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ABSTRACT. We survey known properties of split-by-nilpotent extensions of algebras,
concentrating on their bound quivers, the change of rings functors and tilting theory.

Introduction

These notes are an updated version of a course given years ago at the Universidad
Nacional del Sur in Bahia Blanca (Argentina). Split extensions are fascinating mathe-
matical objects defined as follows. Let A be a finite dimensional algebra over a field k,
and F an A-A-bimodule, finite dimensional over k, equipped with an associative product
E ®4 E — E, then the split extension R of A by F is the k-vector space R = A ® E
with the multiplication

(a,e)(d,e)=(ad, ed' +ae’ + ec')

for a,a’ € A and e, e’ € F, where ee’ stands for the product in E. If E is nilpotent
for its product, then R is called a split-by-nilpotent extension. Examples abound in the
mathematical literature, the best known being trivial extension algebras. Thus, the study
of split-by-nilpotent extensions connects with those of selfinjective algebras and, more
recently, cluster tilted algebras.

The general problem of split-by-nilpotent extensions is to predict properties of R
knowing properties of A and F, and conversely. In an abstract setting, this is a difficult
problem and more information is needed to obtain concrete results.

The objective of these notes is to survey known results about split-by-nilpotent ex-
tensions. We tried to keep the notes as selfcontained as possible, providing proofs and
examples whenever possible. The first section is devoted to the definition and basic prop-
erties of this class. The second section relates the bound quivers of R and A. In the third,
we start comparing the module categories of £ and A, using the classical change of rings
functors of [21]. Finally, the fourth section is devoted to the comparison of the tilting
theories of R and A, with a particular attention to the induced torsion pairs.
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1. Split-by-nilpotent extensions

1.1. Notation. Throughout, k denotes an algebraically closed field. By algebra is
meant a basic finite dimensional associative k-algebra with an identity.

A quiver () is a quadruple Q = (Qq, @Q1,5,t), where Qp, Q1 are sets whose ele-
ments are respectively called points and arrows, and s,t: (1 — Q¢ are maps which
associate to an arrow « its source s(«) and its target ¢(«). Given a connected algebra
A, there exists a (unique) connected quiver ()4 and (at least) a surjective algebra mor-
phism 7: kQ4 — A, where k@ 4 is the path algebra of () 4. The ideal I = Kern is then
admissible, that is, there exists m > 2 such that kQAfm cIC kQXZ, where kQF is
the two-sided ideal of k() 4 generated by the paths of length at least 7. The isomorphism
A 2 kQ 4 /I (or the morphism 7)) is called a presentation of A, and A is said to be given
by the bound quiver (Q 4, I), see [12]. The ideal I is generated by a finite set of ele-
ments called relations: given x,y € (Q4),, a relation from x to y is a linear combination
p= Z:’il c;w; where the ¢; are nonzero scalars, and the w; are paths of length at least
two from x to y. The relation p is called monomial if m = 1, and minimal if m > 2
and, for every nonempty subset J & {1,2,...,m }, we have }°, ; cjw; & I.

Following [19], we sometimes consider an algebra A = k@ /I as a k-category, of
which the object class A is the set (Q A)O, while the set of morphisms from x to y is the
quotient of the vector space kQ 4(z, y) of all k-linear combinations of paths from « to y
by the subspace I(z, y) = I NkQa(z, y). An algebra A is called triangular if Q) 4 is
acyclic.

We denote by mod A the category of finitely generated right A-modules and by ind A
a full subcategory containing exactly one representative from each isoclass (= isomor-
phism class) of indecomposable modules. When we speak about a module, or an inde-
composable module, we mean implicitly that it belongs to mod A, or ind A, respectively.
If 6 is a full subcategory of mod A, we write M € 6 to express that M is an object in 6.
We denote by add € the full subcategory of mod A having as objects the direct sums of
direct summands of objects in 6. If there exists a module M such that 6 = { M }, then
we write add M instead of add 6. Given a module M, we denote by pd M and id M its
projective and injective dimensions, respectively. The global dimension of A is denoted
by gl. dim. A.

Forz € (Qa),, welet e, denote the corresponding primitive idempotent of 4, and let
Sz, Py, I, denote respectively the corresponding simple, indecomposable projective and
indecomposable injective modules. The standard duality between right and left modules
is denoted by D = Homy(—, k) and the Auslander-Reiten translations by 74 = DTr
and Tgl = Tr D(or simply 7, 77! if there is no ambiguity). For more notions and results
about mod A, we refer the reader to [12, 15].

1.2. Definition and examples. Let A be an algebra, and £ an A-A-bimodule,
which is finite dimensional as a k-vector space. We say that E is equipped with an as-
sociative product if there exists a morphism F ® 4 E — F of A-A-bimodules, denoted
ase ® e > ee’ for e, e’ € E such that

6(6/6”) _ (66’)6”
foralle,e’,¢” € E.

DEeFINITION 1.2.1. Let A be an algebra and E an A-A-bimodule equipped with an
associative product. The k-vector space

R=A®FE={(a,e) |acAec E}
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together with the multiplication
(a,e)(a, €)= (ad, ae’ +ea’ + ec’)

for a,a’ € A and e, e’ € E, is an algebra, called the split extension of A by E. If
moreover F is nilpotent as a two-sided ideal of R, then R is called a split-by-nilpotent
extension.

Clearly, dimy R = dimy A + dimy F and there exists an exact sequence of vector
spaces

0 E—>R-—T">A 0
where 1: e+ (0, ¢) for e € E, while 7: (a, ¢) > a for (a, ) € R. Then 7 is an
algebra morphism and admits as section the algebra morphismo: A — R, a +— (a, 0)
fora € A. Because ¢, 7, o are also A- A-bimodule morphisms, the previous exact sequence
may also be considered as a split exact sequence of A-A-bimodules and so, in particular,
as a split exact sequence of right, or left, A-modules. Of course, it is also an exact sequence
of R-R-bimodules, or of right, or left, R-modules. But then, it is generally not split.

Saying that E is nilpotent amounts to saying that £ C rad R. In the sequel, we
always assume that F is nilpotent.

There may be several decompositions of 4R 4 as a direct sum isomorphic to A @ E.
Therefore the data of an exact sequence as above does not suffice to determine a split
extension: one must also fix a direct sum decomposition R = A& E, or, equivalently, fix
a section o to 7.

ExamPLEs 1.2.2. (a) Because k is algebraically closed, any algebra can be written as
a direct sum R = (R/rad R) @ rad R, so it is a split extension of the semisimple
algebra R/ rad R by the nilpotent bimodule rad R.

(b) If E2 = 0, then a split extension of A by E is called a trivial extension and denoted
as A X E. This class plays a very important réle in the classification results for self-
injective algebras. In this case, one takes E to be the minimal injective cogenerator
bimodule £ = D(4A4) with its canonical bimodule structure, see [31, 32]. An-
other type of trivial extensions appeared in the theory of cluster algebras: it is indeed
proved in [5] that an algebra is cluster tilted if and only if it is the trivial extension
of a tilted algebra A by the so-called relation bimodule F = Ext% (DA, A) with its
canonical bimodule structure.

Perhaps the smallest nontrivial example is the following: let A = k, E = k with
its canonical k-k-bimodule structure. The trivial extension A x FE is the vector space

k2:{(avb)‘avb€k}
with the multiplication
(a,b)(a,b)=(ad, ab' +ba)

for a,a’,b,b’ € k. Clearly, we have an algebra isomorphism A x E = k[t]/(t?).

(c) We now give an example of a split extension which is not a trivial extension. Let A =
k, E = k? with its canonical bimodule structure and equipped with the (obviously
associative) product

(b, )b, )= (0, bb)
for b, b, ¢, € k. The split extension is the three-dimensional vector space

R=A®E={(a, (b,0) | abcek}
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with multiplication
(a, (b, e))(d, ', )= (ad, (ab +ba’, ac’ + ca’ +bb'))

for a,b,c,a’,b',c’ € k. It is easy to see that actually R = k[t]/(¢?). One can realise
in this way any truncated polynomial algebra k[¢]/(¢") as split extension of A = k
by E = k"L

(d) Let A be given by the quiver

bound by af = 0, nanan = 0. Then R is the split extension of A by the bimodule
FE generated by the arrow 7). To find a k-basis of F, we construct those paths (more
precisely, classes of paths modulo the binding ideal, but we identify the two) which
contain 7). This gives the following basis

{n, na, an, nan, ana, nana, anan , anana }.

The right and left A-module structures of F are computed as follows. We have A4 =

14 2 & 3 where indecomposable modules are represented by their Loewy series. Sim-
3
2
2
@ 3. We next compute R 4: deleting 7 from the indecomposable
3
2

R-modules gives their A-module structure. We get R4 = 162 @(3)’@3@(3)” from

ilarly, Rp = 1@ !

nNwNw

where we deduce E4 = (3)*. Similarly (DA) , = 2@ 3® 3 and (DR), = 2@ 3@

nNwNowNw
LN W W

yields (DE) , = (3)*.

1.3. Properties. Our next objective is to describe the quiver () i of a split extension
R of an algebra A by a nilpotent bimodule E, in terms of the quiver () 4 of A.

LEmMMA 1.3.1. Let R be a split extension of A by a nilpotent bimodule E, thenrad A =
(rad R)/E.

Proor. We have £ C rad R and (rad R)/E nilpotent as an ideal in R/E = A.

Moreover, % =~ M is semisimple. Therefore (rad R)/E = rad(R/E) = rad A.
O

THEOREM 1.3.2 [10](1.2). Let R be a split extension of A by a nilpotent bimodule E.
The quiver QQr of R is constructed as follows:
(@) (Qr)y = (Qa)y;
(b) forx,y € (QRr),, the set of arrows in Qg from x toy equals the set of arrows in Q) 4
from x toy plus

di £
Mo\ Tlad A +rad A E + B2 )Y
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additional arrows.

Proor. Because of Lemma 1.3.1, Qr and ) 4 have the same points and moreover,
rad R = rad A @ FE as a vector space. Hence

rad? R =rad’ A @ (E-radA+radA-E+E2).

The arrows in Qi from z to y are in bijection with vectors in a basis of the vector space

o (;:ddz}}? )ey. Because rad® A C rad Aand E-rad A+rad A- E+ E? C E, the statement

follows. u

Thus, if A is a connected algebra, then so is R. We now see how split extensions
behave upon taking full subcategories.

LEmMMA 1.3.3 [14](1.4). Let R be a split extension of A by a nilpotent bimodule E and
e an idempotent in A. Then eRe is a split extension of eAe by eEe.

Proor. Clearly, eEe is a two-sided ideal of eRe. Its nilpotency follows from the
fact that eEe C E. The map 7.: eRe — eAe, e(a, x)e —> eae for (a, z) € Risa
surjective algebra morphism having as section o, : eAe — eRe, eae — e(a, 0)efora €
A. Moreover, o, is an algebra morphism and eFe C Ker .. Because eRe = eAe @ eFe
as vector spaces, we get the statement by comparing dimensions. ]

As we now see, taking split extensions is a transitive procedure.

LEmMMA 1.3.4 [10](1.7). Let R be a split extension of A by a nilpotent bimodule E and
S a split extension of R by a nilpotent bimodule F'. Then S is a split extension of A.

Proor. We have exact sequences of vector spaces

0 E—“>R_">4 0,0 F—4YsS_ "> R——>0

-«
o

where 7,0, 7, 0’ are algebra morphisms and 7o = id4, 7’0’ = idg. Also, there exist
m,n > 0 such that E™ = 0, '™ = 0. We get an exact sequence

0 —— 7/ Y(E) S s A 0.

Both 77/, 0’0 are algebra morphisms and nn/c’c = id 4, so it suffices to prove that
7' 7' (E) is nilpotent. We claim that w’fl(E)mn =0.Letz;; € 7N (E)with1 <i<n,
1 <j <m.Thenn'(z;;) € Eforalli, j. Therefore, for each 7, we have 7/ (H;"zl xi]) =
[[j=, 7' (zi;) € E™ = 0. Thus, for each i, the product [/, z;; lies in Ker 7" = F. But
then [[i_, [[j2, zij € F" =0. O

2. The bound quiver of a split extension

2.1. Presentations. Let R be a split extension of A by a nilpotent bimodule FE.
Because of 1.3.2, the quiver Qr of R is obtained from the quiver ()4 of A by adding
arrows. It is therefore reasonable to think that F, as an ideal, is generated precisely by
the added arrows. Let nr: kQr — R = kQr/Ir and na: kQa — A =2 kQ /14 be
respectively bound quiver presentations of R and A. For z,y € (Q4),, it follows from
the proof of 1.3.2 that there is an inclusion of vector spaces

. (radA)e . <radR>6
“\rad?4a/) " \rad’RrR/) V"~
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rad R
d2

Therefore, there exists a basis of e, <
rau

( rad A
rad? A
basis, for any z,y, then we say that the presentation ng (or (Qg, Ir)) of R respects
na (or (Qa,l4), or simply A). The previous comments show that there always exists a
presentation of R respecting A.

>ey which contains as a subset a basis of

>ey. When the arrows in Qr are taken in bijection with vectors in such a

LEMMA 2.1.1[10](1.5). Let R be a split extension of A by a nilpotent bimodule E. Then
there exists a presentation of R respecting A such that E is generated by the classes of arrows
in Qg which are not in QQ 4.

Proor. Let (Qg,Ir) be a bound quiver presentation of R which respects A and
{p1,.-.,ps } be the preimage modulo I of any linearly independent set of generators
for E. We may assume that each p; is a linear combination of paths having the same
source and the same target: for, if this is not the case, then we multiply each p; on the
left and on the right by stationary paths and we obtain such a set. Because () 4, @ r have
the same points, all paths involved in the p; have length at least one. Moreover, as seen
in 1.3.2, the top of F is contained in rad R/ rad® R, that is p; + rad® R € rad R/rad® R
for all - with 1 < ¢ < 5. So we have

Pi = O +Z)\jwj
J

where «; is an arrow in Qp and ) | ; Ajw; alinear combination of paths of length at least
one. Because the p; are linearly independent modulo Ir, we define a new presentation
by replacing a; by

o = o + g Ajwj.
J

In this presentation, F is indeed generated by o, ..., o.

O

COROLLARY 2.1.2 [10](2.1). Let R be a split extension of A by a nilpotent bimod-
ule E. Given a presentation na: kQa — A= kQa/l4, there exists a presentation
Nr: kQr — R 2 kQr/IR respecting A such that:

(a) £ is an ideal of R generated by classes of arrows,
(b) there exist algebra morphisms 7: kQr — kQ 4, 7: kQ4 — kQpg such that 76 =

idkg, ,» MrRO =o0na and &(14) C I,

(c) there exists a commutative diagram with exact rows and columns

0 0 0
| I
0 —— EnNnlg Ir Iy 0
L
0 E kQR%kQA 0
l an lﬁA
0 E R Z A 0.
l l |
0 0 0
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Proor. Because of 1.3.2, we may (and shall) identify Q4 to a nonfull sub-
quiver of Qr. Applying [12](I.1.8), the inclusion Q4 —— @Qr extends to an al-
gebra morphism 6: kQ 4 — kQr preserving stationary paths and arrows. Letting
Nr: kQr — kQr/Ir = R be a presentation constructed as in 2.1.1, we then have
NrG = ona. Moreover, there exists a set S of arrows in Qg such that F is the ideal
generated by the classes of the elements of S. Let E be the lifted ideal in k@R, that is, the
one generated by the elements of S. Applying again [12](IL.1.8), there exists a surjective
algebra morphism 7: kQr — k(@ 4 preserving stationary paths and such that, for an
arrow (3,

o B ifBe(@r)\S
7r(B){o if B e S.

We deduce an exact sequence of vector spaces
0 —> F ——> kQp —— kQs —— 0

and also na7™ = 7mngr. A direct calculation shows that 76 = idkg, and (c) follows by
passing to kernels. O

2.2. The relations. We have seen that, if R is a split extension of A by F, then £
may be assumed to be generated by arrows in () z. But what is not clear is whether, if we
choose an arbitrary set of arrows in Q g, and call E the ideal they generate, then R is a
split extension of R/ E by F or not. Actually, this is not always the case, as the following
example shows.

ExaMPLE 2.2.1. Let R be given by the quiver

2
Aﬁ/ «@
1 = > 4
3

bound by a8 = 7¢. Let E be the ideal generated by . Then A = R/ E is not a subalgebra
of R: indeed, the product of (the classes of ) v and § is zero in A, but not in R. Thus, R is
not a split extension of A by E.

If, on the other hand, we let E’ be generated by o and -, then it is easily seen that R
is a split extension of R/E’ by E'.

This example shows that, when passing from R to A, any deletion of arrows must
take into account the relations.

LEMMA 2.2.2 [10](2.1)(2.3). Letng: kQr — kQr/Ir = R be a presentation, S a set
of arrows in Qg and E the ideal in R generated by S.
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Setting A = R/ E, there exists a presentationn: kQa — kQ /14 = A such that we
have a commutative diagram with exact rows and columns
0 0 0
0— Enlg Ir Ia 0
0 E kQr < 7:r kQa 0
l WRl 7 l’fm
0 E R z A 0
0 0 0

where 7, & are algebra morphisms such that 76 = idykg, .
If moreover 5(14) C Ig, then the lower sequence realises R as a split extension of A by
E.

Proor. (a) Let () be the quiver having the same points as () g and arrows all arrows
of Qi except those in S. Using [12](IL.1.8) there exists a surjective algebra morphism
7: kQr — k@, preserving stationary paths and such that

o B ifBe(QRr)\S
7T<5)_{0 ifges. 1

Let 7: R — A be the projection and E = Ker 7. Then E is the ideal of kQr

generated by the arrows in S. Clearly, 7nr(E) = 0 hence there exists a unique
algebra morphism 74 : k@QQ — A such that n47 = 7nr. Moreover, 74 is surjective,
because so are 7 and 7g.

We claim that I4 = Kern, is an admissible ideal of k(). We first prove that
Ix C kQ™2. If this is not the case, let v € T4 \ kQ 2. There exist ay,...,a; € Q1,
nonzero scalars ¢y, . .., c; and ¥/ € kQ72 such that

t
Y= Z cia; + 7.
i=1
Considering v as an element of k@ r, we have

mr(7Y) = na®(y) = na(y) = 0.

Hence ngr(y) € Kerm = E. Therefore there exist nonzero scalars dy, ..., ds and
arrows (31,..., 3s € S such that

t s
ity +Ig=v+Ir =Y d;B;+Ir.

i=1 =1

Because I is admissible and 4" € kQ*Q, this equality yields, because of the grading,

t s
E C;0; = E djﬂj'
i=1 j=1
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Now the f3; lie in .S, while the o; do not. This absurdity yields 14 C kQ™2. On the
other hand, there exists m > 2 such that kQEm C IR. Because () is a subquiver of
Qr, we have kQ1T™ C kQEm so that kQ™™ C Iy. Because of the definition of 7z,
the last inclusion reads as kQ+™ C I4. This establishes our claim.

Therefore n4: kQ — kQ/I4 = A is a presentation of A. Because the quiver of
an algebra is uniquely determined, we have ) = () 4. Moreover that n4 7™ = 7nr and
E, E are the respective kernels of 7, 7 imply that the shown diagram is commutative
with exact rows and columns.

Finally, the (non full) quiver inclusion Q4 —— QR yields, because of [12](IL.1.8),
an algebra morphism 7 : kQ 4 — k@ g such that 76 = idkq,.

(b) The hypothesis yields a morphism of abelian groups o: A — R such that ony =
Nro. Because ¥ C rad R, it suffices to prove that o is an algebra morphism and a
section to 7. Let w, w’ be paths in @ 4, then

J((w + Iq)(w' + IA)) =o(ww + 14) = ona(ww') = nro(ww')
= nro(w)nra(w') = ona(w)ona(w’)
= J(w+IA)U(w/ +IA).

Thus, o is an algebra morphism. Also, 76 = idkg, implies that mons = mrc =
Na7™o = na. The surjectivity of 14 yields mo = id 4, as required. O

Let w be a path in a quiver and « an arrow on w, that is, such that there exist subpaths
w1, wy of w satisfying w = w; aws, then we write « | w. Let now S be a set of arrows
and p = Zle Ajw; a relation, with the ¢; nonzero scalars and the w; paths. We say that
p is consistently cut if, for any i, if there exists an arrow «; € S such that «; | w; then
for every j # 1, there exists a; € S such that a; | w;. That is, if S cuts one branch of p,
then it cuts all its branches.

In 2.2.1, the relation a3 = +J is not consistently cut by the set { « }, but it is consis-
tently cut by { o, }.

Because relations in a bound quiver may be assumed monomial or minimal, and be-
cause monomial relations are trivially consistently cut, the definition above applies only
to minimal relations.

THEOREM 2.2.3 [10](2.5). Let ng: kQr — R = kQRr/Igr be a presentation, S a set
of arrows in QR, E the ideal they generate and m: R — R/E = A the projection. Then:

(a) If every minimal relation in I is consistently cut, then the exact sequence

0 E R—7—— A 0

realises R as a split extension of A by E.
(b) Conversely, if the sequence in (a) is a split extension and ng respects A, then every min-
imal relation is consistently cut.

Proor. (a) Assume that every minimal relation in Iy is consistently cut. As seen
in 2.2.2(a), the projection 7 lifts to an algebra morphism 7: kQr — kQ 4. Letp € Ip
be a relation, then p = > c;w; where the ¢; are nonzero scalars and the w; paths.
Because p is consistently cut, if there exists ¢ such that 7 (w;) = 0 then, for each j # 4,
we have 7(w;) = 0. This proves that, for any relation p, we have either 7(p) = p or

7(p) = 0.
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In order to prove our statement, it suffices, because of 2.2.2(b), to prove that the
algebra morphism : k@) 4 — kQ g induced by the inclusion Q4 — Qr satisfies
6(14) C Ip.
Let p € I4 be nonzero. We may assume, without loss of generality, that p is a
relation. Because the restriction 7| 1 © IR — 14 is surjective, there exists p’ € Ip
such that 7(p") = p. Then p’ can be written as p’ = 0 + 1), where o = ). 0; is a sum
of monomial relations and 7 = 3 _; 7; is a sum of minimal relations. We distinguish
two cases:
1) Assume p is monomial. Because each of the 7(c;), 7(n;) is a summand of
p = 7(p'), then 7(n;) = 0 for all j and there exists a unique 4 such that
p = 7(0;) = o;. We thus have 7(p) = pand so 5(p) = p € Ig.

2) If p is minimal, then, for each i, we have 7(c;) = 0 because otherwise, o;
would be a summand of the minimal relation p, a contradiction. Similarly, if
Jj, k are distinct indices such that 7(n;) = n; and 7(n,) = N, then n; + N
would be a summand of p, another contradiction to minimality. Hence there
exists a unique j such that p = 7(n;) = n;. Again, we have p = 7(p) and
a(p) =p € Ig.

This completes the proof of (a).

(b) Conversely, assume that the given sequence is a split extension and that 7y respects
A. Letp = ZZ c;w; be a minimal relation in I with the ¢; nonzero scalars and the
w; paths. Assume there exist i and «; € S such that «; | w;. Let J be the proper
subset of { 1,...,¢ } consisting of those j such that there is no arrow a; € S such
that ; | w;. We must prove that J = @. If not, then we can write

p= Zciwi + chwj.

igJ jed
The commutative diagram of 2.2.2 yields 7(p) = >, ; ¢jw; in kQ 4. Because p €
I, we have na7(p) = mnr(p) = 0. Hence 7(p) € Kerng = I4. Because the given

exact sequence is a split extension, it follows from 2.1.2 that 6(/4) C Ig. But then
we get > ; ¢;jw; € I, which contradicts the minimality of p. O

We recall that an algebra is monomial if it admits a presentation such that the bind-
ing ideal is generated by monomials. String algebras are special types of monomial
algebras for which we refer to [20]. Gentle algebra are special types of string algebras,
see[12] Chapter X. For special biserial algebras, we refer to [30].

COROLLARY 2.2.4. Let R be a split extension of A by a nilpotent bimodule E, with a
presentation respecting A. If R is monomial, string, gentle or special biserial, then so is A.

Proor. In each case, the defining conditions on the bound quiver of R remain satis-
fied if one cuts arrows so that the conditions of 2.2.3 are satisfied. O

As an interesting particular case, if R is a trivial extension of A (by either the min-
imal injective cogenerator D(4A4) or the relation bimodule Ext% (DA, A)) and R is
monomial, string, gentle or special biserial, then so is A.

The reader will connect the notion of consistent cut of relation with that of admissible
cut of an algebra, introduced in [24] in the case of selfinjective trivial extensions and
in [16] in the case of cluster tilted algebras, see 2.2.5(b) below, and also [2].



(b)

LECTURES ON SPLIT-BY-NILPOTENT EXTENSIONS 11

ExaMPLEs 2.2.5. (a) We show that one-point extensions may be viewed as split ex-
tensions. Let B be an algebra, and M a B-module, then

RB[M](]\B/[ 18){(:; g)

becomes an algebra when equipped with the ordinary matrix addition and the mul-
tiplication induced from the B-module structure of M. It is called the one-point
extension of R by M, see [27]. The quiver Qi equals Qp plus an extra point z,
called the extension point, which is a source in Q.

Cutting all arrows having « as a source is certainly a consistent cut. Therefore
R is a split extension of A = B X k by the bimodule E such that E£4 = M while
])(AE) — Smdimk ]M.
Let @) be a quiver with neither loops nor cycles of length two. A full subquiver of @)
is a chordless cycle if it is induced by a set of points { z1, ..., x, } such that the only
edges on it are precisely the x; Ziy1 , where we set xp41 = 1, see [17].

bEB,mEM,/\ek}

A quiver (@ is called cyclically oriented if each chordless cycle is an oriented cycle,
see [18].

Let R be a cluster tilted algebra with a cyclically oriented quiver, for instance
a representation-finite cluster tilted algebra, then Q) is consistently cut by exactly
one arrow from each branch of a relation if and only if the resulting algebra A is an
admissible cut of R, that is, R is the trivial extension of A by its relation bimodule.
This indeed follows easily from [18](4.2)(3.4)(4.7).
The following example, due to M. I. Platzeck (private communication) shows that
in 2.2.3(b), the condition that ng respects A is necessary.

Assume char k # 2 and let R be given by the quiver

. @Q f

bound by o?2 =0, a8 = Ba, 2 = 0. Let E be the ideal generated by «, then R is the
split extension of A = R/F given by the quiver

Q b

bound by 3% = 0. Here, the given presentation of R respects A.
Letnow o = «, 8’ = a + . Then R is given by the quiver
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bound by o’? = 0, 3’2 = 28'a/, o/ 8/ = 3'a/. Taking E as the ideal generated by o/,
we get R/E’ = A, as before. However, the second relation is not consistently cut.
This presentation of R does not respect A.

3. Modules over split-by-nilpotent extensions

3.1. The change of rings functors. Let R be a split extension of A by a nilpotent
bimodule E. There is an obvious embedding of mod A into mod R, but the latter is in
general much larger than the former. For instance, the path algebra of the Kronecker
quiver

[e3

1 0OE——0 2

B
is a split extension of the path algebra of the quiver

[e3
1 O«<—O 2.

The first is representation-infinite while the second has only 3 isoclasses of indecompos-

able modules.
Because A is a quotient of R, we have the classical change of rings functors, see [21]:

(a) The inductionfunctor — ® 4 Rr: mod A — mod R. Modules in its image are called
induced.

(b) The restriction functor — ®p A4: mod R — mod A. Modules in its image are
called restricted.

(c) The coinduction functor Hom4(grR4, —): mod A — mod R. Modules in its im-
age are called coinduced.

(d) The corestriction functor Homg(4Ag, —): mod R — mod A. Modules in its im-
age are called corestricted.
We also have obvious functors:

(e) the forgetful functor — ® g R4 or Hompr(4Rp, —): mod R — mod A
(f) the embedding functor — ® 4 A orHoma(rA4, —): mod A — mod R.

Besides the usual adjunction relations, we have the following lemma.

LEmMA 3.1.1. We have isomorphisms of functors
(@) —®a R®p Aa = idmoa a,
(b) Hompg(4Ag , Homa(rRa, —)) = idmod 4.
Proor. (a) is obvious and (b) follows from the isomorphisms of functors

Homp (4 Ar, Homa(rRa, —)) = Homy(4A ®g Ra, —) = Homu(A, —). O

In the next corollary, we use for the first time a notation that we follow until the
end of these notes. Because we deal with modules over two algebras, in order to avoid
confusion, we denote A-modules by L, M, N, ... and R-modules by X,Y, Z, ...

COROLLARY 3.1.2. The following conditions are equivalent for two A-modules L and
M:

(@) L= M (b)) L REM®4 R (c) Homa(R, L) 2 Homu (R, M). O
LEmMmA 3.1.3. (a) An R-module X is projective if and only if:

i) X ®g A is projective in mod A, and
ii) X ®p A®4 R = X inmod R.
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Moreover, in this case, X is indecomposable if and only if so is X @ A.
An R-module Y is injective if and only if:
i) Hompg(A,Y) is injective in mod A, and
ii) HomA(RRA , Homy (A, Y)) ~Y inmod R.
Moreover, in this case, Y is indecomposable if and only if so is Hompg(A, Y).

Proor. (a) Let e € R be an idempotent such that X = eR. Then X ®r A =
eR®pr A = eAis projective in mod A. Also, X @R AQas R X eA®, s R~ eR = X.
So X satisfies i) and ii). Conversely, if X satisfies i) and ii), there exists an idempotent
e such that X ® p A = eA. But then ii) gives X 2 X ®r A®4 R = eA®4 R=eR.
This establishes the first statement.

Assume that X is decomposable, say X = X; & X5 with X7, X2 nonzero, but
that X @r A = (X1 ®r A) ® (X2 ®@r A) is indecomposable. Then one of the
summands is zero, say X1 ®g A = 0. Butthen X; 2 X; R A®4 R = 0, a
contradiction. Therefore X is indecomposable. Similarly, X indecomposable implies
X ®p A indecomposable. O

Thus, there exists a bijection between isoclasses of indecomposable projective A- and

R-modules given by eA — eR, where e is a primitive idempotent. Also, there exists a
similar bijection for the injectives.

Because A = R/E, the category mod A may be identified with the full subcategory

of mod R of the modules X such that XF = 0. Given any R-module X, there exists a
largest R-submodule of X which is annihilated by E, that is, which is an A-module. This
isKx={zxeX |2E=0}.

(@)
(b)

LEmMMA 3.1.4. Let X be an R-module. We have functorial isomorphisms:

X®r A2 X/XE,
HOIIlR(A7 X) = Kx.

Proor. (a) Applying X ®pr — to the exact sequence of R-R-bimodules
0 E——»>R 7> A 0 (%)

yields a commutative diagram with exact rows in mod R

XQQrFE ——> X®gr R —> X®rA ——0

O b

0 XE ‘ X — -~ X/XE——0

where i, p are respectively the inclusion and projection, u, i/ are the multiplication
maps ¢ ® 7 — xr and p” is induced by passing to cokernels.

Clearly, 1/ is surjective, because of the definition of X E. It is well-known that
is an isomorphism. Therefore the snake lemma implies that 1"’ is injective and also
surjective. So it is an isomorphism.

Let f: Hompg(R, X) — X, u > u(1) be the well-known functorial isomorphism.
For every u € Homp (A, X), we have

fHoma(r, X)(u) = f(ur) = ur(l).

So,forx € E,wehaveur(1)x = un(z) = 0. Therefore, the image of the composition

fHom (7, X) lies in Kx. That is, there exists f': Homgr(A, X) — K x makin
g
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the following square commutative

Homp (A, X) 22X Homp(R, X)
7| | I
Kx ! X

where j is the inclusion. Applying Homp(—, X) to the exact sequence (*) above
shows that Hompg (7, X) is injective. Therefore so is f Homp(7, X) and so is f’.
We prove that f” is surjective. Let z € Kx. Because x € X, there exists u; €
Hompg (R, X) such that z = wu,(1). But then u,(FE) = u,(1)E = xF = 0 hence
there exists v, : A — X such that u, = v,7. Then z = u, (1) = v,7(1) = f'(vy)
and so f’ is surjective. Therefore it is an isomorphism. ]

3.2. Projective covers and injective envelopes. For the notions of superfluous
epimorphisms and essential monomorphisms, we refer the reader, for example, to [3].

LemMmA 3.2.1 [11](1.1). Let X be an R-module.

(a) The canonical epimorphism px: X — X/XFE is superfluous.
(b) The canonical monomorphism jx : Kx —— X is essential.

Proor. (a) Because of Nakayama’'s lemma, the canonical epimorphism
f: X — X/X -rad R is superfluous. Because F C radR, there exists an
epimorphism g: X/XFE — X/X - rad R such that f = gpx. Assume h is such that
pxh is an epimorphism. Then so is fh = gpxh. Because f is superfluous, h is an
epimorphism.

(b) Let Y be a nonzero submodule of X. Because E is nilpotent, there exists s > 1 such
that YE*~! £ 0but YE® = 0. Let y € YE*! be nonzero. Then yE = 0 so that
y € Kx. Therefore Kx NY # 0 and we are done. O

COROLLARY 3.2.2. [11](1.2) Let M be an A-module.

(a) There is a bijection between the isoclasses of indecomposable summands of M in mod A
and M ® 4 R inmod R, given by N +— N ®4 R.

(b) There is a bijection between the isoclasses of indecomposable summands of M in mod A
and Homy4 (R, M) inmod R, given by N +— Homyu (R, N).

ProOF. (a) Suppose N is indecomposable in mod A but N ®4 R = X; & X5 in
modR. Then N 2 N ®4 R®r A = (X1 ®r A) & (X2 ®r A). Because N is
indecomposable, X1 ®p A, say, is zero. So X1 /X1 E = 0. But px, is superfluous so
X7 = 0. Thus N ®4 R is indecomposable. The rest of the proof is an application
of 3.1.2. [l

LemmaA 3.2.3. [11](1.3) Let M be an A-module.

(a) If f: P — M is a projective cover inmod A, then f @ 4 R: PRy R— M ®4 R is
a projective cover in mod R.

b If g M—I is an injective envelope in mod A, then
Homy (R, g): Homa(R, M) — Homa (R, I) is an injective envelope in mod R.
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Proor. (a) Clearly, P ® 4 R is projective in mod R and f ® 4 R is an epimorphism.
Consider the commutative square:

f®aR

P®as R M®as R
pP®ARl lp]vthR
P ! M

where we have used that (M@ R)/(M®sR)E = M®4R®rA = M and similarly
for P. It suffices to prove that f ® 4 R is superfluous. Let h be such that (f ® 4 R)h is
an epimorphism. Then py ,r(f ®4 R)h = fppg ,rh is an epimorphism. Because
both f and ppg , r are superfluous, h is an epimorphism. (]

We have a similar result when passing from mod R to mod A.

LEMMA 3.2.4. [14](3.1) Let X be an R-module.

(@) If f: P— X is a projective cover in mod R, then f ®p A: PorA—X®rAisa
projective cover in mod A.
b If g X—1I is an injective envelope in mod R, then

Hompg(A, g): Homg(A, X) — Homp (A, f) is an injective envelope in mod A.

PrOOF. (a) First P ®p A is projective in mod A, see 3.1.3, and f @ g A is an epimor-
phism. Next,

. 5 P/PE P/PE
top(P ®r A) = top(P/PE) & ——= / =N /
P/PE-radA P/PE -rad(R/E)
P/PE . P X X/XE

(P-tadR)/PE  P-tadA X -radR X/XE-(radR)/E
= top(X @r A)

where the last isomorphism comes from 3.1.4. (]

3.3. Presentations. We now compute minimal projective presentations and injec-
tive copresentations of R-modules

COROLLARY 3.3.1 [11](1.3). Let M be an A-module.

(@) If P, N Py o, M 0 is a projective presentation in mod A, then
R R
PL®s R 1194 Py®a R Joa M ®4 R —— 0 is a projective presen-
tation in mod R. Further, if the first is minimal, then so is the second.
0 1
(b) If O M—2 5109 ' is an injective copresentation in mod A, then

HomA(R,go) HOIUA(Ragl)
_— > _— >

0 —— Homu (R, M) HomA(R,IO) HomA(R,Il) is
an injective copresentation in mod R. Further, if the first is minimal, then so is the
second.

Proor. (a) The first statement is clear. If the given projective presentation of M
is minimal, then, because of 3.2.3, fo ®4 R: Py ®4 R — M ®4 R is a projective
cover in mod R. Because fi: P — f1(P1) is a projective cover in mod A4, so is
f1 ®A R: P1 ®A R _—> fl(Pl) ®A R = (f1 ®A R)(Pl ®A R) = Ker(fo ®A R) in
mod R. [l
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Clearly, if ]51 — 150 — X — 0 is a projective presentation of X in mod R, then
PL®rA— Py®r A— X ®r A — 0is a projective presentation in mod A.
But here, the minimality of the first presentation does not imply that of the second.

ExampLEs 3.3.2. Let A be given by the quiver

[e%
1 O«—0O 2

and R by the quiver
B

(e

10 O 2

bound by afa = 0, faf = 0. The simple R-module S; has a minimal projective presen-
tation

€2R €1 R Sl 0.
Applying — ®g A yields a projective presentation

eA — egA — 51 ®r A —— 0.

But Homy(eaA, e1A) = 0, hence S; ®z A = e1 A and the previous presentation is not
minimal.

We need, for later purposes, to compute the minimal projective presentation of an
A-module, considered as an R-module under the embedding mod A —— mod R.

LEmMmA 3.3.3. Let M be an A-module.

(a) If P, n Py o, M 0 is a minimal projective presentation of M in mod A
and P the projective cover of Py ® 4 E 4 in mod A, then there exists a direct summand
P’ of P such that

(PL@&P)®s R —> Py®@sR ——> M — 0

is a minimal projective presentation in mod R.
1

0
(b) If0 M —2— 19 2~ [ is a minimal injective copresentation of M inmod A,
and I the injective envelope of Hom 4 <E, IO) in mod A, then there exists a direct
summand I’ of I such that

0 —— M —— Homu (R, I°) —— Homu (R, I'®I')
is a minimal injective copresentation in mod R.

Proor. (a) Let pyg, r: M ®4 R— M be the canonical surjection. Be-
cause of 3.2.1, it is a superfluous epimorphism. Because of 3.2.3, so is
fo®a R: Phy®y R— M ®4 R. Then their composition pM®AR(f0 ®4 R) is a su-
perfluous epimorphism, hence it is a projective cover in mod R.

As A-modules, we have Py @4 R~ Py ®4 (A®E) = Py @ (Py®4 F) and
similarly (M ®4 R)a = M & (M ®4 E). The morphism fy ®4 R then takes the

fo 0
0 fo®aE

we get pAZ®AR(fO @A R) = (fO ; 0)’

Let P; be the projective cover of Ker (pM®AR(fO ®a R)) = QL M. Because
Pare o n(fo®a R) = (f0,0), then Py ®4 E is actually a direct summand of Qp M,
when the latter is viewed as A-module. In fact, QLM = QLM & (P ®4 E) in

form . Because p,,, T ® (a,€) > za, forx € M and (a, e) € R,
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mod A. The projective cover of Q}L‘M in mod A is P;, while that of Py ® 4 F is P.
Then, we have a commutative diagram in mod R with exact rows

PosR—12E L peo, R L%, ye,R 0
(é)l H lplw(ngR
(f1®aR, f)
(Pl@P)(X)AR Py®a R M 0

where f :P®aR— Py®4 R is the composition of the embedding
Py®4 Er — Py ®4 Rp, induced from the embedding 4 Er C 4Rp because
of the projectivity of Py, with the projective cover Py — Py ® 4 E in mod A.

The lower row in the preceding diagram is a projective presentation in mod R,
but is not necessarily minimal. Assume P is a direct summand of P; @ P such that
we have a minimal projective presentation in mod R

P'"®@sR —> Py R —— M —— 0.

Because M is an A-module, it is annihilated by E when viewed as R-module. Hence
M = M ®p A because of 3.1.4. Applying — ® A to the previous presentation yields
a commutative diagram with exact rows in mod A

Py M
Py M
Because P is the projective cover of 2} M, there exists an epimorphism P’ — P;

making the diagram commute. Therefore P” = P; @ P’ and we have a minimal
projective presentation in mod R

pr fo

J1

>

P 0.

h&aR, f P (fo®aR)
(lA )PO®AR M, R\JO®A M 0

(PL®P)®4a R
where f is the restriction of f to P’ ®4 R. O

ExampLE 3.3.4. Let A be given by the quiver

10
[0
O«———0O
3 4

A\

2 0

bound by a8 = 0, ary = 0, and R be given by the quiver

1 0 B "
\o<7o
/3 . 4

2 0

bound by o = 0, vy = 0, nana = 0. Then R is the split extension of A by the nilpotent
bimodule E generated by 7. The indecomposable (injective) module M4 = 3 has the
minimal projective presentation in mod A

O*’61A21*’63A2231*)M*)0~
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Because of 3.3.1, a minimal projective presentation for M ® 4 R is given by

3
etR=1 4f>63R: 12% ——> M ®4 R —— 0.
4

3
Then, M ®4 R = 2% and also f is a monomorphism, so that pd(M ®4 R) < 1. Con-

1
sidering M ®4 R as an A-module, we get (M ®4 R)4 = 3 @ 4 @ 4. In particular

M®4E4 = %@ 4 has as projective cover P = (3 )2. Therefore there exists a projective
presentation in mod R

2
3
(€4R)2@61R:< ) D1 4>€3R: 12% %M:%%O
4

W OO Lo

It is not minimal, but letting P’ = e4 A = 4, we get a minimal projective presentation in
mod R

esRderR esR M 0.

3.4. Homological dimension one. Working with homological dimension one is
easier than with other dimensions, due to its connection with the Auslander-Reiten trans-
lation, see [12](IV.2.7).

LEmMmA 3.4.1 [11](2.1). For any A-module M, we have
(@) TR(M ®4 R) 2 Homa(gRa, TAM)
(b) 7' Homa(rRa, M) = (7,'M)®a4 R.

Proor. (a) A minimal projective presentation

P P, M 0

in mod A induces, because of 3.3.1, a minimal projective presentation
P®AsR—> Ph®4sR—> M®4 R —— 0.
We deduce a commutative diagram with exact rows in mod R°P

Homp(Py®4 R, R) —— Hompg(Pi ®4s R, R) —— Tr(M ®4 R) —— 0

%lf %lg lh
R®a HOInA<P0, A) — R®a HOHIA(P1 R A) ——> R®ATrM —— 0
where the functorial isomorphisms f, g are defined as follows: if e is an idempo-
tent, then Homp(eA ®4 R, R) = Hompg(eR, R) &2 Re &2 R®4 Ae 2 R®4

Homa(eA, A). Then h is deduced by passing to the cokernels and so is an isomor-
phism. We thus have

TR(M XA R) = DTI‘(M ®a R) = D(R@A TI‘M)
> Homu(R, DTr M) = Homa (R, 74 M). O
COROLLARY 3.4.2 [11]2.2. For any A-module M, we have
(@) pd(M ®4 R) <1ifandonlyifpd M4 <1 andHom(DE, 74aM) =0
(b) idHoma (R, M) < 1ifandonlyifid M4 <1 andHomA(TglM7 E) =0.
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Proor. (a) Because of [12](IV.2.7), pd(M ®4 R) < 1 if and only if
Homp (DR, 7r(M ®4 R)) = 0. Now, we have

HornR(DR7 TR(M ®4 R)) = HomR(DR7 Homu (R, TAM))
>~ Homa (DR ®g Ra, TAM)
=~ Homu(DRA, TaM)
= Homa (DA, 74M) @ Homa(DE, T4 M).
The result follows from another application of [12](IV.2.7). ([

ExAMPLE 3.4.3. We give an example showing that both conditions are necessary. Let

A be the path algebra of the quiver

«
O«——0<«——0
1 2 3
and R be given by the quiver
n

2
bound by afn = 0. In this case, one easily sees that E4 = (%) ,(DE)4 = (%)3 Let

M = 3. We have a minimal projective presentation of M in mod A

0 61A 6314 M 0.

Applying — ® 4 R yields a minimal projective presentation in mod R

elR SN esR —— M ®4 R —— 0.

Therefore, M ®4 R = 3. The projective dimension of 3 in mod R equals 2. Indeed
Ker f = e3R, so that pd M4 < 1 but pd(M ®4 R) > 1. This shows that the second
condition of the corollary is necessary. Actually, 74 ( g) = 2 soHomu(DE, 7aM) = 0.

LEMMA 3.4.4 [14](2.3). Let M be an A-module.
(a) Ifpd Mg <1,thenpd My < 1.
(b) Ifid M <1, thenid M4 < 1.

Proor. (a) Because of 3.4.2, it suffices to prove that pd(M ®4 R) < 1. Let

P i Py o, M 0 be a minimal projective presentation. Because
of 3.3.1, and with its notation, there exists a commutative diagram with exact rows
ProsR—2E L pesr L% MeLR 0
ol o |
R, ’
(ProP)osR L) b, R M 0.

Because pd Mg < 1, the morphism (f; ®4 R, f’) is injective. Because so is ((1)), the
morphism f; ® 4 R is injective. Therefore pd(M ®4 R) < 1, thus establishing our
claim. [l

An easy application of this lemma is the following: if R is hereditary, then so is A.
But we have a much stronger result, due to Suarez.
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THEOREM 3.4.5 [33](3.2)(3.5). Let R be a split extension of A by a nilpotent bimodule
E. Thengl.dim. A < gl.dim. R < gl. dim. A + pd Ag. O

We can also apply 3.4.4 to the study of the left and right parts of an algebra. Recall
from [25] that, if C is an algebra, the left part £ of mod C' is the full subcategory of
ind C' consisting of those indecomposable modules U such that, if there exists V' inde-
composable and a sequence of nonzero morphisms between indecomposable C-modules

V=W % e Vin=U
then pd Vo < 1. One defines dually the right part % ¢ of mod C.

LEmMMA 3.4.6 [14](2.4). Let M be an indecomposable A-module.

(a) If M ® 4 R belongs to L, then M belongs to £ 4.
(b) IfHomyu (R, M) belongs to R r, then M belongs to R 4.
(c) If M ® 4 R belongs to R R, then M belongs toR 4.
(d) IfHomua (R, M) belongs to L, then M belongs to £ 4.

Proor. (a) Let L = Ly il Ly —--- I L,, = M be a sequence of nonzero
morphisms between indecomposable A-modules. For each i, L, ® 4 R is inde-
composable and f; ® 4 R is nonzero. So we have a sequence of nonzero mor-
phisms between indecomposable R-modules

fi®aR fm®aR
T

LosR=Lo®sR—— L1 ®4 R —— -- L, ®aR=M®a R.

Because M ®4 R € %£pg, then pd(L ®4 R) < 1. Because of 3.4.2, we get
pdLs <1.
(c) We have isomorphisms of k-vector spaces

HomR(M ®a R, Homa(rRaA, M)) >~ Homy(M ®4 RQr Ra, M)
>~ Homu(M ®4 Ra, M)
=~ Homu (M ®4 (A® E), M)
>~ Homa (M, M) @ Homus(M @4 E, M).

Because Homy (M, M) # 0, there exists a nonzero morphism
M ®4 R— Homa(R, M). Now M ®4 R € R g, which is closed under suc-
cessors. Hence Hom 4 (R, M) € % . Applying (b), which is proved exactly as
(a), we get M € R 4, as required. O

We now consider different classes of algebras. An algebra C is called laura if £ U
R ¢ is cofinite in ind C, see [9] or [29]. It is left glued if £ is cofinite in ind C, see [8].
Right glued algebras are defined similarly. An algebra C' is weakly shod if the length
of any path from an indecomposable not in £¢ to one not in ¢ is bounded, see [23].
It is shod if every indecomposable has projective dimension or injective dimension at
most one, see [22]. It is quasi-tilted if Co € £, see [25]. For tilted algebras, we refer
to [12], Chapter VIIL. The algebra C'is right ada if Cc € add(£c U%R ) and left ada if
DC¢ € add(£c U% ), see [1]. Finally, C is ada if it is both right and left ada, see [7].

THEOREM 3.4.7 [14](2.5) [35](1.10) [1](3.6) [7](2.9). Let R be a split extension of A by
the nilpotent bimodule E.
(a) If R is laura, then so is A.
(b) If R is right or left glued, then so is A.
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(c) If R is weakly shod, then so is A.
(d) If R is shod, then so is A.

(e) If R is quasi-tilted, then so is A.

(f) If R is tilted, then so is A.

(g) If R is right or left ada, then so is A.
(h) If R is ada, then so is A.

PRrOOF. (a) Because of 3.4.6, if an indecomposable A-module M does not lie in £ 4 U

Ra,then M ®4 R ¢ L URg. Because R is laura, £ U R g is cofinite in ind R.
Therefore, £ 4 U 4 is cofinite in ind A.

(b) is proved in the same way.

(c) Let My ¢ La, My ¢ R4 be indecomposable A-modules. As seen
in 3.4.6, a sequence of nonzero morphisms between indecomposable R-modules
My — M; — -+ — M, induces a sequence of nonzero morphisms between inde-
composable R-modules My ®4 R — M; ®4 R — -+ — M; ® 4 R. Because R is
weakly shod, ¢ is bounded.

(d) Let M be an indecomposable A-module. Because R is shod, pd Mr < 1 orid Mg <
1. Then 3.4.4 givespd M4 < lorid M4 < 1.

(e) Let P be anindecomposable projective A-module. Then P® 4 R is an indecomposable
projective R-module. Because R is quasi-tilted, P ® 4 R € £g. Because of 3.4.6,
Pec%y.

(f) We refer the reader to [35].

(g) Let P be an indecomposable projective A-module. If R is right ada, then P ® 4 R €
LrURR. Because of 3.4.6, P € L 4.

(h) Follows from (g). O

3.5. Almost split sequences. We now look for a criterion allowing to verify when
an almost split sequence in mod A embeds as an almost split sequence in mod R.

LEmMmA 3.5.1 [13](1.1). Let M be an indecomposable A-module.
(a) Let Py be a projective cover of M and P a projective cover of Py ® 4 E inmod A. Then
there exist a direct summand P’ of P and an exact sequence in mod A

0—74AM @ Hom(E,7AM) — 7pRM — P'®4DR — Ker(p,,, , ,®4DR) — 0.

(b) Let Iy be an injective envelope of M and I an injective envelope of Hom 4 (E , I°) in
mod A. Then there exist a direct summand I’ of I and an exact sequence in mod A

0 — Coker Homy(DR, j —Homy(DR,I") > 7;'M — 7, 'M& (7, ' M @4 E) > 0.

Homy(R, M) )

f1 fo

Proor. (a) Let P1 PO
tation in mod A. Because of 3.3.1, we have a minimal projective presentation

M 0 be a minimal projective presen-

Pl@ARMPO(@ARMM@AR*’O

in mod R. Because of 3.3.3, there exists a direct summand P’ of P such that we have
a commutative diagram with exact rows in mod R

PR —2E" L pesR P2 L e R——0
) o [
(h®aR, §)
(PL®P)®aR Py®a R M 0
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where the lower sequence is a minimal projective presentation.
Applying the Nakayama functor — ® p DR yields another commutative diagram
with exact rows

f1i®aDR fo®aDR

0 — TR(M®4R) ——~ P,®,DR Py®ADR M®4DR — 0

L] e
0 ——> 7sM —> (PL@P)® DR — > Py®4DR M®&RDR — 0

where j is the inclusion and u is induced by passing to kernels. Because ((1)) 7 is
injective, so is u.
This diagram induces the two commutative diagrams

OHTR(M®AR)4>P1®ADR X 0
0 TRM (Pl@P/)®ADR Y 0
0 X Ph®4sDR — M ®4 DR — 0
T e
0 Y Py®s DR — M ®rDR — 0

where v is the induced morphism. The snake lemma applied to the second diagram
yields v injective and Coker v = Ker(pyg,r ®4 DR), and to the first diagram an
exact sequence

0 —— Cokeru —— P’ ®4 DR —— Cokerv —— 0.
This latter sequence splices with the exact sequence

0 — 7r(M ®4 R) ——> M Cokeru —— 0

to give an exact sequence
0 — 7R(M ®4 R) — TRM — P'®4 DR — Ker(pyg,r ®4 DR) — 0.
Finally, as A-modules, we have

TR(M ®4 R) 2 Homyu (R, TaM) 2 74 M & Homyu (E, TAM). O

THEOREM 3.5.2 [13](2.1). Let M be an indecomposable A-module.

(a) If M is nonprojective, then the following conditions are equivalent:
i) the almost split sequences ending with M in mod A and mod R coincide
ii) TAM =2 T M
iii) Homa(E, TAM) =0and M @4 E = 0.
(b) If M is noninjective, then the following conditions are equivalent:
i) the almost split sequences starting with M in mod A and mod R coincide
i) 7'M =Tt M
iii) Homu(E, M) =0and7,'M ®4 E = 0.

Proor. (a) i) impliesii). This is trivial.
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ii) impliesi). Let0 — 7 M — X — M — 0 be almost split in mod R. Because
TrRM = T4 M, the whole sequence lies in mod A. It does not split in mod A,
because otherwise it would split in mod R. Let h: L — M be a nonretraction in
mod A. Then h is a nonretraction in mod R. Therefore, there exists h': L — X
such that h = gh'. Because L, X are A-modules, /' is a morphism in mod A.

ii) implies iii). Because of 3.5.1, there exists a monomorphism
u: TaAM @ Homy(E, TAM) — 7 M in mod A. Then 7 M = 74 M forces
Homyu(E, TaM) = 0. Moreover, u is an isomorphism 7r(M ®4 R) = TrM.
Butthen M ® 4 R= M andso M ®4 FE = 0.

iii) implies ii). Because M ®4 E = 0, we have M ® 4 R = M, therefore

QL(M®4 R) = QLM = QY M @ (Py®4 E)

using the notation and the proof of 3.3.3. Let P be a projective cover of QL(M® 4
R) in mod A. Then P ®4 R is a projective cover of Q%(M ®4 R) in mod R,
because of 3.3.3. Now Q},(M ®4 R) = Q4 M yields P®4 R~ P, ®4 R hence
P = Py. Therefore the tops of Q% (M ®4 R) and Q4 M are equal in mod A,
and hence Py ® 4 F = 0. But then its projective cover P is zero and so P’ = 0.
Then we have TRM = 74 M & Homa(E , TaM). Thus, Homa(E , 74M) =0
implies TR M =2 74 M, as desired. O

The following corollary, due to Hoshino [26], played an important role in the classi-
fication of the representation-finite selfinjective algebras.

COROLLARY 3.5.3 [13](2.3). Assume E = 4 DA, and let M be an indecomposable
A-module.
(a) If M is nonprojective, then TAM = Tr M if and only ifpd M4 < 1,id7a M < 1.
(b) If M is noninjective, then TglM o TglM if and only if pd TglM <1,idM4 <1.

Proor. (a) We have pd My < 1 if and only if Homy(DA, 74M) = 0,
see [12](IV.2.7), and id 74 M < 1 if and only if M ® 4 DA = DHomu (M, A) =
0. .

Assume now that A is a tilted algebra and E = Ext% (DA, A) sothat R = A x E
is cluster tilted. It is shown in [4] that any complete slice in mod A embeds in mod R
as what is called a local slice, a result extended in [6] to algebras B such that there exist
surjective morphisms of algebras R — B — A. The decisive step was the proof that,
if M is an indecomposable lying on a complete slice in mod A, then, if M is nonprojec-
tive in mod A, we have oM = TrM and if it is noninjective, then TglM ~ T}glM,
see [6](3.2.1).

In [34](5.9), Treffinger obtained necessary and sufficient conditions for a 7-slice in
mod A to embed as a 7-slice in mod R.

ExAMPLE 3.5.4. Let A be given by the quiver

[0
O«—O0<«—O

1 2 3

bound by a5 = 0, and R be given by the quiver

O<«—O0<«—O

1 2 3



24 I. ASSEM

bound by a8 = 0, na = 0. Here we find E4 = (3)?% while (DE)4 = 3. Consider
first the simple module Sy = 2. We have 7452 = 1 hence Hom4(E, 7452) = 0. On
the other hand, So ® 4 £ = DHom4 (S, DE) = DHomA(z , g’) # 0. Therefore the
almost split sequences ending with S5 in mod A and mod R do not coincide. In fact, a

quick calculation shows that the first is 0 1 2 2 0 while

the secondis 0 —— % —— 2®?% —— 2 —— 0.

On the other hand, looking at S3 = 3 we have 7453 = 2, so that
Homu(E, 7453) = 0. Also S3 ® 4 F = DHom4(S3, DE) = DHomA(B , g) = 0.
Therefore, the almost split sequences ending in S3 in mod A and mod R coincide.

4. Tilting modules

4.1. Extendable tilting modules. For tilting theory, we refer the reader
to [12] Chapter IV. Let, as usual, R be a split extension of A by a nilpotent bimodule
E.

THEOREM 4.1.1 [11](2.3). Let T be an A-module, then

(a) T ®4 R is a partial tilting (or tilting) R-module if and only if T is a partial tilting (or
tilting, respectively) A-module, Hom 4 (T ® 4 E, 7AT) = 0 and Hom 4 (DE, 74T) =
0;
(b) Homa (R, T) is a partial cotilting (or cotilting) R-module if and only if T is a partial

cotilting (or cotilting, respectively) A-module, Hom 4 (T;lT , Hom4 (F, T)) =0and
Hom 4 (Tng, E> —o.

Proor. (a) Because of 3.2.2, the number of isoclasses of indecomposable summands
of T equals that of T'® 4 R. Also, because of 2.1.2, the ranks of the Grothendieck
groups of A and R are equal. Therefore, it suffices to prove the statement about
partial tilting modules.

We have isomorphisms of vector spaces

HomR(T ®RAR, TR(T®a R)) = HomR(T ®4 R, Homu (R, TAT))
=~ Homu (T ®4 R®gr R, 74T)
=~ Homu (T ®4 R, 74T)
=~ Homu (T, 74T) @ Homa(T @4 E, 74T).
If T is a partial tilting module then pdT4 < 1 implies Homu (T, 74T

)
DExtY (T, T) = 0. Further, Homa(DE, 74T) = 0 implies pd(T ®4 R) <
because of 3.4.2. Therefore Hom, (T ®4 E, 74T) = 0 implies

Extp(T®a R, T®4 R) = DHomp(T @4 R, Tr(T ®4 R)) =0

1

and so T'® 4 R is a partial tilting R-module.

Conversely, if T' ® 4 R is a partial tilting R-module, 3.4.2 gives pdTy < 1
and Homy (DE, 74T) = 0. Moreover Homp (T ®a R, TR(T ®4 R)) = 0 yields
Homa(T ®4 E, 74T) = 0 and Ext! (T, T) = DHoma (T, 74T) = 0,50 T4 is a
partial tilting module. (]

DEFINITION 4.1.2. (a) A partial tilting (or tilting) A-module is called extendable if
T ®a R is a partial tilting (or tilting, respectively) R-module.
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(b) A partial cotilting (or cotilting) A-module is called coextendable if Hom 4 (R, T') is
a partial cotilting (or cotilting, respectively) R-module.

One reason for looking at this class of (co)tilting modules is that they preserve the
splitting character of the algebra.

PROPOSITION 4.1.3 [11](2.5). (a) If T is an extendable tilting A-module, then S =
End(T ® R) is the split extension of B = End T4 by the nilpotent bimodule pWp =
Homa(gTa, 8T ®4 E).

(b) If T is a coextendable cotilting A-module, then S = End Hom 4 (R, T') is the split ex-
tension of B = End T4 by the nilpotent bimodule W = Hom 4 (HomA (E,T), T).

Proor. (a) We have vector space isomorphisms

S = HomR(T RaAR, T®a R) = HomA<T, HOHIR(ARA, T®a R))
= HOHlA(T, T®a RA) = HOHlA(T, T) EBHOIDA(T, T®ag E)

We thus have an exact sequence 0 w s —~*->B 0 where
( is an algebra morphism, and the ideal structure of W is induced from its B-B-
bimodule structure. There remains to prove that W is nilpotent. The multiplication
in W is that of S and, for any w € W, its image is contained in 7" ® 4 E. Because £
is nilpotent, there exists s > 0 such that, for any sequence wy, ..., w; of elements of
W, the image of w1 - - - ws liesin T ®4 E° = 0. Therefore W* = 0. O

The proof shows that the nilpotency index of W in S does not exceed that of E in
R. Thus, if R is a trivial extension of A by F, then S is a trivial extension of B by W.

ExAMPLE 4.1.4. Let A be the path algebra of the quiver

10

and R be given by the quiver

2 0

bound by gn = 0, naf = 0, nary = 0. It is easily seen that the A-module
T=eA®esADDAe;) ®D(Aey) =1 P 1§2 @ 311 D4

is tilting. We claim it is extendable. We first observe that E4 = 4, (DE)4 = (1)% In
particular DE is generated by T so that Hom(DE, 74T) = DExt} (T, DE) = 0. We
now compute 7' ® 4 R. We have eyA ®4 R 2 e1 R = é and e A ®4 R = eyR = 1§2
Also the minimal projective presentations

0 6214 €4A

=00

0 63A 64A 4 0
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induce respectively the minimal projective presentations

e R esR % QAR ——>0

63R*>64R*> 4®AR*>O.

Therefore % Q4 R = %and 44 R 4and T ®4 R = %69 2§1 &) % @ 4 so that
T ®a E = %, which is generated by T Therefore Homu (T @4 E, 74T) = 0 and T is
extendable.

The algebra End T is given by the quiver

v 1 A
1 0 O O O 4

2 3

bound by Auv = 0, while End(T ® 4 R) is given by the quiver

bound by Auv = 0, Apo = 0, oA = 0. It is the split extension of End 7" by the bimodule
generated by o.

On the other hand, the tilting A-module 7" = 2%1 &) g &) % @ 4 is not extendable,
because DE is not generated by 7" and then Ext}y (T", DE) # 0.

Another example of extendable partial tilting module can be found in [28] where
the authors study cluster tilted algebras from the point of view of induced and coinduced
modules. They prove in [28](4.9) that, if A is a tilted algebra, E = Ext% (DA, A) and
R = Ax E, then (DE) 4 is an extendable partial tilting module, and E 4 is a coextendable
partial cotilting module.

4.2. Induced torsion pairs. For a module M, the notations Gen M and Cogen M
stand respectively for the class of modules generated and cogenerated by M.

Associated with a tilting A-module T is a torsion pair (7(T4), ¥ (T4)) in mod A
defined by

T(Ty) = { My ‘ ExtY(T, M) =0 } — GenT

F(Ta) ={ Ma | Homu(T, M) =0} = Cogen(r4T).
Similarly, associated with a cotilting A-module T is a torsion pair (T'(T4),F’(T4))
given by

T'"(Ta) ={ Ma | Homu(T, M) =0} = Gen(r,'T)

F'(Ty) = { My ‘ ExtYy(T, M) =0 } = CogenT.

ProPOSITION 4.2.1. (a) If T is an extendable tilting A-module then
Xr€TJ(T ®a R)ifandonlyif X4 € T(T)
Xre€F(T @4 R)ifandonly if X4 € F(T).
(b) If T is a coextendable cotilting A-module then
Xp € J'(Homa(R, T)) ifand only if X4 € T'(T)
Xp € F'(Homa(R, T)) ifand only if X4 € F'(T).
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ProoF. (a) The statement follows from the vector space isomorphisms
Extp(T®aR,X) = DHomp (X, 7r(T ®4 R)) = DHompg (X , Homa(R, 747))
>~ DHoma(X ®@g Ra, 74T) = DHom (X 4, 74T) = Ext!y (T, X)
and Homgp(T ®4 R, X) & HomA(T7 Hompg(aRg, X)) > Homu(T, X4). O

COROLLARY 4.2.2. (a) If T is an extendable tilting module, then

i) J(T)®4 RCI(T ®4 R) always, and

J(T)R4 ROI(T @4 R) ifand only if In(— @4 R) DT (T ®4 R).

i) F(T)®4a RCF (T ®a R) ifand only if F(T)®4 E C F(T),
F(T)R4RDF(T®4 R) ifand only if Im(— ®4 R) 2 F(T ®4 R).
(b) If T is a coextendable cotilting module, then

i) Homa (R, '(T)) € F'(Homua(R, T)) always, and
Homa (R, F'(T)) 2 %'(Homa(R, T)) if and only if ImHomu (R, —)

U

ii) Homa (R, I'(T))
FgNT),
Homy (R, J'(T)) 2 J'(Homu (R, T))) if and only if ImHoma(R, —)
)

9’(HomA(R,T),

C J'(Homa(R, T)) if and only if Homu(E, J'(T)) C

V)

Proor. (a) i) Let M € J(T'). In order to show that M ®4 R € T (T ®4 R), we
need, because of 4.2.1, to prove that M ® 4 Ry = M & (M ® 4 E) lies in I (T).
We know that M € J(T'). But M generated by T" implies M ® 4 F generated by
T ® 4 E and the latter is generated by T', because of 4.1.1. This establishes the
first statement.

The necessity part of the second statement is clear, so we prove sufficiency. Let
X € (T ®4 R). The hypothesis says that there exists M4 such that X =
M ®4 R. It suffices to prove that M € J (7). But this follows from the facts that
Xa Eg(T) and X 4 ’EM@(M(@AE)

ii) Let N € F(T). Wehave N®4 R € F(T ®4 R) ifandonly if N ®4 R4 =
N&®&(N®aFE)e F(T)ifand only if N @4 E € F(T). This implies the first
statement. The second one is proved as the corresponding one for 7 (T'). g

COROLLARY 4.2.3. (a) Let T be an extendable tilting module, then
i) If (T(T ®aR),F(T®aR)) splits in mod R, then (J(T),%F(T)) splits in
mod A.
ii) If (I(T),F(T)) splits in modA and F(T ©®4 R) C Im(— ®4 R), then
(T(T ®a R),F(T ®a R)) splits in mod R.
(b) LetT be a coextendable cotilting module, then
i) If (?7’(HomA(R, T)),%' (Homa(R, T))) splits in modR, then
(F(T),F'(T)) splits in mod A.
ii) If (T7'(T),F'(T)) splits in mod A and 7' (Homa (R, T)) € ImHomu (R, —),
then (37'(H0m,4 (R, T)),%'(Homu(R, T))) splits in mod R.
ProoF. (a) i) Let M € J(T), N € F(T). We claim that Ext' (N, M) = 0.

Because of 4.2.1, we have M € J(T ®4 R), Ng € F(T ®4 R). But then
Exth(N, M) = 0. This implies Ext’ (N, M) = 0.
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ii) Let X € T(T®4R),Y € F(T®4R). We claim that Ext (X , Y') = 0. Because
of the hypothesis and 4.2.2, there exists N € & (T') suchthat Y = N ®4 R. Also,
Xr € J(T ®4 R) implies that X4 € J(T), that is, X € Gen(T"). This implies
that X ®4 F € Gen(T ®4 F). Because T'®4 E € GenT, see 4.1.1, we get
X ®a E €J(T). Therefore, X ®4 R4 = X ® (X ®4 E) € I(T). Hence

(

Extr (Y, X) = DHomg(X,7rY) C DHomg(X , 7RY) = DHomR(X, TR(N®AR))
o DHomR(X, Homa (R, TAN)) >~ DHoma (X ®r Ra, TaN)
>~ DHomy (X, 74aN) @ DHoma (X ®4 E, 7AN) =0

because N € F (1) and (T (T),F (T)) split imply 74N € F(T). O

ExaMPLE 4.2.4. Let e € A be an idempotent such that eA is simple projective non-
injective, and FE is a nilpotent bimodule such that e/ = Ee = 0. Then the APR-tilting
module 7' = 7 *(eA) @ (1 — e) A is extendable.

Indeed, we must show that DE and T ® 4 E are generated by 7. Now
Exty (T, DE) = DHomy(DE, 74T) = DHom(DE, eA) is nonzero if and only if
eA is a direct summand of DE. But Homy(eA, DE) = (DE)e = IeE) = 0. Hence
Ext4 (T, DE) = 0and so DE € GenT.

Moreover, there exists an idempotent e’ € A such that we have an almost split se-
quence

0 eA e'A 71 (ed) — 0. (%)

Applying — ® 4 E yields ¢'E = 7, (eA) @4 E. Now ¢'E € GenT because ¢/ Ee = 0,
hence so is 7, ' (eA) ® 4 E. Therefore T ® 4 E € GenT.

Furthermore, T'® 4 R is also an APR-tilting module.

Indeed, we first prove that eR is simple projective noninjective in mod R. If this is
not the case, there exists & € (Q ), starting at the point corresponding to e. There is no
such arrow in @) 4, hence a belongs to E' and o« = ea = 0 gives a contradiction. Next,
applying — ® 4 R to () yields an exact sequence

0 — Torf(Tgl(eA), R) eR —'> ¢'R i (eAd)®a R —— 0 .

Because Tor{' (Tgl(eA), R) =~ DExt} (Tgl(eA) , DR) = 0 (for, DE € GenT), we

deduce that j is a monomorphism. Hence 7' (eA) ® 4 R = 75" (eR) andso T ®4 R is
indeed an APR-tilting module.

Finally, ¥ (T ® 4 R) = add(eR) = add(eA ®4 R) C Im(— ®4 R) so that the
conditions of 4.2.3 are satisfied in this case.

4.3. Restrictions of tilting modules. We consider the reverse problem: given a
tilting R-module U, under which conditions is the restricted module U ®p A a tilting
A-module (and similarly for cotilting modules)?

LEMMA 4.3.1. (a) Let U be such that Tor™ (U, A) = 0 and0— P, ELS Py B0
a minimal projective resolution for U, then

0——> PLop Al B, Al Uopd —— 0

is a minimal projective resolution for U @ A. In particular, pd(U ®@g A) <1
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0 . 1
(b) Let Ug be such that Extp(A, U) = 0 and 0 — U L 1995 Y 5 0 a minimal in-
Jjective coresolution for U, then

HomR(A,go) ) HOIHR(A,gl)
_— _—

0 — Hompg(4, U) HomR(A,fo HomR(A,fl) — 0

is a minimal injective coresolution for Homp (A, U). In particular,id Homp (A, U) <
1.

Proor. (a) Applying — ®pr A to the given minimal projective resolution of U and
using that Torf (U, A) = 0 yields an exact sequence

0%P1®RA%PO®RAMU®RA4>O.

Because Py®pr A, P, ® g A are projective A-modules, this is a projective resolution. In
particular, pd(U ® g A) < 1. Minimality follows from the fact that, because of 3.2.4,

Py ®p A is a projective cover of U Q@ A. O
LEMMA 4.3.2. (a) Let Ug be such that pd U < 1 and Torf (U, A) = 0, then
TA(U ®r A) = Homp(A, TrU).
(b) Let Ug be such thatidU < 1 and Exth(A, U) = 0, then
7,1 Homp(A, U) 2 (15'U) ®p A.

ProoF. (a) Because of 431, a minimal  projective resolution
0 — P — Py — U — 0 induces a minimal projective resolution in mod R

0 ——> P®rA ——> PhQrA ——> UQrA —— 0.

Applying Hom 4 (—, A) yields a commutative diagram with exact rows

Hom 4 (150®RA, A) Hom 4 (151 R A, A) s THU®RA) — 0

I I

Homy (]50 ,HomA(RA,A)) — Homy (Pl,HomA(RA,A)>

I I

Homp (PO , A) Homp (Pl , AR)

Exth(U, Ag) — 0

where the lower row is obtained by applying Hompg(—, Ag) to the original mini-
mal projective resolution of Ur. Thus Tr(U @ A) = Extp(U, A) and therefore
TA(U ®@p A) & DExt};b(U, A) 2 Hompg(A, 7rU) because pd Ug < 1. ]

THEOREM 4.3.3 [14](3.3). (a) Let Ur be a partial tilting (or tilting) R-module such
that Tor{%(U, A) = 0, then U Qg A is a partial tilting (or tilting, respectively) A-
module.

(b) Let Ur be a partial cotilting (or cotilting) R-module such that Ext}z(A , U) =0, then
Homp(A, U) is a partial cotilting (or cotilting, respectively) A-module.
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PROOF. (a) Assume first that U is partial tilting and such that Tor™ (U, A) = 0.
Because of 4.3.1, we have pd(U ® g A) < 1. Also we have vector space isomorphisms

DExty (U®r A, U®p A) = Homa (U ®@g A, 74(U ®p A))

=~ Hompg (U, Hom4y RA TA4(U @R A))

(
=~ Homp (U, Homy RA Hompg(A, TRU))>
o HomR(U, Homp(rA®a Ag, TRU))
= HomR(U, Hompg(rAr, TRU)).
Applying Hompg(— , 7rU) to the exact sequence 0 — rEgr — gRr — rAr — 0
yields a monomorphism
0 —— Hompg(grAgr, 7RU) —— Hompg(rRg, TRU) = 7rU.

Applying next Homp (U, —) yields another monomorphism
0 — Homp (U, Homg(rAg , TRU)) — Homp(U, 7rU) = DExt (U, U) = 0.

Thus Exty (U ®r A, U @z A) = 0and U @ A is a partial tilting A-module.
If Ugr is tilting, then there exists an exact sequence
0 — Rp — Uy — Uy — 0 with Uy, U; € addU. Because Torf (U, A) = 0,
applying — ®pr A yields an exact sequence

00— Ay — Uy ®@rA — U1 @ A —— 0.
Because Uy @r A, U1 @r A € add(U ®p A), this finishes the proof. O

DEFINITION 4.3.4. (a) A partial tilting, or tilting, R-module U is called restrictable
provided Torf (U, A) = 0 and then U @ A is called its restriction.

(b) A partial cotilting, or cotilting, R-module U is called corestrictable provided
Extp(A, U) = 0 and then Homp(A, U) is called its corestriction.

LEmMMA 4.3.5. (a) Let T be an extendable partial tilting (or tilting) A-module, then
T ® 4 R is a restrictable partial tilting (or tilting, respectively) R-module, with restriction
T.

(b) Let T' be a coextendable partial cotilting (or cotilting) A-module, then Hom g (R, T') is
a corestrictable partial cotilting (or cotilting, respectively) R-module, with corestriction
T.

ProoF. (a) Assume that 7" is an extendable partial tilting, or tilting, A-module.
We claim that T ®4 R is restrictable, that is Tori (T ®4 R, A) = 0. Let
0 — P, — Py — T — 0 be a minimal projective resolution in mod A. Because
T is extendable, pd(T' ® 4 R) < 1, hence 3.3.1 gives a minimal projective resolution

0 — PIQAR—> P4 R —>T® 1R —— 0.

Applying —®p, yields a commutative diagram with exact rows

0 — Torf(T®sR,A) — Pi@sRORA — Py@AR®rA — TOARQRA — 0

I
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Thus Torf(T'®4 R, A) = 0 and so T ®4 R is restrictable. On the other hand,
T4 RQr A=T: the restriction of T ® 4 Ris T. [l

THEOREM 4.3.6 [14](3.4). (a) The functors — ® 4 R and — @ A induce mutually
inverse bijections

—®aR

{extendable tilting A-modules} {restrictable induced tilting R-modules}.

—®RrA
(b) The functors Homy (R, —) and Hompg(A, —) induce mutually inverse bijections

HomA(R , —

{coextendable cotilting A-modules} {corestrictable coinduced R-modules}.

HomR(A s —)

Proor. (a) If T is an extendable tilting A-module, then T'® 4 R is induced by defi-
nition and it is restrictable because of 4.3.5.

Conversely, if Ug is an induced restrictable tilting module, then Tor{ (U, A) =
0. Because of 4.3.5, U @ A is a tilting A-module. On the other hand, there exists M 4
suchthat U 2 M ® 4 R.ButthenU @R A M @4 RIp A M ®4 A= M so
that (U ®p A) @4 R= M ®4 R=U. Thus U ®p A is extendable. 0.

The modern guise of tilting theory is 7-tilting theory. In [33], Suarez obtained a
similar result for (support) 7-tilting modules.

ExampiE 4.3.7. There exist restrictable tilting R-modules which are not induced. Let
A be the path algebra of the quiver

(03
1 O«—0O 2

and R the path algebra of the Kronecker quiver

«
1 0% o 2.

B

We claim that the APR-tilting module Ur = 7' (e1R) @ eaR is restrictable but not
induced.

To prove that U is not induced, it suffices to prove that 7' (e; R) = ;%2 is not
induced. Because A has only 3 isoclasses of indecomposable modules of which two are
projective, it suffices to compute the R-module induced by the remaining indecomposable
S = 2. The minimal projective resolution

0 €1A 6214 SQ 0

in mod A induces one in mod R

0 6114 €2A SQ@AR%O .

Therefore So ®4 R & 2 2 TEl(elR).

To prove that U is restrictable, we must show that Torf(U, A) =
DExthL(U, DA) = 0. But this amounts to showing that (DA)g is generated by
U inmod R. Now (DA)r = 2 @ 2 and both of its summands are generated by U.

Finally, we compute the restriction of U. We have a minimal projective resolution

0 erR (eaR)? —— 1 (e1R) —— 0 .
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Applying — ® 4 R yields an exact sequence

0 elA (6214)2 —_— Tgl(elR) ®RA — 0.

Therefore 751(6113) @r A ? @ 2. Because eaR ®p A = e A = 2, we deduce that
UsrA=(2)"a:e.
ProPOSITION 4.3.8 [14](3.5). (a) Let U be a restrictable tilting R-module, then
My € 9(U ®gr A) ifand only if Mg € T(U),
My € F(U ®g A) ifand only if Mp € F(U).
(b) Let U be a corestrictable cotilting R-module, then
My € J'(Hompg(A, U)) ifand only if Mg € 7'(U),
My € F'(Hompg(A, U)) if and only if Mg € F'(U).

ProorF. (a) This follows from the vector space isomorphisms
Exty (U ®g A, M) 2 DHoma (M, 74(U @5 A))
= DHomA(M Homp (A TAU))
>~ DHompg(M ®4 Ar, 7AU)
=~ DHomg(Mg, TrU)
=~ Ext(U, Mg),
and
Hom (U @ A, M) = Hompg (U, Homu (A, M))
>~ Homg (U, MRg). ]
COROLLARY 4.3.9 [14](3.5). (a) If U is a restrictable tilting R-module such that
(T(U),F(U)) splits inmod R, then (T (U @ A),F (U ®@r A)) splits in mod A.

(b) If U is a corestrictable cotilting R-module such that (7'(U),%'(U)) splits in mod R,
then (7' (Hompg(A, U)),F'(Hompg(A, U))) splits in mod A.

Proor. (a) Let M €e F(U®prA), N € F(URrA). Then Mr € J(U), N € F(U).
Because of the hypothesis, Ext (N, M) = 0. Therefore Ext!, (N, M) = 0. O

REMARK 4.3.10 ([14](3.7)). It is useful to observe that an R-module U verifies
Torf (U, A) = 0 if and only if the multiplication U @ E — UE, x ® e — ze (for
x € U, e € E) is an isomorphism of A-modules. Indeed, applying U ® g — to the exact
sequence 0 — pF4 — pR4 — pAa — 0 yields a commutative diagram with exact
rows

0 —— Torf(U®aR,A) —— URE ——> U®rR —— URrA —— 0

bk |

0 UE d U—L > U/UE —0

where i, i1/ are the multiplication maps and p’’ is induced by passing to cokernels. As
seenin 3.1.4, u” is an isomorphism and 1 is well-known to be so. Moreover, 1’ is surjective
so that we have an exact sequence in mod A

0 —— Tor*(U®AR, A) —— U E —">UR ——0 .

The statement follows.
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