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Abstract. We survey known properties of split-by-nilpotent extensions of algebras,

concentrating on their bound quivers, the change of rings functors and tilting theory.

Introduction

These notes are an updated version of a course given years ago at the Universidad

Nacional del Sur in Bahía Blanca (Argentina). Split extensions are fascinating mathe-

matical objects de�ned as follows. Let A be a �nite dimensional algebra over a �eld k,

andE anA-A-bimodule, �nite dimensional over k, equipped with an associative product

E ⊗A E E, then the split extension R of A by E is the k-vector space R = A ⊕ E
with the multiplication

(a , e)(a′ , e′) = (aa′ , ea′ + ae′ + ee′)

for a, a′ ∈ A and e, e′ ∈ E, where ee′ stands for the product in E. If E is nilpotent

for its product, then R is called a split-by-nilpotent extension. Examples abound in the

mathematical literature, the best known being trivial extension algebras. Thus, the study

of split-by-nilpotent extensions connects with those of sel�njective algebras and, more

recently, cluster tilted algebras.

The general problem of split-by-nilpotent extensions is to predict properties of R
knowing properties of A and E, and conversely. In an abstract setting, this is a di�cult

problem and more information is needed to obtain concrete results.

The objective of these notes is to survey known results about split-by-nilpotent ex-

tensions. We tried to keep the notes as selfcontained as possible, providing proofs and

examples whenever possible. The �rst section is devoted to the de�nition and basic prop-

erties of this class. The second section relates the bound quivers of R and A. In the third,

we start comparing the module categories of E andA, using the classical change of rings

functors of [21]. Finally, the fourth section is devoted to the comparison of the tilting

theories of R and A, with a particular attention to the induced torsion pairs.
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2 I. ASSEM

1. Split-by-nilpotent extensions

1.1. Notation. Throughout, k denotes an algebraically closed �eld. By algebra is

meant a basic �nite dimensional associative k-algebra with an identity.

A quiver Q is a quadruple Q = (Q0 , Q1, s, t), where Q0, Q1 are sets whose ele-

ments are respectively called points and arrows, and s, t : Q1 Q0 are maps which

associate to an arrow α its source s(α) and its target t(α). Given a connected algebra

A, there exists a (unique) connected quiver QA and (at least) a surjective algebra mor-

phism η : kQA A, where kQA is the path algebra of QA. The ideal I = Ker η is then

admissible, that is, there exists m ≥ 2 such that kQ+m
A ⊆ I ⊆ kQ+2

A , where kQ+i
A is

the two-sided ideal of kQA generated by the paths of length at least i. The isomorphism

A ∼= kQA/I (or the morphism η) is called a presentation of A, and A is said to be given

by the bound quiver (QA , I), see [12]. The ideal I is generated by a �nite set of ele-

ments called relations: given x, y ∈ (QA)0, a relation from x to y is a linear combination

ρ =
∑m
i=1 ciwi where the ci are nonzero scalars, and the wi are paths of length at least

two from x to y. The relation ρ is called monomial if m = 1, and minimal if m ≥ 2
and, for every nonempty subset J $ { 1, 2, . . . ,m }, we have

∑
j∈J cjwj /∈ I .

Following [19], we sometimes consider an algebra A = kQA/I as a k-category, of

which the object class A0 is the set (QA)0, while the set of morphisms from x to y is the

quotient of the vector space kQA(x , y) of all k-linear combinations of paths from x to y
by the subspace I(x , y) = I ∩ kQA(x , y). An algebra A is called triangular if QA is

acyclic.

We denote by modA the category of �nitely generated rightA-modules and by indA
a full subcategory containing exactly one representative from each isoclass (= isomor-

phism class) of indecomposable modules. When we speak about a module, or an inde-

composable module, we mean implicitly that it belongs to modA, or indA, respectively.

If C is a full subcategory of modA, we writeM ∈ C to express thatM is an object in C.

We denote by add C the full subcategory of modA having as objects the direct sums of

direct summands of objects in C. If there exists a module M such that C = {M }, then

we write addM instead of add C. Given a module M , we denote by pdM and idM its

projective and injective dimensions, respectively. The global dimension of A is denoted

by gl.dim. A.

For x ∈ (QA)0, we let ex denote the corresponding primitive idempotent ofA, and let

Sx, Px, Ix denote respectively the corresponding simple, indecomposable projective and

indecomposable injective modules. The standard duality between right and left modules

is denoted by D = Homk(− , k) and the Auslander-Reiten translations by τA = DTr
and τ−1A = Tr D(or simply τ , τ−1 if there is no ambiguity). For more notions and results

about modA, we refer the reader to [12, 15].

1.2. De�nition and examples. Let A be an algebra, and E an A-A-bimodule,

which is �nite dimensional as a k-vector space. We say that E is equipped with an as-
sociative product if there exists a morphism E ⊗A E E of A-A-bimodules, denoted

as e⊗ e′ ee′ for e, e′ ∈ E such that

e(e′e′′) = (ee′)e′′

for all e, e′, e′′ ∈ E.

Definition 1.2.1. Let A be an algebra and E an A-A-bimodule equipped with an

associative product. The k-vector space

R = A⊕ E = { (a , e) a ∈ A, e ∈ E }
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together with the multiplication

(a , e)(a′ , e′) = (aa′ , ae′ + ea′ + ee′)

for a, a′ ∈ A and e, e′ ∈ E, is an algebra, called the split extension of A by E. If

moreover E is nilpotent as a two-sided ideal of R, then R is called a split-by-nilpotent
extension.

Clearly, dimkR = dimkA + dimkE and there exists an exact sequence of vector

spaces

0 E R A 0ι π

where ι : e (0 , e) for e ∈ E, while π : (a , e) a for (a , e) ∈ R. Then π is an

algebra morphism and admits as section the algebra morphism σ : A R, a (a , 0)
for a ∈ A. Because ι, π, σ are alsoA-A-bimodule morphisms, the previous exact sequence

may also be considered as a split exact sequence of A-A-bimodules and so, in particular,

as a split exact sequence of right, or left,A-modules. Of course, it is also an exact sequence

of R-R-bimodules, or of right, or left, R-modules. But then, it is generally not split.

Saying that E is nilpotent amounts to saying that E ⊆ radR. In the sequel, we

always assume that E is nilpotent.

There may be several decompositions of ARA as a direct sum isomorphic to A⊕E.

Therefore the data of an exact sequence as above does not su�ce to determine a split

extension: one must also �x a direct sum decomposition R = A⊕E, or, equivalently, �x

a section σ to π.

Examples 1.2.2. (a) Because k is algebraically closed, any algebra can be written as

a direct sum R = (R/ radR) ⊕ radR, so it is a split extension of the semisimple

algebra R/ radR by the nilpotent bimodule radR.

(b) If E2 = 0, then a split extension of A by E is called a trivial extension and denoted

as An E. This class plays a very important rôle in the classi�cation results for self-

injective algebras. In this case, one takes E to be the minimal injective cogenerator

bimodule E = D(AAA) with its canonical bimodule structure, see [31, 32]. An-

other type of trivial extensions appeared in the theory of cluster algebras: it is indeed

proved in [5] that an algebra is cluster tilted if and only if it is the trivial extension

of a tilted algebra A by the so-called relation bimodule E = Ext2A(DA , A) with its

canonical bimodule structure.

Perhaps the smallest nontrivial example is the following: let A = k, E = k with

its canonical k-k-bimodule structure. The trivial extension AnE is the vector space

k2 = { (a , b) a, b ∈ k }

with the multiplication

(a , b)(a′ , b′) = (aa′ , ab′ + ba′)

for a, a′, b, b′ ∈ k. Clearly, we have an algebra isomorphism An E ∼= k[t]/(t2).

(c) We now give an example of a split extension which is not a trivial extension. LetA =
k, E = k2

with its canonical bimodule structure and equipped with the (obviously

associative) product

(b , c)(b′ , c′) = (0 , bb′)

for b, b′, c, c′ ∈ k. The split extension is the three-dimensional vector space

R = A⊕ E = { (a , (b , c)) a, b, c ∈ k }
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with multiplication

(a , (b , c))(a′ , (b′ , c′)) = (aa′ , (ab′ + ba′ , ac′ + ca′ + bb′))

for a, b, c, a′, b′, c′ ∈ k. It is easy to see that actually R ∼= k[t]/(t3). One can realise

in this way any truncated polynomial algebra k[t]/(tn) as split extension of A = k
by E = kn−1.

(d) Let A be given by the quiver

1 2 3

αβ

bound by αβ = 0, and R be given by the quiver

1 2 3
α

β

η

bound by αβ = 0, ηαηαη = 0. Then R is the split extension of A by the bimodule

E generated by the arrow η. To �nd a k-basis of E, we construct those paths (more

precisely, classes of paths modulo the binding ideal, but we identify the two) which

contain η. This gives the following basis

{ η , ηα , αη , ηαη , αηα , ηαηα , αηαη , αηαηα }.

The right and leftA-module structures ofE are computed as follows. We haveAA =
1⊕ 2

1⊕ 3
2 where indecomposable modules are represented by their Loewy series. Sim-

ilarly, RR = 1⊕
2
1 3
2
3
2

⊕
3
2
3
2
3
2

. We next compute RA: deleting η from the indecomposable

R-modules gives theirA-module structure. We getRA = 1⊕ 2
1⊕( 3

2 )
2⊕ 3

2⊕( 3
2 )

2
from

where we deduceEA = ( 3
2 )

4
. Similarly (DA)A = 2

1⊕ 3
2⊕ 3 and (DR)R = 2

1⊕
3
2
3
2
3
2

⊕
3
2
3
2
3

yields (DE)A = ( 3
2 )

4
.

1.3. Properties. Our next objective is to describe the quiverQR of a split extension

R of an algebra A by a nilpotent bimodule E, in terms of the quiver QA of A.

Lemma 1.3.1. LetR be a split extension ofA by a nilpotent bimoduleE, then radA =
(radR)/E.

Proof. We have E ⊆ radR and (radR)/E nilpotent as an ideal in R/E ∼= A.

Moreover,
R/E

(radR)/E
∼= R

radR is semisimple. Therefore (radR)/E ∼= rad(R/E) ∼= radA.

�

Theorem 1.3.2 [10](1.2). Let R be a split extension of A by a nilpotent bimodule E.
The quiver QR of R is constructed as follows:
(a) (QR)0 = (QA)0;
(b) for x, y ∈ (QR)0, the set of arrows in QR from x to y equals the set of arrows in QA

from x to y plus

dimk ex

(
E

E · radA+ radA · E + E2

)
ey
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additional arrows.

Proof. Because of Lemma 1.3.1, QR and QA have the same points and moreover,

radR = radA⊕ E as a vector space. Hence

rad2R = rad2A⊕
(
E · radA+ radA · E + E2

)
.

The arrows in QR from x to y are in bijection with vectors in a basis of the vector space

ex
(

radR
rad2 R

)
ey . Because rad2A ⊆ radA andE ·radA+radA·E+E2 ⊆ E, the statement

follows. �

Thus, if A is a connected algebra, then so is R. We now see how split extensions

behave upon taking full subcategories.

Lemma 1.3.3 [14](1.4). Let R be a split extension of A by a nilpotent bimodule E and
e an idempotent in A. Then eRe is a split extension of eAe by eEe.

Proof. Clearly, eEe is a two-sided ideal of eRe. Its nilpotency follows from the

fact that eEe ⊆ E. The map πe : eRe eAe , e(a , x)e eae for (a , x) ∈ R is a

surjective algebra morphism having as section σe : eAe eRe, eae e(a , 0)e for a ∈
A. Moreover, σe is an algebra morphism and eEe ⊆ Kerπe. Because eRe = eAe⊕ eEe
as vector spaces, we get the statement by comparing dimensions. �

As we now see, taking split extensions is a transitive procedure.

Lemma 1.3.4 [10](1.7). Let R be a split extension of A by a nilpotent bimodule E and
S a split extension of R by a nilpotent bimodule F . Then S is a split extension of A.

Proof. We have exact sequences of vector spaces

0 E R A 0ι π

σ
, 0 F S R 0ι′ π′

σ′

where π, σ, π′, σ′ are algebra morphisms and πσ = idA, π′σ′ = idR. Also, there exist

m,n > 0 such that Em = 0, Fn = 0. We get an exact sequence

0 π′
−1

(E) S A 0.ππ′

Both ππ′, σ′σ are algebra morphisms and ππ′σ′σ = idA, so it su�ces to prove that

π′
−1

(E) is nilpotent. We claim that π′
−1

(E)
mn

= 0. Let xij ∈ π′−1(E) with 1 ≤ i ≤ n,

1 ≤ j ≤ m. Then π′(xij) ∈ E for all i, j. Therefore, for each i, we have π′
(∏m

j=1 xij

)
=∏m

j=1 π
′(xij) ∈ Em = 0. Thus, for each i, the product

∏m
j=1 xij lies in Kerπ′ = F . But

then

∏n
i=1

∏m
j=1 xij ∈ Fn = 0. �

2. The bound quiver of a split extension

2.1. Presentations. Let R be a split extension of A by a nilpotent bimodule E.

Because of 1.3.2, the quiver QR of R is obtained from the quiver QA of A by adding

arrows. It is therefore reasonable to think that E, as an ideal, is generated precisely by

the added arrows. Let ηR : kQR R ∼= kQR/IR and ηA : kQA A ∼= kQA/IA be

respectively bound quiver presentations of R and A. For x, y ∈ (QA)0, it follows from

the proof of 1.3.2 that there is an inclusion of vector spaces

ex

(
radA

rad2A

)
ey ex

(
radR

rad2R

)
ey .
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Therefore, there exists a basis of ex

(
radR

rad2R

)
ey which contains as a subset a basis of

ex

(
radA

rad2A

)
ey . When the arrows in QR are taken in bijection with vectors in such a

basis, for any x, y, then we say that the presentation ηR (or (QR, IR)) of R respects
ηA (or (QA, IA), or simply A). The previous comments show that there always exists a

presentation of R respecting A.

Lemma 2.1.1 [10](1.5). LetR be a split extension ofA by a nilpotent bimoduleE. Then
there exists a presentation ofR respectingA such thatE is generated by the classes of arrows
in QR which are not in QA.

Proof. Let (QR, IR) be a bound quiver presentation of R which respects A and

{ ρ1, . . . , ρs } be the preimage modulo IR of any linearly independent set of generators

for E. We may assume that each ρi is a linear combination of paths having the same

source and the same target: for, if this is not the case, then we multiply each ρi on the

left and on the right by stationary paths and we obtain such a set. Because QA, QR have

the same points, all paths involved in the ρi have length at least one. Moreover, as seen

in 1.3.2, the top of E is contained in radR/ rad2R, that is ρi + rad2R ∈ radR/ rad2R
for all i with 1 ≤ i ≤ s. So we have

ρi = αi +
∑
j

λjwj

where αi is an arrow inQR and

∑
j λjwj a linear combination of paths of length at least

one. Because the ρi are linearly independent modulo IR, we de�ne a new presentation

by replacing αi by

α′i = αi +
∑
j

λjwj .

In this presentation, E is indeed generated by α′1, . . . , α
′
s. �

Corollary 2.1.2 [10](2.1). Let R be a split extension of A by a nilpotent bimod-
ule E. Given a presentation ηA : kQA A ∼= kQA/IA, there exists a presentation
ηR : kQR R ∼= kQR/IR respecting A such that:
(a) E is an ideal of R generated by classes of arrows,
(b) there exist algebra morphisms π̃ : kQR kQA, σ̃ : kQA kQR such that π̃σ̃ =

idkQA
, ηRσ̃ = σηA and σ̃(IA) ⊆ IR,

(c) there exists a commutative diagram with exact rows and columns

0 0 0

0 Ẽ ∩ IR IR IA 0

0 Ẽ kQR kQA 0

0 E R A 0.

0 0 0

π̃

ηR ηA
σ̃

π

σ
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Proof. Because of 1.3.2, we may (and shall) identify QA to a nonfull sub-

quiver of QR. Applying [12](II.1.8), the inclusion QA QR extends to an al-

gebra morphism σ̃ : kQA kQR preserving stationary paths and arrows. Letting

ηR : kQR kQR/IR ∼= R be a presentation constructed as in 2.1.1, we then have

ηRσ̃ = σηA. Moreover, there exists a set S of arrows in QR such that E is the ideal

generated by the classes of the elements of S. Let Ẽ be the lifted ideal in kQR, that is, the

one generated by the elements of S. Applying again [12](II.1.8), there exists a surjective

algebra morphism π̃ : kQR kQA preserving stationary paths and such that, for an

arrow β,

π̃(β) =

{
β if β ∈ (QR)1 \ S
0 if β ∈ S.

We deduce an exact sequence of vector spaces

0 Ẽ kQR kQA 0

and also ηAπ̃ = πηR. A direct calculation shows that π̃σ̃ = idkQA
and (c) follows by

passing to kernels. �

2.2. The relations. We have seen that, if R is a split extension of A by E, then E
may be assumed to be generated by arrows in QR. But what is not clear is whether, if we

choose an arbitrary set of arrows in QR, and call E the ideal they generate, then R is a

split extension ofR/E by E or not. Actually, this is not always the case, as the following

example shows.

Example 2.2.1. Let R be given by the quiver

2

1 4

3

β α

γδ

bound byαβ = γδ. LetE be the ideal generated byα. ThenA = R/E is not a subalgebra

of R: indeed, the product of (the classes of ) γ and δ is zero in A, but not in R. Thus, R is

not a split extension of A by E.

If, on the other hand, we let E′ be generated by α and γ, then it is easily seen that R
is a split extension of R/E′ by E′.

This example shows that, when passing from R to A, any deletion of arrows must

take into account the relations.

Lemma 2.2.2 [10](2.1)(2.3). Let ηR : kQR kQR/IR ∼= R be a presentation, S a set
of arrows in QR and E the ideal in R generated by S.
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(a) SettingA = R/E, there exists a presentation ηA : kQA kQA/IA ∼= A such that we
have a commutative diagram with exact rows and columns

0 0 0

0 Ẽ ∩ IR IR IA 0

0 Ẽ kQR kQA 0

0 E R A 0

0 0 0

π̃

ηR ηA
σ̃

π

where π̃, σ̃ are algebra morphisms such that π̃σ̃ = idkQA
.

(b) If moreover σ̃(IA) ⊆ IR, then the lower sequence realises R as a split extension of A by
E.

Proof. (a) LetQ be the quiver having the same points asQR and arrows all arrows

ofQR except those in S. Using [12](II.1.8) there exists a surjective algebra morphism

π̃ : kQR kQ, preserving stationary paths and such that

π̃(β) =

{
β if β ∈ (QR)1 \ S
0 if β ∈ S.

Let π : R A be the projection and Ẽ = Ker π̃. Then Ẽ is the ideal of kQR
generated by the arrows in S. Clearly, πηR(Ẽ) = 0 hence there exists a unique

algebra morphism ηA : kQ A such that ηAπ̃ = πηR. Moreover, ηA is surjective,

because so are π and ηR.

We claim that IA = Ker ηA is an admissible ideal of kQ. We �rst prove that

IA ⊆ kQ+2
. If this is not the case, let γ ∈ IA \ kQ+2

. There exist α1, . . . , αt ∈ Q1,

nonzero scalars c1, . . . , ct and γ′ ∈ kQ+2
such that

γ =

t∑
i=1

ciαi + γ′.

Considering γ as an element of kQR, we have

πηR(γ) = ηAπ̃(γ) = ηA(γ) = 0.

Hence ηR(γ) ∈ Kerπ = E. Therefore there exist nonzero scalars d1, . . . , ds and

arrows β1, . . . , βs ∈ S such that

t∑
i=1

ciαi + γ′ + IR = γ + IR =

s∑
j=1

djβj + IR.

Because IR is admissible and γ′ ∈ kQ+2
, this equality yields, because of the grading,

t∑
i=1

ciαi =

s∑
j=1

djβj .
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Now the βj lie in S, while the αi do not. This absurdity yields IA ⊆ kQ+2
. On the

other hand, there exists m ≥ 2 such that kQ+m
R ⊆ IR. Because Q is a subquiver of

QR, we have kQ+m ⊆ kQ+m
R so that kQ+m ⊆ IR. Because of the de�nition of ηR,

the last inclusion reads as kQ+m ⊆ IA. This establishes our claim.

Therefore ηA : kQ kQ/IA ∼= A is a presentation of A. Because the quiver of

an algebra is uniquely determined, we haveQ = QA. Moreover that ηAπ̃ = πηR and

E, Ẽ are the respective kernels of π, π̃ imply that the shown diagram is commutative

with exact rows and columns.

Finally, the (non full) quiver inclusionQA QR yields, because of [12](II.1.8),

an algebra morphism σ̃ : kQA kQR such that π̃σ̃ = idkQA
.

(b) The hypothesis yields a morphism of abelian groups σ : A R such that σηA =
ηRσ̃. Because E ⊆ radR, it su�ces to prove that σ is an algebra morphism and a

section to π. Let w,w′ be paths in QA, then

σ
(
(w + IA)(w′ + IA)

)
= σ(ww′ + IA) = σηA(ww′) = ηRσ̃(ww′)

= ηRσ̃(w)ηRσ̃(w′) = σηA(w)σηA(w′)

= σ(w + IA)σ(w′ + IA).

Thus, σ is an algebra morphism. Also, π̃σ̃ = idkQA
implies that πσηA = πηRσ̃ =

ηAπ̃σ̃ = ηA. The surjectivity of ηA yields πσ = idA, as required. �

Letw be a path in a quiver andα an arrow onw, that is, such that there exist subpaths

w1, w2 of w satisfying w = w1αw2, then we write α | w. Let now S be a set of arrows

and ρ =
∑t
i=1 λiwi a relation, with the ci nonzero scalars and the wi paths. We say that

ρ is consistently cut if, for any i, if there exists an arrow αi ∈ S such that αi | wi then

for every j 6= i, there exists αj ∈ S such that αj | wj . That is, if S cuts one branch of ρ,

then it cuts all its branches.

In 2.2.1, the relation αβ = γδ is not consistently cut by the set { α }, but it is consis-

tently cut by { α, γ }.
Because relations in a bound quiver may be assumed monomial or minimal, and be-

cause monomial relations are trivially consistently cut, the de�nition above applies only

to minimal relations.

Theorem 2.2.3 [10](2.5). Let ηR : kQR R ∼= kQR/IR be a presentation, S a set
of arrows in QR, E the ideal they generate and π : R R/E = A the projection. Then:

(a) If every minimal relation in IR is consistently cut, then the exact sequence

0 E R A 0π

realises R as a split extension of A by E.
(b) Conversely, if the sequence in (a) is a split extension and ηR respects A, then every min-

imal relation is consistently cut.

Proof. (a) Assume that every minimal relation in IR is consistently cut. As seen

in 2.2.2(a), the projection π lifts to an algebra morphism π̃ : kQR kQA. Let ρ ∈ IR
be a relation, then ρ =

∑
ciwi where the ci are nonzero scalars and the wi paths.

Because ρ is consistently cut, if there exists i such that π̃(wi) = 0 then, for each j 6= i,
we have π̃(wj) = 0. This proves that, for any relation ρ, we have either π̃(ρ) = ρ or

π̃(ρ) = 0.
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In order to prove our statement, it su�ces, because of 2.2.2(b), to prove that the

algebra morphism σ̃ : kQA kQR induced by the inclusion QA QR satis�es

σ̃(IA) ⊆ IR.

Let ρ ∈ IA be nonzero. We may assume, without loss of generality, that ρ is a

relation. Because the restriction π̃|IR : IR IA is surjective, there exists ρ′ ∈ IR
such that π̃(ρ′) = ρ. Then ρ′ can be written as ρ′ = σ+η, where σ =

∑
i σi is a sum

of monomial relations and η =
∑
j ηj is a sum of minimal relations. We distinguish

two cases:

1) Assume ρ is monomial. Because each of the π̃(σi), π̃(ηj) is a summand of

ρ = π̃(ρ′), then π̃(ηj) = 0 for all j and there exists a unique i such that

ρ = π̃(σi) = σi. We thus have π̃(ρ) = ρ and so σ̃(ρ) = ρ ∈ IR.

2) If ρ is minimal, then, for each i, we have π̃(σi) = 0 because otherwise, σi
would be a summand of the minimal relation ρ, a contradiction. Similarly, if

j, k are distinct indices such that π̃(ηj) = ηj and π̃(ηk) = ηk , then ηj + ηk
would be a summand of ρ, another contradiction to minimality. Hence there

exists a unique j such that ρ = π̃(ηj) = ηj . Again, we have ρ = π̃(ρ) and

σ̃(ρ) = ρ ∈ IR.

This completes the proof of (a).

(b) Conversely, assume that the given sequence is a split extension and that ηR respects

A. Let ρ =
∑
i ciwi be a minimal relation in IR with the ci nonzero scalars and the

wi paths. Assume there exist i and αi ∈ S such that αi | wi. Let J be the proper

subset of { 1, . . . , t } consisting of those j such that there is no arrow αj ∈ S such

that αj | wj . We must prove that J = ∅. If not, then we can write

ρ =
∑
i/∈J

ciwi +
∑
j∈J

cjwj .

The commutative diagram of 2.2.2 yields π̃(ρ) =
∑
j∈J cjwj in kQA. Because ρ ∈

IR, we have ηAπ̃(ρ) = πηR(ρ) = 0. Hence π̃(ρ) ∈ Ker ηA = IA. Because the given

exact sequence is a split extension, it follows from 2.1.2 that σ̃(IA) ⊆ IR. But then

we get

∑
j∈J cjwj ∈ IR, which contradicts the minimality of ρ. �

We recall that an algebra is monomial if it admits a presentation such that the bind-

ing ideal is generated by monomials. String algebras are special types of monomial

algebras for which we refer to [20]. Gentle algebra are special types of string algebras,

see[12] Chapter X. For special biserial algebras, we refer to [30].

Corollary 2.2.4. Let R be a split extension of A by a nilpotent bimodule E, with a
presentation respecting A. If R is monomial, string, gentle or special biserial, then so is A.

Proof. In each case, the de�ning conditions on the bound quiver of R remain satis-

�ed if one cuts arrows so that the conditions of 2.2.3 are satis�ed. �

As an interesting particular case, if R is a trivial extension of A (by either the min-

imal injective cogenerator D(AAA) or the relation bimodule Ext2A(DA , A)) and R is

monomial, string, gentle or special biserial, then so is A.

The reader will connect the notion of consistent cut of relation with that of admissible

cut of an algebra, introduced in [24] in the case of sel�njective trivial extensions and

in [16] in the case of cluster tilted algebras, see 2.2.5(b) below, and also [2].



LECTURES ON SPLIT-BY-NILPOTENT EXTENSIONS 11

Examples 2.2.5. (a) We show that one-point extensions may be viewed as split ex-

tensions. Let B be an algebra, and M a B-module, then

R = B[M ] =

(
B 0
M k

)
=

{(
b 0
m λ

)
b ∈ B,m ∈M,λ ∈ k

}
becomes an algebra when equipped with the ordinary matrix addition and the mul-

tiplication induced from the B-module structure of M . It is called the one-point
extension of R by M , see [27]. The quiver QR equals QB plus an extra point x,

called the extension point, which is a source in QR.

Cutting all arrows having x as a source is certainly a consistent cut. Therefore

R is a split extension of A = B × k by the bimodule E such that EA = M while

D(AE) = Sx
dimkM

.

(b) Let Q be a quiver with neither loops nor cycles of length two. A full subquiver of Q
is a chordless cycle if it is induced by a set of points { x1, . . . , xp } such that the only

edges on it are precisely the xi xi+1 , where we set xp+1 = x1, see [17].

A quiver Q is called cyclically oriented if each chordless cycle is an oriented cycle,

see [18].

Let R be a cluster tilted algebra with a cyclically oriented quiver, for instance

a representation-�nite cluster tilted algebra, then QR is consistently cut by exactly

one arrow from each branch of a relation if and only if the resulting algebra A is an

admissible cut of R, that is, R is the trivial extension of A by its relation bimodule.

This indeed follows easily from [18](4.2)(3.4)(4.7).

(c) The following example, due to M. I. Platzeck (private communication) shows that

in 2.2.3(b), the condition that ηR respects A is necessary.

Assume char k 6= 2 and let R be given by the quiver

α β

bound by α2 = 0, αβ = βα, β2 = 0. Let E be the ideal generated by α, then R is the

split extension of A = R/E given by the quiver

β

bound by β2 = 0. Here, the given presentation of R respects A.

Let now α′ = α, β′ = α+ β. Then R is given by the quiver

α′ β′
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bound by α′2 = 0, β′2 = 2β′α′, α′β′ = β′α′. Taking E′ as the ideal generated by α′,
we get R/E′ ∼= A, as before. However, the second relation is not consistently cut.

This presentation of R does not respect A.

3. Modules over split-by-nilpotent extensions

3.1. The change of rings functors. Let R be a split extension of A by a nilpotent

bimodule E. There is an obvious embedding of modA into modR, but the latter is in

general much larger than the former. For instance, the path algebra of the Kronecker

quiver

1 2
α

β

is a split extension of the path algebra of the quiver

1 2.
α

The �rst is representation-in�nite while the second has only 3 isoclasses of indecompos-

able modules.

BecauseA is a quotient ofR, we have the classical change of rings functors, see [21]:

(a) The induction functor−⊗A RR : modA modR. Modules in its image are called

induced.

(b) The restriction functor −⊗R AA : modR modA. Modules in its image are

called restricted.

(c) The coinduction functor HomA(RRA , −) : modA modR. Modules in its im-

age are called coinduced.

(d) The corestriction functor HomR(AAR , −) : modR modA. Modules in its im-

age are called corestricted.

We also have obvious functors:

(e) the forgetful functor −⊗R RA or HomR(ARR , −) : modR modA
(f) the embedding functor −⊗A AR or HomA(RAA , −) : modA modR.

Besides the usual adjunction relations, we have the following lemma.

Lemma 3.1.1. We have isomorphisms of functors
(a) −⊗A R⊗R AA ∼= idmodA,
(b) HomR

(
AAR , HomA(RRA , −)

) ∼= idmodA.

Proof. (a) is obvious and (b) follows from the isomorphisms of functors

HomR

(
AAR , HomA(RRA , −)

) ∼= HomA(AA⊗R RA , −) ∼= HomA(A , −). �

In the next corollary, we use for the �rst time a notation that we follow until the

end of these notes. Because we deal with modules over two algebras, in order to avoid

confusion, we denote A-modules by L,M,N, . . . and R-modules by X,Y, Z, . . .

Corollary 3.1.2. The following conditions are equivalent for two A-modules L and
M :

(a) L ∼= M (b) L⊗A R ∼= M ⊗A R (c) HomA(R , L) ∼= HomA(R , M). �

Lemma 3.1.3. (a) An R-module X is projective if and only if:
i) X ⊗R A is projective in modA, and
ii) X ⊗R A⊗A R ∼= X in modR.
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Moreover, in this case, X is indecomposable if and only if so is X ⊗R A.
(b) An R-module Y is injective if and only if:

i) HomR(A , Y ) is injective in modA, and
ii) HomA

(
RRA , HomA(A , Y )

) ∼= Y in modR.
Moreover, in this case, Y is indecomposable if and only if so is HomR(A , Y ).

Proof. (a) Let e ∈ R be an idempotent such that X = eR. Then X ⊗R A =
eR⊗RA = eA is projective in modA. Also, X ⊗RA⊗AR ∼= eA⊗AR ∼= eR = X .

SoX satis�es i) and ii). Conversely, ifX satis�es i) and ii), there exists an idempotent

e such that X ⊗R A = eA. But then ii) gives X ∼= X ⊗R A⊗AR ∼= eA⊗AR ∼= eR.

This establishes the �rst statement.

Assume that X is decomposable, say X = X1 ⊕ X2 with X1, X2 nonzero, but

that X ⊗R A = (X1 ⊗R A) ⊕ (X2 ⊗R A) is indecomposable. Then one of the

summands is zero, say X1 ⊗R A = 0. But then X1
∼= X1 ⊗R A ⊗A R = 0, a

contradiction. Therefore X is indecomposable. Similarly, X indecomposable implies

X ⊗R A indecomposable. �

Thus, there exists a bijection between isoclasses of indecomposable projectiveA- and

R-modules given by eA eR, where e is a primitive idempotent. Also, there exists a

similar bijection for the injectives.

Because A = R/E, the category modA may be identi�ed with the full subcategory

of modR of the modules X such that XE = 0. Given any R-module X , there exists a

largestR-submodule ofX which is annihilated byE, that is, which is anA-module. This

is KX = { x ∈ X xE = 0 }.

Lemma 3.1.4. Let X be an R-module. We have functorial isomorphisms:

(a) X ⊗R A ∼= X/XE,
(b) HomR(A , X) ∼= KX .

Proof. (a) Applying X ⊗R − to the exact sequence of R-R-bimodules

0 E R A 0ι π (∗)

yields a commutative diagram with exact rows in modR

X ⊗R E X ⊗R R X ⊗R A 0

0 XE X X/XE 0

µ′ µ µ′′

i p

where i, p are respectively the inclusion and projection, µ, µ′ are the multiplication

maps x⊗ r xr and µ′′ is induced by passing to cokernels.

Clearly, µ′ is surjective, because of the de�nition of XE. It is well-known that µ
is an isomorphism. Therefore the snake lemma implies that µ′′ is injective and also

surjective. So it is an isomorphism.

(b) Let f : HomR(R , X) X , u u(1) be the well-known functorial isomorphism.

For every u ∈ HomR(A , X), we have

f HomA(π , X)(u) = f(uπ) = uπ(1).

So, forx ∈ E, we haveuπ(1)x = uπ(x) = 0. Therefore, the image of the composition

f HomA(π , X) lies in KX . That is, there exists f ′ : HomR(A , X) KX making



14 I. ASSEM

the following square commutative

HomR(A , X) HomR(R , X)

KX X

f ′

HomA(π ,X)

f

j

where j is the inclusion. Applying HomR(− , X) to the exact sequence (∗) above

shows that HomR(π , X) is injective. Therefore so is f HomR(π , X) and so is f ′.
We prove that f ′ is surjective. Let x ∈ KX . Because x ∈ X , there exists ux ∈

HomR(R , X) such that x = ux(1). But then ux(E) = ux(1)E = xE = 0 hence

there exists vx : A X such that ux = vxπ. Then x = ux(1) = vxπ(1) = f ′(vx)
and so f ′ is surjective. Therefore it is an isomorphism. �

3.2. Projective covers and injective envelopes. For the notions of super�uous

epimorphisms and essential monomorphisms, we refer the reader, for example, to [3].

Lemma 3.2.1 [11](1.1). Let X be an R-module.

(a) The canonical epimorphism pX : X X/XE is super�uous.
(b) The canonical monomorphism jX : KX X is essential.

Proof. (a) Because of Nakayama’s lemma, the canonical epimorphism

f : X X/X · radR is super�uous. Because E ⊆ radR, there exists an

epimorphism g : X/XE X/X · radR such that f = gpX . Assume h is such that

pXh is an epimorphism. Then so is fh = gpXh. Because f is super�uous, h is an

epimorphism.

(b) Let Y be a nonzero submodule of X . Because E is nilpotent, there exists s ≥ 1 such

that Y Es−1 6= 0 but Y Es = 0. Let y ∈ Y Es−1 be nonzero. Then yE = 0 so that

y ∈ KX . Therefore KX ∩ Y 6= 0 and we are done. �

Corollary 3.2.2. [11](1.2) LetM be an A-module.

(a) There is a bijection between the isoclasses of indecomposable summands ofM in modA
andM ⊗A R in modR, given by N N ⊗A R.

(b) There is a bijection between the isoclasses of indecomposable summands ofM in modA
and HomA(R , M) in modR, given by N HomA(R , N).

Proof. (a) Suppose N is indecomposable in modA but N ⊗A R = X1 ⊕ X2 in

modR. Then N ∼= N ⊗A R ⊗R A ∼= (X1 ⊗R A) ⊕ (X2 ⊗R A). Because N is

indecomposable, X1 ⊗R A, say, is zero. So X1/X1E = 0. But pX1
is super�uous so

X1 = 0. Thus N ⊗A R is indecomposable. The rest of the proof is an application

of 3.1.2. �

Lemma 3.2.3. [11](1.3) LetM be an A-module.

(a) If f : P M is a projective cover in modA, then f ⊗A R : P ⊗A R M ⊗A R is
a projective cover in modR.

(b) If g : M I is an injective envelope in modA, then
HomA(R , g) : HomA(R , M) HomA(R , I) is an injective envelope in modR.
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Proof. (a) Clearly, P ⊗A R is projective in modR and f ⊗A R is an epimorphism.

Consider the commutative square:

P ⊗A R M ⊗A R

P M

p
P⊗AR

f⊗AR

p
M⊗AR

f

where we have used that (M⊗AR)/(M⊗AR)E ∼= M⊗AR⊗RA ∼= M and similarly

for P . It su�ces to prove that f ⊗AR is super�uous. Let h be such that (f ⊗AR)h is

an epimorphism. Then pM⊗AR(f ⊗A R)h = fpP⊗ARh is an epimorphism. Because

both f and pP⊗AR are super�uous, h is an epimorphism. �

We have a similar result when passing from modR to modA.

Lemma 3.2.4. [14](3.1) Let X be an R-module.
(a) If f : P̃ X is a projective cover in modR, then f ⊗R A : P̃ ⊗R A X ⊗R A is a

projective cover in modA.
(b) If g : X Ĩ is an injective envelope in modR, then

HomR(A , g) : HomR(A , X) HomR

(
A , Ĩ

)
is an injective envelope in modA.

Proof. (a) First P̃ ⊗RA is projective in modA, see 3.1.3, and f ⊗RA is an epimor-

phism. Next,

top(P̃ ⊗R A) = top(P̃ /P̃E) ∼=
P̃ /P̃E

P̃/P̃E · radA
∼=

P̃ /P̃E

P̃/P̃E · rad(R/E)

∼=
P̃ /P̃E

(P̃ · radR)/P̃E
∼=

P̃

P̃ · radA
∼=

X

X · radR
∼=

X/XE

X/XE · (radR)/E

∼= top(X ⊗R A)

where the last isomorphism comes from 3.1.4. �

3.3. Presentations. We now compute minimal projective presentations and injec-

tive copresentations of R-modules

Corollary 3.3.1 [11](1.3). LetM be an A-module.

(a) If P1 P0 M 0
f1 f0 is a projective presentation in modA, then

P1 ⊗A R P0 ⊗A R M ⊗A R 0
f1⊗AR f0⊗AR is a projective presen-

tation in modR. Further, if the �rst is minimal, then so is the second.

(b) If 0 M I0 I1
g0 g1

is an injective copresentation in modA, then

0 HomA(R , M) HomA

(
R , I0

)
HomA

(
R , I1

)HomA(R , g0) HomA(R , g1)
is

an injective copresentation in modR. Further, if the �rst is minimal, then so is the
second.

Proof. (a) The �rst statement is clear. If the given projective presentation of M
is minimal, then, because of 3.2.3, f0 ⊗A R : P0 ⊗A R M ⊗A R is a projective

cover in modR. Because f1 : P1 f1(P1) is a projective cover in modA, so is

f1 ⊗A R : P1 ⊗A R f1(P1)⊗A R ∼= (f1 ⊗A R)(P1 ⊗A R) ∼= Ker(f0 ⊗A R) in

modR. �
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Clearly, if P̃1 P̃0 X 0 is a projective presentation of X in modR, then

P̃1 ⊗R A P̃0 ⊗R A X ⊗R A 0 is a projective presentation in modA.

But here, the minimality of the �rst presentation does not imply that of the second.

Examples 3.3.2. Let A be given by the quiver

1 2
α

and R by the quiver

1 2

β

α

bound by αβα = 0, βαβ = 0. The simpleR-module S1 has a minimal projective presen-

tation

e2R e1R S1 0.

Applying −⊗R A yields a projective presentation

e2A e1A S1 ⊗R A 0.

But HomA(e2A , e1A) = 0, hence S1 ⊗R A ∼= e1A and the previous presentation is not

minimal.

We need, for later purposes, to compute the minimal projective presentation of an

A-module, considered as an R-module under the embedding modA modR.

Lemma 3.3.3. LetM be an A-module.

(a) If P1 P0 M 0
f1 f0 is a minimal projective presentation ofM in modA

and P the projective cover of P0 ⊗A EA in modA, then there exists a direct summand
P ′ of P such that

(P1 ⊕ P ′)⊗A R P0 ⊗A R M 0

is a minimal projective presentation in modR.

(b) If 0 M I0 I1
g0 g1

is a minimal injective copresentation ofM in modA,
and I the injective envelope of HomA

(
E , I0

)
in modA, then there exists a direct

summand I ′ of I such that

0 M HomA

(
R , I0

)
HomA

(
R , I1 ⊕ I ′

)
is a minimal injective copresentation in modR.

Proof. (a) Let pM⊗AR : M ⊗A R M be the canonical surjection. Be-

cause of 3.2.1, it is a super�uous epimorphism. Because of 3.2.3, so is

f0 ⊗A R : P0 ⊗A R M ⊗A R. Then their composition p
M⊗AR

(f0 ⊗A R) is a su-

per�uous epimorphism, hence it is a projective cover in modR.

As A-modules, we have P0 ⊗A R ∼= P0 ⊗A (A ⊕ E) ∼= P0 ⊕ (P0 ⊗A E) and

similarly (M ⊗A R)A ∼= M ⊕ (M ⊗A E). The morphism f0 ⊗A R then takes the

form

(
f0 0
0 f0⊗AE

)
. Because p

M⊗AR
: x⊗ (a, e) xa, for x ∈ M and (a , e) ∈ R,

we get p
M⊗AR

(f0 ⊗A R) = (f0 , 0).

Let P̃1 be the projective cover of Ker
(
p

M⊗AR
(f0 ⊗A R)

)
= Ω1

RM . Because

p
M⊗AR

(f0 ⊗A R) = (f0, 0), then P0 ⊗A E is actually a direct summand of Ω1
RM ,

when the latter is viewed as A-module. In fact, Ω1
RM

∼= Ω1
AM ⊕ (P0 ⊗A E) in
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modA. The projective cover of Ω1
AM in modA is P1, while that of P0 ⊗A E is P .

Then, we have a commutative diagram in modR with exact rows

P1 ⊗A R P0 ⊗A R M ⊗A R 0

(P1 ⊕ P )⊗A R P0 ⊗A R M 0

f1⊗AR

(1
0)

f0⊗AR

p
M⊗AR

(f1⊗AR , f̃)

where f̃ : P ⊗A R P0 ⊗A R is the composition of the embedding

P0 ⊗A ER P0 ⊗A RR, induced from the embedding AER ⊆ ARR because

of the projectivity of P0, with the projective cover PA P0 ⊗A E in modA.

The lower row in the preceding diagram is a projective presentation in modR,

but is not necessarily minimal. Assume P ′′ is a direct summand of P1 ⊕ P such that

we have a minimal projective presentation in modR

P ′′ ⊗A R P0 ⊗A R M 0.

Because M is an A-module, it is annihilated by E when viewed as R-module. Hence

M ∼= M ⊗RA because of 3.1.4. Applying−⊗RA to the previous presentation yields

a commutative diagram with exact rows in modA

P ′′ P0 M 0

P1 P0 M 0.

f0

f1 f0

Because P1 is the projective cover of Ω1
AM , there exists an epimorphism P ′′ P1

making the diagram commute. Therefore P ′′ = P1 ⊕ P ′ and we have a minimal

projective presentation in modR

(P1 ⊕ P ′)⊗A R P0 ⊗A R M 0
(f1⊗AR , f̃

′) p
M⊗AR

(f0⊗AR)

where f̃ ′ is the restriction of f̃ to P ′ ⊗A R. �

Example 3.3.4. Let A be given by the quiver

43
2

1 β

γ

α

bound by αβ = 0, αγ = 0, and R be given by the quiver

43
2

1 β

γ
α

η

bound by αβ = 0, αγ = 0, ηαηα = 0. ThenR is the split extension ofA by the nilpotent

bimodule E generated by η. The indecomposable (injective) module MA = 3
2 has the

minimal projective presentation in modA

0 e1A = 1 e3A = 3
2 1 M 0.
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Because of 3.3.1, a minimal projective presentation for M ⊗A R is given by

e1R = 1 e3R =
3

1 2 4
3
4

M ⊗A R 0.
f

Then, M ⊗A R ∼=
3
2 4
3
4

and also f is a monomorphism, so that pd(M ⊗A R) ≤ 1. Con-

sidering M ⊗A R as an A-module, we get (M ⊗A R)A ∼= 3
2 ⊕ 4

3 ⊕ 4 . In particular

M ⊗AEA = 4
3 ⊕ 4 has as projective cover P = ( 4

3 )
2
. Therefore there exists a projective

presentation in modR

(e4R)2 ⊕ e1R =

(
4
3
4
3
4

)2

⊕ 1 e3R =
3

1 2 4
3
4

M = 3
2 0.

It is not minimal, but letting P ′ = e4A = 4
3 , we get a minimal projective presentation in

modR

e4R⊕ e1R e3R M 0.

3.4. Homological dimension one. Working with homological dimension one is

easier than with other dimensions, due to its connection with the Auslander-Reiten trans-

lation, see [12](IV.2.7).

Lemma 3.4.1 [11](2.1). For any A-moduleM , we have
(a) τR(M ⊗A R) ∼= HomA(RRA , τAM)
(b) τ−1R HomA(RRA , M) ∼= (τ−1A M)⊗A R.

Proof. (a) A minimal projective presentation

P1 P0 M 0

in modA induces, because of 3.3.1, a minimal projective presentation

P1 ⊗A R P0 ⊗A R M ⊗A R 0.

We deduce a commutative diagram with exact rows in modRop

HomR(P0 ⊗A R , R) HomR(P1 ⊗A R , R) Tr(M ⊗A R) 0

R⊗A HomA(P0 , A) R⊗A HomA(P1 , A) R⊗A TrM 0

f∼= g∼= h

where the functorial isomorphisms f, g are de�ned as follows: if e is an idempo-

tent, then HomR(eA⊗A R , R) ∼= HomR(eR , R) ∼= Re ∼= R ⊗A Ae ∼= R ⊗A
HomA(eA , A). Then h is deduced by passing to the cokernels and so is an isomor-

phism. We thus have

τR(M ⊗A R) ∼= DTr(M ⊗A R) ∼= D(R⊗A TrM)

∼= HomA(R , DTrM) ∼= HomA(R , τAM). �

Corollary 3.4.2 [11]2.2. For any A-moduleM , we have
(a) pd(M ⊗A R) ≤ 1 if and only if pdMA ≤ 1 and HomA(DE , τAM) = 0

(b) id HomA(R , M) ≤ 1 if and only if idMA ≤ 1 and HomA

(
τ−1A M , E

)
= 0.
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Proof. (a) Because of [12](IV.2.7), pd(M ⊗A R) ≤ 1 if and only if

HomR

(
DR , τR(M ⊗A R)

)
= 0. Now, we have

HomR

(
DR , τR(M ⊗A R)

) ∼= HomR

(
DR , HomA(R , τAM)

)
∼= HomA(DR⊗R RA , τAM)

∼= HomA(DRA , τAM)

∼= HomA(DA , τAM)⊕HomA(DE , τAM).

The result follows from another application of [12](IV.2.7). �

Example 3.4.3. We give an example showing that both conditions are necessary. Let

A be the path algebra of the quiver

1 2 3

αβ

and R be given by the quiver

1 2 3
αβ

η

bound by αβη = 0. In this case, one easily sees that EA =
(

3
2
1

)2
, (DE)A =

(
2
1

)3
. Let

M = 3
2 . We have a minimal projective presentation of M in modA

0 e1A e3A M 0.

Applying −⊗A R yields a minimal projective presentation in modR

e1R e3R M ⊗A R 0.
f

Therefore, M ⊗A R ∼= 3
2 . The projective dimension of

3
2 in modR equals 2. Indeed

Ker f = e3R, so that pdMA ≤ 1 but pd(M ⊗A R) > 1. This shows that the second

condition of the corollary is necessary. Actually, τA
(
3
2

)
= 2

1 so HomA(DE , τAM) = 0.

Lemma 3.4.4 [14](2.3). LetM be an A-module.
(a) If pdMR ≤ 1, then pdMA ≤ 1.
(b) If idMR ≤ 1, then idMA ≤ 1.

Proof. (a) Because of 3.4.2, it su�ces to prove that pd(M ⊗A R) ≤ 1. Let

P1 P0 M 0
f1 f0

be a minimal projective presentation. Because

of 3.3.1, and with its notation, there exists a commutative diagram with exact rows

P1 ⊗A R P0 ⊗A R M ⊗A R 0

(P1 ⊕ P ′)⊗A R P0 ⊗A R M 0.

f1⊗AR

(1
0)

f0⊗AR

(f1⊗AR,f̃
′)

Because pdMR ≤ 1, the morphism (f1 ⊗A R, f̃ ′) is injective. Because so is

(
1
0

)
, the

morphism f1 ⊗A R is injective. Therefore pd(M ⊗A R) ≤ 1, thus establishing our

claim. �

An easy application of this lemma is the following: if R is hereditary, then so is A.

But we have a much stronger result, due to Suarez.
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Theorem 3.4.5 [33](3.2)(3.5). Let R be a split extension of A by a nilpotent bimodule
E. Then gl.dim. A ≤ gl.dim. R ≤ gl.dim. A+ pdAR. �

We can also apply 3.4.4 to the study of the left and right parts of an algebra. Recall

from [25] that, if C is an algebra, the le� part LC of modC is the full subcategory of

indC consisting of those indecomposable modules U such that, if there exists V inde-

composable and a sequence of nonzero morphisms between indecomposable C-modules

V = V0 V1 · · · Vm = U

then pdVC ≤ 1. One de�nes dually the right part RC of modC .

Lemma 3.4.6 [14](2.4). LetM be an indecomposable A-module.
(a) IfM ⊗A R belongs to LR, thenM belongs to LA.
(b) If HomA(R , M) belongs to RR, thenM belongs to RA.
(c) IfM ⊗A R belongs to RR, thenM belongs to RA.
(d) If HomA(R , M) belongs to LR, thenM belongs to LA.

Proof. (a) Let L = L0 L1 · · · Lm = M
f1 fm

be a sequence of nonzero

morphisms between indecomposable A-modules. For each i, Li ⊗A R is inde-

composable and fi ⊗A R is nonzero. So we have a sequence of nonzero mor-

phisms between indecomposable R-modules

L⊗A R = L0 ⊗A R L1 ⊗A R · · · Lm ⊗A R = M ⊗A R.
f1⊗AR fm⊗AR

Because M ⊗A R ∈ LR, then pd(L ⊗A R) ≤ 1. Because of 3.4.2, we get

pdLA ≤ 1.

(c) We have isomorphisms of k-vector spaces

HomR

(
M ⊗A R , HomA(RRA , M)

) ∼= HomA(M ⊗A R⊗R RA , M)

∼= HomA(M ⊗A RA , M)

∼= HomA

(
M ⊗A (A⊕ E) , M

)
∼= HomA(M , M)⊕HomA(M ⊗A E , M).

Because HomA(M , M) 6= 0, there exists a nonzero morphism

M ⊗A R HomA(R , M). Now M ⊗A R ∈ RR, which is closed under suc-

cessors. Hence HomA(R , M) ∈ RR. Applying (b), which is proved exactly as

(a), we get M ∈ RA, as required. �

We now consider di�erent classes of algebras. An algebra C is called laura if LC ∪
RC is co�nite in indC , see [9] or [29]. It is le� glued if LC is co�nite in indC , see [8].

Right glued algebras are de�ned similarly. An algebra C is weakly shod if the length

of any path from an indecomposable not in LC to one not in RC is bounded, see [23].

It is shod if every indecomposable has projective dimension or injective dimension at

most one, see [22]. It is quasi-tilted if CC ∈ LC , see [25]. For tilted algebras, we refer

to [12], Chapter VIII. The algebra C is right ada if CC ∈ add(LC ∪RC) and le� ada if

DCC ∈ add(LC ∪ RC), see [1]. Finally, C is ada if it is both right and left ada, see [7].

Theorem 3.4.7 [14](2.5) [35](1.10) [1](3.6) [7](2.9). LetR be a split extension ofA by
the nilpotent bimodule E.
(a) If R is laura, then so is A.
(b) If R is right or left glued, then so is A.
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(c) If R is weakly shod, then so is A.
(d) If R is shod, then so is A.
(e) If R is quasi-tilted, then so is A.
(f) If R is tilted, then so is A.
(g) If R is right or left ada, then so is A.
(h) If R is ada, then so is A.

Proof. (a) Because of 3.4.6, if an indecomposableA-moduleM does not lie in LA∪
RA, then M ⊗A R /∈ LR ∪ RR. Because R is laura, LR ∪ RR is co�nite in indR.

Therefore, LA ∪ RA is co�nite in indA.

(b) is proved in the same way.

(c) Let M0 /∈ LA, Mt /∈ RA be indecomposable A-modules. As seen

in 3.4.6, a sequence of nonzero morphisms between indecomposable R-modules

M0 M1 · · · Mt induces a sequence of nonzero morphisms between inde-

composable R-modules M0 ⊗A R M1 ⊗A R · · · Mt ⊗A R. Because R is

weakly shod, t is bounded.

(d) Let M be an indecomposable A-module. Because R is shod, pdMR ≤ 1 or idMR ≤
1. Then 3.4.4 gives pdMA ≤ 1 or idMA ≤ 1.

(e) LetP be an indecomposable projectiveA-module. ThenP⊗AR is an indecomposable

projective R-module. Because R is quasi-tilted, P ⊗A R ∈ LR. Because of 3.4.6,

P ∈ LA.

(f) We refer the reader to [35].

(g) Let P be an indecomposable projective A-module. If R is right ada, then P ⊗A R ∈
LR ∪ RR. Because of 3.4.6, P ∈ LA.

(h) Follows from (g). �

3.5. Almost split sequences. We now look for a criterion allowing to verify when

an almost split sequence in modA embeds as an almost split sequence in modR.

Lemma 3.5.1 [13](1.1). LetM be an indecomposable A-module.
(a) Let P0 be a projective cover ofM and P a projective cover of P0 ⊗A E in modA. Then

there exist a direct summand P ′ of P and an exact sequence in modA

0 τAM ⊕HomA(E, τAM) τRM P ′⊗ADR Ker(p
M⊗AR

⊗ADR) 0.

(b) Let I0 be an injective envelope of M and I an injective envelope of HomA(E , I0) in
modA. Then there exist a direct summand I ′ of I and an exact sequence in modA

0 Coker HomA(DR, j
HomA(R,M)

) HomA
(
DR,I ′

)
τ−1R M τ−1A M⊕(τ−1A M⊗AE) 0.

Proof. (a) Let P1 P0 M 0
f1 f0

be a minimal projective presen-

tation in modA. Because of 3.3.1, we have a minimal projective presentation

P1 ⊗A R P0 ⊗A R M ⊗A R 0
f1⊗AR f0⊗AR

in modR. Because of 3.3.3, there exists a direct summand P ′ of P such that we have

a commutative diagram with exact rows in modR

P1 ⊗A R P0 ⊗A R M ⊗A R 0

(P1 ⊕ P ′)⊗A R P0 ⊗A R M 0

f1⊗AR

(1
0)

f0⊗AR

p
M⊗AR(

f1⊗AR , f̃
′
)
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where the lower sequence is a minimal projective presentation.

Applying the Nakayama functor−⊗R DR yields another commutative diagram

with exact rows

0 τR(M⊗AR) P1⊗ADR P0⊗ADR M⊗ADR 0

0 τRM (P1⊕P ′)⊗ADR P0⊗ADR M⊗RDR 0

j

u

f1⊗ADR

(1
0)

f0⊗ADR

p
M⊗R⊗ADR

where j is the inclusion and u is induced by passing to kernels. Because

(
1
0

)
j is

injective, so is u.

This diagram induces the two commutative diagrams

0 τR(M ⊗A R) P1 ⊗A DR X 0

0 τRM (P1 ⊕ P ′)⊗A DR Y 0

0 X P0 ⊗A DR M ⊗A DR 0

0 Y P0 ⊗A DR M ⊗R DR 0

u v

v p
M⊗R

⊗ADR

where v is the induced morphism. The snake lemma applied to the second diagram

yields v injective and Coker v ∼= Ker(pM⊗AR ⊗A DR), and to the �rst diagram an

exact sequence

0 Cokeru P ′ ⊗A DR Coker v 0.

This latter sequence splices with the exact sequence

0 τR(M ⊗A R) τRM Cokeru 0u

to give an exact sequence

0 τR(M ⊗A R) τRM P ′ ⊗A DR Ker(pM⊗AR ⊗A DR) 0.

Finally, as A-modules, we have

τR(M ⊗A R) ∼= HomA(R , τAM) ∼= τAM ⊕HomA(E , τAM). �

Theorem 3.5.2 [13](2.1). LetM be an indecomposable A-module.

(a) IfM is nonprojective, then the following conditions are equivalent:
i) the almost split sequences ending withM in modA and modR coincide
ii) τAM ∼= τRM
iii) HomA(E , τAM) = 0 andM ⊗A E = 0.

(b) IfM is noninjective, then the following conditions are equivalent:
i) the almost split sequences starting withM in modA and modR coincide
ii) τ−1A M ∼= τ−1R M

iii) HomA(E , M) = 0 and τ−1A M ⊗A E = 0.

Proof. (a) i) implies ii). This is trivial.
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ii) implies i). Let 0 τRM X M 0 be almost split in modR. Because

τRM ∼= τAM , the whole sequence lies in modA. It does not split in modA,

because otherwise it would split in modR. Let h : L M be a nonretraction in

modA. Then h is a nonretraction in modR. Therefore, there exists h′ : L X
such that h = gh′. Because L, X are A-modules, h′ is a morphism in modA.

ii) implies iii). Because of 3.5.1, there exists a monomorphism

u : τAM ⊕HomA(E , τAM) τRM in modA. Then τRM ∼= τAM forces

HomA(E , τAM) = 0. Moreover, u is an isomorphism τR(M ⊗A R) ∼= τRM .

But then M ⊗A R ∼= M and so M ⊗A E = 0.

iii) implies ii). Because M ⊗A E = 0, we have M ⊗A R ∼= M , therefore

Ω1
R(M ⊗A R) ∼= Ω1

RM
∼= Ω1

AM ⊕ (P0 ⊗A E)

using the notation and the proof of 3.3.3. Let P̃ be a projective cover of Ω1
R(M⊗A

R) in modA. Then P̃ ⊗A R is a projective cover of Ω1
R(M ⊗A R) in modR,

because of 3.3.3. Now Ω1
R(M ⊗A R) ∼= Ω1

AM yields P̃ ⊗A R ∼= P1 ⊗A R hence

P̃ = P1. Therefore the tops of Ω1
R(M ⊗A R) and Ω1

AM are equal in modA,

and hence P0 ⊗A E = 0. But then its projective cover P is zero and so P ′ = 0.

Then we have τRM ∼= τAM ⊕ HomA(E , τAM). Thus, HomA(E , τAM) = 0
implies τRM ∼= τAM , as desired. �

The following corollary, due to Hoshino [26], played an important rôle in the classi-

�cation of the representation-�nite sel�njective algebras.

Corollary 3.5.3 [13](2.3). Assume E = A DAA and let M be an indecomposable
A-module.
(a) IfM is nonprojective, then τAM ∼= τRM if and only if pdMA ≤ 1, id τAM ≤ 1.
(b) IfM is noninjective, then τ−1A M ∼= τ−1R M if and only if pd τ−1A M ≤ 1, idMA ≤ 1.

Proof. (a) We have pdMA ≤ 1 if and only if HomA(DA , τAM) = 0,

see [12](IV.2.7), and id τAM ≤ 1 if and only if M ⊗A DA ∼= DHomA(M , A) =
0. �.

Assume now that A is a tilted algebra and E = Ext2A(DA , A) so that R = A n E
is cluster tilted. It is shown in [4] that any complete slice in modA embeds in modR
as what is called a local slice, a result extended in [6] to algebras B such that there exist

surjective morphisms of algebras R B A. The decisive step was the proof that,

if M is an indecomposable lying on a complete slice in modA, then, if M is nonprojec-

tive in modA, we have τAM ∼= τRM and if it is noninjective, then τ−1A M ∼= τ−1R M ,

see [6](3.2.1).

In [34](5.9), Tre�nger obtained necessary and su�cient conditions for a τ -slice in

modA to embed as a τ -slice in modR.

Example 3.5.4. Let A be given by the quiver

1 2 3

αβ

bound by αβ = 0, and R be given by the quiver

1 2 3

αβ

η
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bound by αβ = 0, ηα = 0. Here we �nd EA = ( 3 )2, while (DE)A = 3
2 . Consider

�rst the simple module S2 = 2 . We have τAS2 = 1 hence HomA(E , τAS2) = 0. On

the other hand, S2 ⊗A E ∼= DHomA(S2 , DE) = DHomA

(
2 , 3

2

)
6= 0. Therefore the

almost split sequences ending with S2 in modA and modR do not coincide. In fact, a

quick calculation shows that the �rst is 0 1 2
1 2 0 while

the second is 0 2
1 3

2
3 ⊕ 2

1 2 0 .

On the other hand, looking at S3 = 3 we have τAS3 = 2 , so that

HomA(E , τAS3) = 0. Also S3 ⊗A E ∼= DHomA(S3 , DE) = DHomA

(
3 , 3

2

)
= 0.

Therefore, the almost split sequences ending in S3 in modA and modR coincide.

4. Tilting modules

4.1. Extendable tilting modules. For tilting theory, we refer the reader

to [12] Chapter IV. Let, as usual, R be a split extension of A by a nilpotent bimodule

E.

Theorem 4.1.1 [11](2.3). Let T be an A-module, then
(a) T ⊗A R is a partial tilting (or tilting) R-module if and only if T is a partial tilting (or

tilting, respectively)A-module, HomA(T ⊗A E , τAT ) = 0 and HomA(DE , τAT ) =
0;

(b) HomA(R , T ) is a partial cotilting (or cotilting) R-module if and only if T is a partial
cotilting (or cotilting, respectively)A-module, HomA

(
τ−1A T , HomA(E , T )

)
= 0 and

HomA

(
τ−1A T , E

)
= 0.

Proof. (a) Because of 3.2.2, the number of isoclasses of indecomposable summands

of T equals that of T ⊗A R. Also, because of 2.1.2, the ranks of the Grothendieck

groups of A and R are equal. Therefore, it su�ces to prove the statement about

partial tilting modules.

We have isomorphisms of vector spaces

HomR

(
T ⊗A R , τR(T ⊗A R)

) ∼= HomR

(
T ⊗A R , HomA(R , τAT )

)
∼= HomA(T ⊗A R⊗R R , τAT )

∼= HomA(T ⊗A R , τAT )

∼= HomA(T , τAT )⊕HomA(T ⊗A E , τAT ).

If T is a partial tilting module then pdTA ≤ 1 implies HomA(T , τAT ) ∼=
DExt1A(T , T ) = 0. Further, HomA(DE , τAT ) = 0 implies pd(T ⊗A R) ≤ 1
because of 3.4.2. Therefore HomA(T ⊗A E , τAT ) = 0 implies

Ext1R(T ⊗A R , T ⊗A R) ∼= DHomR

(
T ⊗A R , τR(T ⊗A R)

)
= 0

and so T ⊗A R is a partial tilting R-module.

Conversely, if T ⊗A R is a partial tilting R-module, 3.4.2 gives pdTA ≤ 1
and HomA(DE , τAT ) = 0. Moreover HomR

(
T ⊗A R , τR(T ⊗A R)

)
= 0 yields

HomA(T ⊗A E , τAT ) = 0 and Ext1A(T , T ) ∼= DHomA(T , τAT ) = 0, so TA is a

partial tilting module. �

Definition 4.1.2. (a) A partial tilting (or tilting) A-module is called extendable if

T ⊗A R is a partial tilting (or tilting, respectively) R-module.
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(b) A partial cotilting (or cotilting) A-module is called coextendable if HomA(R , T ) is

a partial cotilting (or cotilting, respectively) R-module.

One reason for looking at this class of (co)tilting modules is that they preserve the

splitting character of the algebra.

Proposition 4.1.3 [11](2.5). (a) If T is an extendable tilting A-module, then S =
End(T ⊗AR) is the split extension ofB = EndTA by the nilpotent bimodule BWB =
HomA(BTA , BT ⊗A E).

(b) If T is a coextendable cotilting A-module, then S = End HomA(R , T ) is the split ex-
tension ofB = EndTA by the nilpotent bimoduleBWB = HomA

(
HomA(E , T ) , T

)
.

Proof. (a) We have vector space isomorphisms

S = HomR(T ⊗A R , T ⊗A R) ∼= HomA

(
T , HomR(ARA , T ⊗A R)

)
∼= HomA(T , T ⊗A RA) ∼= HomA(T , T )⊕HomA(T , T ⊗A E).

We thus have an exact sequence 0 W S B 0
ϕ

where

ϕ is an algebra morphism, and the ideal structure of W is induced from its B-B-

bimodule structure. There remains to prove that W is nilpotent. The multiplication

in W is that of S and, for any w ∈ W , its image is contained in T ⊗A E. Because E
is nilpotent, there exists s ≥ 0 such that, for any sequence w1, . . . , ws of elements of

W , the image of w1 · · ·ws lies in T ⊗A Es = 0. Therefore W s = 0. �

The proof shows that the nilpotency index of W in S does not exceed that of E in

R. Thus, if R is a trivial extension of A by E, then S is a trivial extension of B by W .

Example 4.1.4. Let A be the path algebra of the quiver

43
2

1 β

γ
α

and R be given by the quiver

43
2

1 β

γ
α

η

bound by βη = 0, ηαβ = 0, ηαγ = 0. It is easily seen that the A-module

T = e1A⊕ e4A⊕D(Ae1)⊕D(Ae4) = 1 ⊕ 4
3
1 2
⊕ 4

3
1
⊕ 4

is tilting. We claim it is extendable. We �rst observe that EA = 4
3 , (DE)A = ( 1 )2. In

particular DE is generated by T so that HomA(DE , τAT ) ∼= DExt1A(T , DE) = 0. We

now compute T ⊗A R. We have e1A ⊗A R ∼= e1R =
1
4
3

and e4A ⊗A R ∼= e4R =
4
3
1 2

.

Also the minimal projective presentations

0 e2A e4A
4
3
1

0

0 e3A e4A 4 0
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induce respectively the minimal projective presentations

e2R e4R
4
3
1
⊗A R 0

e3R e4R 4 ⊗A R 0 .

Therefore

4
3
1
⊗A R ∼=

4
3
1

and 4 ⊗A R ∼= 4 and T ⊗A R =
1
4
3
⊕ 4

3
2 1
⊕ 4

3
1
⊕ 4 so that

T ⊗A E = 4
3 , which is generated by T . Therefore HomA(T ⊗A E , τAT ) = 0 and T is

extendable.

The algebra EndT is given by the quiver

1

2 3

4
ν µ λ

bound by λµν = 0, while End(T ⊗A R) is given by the quiver

1

2 3

4
ν µ λ

σ

bound by λµν = 0, λµσ = 0, σλ = 0. It is the split extension of EndT by the bimodule

generated by σ.

On the other hand, the tilting A-module T ′ =
4
3
2 1
⊕ 4

3
2
⊕ 4

3
1
⊕ 4 is not extendable,

because DE is not generated by T ′ and then Ext1A
(
T ′ , DE

)
6= 0.

Another example of extendable partial tilting module can be found in [28] where

the authors study cluster tilted algebras from the point of view of induced and coinduced

modules. They prove in [28](4.9) that, if A is a tilted algebra, E = Ext2A(DA , A) and

R = AnE, then (DE)A is an extendable partial tilting module, andEA is a coextendable

partial cotilting module.

4.2. Induced torsion pairs. For a module M , the notations GenM and CogenM
stand respectively for the class of modules generated and cogenerated by M .

Associated with a tilting A-module T is a torsion pair

(
T(TA),F(TA)

)
in modA

de�ned by

T(TA) =
{
MA Ext1A(T , M) = 0

}
= GenT

F(TA) =
{
MA HomA(T , M) = 0

}
= Cogen(τAT ).

Similarly, associated with a cotilting A-module T is a torsion pair

(
T ′(TA),F′(TA)

)
given by

T ′(TA) =
{
MA HomA(T , M) = 0

}
= Gen(τ−1A T )

F′(TA) =
{
MA Ext1A(T , M) = 0

}
= CogenT.

Proposition 4.2.1. (a) If T is an extendable tilting A-module then
XR ∈T(T ⊗A R) if and only if XA ∈T(T )
XR ∈ F(T ⊗A R) if and only if XA ∈ F(T ).

(b) If T is a coextendable cotilting A-module then
XR ∈T ′

(
HomA(R , T )

)
if and only if XA ∈T ′(T )

XR ∈ F′
(
HomA(R , T )

)
if and only if XA ∈ F′(T ).
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Proof. (a) The statement follows from the vector space isomorphisms

Ext1R(T⊗AR,X) ∼= DHomR

(
X , τR(T ⊗A R)

) ∼= DHomR

(
X , HomA(R , τAT )

)
∼= DHomA(X ⊗R RA , τAT ) ∼= DHomA(XA , τAT ) ∼= Ext1A(T ,X)

and HomR(T ⊗A R , X) ∼= HomA

(
T , HomR(ARR , X)

) ∼= HomA(T , XA). �

Corollary 4.2.2. (a) If T is an extendable tilting module, then
i) T(T )⊗A R ⊆T(T ⊗A R) always, and

T(T )⊗A R ⊇T(T ⊗A R) if and only if Im(−⊗A R) ⊇T(T ⊗A R).
ii) F(T )⊗A R ⊆ F(T ⊗A R) if and only if F(T )⊗A E ⊆ F(T ),

F(T )⊗A R ⊇ F(T ⊗A R) if and only if Im(−⊗A R) ⊇ F(T ⊗A R).
(b) If T is a coextendable cotilting module, then

i) HomA

(
R , F′(T )

)
⊆ F′

(
HomA(R , T )

)
always, and

HomA

(
R , F′(T )

)
⊇ F′

(
HomA(R , T )

)
if and only if Im HomA(R , −) ⊇

F′
(

HomA(R , T )
)
.

ii) HomA

(
R , T ′(T )

)
⊆ T ′

(
HomA(R , T )

)
if and only if HomA

(
E , T ′(T )

)
⊆

T ′(T ),
HomA

(
R , T ′(T )

)
⊇ T ′

(
HomA(R , T )

)
) if and only if Im HomA(R , −) ⊇

T ′
(

HomA(R , T )
)
.

Proof. (a) i) Let M ∈ T(T ). In order to show that M ⊗A R ∈ T(T ⊗A R), we

need, because of 4.2.1, to prove that M ⊗A RA = M ⊕ (M ⊗A E) lies in T(T ).

We know thatM ∈T(T ). ButM generated by T impliesM ⊗AE generated by

T ⊗A E and the latter is generated by T , because of 4.1.1. This establishes the

�rst statement.

The necessity part of the second statement is clear, so we prove su�ciency. Let

X ∈ T(T ⊗A R). The hypothesis says that there exists MA such that X ∼=
M ⊗AR. It su�ces to prove thatM ∈T(T ). But this follows from the facts that

XA ∈T(T ) and XA
∼= M ⊕ (M ⊗A E).

ii) Let N ∈ F(T ). We have N ⊗A R ∈ F(T ⊗A R) if and only if N ⊗A RA =
N ⊕ (N ⊗A E) ∈ F(T ) if and only if N ⊗A E ∈ F(T ). This implies the �rst

statement. The second one is proved as the corresponding one for T(T ). �

Corollary 4.2.3. (a) Let T be an extendable tilting module, then
i) If

(
T(T ⊗A R),F(T ⊗A R)

)
splits in modR, then

(
T(T ),F(T )

)
splits in

modA.
ii) If

(
T(T ),F(T )

)
splits in modA and F(T ⊗A R) ⊆ Im(− ⊗A R), then(

T(T ⊗A R),F(T ⊗A R)
)
splits in modR.

(b) Let T be a coextendable cotilting module, then
i) If

(
T ′
(
HomA(R , T )

)
,F′

(
HomA(R , T )

))
splits in modR, then(

T ′(T ),F′(T )
)
splits in modA.

ii) If
(
T ′(T ),F′(T )

)
splits in modA and T ′(HomA(R , T )) ⊆ Im HomA(R , −),

then
(
T ′
(
HomA(R , T )

)
,F′

(
HomA(R , T )

))
splits in modR.

Proof. (a) i) Let M ∈ T(T ), N ∈ F(T ). We claim that Ext1A(N , M) = 0.

Because of 4.2.1, we have MR ∈ T(T ⊗A R), NR ∈ F(T ⊗A R). But then

Ext1R(N , M) = 0. This implies Ext1A(N , M) = 0.



28 I. ASSEM

ii) LetX ∈T(T⊗AR), Y ∈ F(T⊗AR). We claim that Ext1R(X , Y ) = 0. Because

of the hypothesis and 4.2.2, there existsN ∈ F(T ) such that Y ∼= N⊗AR. Also,

XR ∈ T(T ⊗A R) implies that XA ∈ T(T ), that is, X ∈ Gen(T ). This implies

that X ⊗A E ∈ Gen(T ⊗A E). Because T ⊗A E ∈ GenT , see 4.1.1, we get

X ⊗A E ∈T(T ). Therefore, X ⊗A RA ∼= X ⊕ (X ⊗A E) ∈T(T ). Hence

Ext1R(Y ,X) ∼= DHomR(X, τRY ) ⊆ DHomR(X , τRY ) ∼= DHomR

(
X , τR(N⊗AR)

)
∼= DHomR

(
X , HomA(R , τAN)

) ∼= DHomA(X ⊗R RA , τAN)

∼= DHomA(X , τAN)⊕DHomA(X ⊗A E , τAN) = 0

because N ∈ F(T ) and

(
T(T ),F(T )

)
split imply τAN ∈ F(T ). �

Example 4.2.4. Let e ∈ A be an idempotent such that eA is simple projective non-

injective, and E is a nilpotent bimodule such that eE = Ee = 0. Then the APR-tilting

module T = τ−1A (eA)⊕ (1− e)A is extendable.

Indeed, we must show that DE and T ⊗A E are generated by T . Now

Ext1A(T , DE) ∼= DHomA(DE , τAT ) = DHomA(DE , eA) is nonzero if and only if

eA is a direct summand of DE. But HomA(eA , DE) ∼= (DE)e ∼= D(eE) = 0. Hence

Ext1A(T , DE) = 0 and so DE ∈ GenT .

Moreover, there exists an idempotent e′ ∈ A such that we have an almost split se-

quence

0 eA e′A τ−1A (eA) 0. (∗)

Applying − ⊗A E yields e′E ∼= τ−1A (eA) ⊗A E. Now e′E ∈ GenT because e′Ee = 0,

hence so is τ−1A (eA)⊗A E. Therefore T ⊗A E ∈ GenT .

Furthermore, T ⊗A R is also an APR-tilting module.

Indeed, we �rst prove that eR is simple projective noninjective in modR. If this is

not the case, there exists α ∈ (QR)1 starting at the point corresponding to e. There is no

such arrow in QA, hence α belongs to E and α = eα = 0 gives a contradiction. Next,

applying −⊗A R to (∗) yields an exact sequence

0 TorA1

(
τ−1A (eA) , R

)
eR e′R τ−1A (eA)⊗A R 0

j
.

Because TorA1

(
τ−1A (eA) , R

)
∼= DExt1A

(
τ−1A (eA) , DR

)
= 0 (for, DE ∈ GenT ), we

deduce that j is a monomorphism. Hence τ−1A (eA)⊗A R ∼= τ−1R (eR) and so T ⊗A R is

indeed an APR-tilting module.

Finally, F(T ⊗A R) = add(eR) = add(eA ⊗A R) ⊆ Im(− ⊗A R) so that the

conditions of 4.2.3 are satis�ed in this case.

4.3. Restrictions of tilting modules. We consider the reverse problem: given a

tilting R-module U , under which conditions is the restricted module U ⊗R A a tilting

A-module (and similarly for cotilting modules)?

Lemma 4.3.1. (a) LetUR be such thatTorR1 (U,A) = 0 and 0 P̃1 P̃0 U 0
f1 f0

a minimal projective resolution for U , then

0 P̃1 ⊗R A P̃0 ⊗R A U ⊗R A 0
f1⊗RA f0⊗RA

is a minimal projective resolution for U ⊗R A. In particular, pd(U ⊗R A) ≤ 1.
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(b) Let UR be such that Ext1R(A , U) = 0 and 0 U Ĩ0 Ĩ1 0
g0 g1

a minimal in-
jective coresolution for U , then

0 HomR(A , U) HomR

(
A , Ĩ0

)
HomR

(
A , Ĩ1

)
0

HomR(A , g0) HomR(A , g1)

is a minimal injective coresolution for HomR(A , U). In particular, id HomR(A , U) ≤
1.

Proof. (a) Applying −⊗R A to the given minimal projective resolution of UR and

using that TorR1 (U , A) = 0 yields an exact sequence

0 P̃1 ⊗R A P̃0 ⊗R A U ⊗R A 0
f1⊗RA f0⊗RA

.

Because P̃0⊗RA, P̃1⊗RA are projectiveA-modules, this is a projective resolution. In

particular, pd(U ⊗R A) ≤ 1. Minimality follows from the fact that, because of 3.2.4,

P̃0 ⊗R A is a projective cover of U ⊗R A. �

Lemma 4.3.2. (a) Let UR be such that pdU ≤ 1 and TorR1 (U , A) = 0, then

τA(U ⊗R A) ∼= HomR(A , τRU).

(b) Let UR be such that idU ≤ 1 and Ext1R(A , U) = 0, then

τ−1A HomR(A , U) ∼= (τ−1R U)⊗R A.

Proof. (a) Because of 4.3.1, a minimal projective resolution

0 P̃1 P̃0 U 0 induces a minimal projective resolution in modR

0 P̃1 ⊗R A P̃0 ⊗R A U ⊗R A 0 .

Applying HomA(− , A) yields a commutative diagram with exact rows

HomA

(
P̃0⊗RA,A

)
HomA

(
P̃1 ⊗R A , A

)
Tr(U⊗RA) 0

HomA

(
P̃0 ,HomA(RA,A)

)
HomA

(
P̃1,HomA(RA,A)

)

HomR

(
P̃0 , A

)
HomR

(
P̃1 , AR

)
Ext1R(U,AR) 0

∼ ∼

∼ ∼

where the lower row is obtained by applying HomR(− , AR) to the original mini-

mal projective resolution of UR. Thus Tr(U ⊗R A) ∼= Ext1R(U , A) and therefore

τA(U ⊗R A) ∼= DExt1R(U , A) ∼= HomR(A , τRU) because pdUR ≤ 1. �

Theorem 4.3.3 [14](3.3). (a) Let UR be a partial tilting (or tilting) R-module such
that TorR1 (U , A) = 0, then U ⊗R A is a partial tilting (or tilting, respectively) A-
module.

(b) Let UR be a partial cotilting (or cotilting) R-module such that Ext1R(A , U) = 0, then
HomR(A , U) is a partial cotilting (or cotilting, respectively) A-module.
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Proof. (a) Assume �rst that UR is partial tilting and such that TorR1 (U , A) = 0.

Because of 4.3.1, we have pd(U ⊗RA) ≤ 1. Also we have vector space isomorphisms

DExt1A(U ⊗R A , U ⊗R A) ∼= HomA

(
U ⊗R A , τA(U ⊗R A)

)
∼= HomR

(
U , HomA

(
RA , τA(U ⊗R A

))
∼= HomR

(
U , HomA

(
RA , HomR(A , τRU)

))
∼= HomR

(
U , HomR(RA⊗A AR , τRU)

)
∼= HomR

(
U , HomR(RAR , τRU)

)
.

Applying HomR(− , τRU) to the exact sequence 0 RER RRR RAR 0
yields a monomorphism

0 HomR(RAR , τRU) HomR(RRR , τRU) ∼= τRU.

Applying next HomR(U , −) yields another monomorphism

0 HomR

(
U , HomR(RAR , τRU)

)
HomR(U , τRU) ∼= DExt1R(U , U) = 0.

Thus Ext1A(U ⊗R A , U ⊗R A) = 0 and U ⊗R A is a partial tilting A-module.

If UR is tilting, then there exists an exact sequence

0 RR U0 U1 0 with U0, U1 ∈ addU . Because TorR1 (U , A) = 0,

applying −⊗R A yields an exact sequence

0 AA U0 ⊗R A U1 ⊗R A 0.

Because U0 ⊗R A, U1 ⊗R A ∈ add(U ⊗R A), this �nishes the proof. �

Definition 4.3.4. (a) A partial tilting, or tilting, R-module U is called restrictable
provided TorR1 (U , A) = 0 and then U ⊗R A is called its restriction.

(b) A partial cotilting, or cotilting, R-module U is called corestrictable provided

Ext1R(A , U) = 0 and then HomR(A , U) is called its corestriction.

Lemma 4.3.5. (a) Let T be an extendable partial tilting (or tilting) A-module, then
T⊗AR is a restrictable partial tilting (or tilting, respectively)R-module, with restriction
T .

(b) Let T be a coextendable partial cotilting (or cotilting) A-module, then HomA(R , T ) is
a corestrictable partial cotilting (or cotilting, respectively) R-module, with corestriction
T .

Proof. (a) Assume that T is an extendable partial tilting, or tilting, A-module.

We claim that T ⊗A R is restrictable, that is TorR1 (T ⊗A R , A) = 0. Let

0 P1 P0 T 0 be a minimal projective resolution in modA. Because

T is extendable, pd(T ⊗A R) ≤ 1, hence 3.3.1 gives a minimal projective resolution

0 P1 ⊗A R P0 ⊗A R T ⊗A R 0 .

Applying −⊗R yields a commutative diagram with exact rows

0 TorR1 (T⊗AR,A) P1⊗AR⊗RA P0⊗AR⊗RA T⊗AR⊗RA 0

0 P1 P0 T 0.

∼ ∼ ∼
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Thus TorR1 (T ⊗A R , A) = 0 and so T ⊗A R is restrictable. On the other hand,

T ⊗A R⊗R A ∼= T : the restriction of T ⊗A R is T . �

Theorem 4.3.6 [14](3.4). (a) The functors − ⊗A R and − ⊗R A induce mutually
inverse bijections

{extendable tilting A-modules} {restrictable induced tilting R-modules}
−⊗AR

−⊗RA
.

(b) The functors HomA(R , −) and HomR(A , −) induce mutually inverse bijections

{coextendable cotilting A-modules} {corestrictable coinduced R-modules}
HomA(R ,−)

HomR(A ,−)
.

Proof. (a) If T is an extendable tilting A-module, then T ⊗A R is induced by de�-

nition and it is restrictable because of 4.3.5.

Conversely, if UR is an induced restrictable tilting module, then TorR1 (U , A) =
0. Because of 4.3.5, U ⊗RA is a tiltingA-module. On the other hand, there existsMA

such that U ∼= M ⊗A R. But then U ⊗R A ∼= M ⊗A R ⊗R A ∼= M ⊗A A ∼= M so

that (U ⊗R A)⊗A R ∼= M ⊗A R ∼= U . Thus U ⊗R A is extendable. �.

The modern guise of tilting theory is τ -tilting theory. In [33], Suarez obtained a

similar result for (support) τ -tilting modules.

Example 4.3.7. There exist restrictable tiltingR-modules which are not induced. Let

A be the path algebra of the quiver

1 2
α

and R the path algebra of the Kronecker quiver

1 2
α

β
.

We claim that the APR-tilting module UR = τ−1R (e1R) ⊕ e2R is restrictable but not

induced.

To prove that U is not induced, it su�ces to prove that τ−1R (e1R) = 2 2
1 1 1 is not

induced. Because A has only 3 isoclasses of indecomposable modules of which two are

projective, it su�ces to compute theR-module induced by the remaining indecomposable

S2 = 2 . The minimal projective resolution

0 e1A e2A S2 0

in modA induces one in modR

0 e1A e2A S2 ⊗A R 0 .

Therefore S2 ⊗A R ∼= 2
1 6∼= τ−1R (e1R).

To prove that U is restrictable, we must show that TorR1 (U , A) ∼=
DExt1R(U , DA) = 0. But this amounts to showing that (DA)R is generated by

U in modR. Now (DA)R = 2
1 ⊕ 2 and both of its summands are generated by U .

Finally, we compute the restriction of U . We have a minimal projective resolution

0 e1R (e2R)2 τ−1R (e1R) 0 .
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Applying −⊗A R yields an exact sequence

0 e1A (e2A)2 τ−1R (e1R)⊗R A 0 .

Therefore τ−1R (e1R) ⊗R A ∼= 2
1 ⊕ 2 . Because e2R ⊗R A ∼= e2A = 2

1 , we deduce that

U ⊗R A =
(
2
1

)2 ⊕ 2 .

Proposition 4.3.8 [14](3.5). (a) Let U be a restrictable tilting R-module, then
MA ∈T(U ⊗R A) if and only ifMR ∈T(U),
MA ∈ F(U ⊗R A) if and only ifMR ∈ F(U).

(b) Let U be a corestrictable cotilting R-module, then
MA ∈T ′(HomR(A , U)) if and only ifMR ∈T ′(U),
MA ∈ F′(HomR(A , U)) if and only ifMR ∈ F′(U).

Proof. (a) This follows from the vector space isomorphisms

Ext1A(U ⊗R A , M) ∼= DHomA

(
M , τA(U ⊗R A)

)
∼= DHomA

(
M , HomR(A , τAU)

)
∼= DHomR(M ⊗A AR , τAU)

∼= DHomR(MR , τRU)

∼= Ext1R(U , MR),

and

HomA(U ⊗R A , M) ∼= HomR

(
U , HomA(A , M)

)
∼= HomR(U , MR). �

Corollary 4.3.9 [14](3.5). (a) If U is a restrictable tilting R-module such that(
T(U),F(U)

)
splits in modR, then

(
T(U ⊗R A),F(U ⊗R A)

)
splits in modA.

(b) If U is a corestrictable cotilting R-module such that
(
T ′(U),F′(U)

)
splits in modR,

then
(
T ′(HomR(A , U)),F′(HomR(A , U))

)
splits in modA.

Proof. (a) LetM ∈T(U⊗RA),N ∈ F(U⊗RA). ThenMR ∈T(U),N ∈ F(U).

Because of the hypothesis, Ext1R(N , M) = 0. Therefore Ext1A(N , M) = 0. �

Remark 4.3.10 ([14](3.7)). It is useful to observe that an R-module U veri�es

TorR1 (U , A) = 0 if and only if the multiplication U ⊗R E UE , x⊗ e xe (for

x ∈ U , e ∈ E) is an isomorphism of A-modules. Indeed, applying U ⊗R − to the exact

sequence 0 REA RRA RAA 0 yields a commutative diagram with exact

rows

0 TorR1 (U⊗AR,A) U⊗RE U⊗RR U⊗RA 0

0 UE U U/UE 0

µ′ µ µ′′

i p

where µ, µ′ are the multiplication maps and µ′′ is induced by passing to cokernels. As

seen in 3.1.4, µ′′ is an isomorphism andµ is well-known to be so. Moreover, µ′ is surjective

so that we have an exact sequence in modA

0 TorR1 (U ⊗A R , A) U ⊗R E UR 0
µ′

.

The statement follows.
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