and E2 lie in the same component.

We next show that Γ′6Σ = Γ6Σ. Indeed, if X → Y is irreducible in Γ′6Σ, it
stays so in Γ6Σ. Conversely, let X → Y be irreducible in Γ6Σ. If X /∈ E , then X

is not injective and τ−1
A X = τ−1

A(C )X . Therefore the almost split sequence starting
with X is the same in both categories, and X → Y is irreducible in Γ′6Σ. If X ∈ E
then, by (6.3), Y ∈ E . If Y is not projective, the almost split sequence ending with
Y is the same in both categories. If Y is projective, then radY is the same in both
categories. In any case, X → Y remains irreducible in Γ′6Σ. This establishes the
claim.

By (6.7), Σ = Γ ∩ E = Γ′ ∩ E is a left section and, by (7.2)(b), is convex
in ind A(C ). In order to show that Σ is a section, consider, according to (2.3), a
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projective P such that there exist E′ ∈ Σ and a path E′  P in Γ. Since P is a
projective A(C )-module, it lies in C . But then (6.3) yields P ∈ E .

(b) Since Γ contains a section, it is directed by [25, (3.2)], [9, (VIII.1.5)]. It is gen-
eralised standard because so are the directed Auslander-Reiten components of a
quasi-tilted algebra [18].

(c) Follows from (a) and the Liu-Skowroński criterion.
�

7.5. The following result generalises [1, (4.6)].

Theorem. Let A be an artin algebra and C ⊆ LA be a full convex subcategory closed
under predecessors, having E as subcategory of Ext-injectives. Let B be a connected
component of A(C ) such that modB ∩ E 6= ∅ and Γ be a component of Γ(modB) such
that Σ = Γ ∩ E 6= ∅. Then B is tilted having Γ as connecting component and Σ as
complete slice.

If A is a finite dimensional algebra over an algebraically closed field, then B ∼=
SuppΣ.

Proof. In order to show that Γ is a connecting component, we start by assuming that Γ is
postprojective non-connecting. We claim that there exists an indecomposable projective
B-module not in Γ. Otherwise, indeed, the number of τB-orbits in Γ equals rkK0(B), so
Γ is connecting, a contradiction which establishes the claim.

Suppose Q /∈ Γ is indecomposable projective. There exists a walk of indecomposable
projective B-modules P0 P1 · · · Ps

∼= Q with P0 ∈ Γ and therefore there exist
Pi ∈ Γ and Pi+1 /∈ Γ such that HomB(Pi, Pi+1) 6= 0. By [27], there exists, for each
t > 0, a path

Pi = M0
f1 //M1

// · · ·
ft //Mt

f //Pi+1

with all Mi indecomposable, all fi irreducible and fft · · · f1 6= 0. Since t is arbitrary, we
may assume Mt successor of τ−1

B Σ. But then Pi+1 /∈ C , a contradiction.
Assume now that Γ is preinjective non-connecting. The same argument yields an

M ∈ Γ, proper predecessor of Σ, and an indecomposable injective I /∈ Γ such that
HomB(I,M) 6= 0. Since I precedes Σ, then I ∈ E . By (6.3), M ∈ E , a contradic-
tion.

Since, by (7.4), Γ is directed, it is connecting by [18]. Moreover, again by (7.4), Σ is
a section in Γ, convex in indB. By the Liu-Skowroński criterion, B is tilted having Γ as
connecting component and Σ as complete slice. The final statement is clear. �

7.6. The following corollary generalises [5, (5.4)], [1, (2.6)].

Corollary. Let A be representation-infinite and C ⊆ LA be a full subcategory closed
under predecessors. The following are equivalent:

(a) there exists a component Γ ⊆ C ;
(b) C is infinite;
(c) C contains a postprojective component without injectives.

If, moreover, A is not hereditary, then such a component Γ is postprojective or regular, or
obtained from a stable tube or a component of type ZA∞ by ray extensions.

Proof. (a) implies (b). Indeed, otherwise A would be representation-finite, a contra-
diction.



18 IBRAHIM ASSEM

(b) implies (c). Since C is infinite, there exists a connected component B of A(C )
such that modB ∩ C is infinite. Also, B is quasi-tilted, by (7.1). Let Γ be a
postprojective component of Γ(modB). Suppose Γ contains an injective. Then Γ
is connecting, it is the only postprojective component and Γ ∩ C is finite. Since C
is infinite, there exists X ∈ C \ Γ and then one can easily find a morphism from
a module in Γ \ C to X , a contradiction. Therefore Γ has no injectives. Now if
Γ 6⊆ C , the existence of an M ∈ Γ∩C and an N ∈ Γ \C implies the existence of
an Ext-injective in Γ. Again, we get that C is finite, a contradiction. Hence Γ ⊆ C .

Since (c) implies (a) trivially, and the last statement follows from the description of the
components of quasi-tilted algebras, [23, 24, 18], the proof is complete. �

8. ALGEBRAS SUPPORTED BY SUBCATEGORIES

8.1. Definition. Let C be a full subcategory of ind A, closed under predecessors. The
algebra A is called C -supported if addC has enough Ext-injectives (that is, if add C =
CogenE, where E =

⊕
U∈E U ).

This generalises the left supported algebras of [5] which, in this terminology, are LA-
supported.

Lemma. An algebra A is C -supported if and only if add C is contravariantly finite in
modA.

Proof. Assume A is C -supported. Since add C is a torsion-free class, then by [33], it is
contravariantly finite. Conversely, if addC is contravariantly finite, then by [33], there
exists an Ext-injective N ∈ addC such that addC = Cogen N . Since N ∈ add E, we
have

addC = CogenN ⊆ CogenE ⊆ addC

and equality follows. �

Remarks. (a) If A is representation-finite, then A is C -supported for any full subcate-
gory C of indA.

(b) In general, this property depends on the chosen subcategory: let A be tame hered-
itary, and C consist of all postprojective modules, then A is not C -supported. If,
on the other hand, C ′ is a finite subcategory of indA consisting of postprojective
modules, then A is C ′-supported.

8.2. From now on, we assume again C ⊆ LA. We denote by PredE the full subcategory
of ind A consisting of those X such that there exist E′ ∈ E and a path X  E′ in
indA. Also, an A-module L is called almost directed [2, (2.2)] if there do not exist two
indecomposable summands L′, L′′ of L and a path L′  τAL′′ in ind A. The dual notion
is that of almost codirected module.

Theorem. Let A be an artin algebra, and C be a full subcategory of LA closed under
predecessors. The following are equivalent:

(a) A is C -supported;
(b) addC is contravariantly finite;
(c) T = E ⊕ F is a tilting A-module;
(d) |E | equals the number of projectives in C ;
(e) E is a tilting A(C )-module;
(f) E is a cotilting A(C )-module;
(g) C = Supp (−, E);
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(h) there exists an almost codirected module LA such that C = Supp (−, L);
(i) there exists a module LA such that HomA(τ−1

A L,L) = 0 and C = Supp (−, L);
(j) C = PredE;
(k) E is a sincere A(C )-module;
(l) for every connected component B of A(C ), we have modB ∩ E 6= ∅;

(m) every connected component B of A(C ) is tilted and has modB ∩ E as complete
slice;

(n) every projective A-module in C precedes E .

Proof. The proofs of [2, (Theorem A)], [1, (2.1)], [5, (Theorems A,B)] carry over with the
obvious changes. �

8.3. Corollary. If A is C -supported, then:
(a) the A(C )-modules not in F (T ) are those of GenE;
(b) F is the Bongartz complement of E.

Proof. The proof of [5, (5.3)] applies with the obvious changes. �

8.4. The following is a new characterisation of supported algebras.

Corollary. An algebra A is C -supported if and only if every morphism f : L → M with
L ∈ C and M /∈ C factors through addE.

Proof. Necessity. If A is C -supported then, by (8.3), T = E⊕F is a tilting module. Since
M /∈ C , then M ∈ T (T ), by (7.2). Let {g1, . . . , gd} be a generating set of the EndT -
module HomA(T,M), then g = [g1, . . . , gd] : T d → M is surjective and K = Ker g
belongs to T (T ) (see [9, (VI.2.5)]). Applying HomA(L,−) to the exact sequence

0 //K //T d
g //M //0

yields an exact sequence.

HomA(L, T d) //HomA(L,M) //Ext1A(L,K) .

Now Ext1A(L,K) ∼= DHomA(K, τAL) = 0 because K ∈ T (T ) while τAL ∈ C ⊆
F (T ). Hence HomA(L, g) is surjective, so f factors through addT . Since
HomA(L,F ) = 0, we have that, in fact, f factors through addE.

Sufficiency. The inclusion of any L ∈ C into its injective envelope factors through
add E. Therefore add C = CogenE. �

8.5. A particular case of LA-supported algebras was studied in [8]. Recall that a full
subcategory C of indA, closed under predecessors, is abelian exact if addC is abelian
and the inclusion addC ↪→ modA is an exact functor.

Corollary. Let A and C be such that C ⊆ LA is closed under predecessors and abelian
exact.

(a) A ∼=
[
A(C ) 0

X B

]
, with A(C ) hereditary and XA(C ) injective.

(b) A is C -supported.
(c) If A is triangular, then A = A(C ) (in particular, is hereditary).

Proof. (a) By [8, (2.5)], A ∼=
[
C 0
X B

]
with C hereditary, XC injective and add C ∼=

modC. Therefore C = A(C ).
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(b) Since modA(C ) is cogenerated by its minimal injective cogenerator, it follows
from [33] that addC is contravariantly finite.

(c) This follows from [8, (3.2)].
�

8.6. Denote by C c = indA \C the complement of C in ind A and by E1 the subcategory
of Ext-injectives of the first kind (see (6.2)). We define the almost complement of C to
be the full subcategory C ∗ = C c ∪ E1 of indA. If, for instance, C = LA, then C ∗ is the
class R0 consisting of all M ∈ indA such that there exist an injective module I and a path
I  M in ind A (see [2, (5.1)]).

Lemma. C ∗ is closed under successors.

Proof. Assume X ∈ C ∗ and we have a path X  Y in indA. If X ∈ C c, then Y ∈
ind A. If X ∈ E1, then there is an injective I and a path I  X . If Y ∈ C c there is nothing
to show while, if Y ∈ C , the composed path I  X  Y yields Y ∈ E1, by (6.1). �

8.7. We set E1 =
⊕

X∈E1
X , E2 =

⊕
Y ∈E2

Y and U = E1 ⊕ τ−1
A E2 ⊕ F (note that, by

definition, no summand of E2 is injective).

Lemma. (a) Let M ∈ indA, then:
(i) M is Ext-projective in addC ∗ if and only if M ∈ add U ;

(ii) M is Ext-injective in addC ∗ if and only if M is injective.
(b) U is a partial tilting module.
(c) U is a tilting module if and only if T = E1 ⊕ E2 ⊕ F is a tilting module.
(d) If U is a tilting module, then the resulting torsion pair

(
T (U),F (U)

)
is given by

T (U) = addC ∗ and F (U) = add (indA \ C ∗).

Proof. The proofs of [2, (5.3)(5.4)(5.5)] apply with the obvious changes. �

8.8. We now generalise [2, (Theorem B)]. For a functor F on modA, we denote by KerF
the full subcategory of modA consisting of the modules M such that FM = 0.

Theorem. Let A be an artin algebra and C ⊆ LA be a full subcategory closed under
predecessors. The following are equivalent:

(a) A is C -supported;
(b) addC ∗ is covariantly finite;
(c) addC ∗ = GenU ;
(d) U is a tilting A-module;
(e) C ∗ = Supp (U,−);
(f) there exists an almost directed module RA such that C ∗ = Supp (R,−);
(g) there exists a module RA such that HomA(R, τAR) = 0 and C ∗ = Supp (R,−);
(h) addC ∗ = KerExt1A(U,−);
(i) KerHomA(U,−) = add (C \ E1).

Proof. The proof of [2, (5.6)] applies with the obvious changes. �

8.9. Corollary. Let C ⊆ LA be a full subcategory closed under predecessors, then
add C is contravariantly finite if and only if add C c is covariantly finite.

Proof. The proof of [2, (5.8)] applies with the obvious changes. �
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8.10. Corollary. Let A be C -supported, then F is the Bongartz complement of E1 ⊕
τ−1
A E2.

Proof. The proof of [2, (5.10)] applies with the obvious changes. �
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