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1 Introduction

In the representation theory of artin algebras, an important line of research consists in
studying those processes which allow to modify, in a predictable way, certain features of
the module category of an artin algebra. In this paper, the features we are interested in
are the left and the right parts of the module category, introduced by Happel, Reiten and
Smalg in [15]. Let A be an artin algebra, mod A denote the category of finitely generated
left A-modules and ind A denote a full subcategory of mod A having as objects exactly one
representative from each isomorphism class of indecomposable A-modules. The left part £ 4
of mod A is the full subcategory of ind A having as objects those indecomposable A-modules
whose predecessors have projective dimension at most one. The right part R4 is defined
dually. These classes were used successfully in [15] to study the representation theory of
quasi-tilted algebras, then, later, to study the many generalisations of this class such as the
shod, weakly shod, laura and left (or right) supported algebras (see the survey [5]). However,
the definition of £4 and R4 is not very practical: it is difficult to find all predecessors (or
successors) of a given indecomposable module and thus to say whether it lies in £4 (or
R 4, respectively) or not. Our first theorem, which generalises [15, I11.1.5] and [11, 1.2],
simplifies this task: it says that instead of considering all predecessors (or successors) of an
indecomposable module, it suffices to look at the “immediate” ones.

THEOREM 1.1 Let A be an artin algebra, and M be an indecomposable A-module. Then:

(a) M belongs to L4 if and only if, for every object L in ind A with projective dimension
at least two, we have Hom 4 (L, M) = 0.

(b) M belongs to R4 if and only if, for every object N in ind A with injective dimension
at least two, we have Hom (M, N) = 0.

As a first application of this theorem we consider the indecomposable Ext-injective mod-
ules in the additive subcategory of mod A generated by L 4, studied and characterised in [4,
3.1]. We give here handier characterisations.
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Our main interest in this paper, however, lies in a construction which turns out to behave
well when it comes to the left and the right parts: that of the skew group algebra. Let G
be a finite group acting on an artin algebra A, the skew group algebra A|G] is the free
left A-module with basis all the elements in G endowed with the multiplication given by
(ao)(b¢) = ao(b)o( for all a,b € A and o0,( € G. The study of the representation theory
of skew group algebras was started in [19, 17, 18, 14]. We are partly motivated by the fact
that finite coverings, and the algebra of invariants, as well as the smash algebras of [10], are
particular cases of skew group algebras [17, 7]. The algebra A[G] retains many features from
A, such as being representation-finite, being an Auslander algebra, or being a Nakayama
algebra (see [7, 19]). However, many properties are not preserved by this construction,
like being a basic algebra, or being connected, so we are dealing with essentially different
algebras, making it worthwhile to compare their representation theories.

It is shown in [19] that an algebra A and the skew group algebra A[G] share most
homological information. Thus, it has been shown that if A is a tilted (or a quasi-tilted)
algebra, then so is A[G], see [19] (or [15], respectively). However, for studying generalisations
of these classes of algebras (such as, for instance, laura algebras) homological information,
by itself, is not sufficient. We also need a nice correspondence between paths in ind A and
in ind A[G]. After establishing this correspondence, we are able to prove our second main
theorem.

THEOREM 1.2 Let A be an artin algebra, G be a finite group acting on A such that |G|
is invertible in A, and R = A[G]® be the basic algebra associated to the skew group algebra.
Then:

(a) A is left (or right) supported if and only if so is R.
(b) A is laura if and only if so is R.

(c) A is left (or right) glued if and only if so is R.

(d) A is weakly shod if and only if so is R.

(e) A is shod if and only if so is R.

(f) A is quasi-tilted if and only if so is R.

(9) A is tilted if and only if so is R.

For the definitions of the above classes, we refer to [5] or to section 5 below. Here,
statements (f) and (g) are included for completeness.

Finally, we apply this result to the toupie algebras of [9]. We define a new class, which we
call skew toupie algebras, and exhibit a familiy of laura (actually, weakly shod) skew toupie
algebras.



2 A characterisation of the left and right parts.

2.1 Notation.

For an artin algebra A, we denote by mod A the category of finitely generated left A-modules,
and by ind A a full subcategory of mod A having as objects a full set of representatives of the
isomorphism classes of the indecomposable A-modules. For a subcategory C of mod A, we
write M € C to express that M is an object in C. We denote by add C the full subcategory of
mod A having as objects the direct sums of indecomposable summands of objects in C and,
if M is an A-module, we abbreviate add{M} as add M. We say that a full subcategory C
of ind A is finite if it has only finitely many objects. Given two A-modules L and M, we
write L & M to express that L is a direct summand of M. We denote the projective (or
injective) dimension of an A-module M by pd4 M (or id4 M, respectively) and the global
dimension of A by gl.dim. A. Finally, we denote by I'(mod A) the Auslander-Reiten quiver
of A, and by 74 its Auslander-Reiten translation DTr. For further definitions or facts on
mod A, I'(mod A) and 74 we refer the reader to [7, 20].
Given M, N € ind A, we write M ~~ N in case there exists a path

M=M M — oM DM, =N (1)

(t > 0) from M to N, that is, the f; are non-zero morphisms, and the M; are indecomposable
A-modules. We then say that M is a predecessor of N, and N is a successor of M. If each f;
in (1) is an irreducible morphism, we say that (1) is a path of irreducible morphisms. A path
(1) of irreducible morphisms is sectional if T4M; 1 # M;_; for all j such that 1 < j <t.

Let A be a basic and connected artin algebra. Following [15], we define the left part £ 4
of mod A to be the full subcategory of ind A consisting of all the modules M such that, if
L ~» M, then pd 4 L < 1. Dually, the right part R 4 is the full subcategory of ind A consisting
of all the modules M such that, if M ~» N, then idq N < 1. Clearly, L4 is closed under
predecessors, while R 4 is closed under successors.

For the sake of brevity, we refrain from now on from stating the dual of each statement
and leave the primal-dual translation to the reader.

The following result generalises [15, I1.1.5] and [11, 1.2] and its proof is heavily inspired
from the proofs of these statements.

LEMMA 2.1 Let A be an artin algebra, and M be an indecomposable A-module such that
there exists a path My £ My Ei Y M in ind A with pdy My > 2. Then there exists an

indecomposable A-module L with pd, L > 2 and Hom4(L, M) # 0.

Proof. Assume that this is not the case, that is, there exist M € ind A and a path
My £ M, B M with pdy My > 2 and moreover Hom 4 (L, M) = 0 for all L € ind A with



pd4 L > 2. We may clearly choose the path M L. My I M with pd4 My > 2 so that the
length ¢(M7) of M is minimal.

It follows from our hypothesis that f1fo = 0 (in particular, fy is not an epimorphism)
and also that pd4 M; < 1.

We claim that C' = Coker fj is indecomposable. Since fi fo = 0, we have Hom 4 (C, M) #
0. So, if C were decomposable, there would exist an indecomposable C’&C such that

Hom(C', M) # 0. Let C L ¢ <& ¢ denote respectively the canonical projection and
injection. We have a fiber product diagram

(61) 0 — Imfy &> M % ¢ = 0
| Lh Li
(6) 0 - Imfy L My & ¢ — 0

where f is the canonical inclusion. We claim that the upper sequence is not zero. Indeed,
assume that it is, and let ¢” : ¢’ — M] be such that ¢'¢” = 1. We have (pg)(hg") =
p(gh)g” = p(ig’)g" = 1¢v, hence C' & M. Since M is indecomposable, C’ ~ M; and then
Im fy = 0, a contradiction. This shows that the upper sequence is not split.

Since, by hypothesis, Hom 4(C’, M) # 0 and ¢’ is an epimorphism, Hom 4 (M, M) # 0.
Thus, there exists an indecomposable summand M7 of M7 such that Hom 4 (M]', M) # 0. On
the other hand, Im fy maps non-trivially on every indecomposable summand of M/ (because
the upper sequence is not split). In particular, Hom 4(Im fo, M{) # 0. Composing with the
canonical projection f{: My — Im fj yields a non-zero morphism My — M{. Then we have
a path My — M{ — M in ind A. Our minimality assumption yields ¢(M;) < ¢(M{) <
0(M]) < £(My) so that My ~ M{ = Mj. Therefore, h is an isomorphism. Hence so is i.
This establishes our claim that C' is indecomposable.

The indecomposability of C' implies that pd 4 C < 1, because Hom4(C, M) # 0. This,
and the short exact sequence

0—TmfyL M 5C—0

imply that pd 4 Im fo < 1. Therefore, fy is not a monomorphism.
On the other hand, pd4 C < 1 implies EXti(C, Ker fy) = 0. In particular, the class in
Ext? (C,Ker fo) of the exact sequence

(¢) O—>Kerf0—>M0ﬁ>M1iC—>O

vanishes. Letting €; and e denote respectively the short exact sequences

(€1) 0—>Kerf0—>Moﬁ>Imf0—>0
(e2) 0—>Imf0i>M1i>C—>O



we have 0 = € = €1€9. Applying Hom 4(—, Ker fy) to €2 yields an exact sequence
- — BExt! (M, Ker fy) — Ext!(Im fy, Ker fy) — Ext?(C, Ker fo) = 0.

Then, there exists ( € Exth(Ml, Ker fp) such that (f = €;. That is, there exists an A-module
N and a commutative diagram with exact rows and columns

0 0
! !
0 — Kerfp — My — Imfy, — 0
| ! Lf

0 - Kerfy - N —

— 0

O — Q<—§

|
C =
!
0

from which we deduce a short exact sequence
0—-My—Imfyd& N — M — 0.

Since pd4 My > 2 while pdyIm fy < 1 and pdy M; < 1, then N has an indecomposable
summand N’ with pd4 N’ > 2. On the other hand, the middle column of the above diagram
is not split (otherwise, the right column would split too, a contradiction). Hence, every
indecomposable summand of N maps non-trivially to C. We consider the resulting path
N'— C — M in ind A. Since pd4 N’ > 2 while /(C) < £(M;), we get a contradiction to our
minimality assumption. ]

Proof of Theorem 1.1: It suffices to prove (a), since (b) is dual. Since the necessity
of the condition is obvious, we prove the sufficiency. Assume that M is such that, for every
L € ind A with pdy4 L > 2, we have Hom 4 (L, M) = 0. We must show that every predecessor
L’ of M has projective dimension at most one. Assume to the contrary that pd 4 L’ > 2, and
use induction on the length ¢ of a shortest path from L’ to M in ind A:

=M %o B, 2, =
If t € {0,1}, we have a contradiction to the hypothesis. If ¢ = 2, the contradiction follows

from Lemma 2.1. Assume that ¢ > 3. By Lemma 2.1, there exists an indecomposable N and
a non-zero morphism f : N — My such that pd, N > 2. But then the path

NLoan B, Lm, =M

of length ¢ — 1 yields a contradiction to the induction hypothesis. O



3 Ext-injectives in add L 4.

Let A be a basic and connected artin algebra. We recall from [8] that an indecomposable
module M € L4 is called Ezt-injective in add £ 4 whenever Extk(L, M) =0 for all L € Ly4.
It is shown in [8, 3.4] that M € L, is Ext-injective in add £4 if and only if 7, M ¢ La.
Further, it is shown in [4, 3.1] that an indecomposable A-module M is Ext-injective in add £ 4
if and only if it belongs to one of the following subsets of ind A:

(a) & = &1(A) = {L € L, : there exists an injective I € ind A, and a path [ ~» L in
ind A}, and

(b) & = &9(A) ={L € L4\ & : there exists a projective P € ind A \ L4, and a sectional
path P ~ 7,1L}.

Clearly, & is contained in the (apparently) larger set:
Eh = EJ(A) = {L € L4\& : there exists a projective P € ind A\ L 4,and a path P ~ 7, 'L}.

Our objective in this section is to prove that & = £. This yields an easier characterisation of
the Ext-injectives in add £ 4 which, apart from its theoretical interest, will be used essentially
in section 5.

PROPOSITION 3.1 Let A be an artin algebra. An indecomposable A-module M is Ext-
ingective in add L 4 if and only if M € & U &),

Proof. Assume M to be indecomposable and Ext-injective in add £4. Then TglM ¢
L4. By Theorem 1.1, there exists an indecomposable A-module L such that pdy L > 2
and HomA(L,TglM ) # 0. Hence, there exists an indecomposable injective I such that
Homy(I,74L) # 0. So, either Hom4(74L, M) # 0 and the path I — 74L — M yields
M € &, or else Homg(7aL, M) = 0 in which case the Auslander-Reiten formula gives
Hom 4 (L, 7, M) ~ Homs(7aL, M) = 0. Since Hom4(L, 7, M) # 0, there exists an inde-
composable projective P and a path L — P — TglM. Since pdy L > 2, we have L & L4,
so P ¢ L4 and consequently, M € &).

Conversely, let M € £ U&. Clearly, if M € &), then M € L4 but 7, M ¢ L4 (because
TEIM succedes a projective not in £4) so that M is Ext-injective in add L4. If M € &,
then either M is injective, or else there exists an indecomposable injective I and a path
IT~~»M — *x — TglM. By [3, 1.6], we infer that TglM ¢ L. Thus, M is Ext-injective in
add £ A-

This establishes the first assertion. The second follows immediately. (I

The following corollary gives equivalent characterisations of the sets £; and &;.

COROLLARY 3.2 Let M € L 4. Then:

(a) The following conditions are equivalent:



i) There exist an injective I € ind A and a path I ~~ M;

it) There exist an injective I € ind A and a path of irreducible morphisms I ~ M ;
i11) There exist an injective I € ind A and a sectional path I ~~ M ;
iv) There exists an injective I € ind A such that Hom 4 (I, M) # 0.

(b) The following conditions are equivalent:

i) There exist a projective P € ind A\ L4 and a path P ~ TglM;

it) There exist a projective P € ind A\ L4 and a path of irreducible morphisms
P s M;

i1i) There exist a projective P € ind A\ L4 and a sectional path P ~~ TXIM;
) There exists a projective P € ind A\ L4 such that Hom (P, 7' M) # 0.

Proof.
(a) i) implies ii) and ii) implies iii) follow from [3, 1.6], the other implications are trivial.

(b) i) implies iii) by the above proposition. The other implications are trivial. O

4 Preliminaries on skew group algebras.

We recall the relevant definitions, see [7, 19]. Let A be an artin k-algebra, and G be a
finite group with identity 1. We say that G acts on A if there is a function G x A — A,
(0,a) — o(a) such that:

(a) For each o € G, the map a +— o(a) is a k-linear automorphism of A.
(b) (o102)(a) = o1(02(a)) for all 01,09 € G and a € A.
(c¢) 1(a) =a for all a € A.

Such an action induces an action of G on mod A as follows. Let M be an A-module, and
o € G. We define “M to be the A-module with the additive structure of M but where the
multiplication is given by a.x = 07! (a)z, for a € A and x € M.

LEMMA 4.1 Let 0 € G. The mapping M — M (where M is an A-module) induces an
homomorphism of G into the group of automorphisms of the category mod A.

Proof. We define a functor (—) : mod A — mod A on objects by M +— ?M. Let now
f: L — M be a morphism of A-modules and define f: °L — M by z — f(x) for x € L.
This is an A-linear map because

“flax)= Tfle N a)z) = fle™ (a)z) = o7 (a) f(z) = a. 7 f(z)



for all @ € A and x € L. This clearly defines an endofunctor of mod A. The lemma then
follows from the observation that, for any 01,09 € G, we have 71(?2(—)) = 1°2(—) and, in

particular, “(=). (=) = idmoda = (=). (=) for any o € G. O

Assume that G acts on A. The skew group algebra A|G] has as underlying A-module the
free left A-module having as basis all the elements in GG, with the multiplication defined by

(a0)(bC) = ao(b)og

for all a,b € A and 0,( € G.

Throughout this paper, we assume that the order |G| of G is invertible in A. Since the
skew group algebra A[G] is not basic in general, even if A is so (see [7]), we agree to always
consider the basic form R = A[G]® of A[G]. Also, in order to avoid confusion, we denote the
A-modules by the letters L, M, N,... and the R-modules by the letters X, Y, Z,....

The natural ring inclusion A < R given by a +— a.1 for a € A, induces the change of rings
functors RR4 ® — : mod A — mod R and Hompg(rR4,—) : mod R — mod A. The following
proposition summarises the properties of these functors, as in [19, 1.1 and 1.8 (a)(b)(c)].

PROPOSITION 4.2 Let G be a finite group acting on an artin algebra A, and R = A[G]°.
Assume that |G| is invertible in A. Then:

(a) (R®4 —,Homp(R,—)) and (Hompg(R,—),R®4 —) are two adjoint pairs of functors.

(b) (1) The natural morphism idynoq 4 — Homp(R, R ®4 —) is a section of functors.

(2) The natural morphism R ® 4 Hompg (R, —) — idmod g S a retraction of functors.
(¢c) If M,N € ind A, then

(1) Homp(R,R®@aA M) ~ P, c; M.
(2) Ra M ~ R®4 N if and only if there exists o € G such that M ~ °N.
(3) If Roa M ~ @, X; is an indecomposable decomposition, then, for each i, the

A-module Hompg(R, X;) has an indecomposable summand from each isomorphism
class of the ° M, with o € G.

It follows from (a) above that both functors R ® 4 — and Homp (R, —) are exact and
preserve projectives and injectives. On the other hand, as seen in (c¢), they do not preserve
indecomposability.

COROLLARY 4.3 Let X be an indecomposable R-module. Then there exists M € ind A
such that M & Homp(R,X) and X @ R®4 M.

Proof. By 4.2(b)(2), there is a retraction R ® 4 Homp(R, X) — X. The statement follows
from the indecomposability of X. 0



LEMMA 4.4 Let M,N be indecomposable A-modules such that Hom o(M, N) # 0.
(a) For any indecomposable X @ R ® 4 M, we have Homp(X, R ®4 N) # 0.

(b) For any indecomposable Y & R @4 N, we have Homp(R®4 M,Y) # 0.

Proof. We only prove (a) since (b) is similar. By 4.2(c)(3), we have an indecomposable
decomposition in mod R

such that Hompg(R, X;) = @, ¢y, M for some H; C G. Moreover, for any i, and any ¢ € G,
there exists o € H; such that
M ~ M.

We need to show that, for any i, Homp(X;, R ®4 N) ~ Homy(Hompg(R, X;), N) # 0. It
follows from Hom (M, N) # 0 and 4.2(b)(1) that

Hom g (Homp(R, R®4 M),Homp(R,R®4 N)) # 0.

Therefore there exist o, € G such that Hom( “M, SN) # 0. By 4.1, Homa( ¢ '7M, N) #
0. Thus Hom 4 (Hompg(R, X;), N) # 0 for any . O

COROLLARY 4.5 Let My — My — --- — M; be a path in ind A. Then:

(a) For any indecomposable X1 @ R ® 4 M, there exists a path X1 — X9 — -+ — Xy in
ind R such that, for any i, X; @ R ®4 M; and M; @Hompg(R, X;).

(b) For any indecomposable Yy & R® 4 My, there ezists a path Y] — Yy — -+ = Yy inind R
such that, for any i, Y; & R®4 M; and M; @Hompg(R,Y;).

Proof. We only prove (a) since (b) is similar. By 4.2(c)(3), X; @R ®4 M; implies
M; e Homp(R, X;) for any i. Since X; &R ®4 M; and Hom (M, My) # 0, we have
Homa(X1,R ®4 Ma) # 0 by 4.4(a). Hence there exists an indecomposable R-module
X9 6 R®4 M, such that Homp (X7, X3) # 0. The statement follows from an obvious induc-
tion. U

LEMMA 4.6 Let X,Y be indecomposable R-modules such that Homp(X,Y) # 0. Let M
be an indecomposable summand of Homp(R, X) such that X @ R ® 4 M. Then there exist
o € G and an indecomposable summand N @ Homp(R,Y) such that Y @R ®4 °N and
Homa (M, °N) # 0.

Proof. By 4.2(c)(2), R&aN ~ R®4 °N forallo € Gand all N € ind A. Since X @ R 4 M
and Homp(X,Y') # 0 then, for each N € ind A such that N e Homg(R,Y)and Y @ R®4 N,
we have Homp(R®4 M,R®4 N) # 0. Adjunction gives Hom 4(M,Hompg(R, R ®4 N)) #
0. By 4.2(c)(1), Homg(R,R®4 N) ~ @, “N. Hence there exists 0 € G such that
HOHIA(M, "N)#OandYeR@)AN:R@A 7N. O



COROLLARY 4.7 Let X1 — X9 — -+ — X; be a path in ind R. Then:

(a) For any indecomposable My @ Hompg (R, X1) such that X1 & R ® 4 M, there exist og,
-+, 0 € G and a path

My — My — - — 77 My — 7'M
in ind A, with M; @ Hompg (R, X;) and X; @ R®4 i M; for any i.

(b) For any indecomposable Ny @ Homp(R, Xy) such that Xy & R® 4 Ny, there exist (1, - - -,
Ci—1 € G and a path

ClNl NG J _Gt—1 N, — N,
in ind A, with N; @Hompg(R, X;) and X; & R ®§4i N; for any 1.

Proof. The proof is easy and left to the reader. O

5 Laura skew group algebras.

Throughout this section, we assume that A is a basic and connected artin algebra, that G is
a group acting on A, with |G| invertible in A, and we let R = A[G]°.

LEMMA 5.1 For any o € G, we have L4 = L4.

Proof. We first show that L4 C L4. Let L € °L,4, then oL e L4. Let M be an
indecomposable A-module such that Homa (M, L) # 0. Then Homa( © M, ° 'L) # 0.
Since © 'L € L4, we have pdy ° M < 1. Hence pdy M < 1. By Theorem 1.1, L € L4, as
required. Conversely, if N € £ 4, then o 'Ne o 'Lisothat  'NeLyand N € °Ly. O

LEMMA 5.2
(a) add(R®4 L4) = add L.
(b) addHompg(R,Lr) =add L4.

Proof. We first show that add(R®4L4) C add Lr. Let M € L4, and Roa M = P;", X;
be a decomposition into indecomposable modules in mod R. We claim that X; € Lg for any
i. By Theorem 1.1, we must prove that, for each Y € ind R such that Homg (Y, X;) # 0, we
have pdp Y < 1. By 4.6, there exist L, N € ind A such that L @Homg(R,Y), Y &@R®4 L,
N &Homp(R, X;), X;&R®4 °N for some 0 € G, and Hom4(L, “N) # 0. On the other
hand, by 4.2(c), we have an indecomposable decomposition in mod A

Hompg(R, X;) = ®cem, *M

10



for some H; C G. Hence, there exists ¢ € H; such that Homy (L, M) # 0. By 5.1,
9CM € L4 hence pdy L < 1. Therefore pdr R®4 L < 1. Since Y & R ®4 L, we infer that
pdrY <1, as required.

We next prove that add Homp(R,Lr) C addL4. Let X € Lr and Homp(R, X) =
@7 M; be a decomposition into indecomposable modules in mod A. We claim that M; € L4
for any ¢. By Theorem 1.1, we must prove that for each L € ind A such that Hom 4 (L, M;) #
0, wehave pdy L < 1. Let R®4 L = @?:1 Y; be an indecomposable decomposition in mod R.
Since Homy (L, M;) # 0, we have Homp(R®4 L, X) ~ Hom4 (L, Homp(R, X)) # 0, so there
exists jo € {1,---,n} such that Hompg(Yj,, X) # 0. Then pdgYj, < 1. On the other hand,
Hompg(R,Yj,) ~ ®UEH]'O ?L for some Hj, € G. Hence pdgYj, = pdyHomg(R,Yj,)) =
pdy L =pdy L for each o € Hj,. Therefore, pd, L <1.

There remains to prove that equality holds in each case. Assume X € Lgi. Then
Homp(R,X) € addL4. By 4.2(b), X @R ®4 Homp(R, X). Hence X € add(R ®4 L4).
Similarly, if M € L4, then M @ Hompg(R, R ®4 M) by 4.2(b) so M € addHompg(R, Lr). O

COROLLARY 5.3
(a) add(R®4ind A\ L4) = add(ind R\ Lg).
(b) addHompg(R,ind R\ L) =add(ind A\ L4).

Proof. We only prove (a) since (b) is similar. Let M € ind A\ L4 and R®4 M ~ P" | X;
be an indecomposable decomposition in mod R. By 4.2(c), for any ¢, we have Hom (R, X;) =
GBUEH,' M for some H; C G. By 5.1, °M ¢ L 4 for any o. Hence, by 5.2, X; & Lg for any q.
Conversely, assume X € ind R\ L. By 4.3, there exists M € ind A such that X @ R®@ 4 M.
By 52, M & La. O

We now show that the Ext-injectives in add £ 4 correspond to those in add Lg. For this
purpose, we denote by £1(A), E5(A) and by &1 (R), E5(R), respectively, the sets described in
section 3 for the algebras A and R.

LEMMA 5.4
(a) add(R®4 E1(A)) = add &1 (R), add(R ®4 E(A)) = add EL(R).
(b) addHompg(R,&1(R)) = add &1(A), addHompg(R, EL(R)) = add E5(A).

Proof. Let E; € £ (A) and X @R ®4 F; be indecomposable. By 5.2, X € Li. Now,
there exists a path I~» Fp in ind A with [ injective. By 4.5, this path induces a path
I'~ X in ind R, with I’'@R ®4 I so that I’ is an injective R-module. Thus X € & (R).
Let now Ey € E5(A) and X & R ®4 F2 be indecomposable. By 5.2, X € Li. Moreover,
there exists a path P~»7"'Fy in ind A, with P ¢ L4 projective. By [19, 3.8], we have
Tng G@R®a (TglEQ). Applying 4.5 yields a path P’ M-)TI;lX in ind R, with P’e@R®4 P,
that is, P’ is a projective R-module. By 5.3, P’ ¢ L. Then, X € £ (R) U &) (R).
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One proves in exactly the same way (using 4.7 instead of 4.5) that add Hom r(R, E1(R)) C
add & (A) and add Hompg(R, E5(R)) C add(E1(A) U E5(A)).

Since add(R ®4 £1(A4)) C add & (R) and add Hompg(R, &1 (R)) C add & (A), a simple
application of 4.2(b) implies that equality holds in each of these cases.

Now, let Ey € E(A) and assume that an indecomposable summand X & R ® 4 E» lies
in &(R). Then Hompg(R, X) € add &(A). However, Homg(R, X) = @,y 7 E2 for some
H C G so “Ey € &£(A) for any o, hence Fy € £(A) a contradiction. This shows that
add(R ®4 add E5(A)) C add E)(R). Similarly, add Homp(R,E(R)) C add E5(A). Finally,
applying 4.2(b) yields equality in each of these cases. O

We recall some definitions. An artin algebra A is left supported if add £ 4 is contravariantly
finite [4]. We know that an algebra A is left supported if and only if add £ 4 is cogenerated
by the direct sum of a complete set of representatives of the isomorphism classes of indecom-
posable Ext-injectives in add L4 (see [4]). Right supported algebras are defined dually. An
artin algebra A is a laura algebra if £4UR 4 is cofinite in ind A, that is, if ind A\ (L4 UR4)
is finite [3]. It is called right glued if the class of all M € ind A such that pdy M < 1 is
cofinite in ind A, see [1], or, equivalently, if £,4 is cofinite in ind A, see [3, 2.2]. Left glued
algebras are defined dually. Clearly, left and right glued algebras are laura.

An artin algebra is called weakly shod if the length of any path in ind A from an injective
to a projective is bounded [12] or, equivalently, if there exists { > 0 such that any path in
ind A from an indecomposable not in £ 4 to one not in R 4 has length at most [, see [2, 1.4].
The algebra A is called shod if, for each M € ind A, we have pd, M < 1 or idg M < 1,
or, equivalently, if L4 UR4 = ind A, see [11]. Shod algebras are weakly shod algebras,
and weakly shod algebras are laura algebras. Finally, A is quasi-tilted if it is shod and
gl.dim. A < 2, see [15]. Those laura algebras which are not quasi-tilted are left and right
supported, see [4, 4.4].

Proof of Theorem 1.2: The proof of (f) is in [15, II.1.6]. Actually the same proof
establishes (e). The proof of (g) in the representation-finite case is in [19, 4.6]. It carries
over to the general case using, for instance, the Liu-Skowronski criterion. We just show
statements (a) to (d).

(a) Assume A to be left supported and denote by E (or @) the direct sum of a complete
set of representatives of the isomorphism classes of indecomposable Ext-injectives in
add L4 (or add Lp, respectively). We know that add £4 is the class of A-modules
cogenerated by E. Let X € L. Then Hompg(R, X) € add L4 by 5.2, hence there exist
m > 0 and a monomorphism Homp(R, X) — E(™). Since X @ R ® 4 Homg (R, X) by
4.2 (b), and R ®4 — is exact, we deduce a monomorphism

X — R®4 Homp(R, X) — (R®4 E)™.

Since R ®4 E € add @ by 5.4, X is cogenerated by Q. So R is left supported. The
converse is proven in the same way.
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(b) Assume A to be laura. Then ind A\ (£4 U R 4) is finite. Hence the set Xg of all inde-
composable R-modules in add(R® 4ind A\ (LAUR 4)) is finite. Let X ¢ LRURR be an
indecomposable R-module. By 4.3, there exists M € ind A such that M & Homg(R, X)
and X @R® M. By 52, M ¢ LAUR,4. Hence X € X and ind R\ (LrRURR) C Xg.
In particular, it is finite so R is laura.

Conversely, assume R to be laura. Hence the set M 4 of all indecomposable A-modules
in add Hompg(R,ind R\ (LgrURR)) is finite. Let M ¢ L4UR 4 be an indecomposable A-
module. If R® 4 M = ;" X, is an indecomposable decomposition in mod R, then, by
5.3, X; & LRURE for any i. By 4.2(b), M & Homg(R,R®4 M) ~ @;", Hompg(R, X;).
Consequently, M € M4 and ind A\ (L4 UR4) C M 4. In particular, it is finite, so A
is laura.

(c) Assume A to be right glued. Then ind A\ L4 is finite. By 5.3 and 4.3, ind R\ Ly is
finite. Hence R is right glued. The converse is proven similarly.

(d) Assume A to be weakly shod, and let [ > 0 be such that any path from an indecom-
posable not in £ 4 to one not in R 4 has length at most [. Let

be a path in ind R with X ¢ Lr and Y € Rp. By 4.7, it induces a path in ind A of
the form
My — 7'My — My — -+ — %M

with M; @ Homp(R, X;) and X; @ R®4 “7M; ~ R®4 M;. By 5.3 and 5.1, Mo ¢ L4
and My € R4. Then s <[ and R is weakly shod.

The converse is proven in the same way, using 4.5 instead of 4.7.
O

We now assume that the group G acts freely on the idempotents. In this case, R = A[G]®
and the algebra of invariants A“ are Morita equivalent. Indeed, recall, for instance from [13],
that this is the case if and only if there exist an element « € A such that ¥ cqg(z) =1 and
two families of elements {x1,x2, -, 2}, {y1,y2, -+, yr} of A such that ¥/_,z;.y; = 1 and
N7 4 xi.g(y;) = 0 for all g # 1. Now, since |G| is invertible in A, the element z = |G| ™! verifies
the first condition. The second follows upon taking z; = y; = e;, where {ej,ea, -+ ,e,} is a
complete set of primitive orthogonal idempotents. This shows our assertion. Observe also,
that, in this case, A is a finite Galois covering of A[G] (or equivalently A®) with group G
(see [6] or [13]). We may now state:

COROLLARY 5.5 Let A be an artin algebra, G be a finite group acting on A such that
|G| is invertible in A and G acts freely on the idempotents of A. Then:

(a) A is left (or right) supported if and only if so is AC;
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(b) A is laura if and only if so is AC;

(c) A s left (or right) glued if and only if so is AC;

(d) A is weakly shod if and only if so is AY;

(e) A is shod if and only if so is AC;

(f) A is quasitilted if and only if so is AC;

(e) A is tilted if and only if so is AC.

The Auslander-Reiten components of a laura or a supported algebra have been described

in [3, 4]. We notice that, if A, R are as above, and I' is a component of the Auslander-Reiten

quiver I'(mod A) of A (or I'(mod R) of R), then, in general, the images of the indecomposables
of T lie in several components of I'(mod R) (or I'(mod A), respectively).

LEMMA 5.6 Let A be an artin algebra, T’ be a component of I'(mod A) and T be the unique
component of T'(mod R) containing an indecomposable X & R @ 4 M, with M € T'. Then:

(a) T is postprojective if and only if so is T';
(b) T is preinjective if and only if so is T';

(c) T is regular if and only if so is T';

(d) T is non-semireqular if and only if so is T';
(e) T is semiregular if and only if so is T".

Proof. For the proofs of (a), (b) and (c), we refer to [19, 4.3]. We now prove (d). Suppose
that I' is non-semiregular, then there exist an indecomposable injective A-module I € I', an
indecomposable projective A-module P € I', and a walk of irreducible morphisms between
indecomposables

I=Ly—L -+ —Ly=M=Ny— N, —---— N, = P.

Applying [19, 4.1] and induction yields a walk of irreducible morphisms between indecom-
posable R-modules in T

with Y; & R ®4 L; for any ¢ (thus, I’ is injective) and Z; & R ®4 N; for any j (thus, P’ is
projective). This shows the sufficiency. The necessity is shown in the same way taking into
account that, under the stated hypothesis, M & Hom (R, X). Finally, the proof of (e) is also
similar. O

Here, we are interested mainly in the case where A is a strict (that is, not quasi-tilted)
laura algebra.
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COROLLARY 5.7 Let A be a strict laura algebra and I',T" be as in the hypothesis of the
lemma. Then T is the unique faithful non-semiregular component of I'(mod A) if and only if
I is the unique faithful non-semireqular component of I'(mod R).

EXAMPLE 5.8

Let k be a field, and A be the radical square zero k-algebra given by the quiver

\/_—*

Hence, A is a strict laura algebra. We let the group Z/ 27 act on A, where the only non-
trivial element of Z/27Z fixes the point 3, permutes the points z and z’ (for = € {1,2,4,5})
and the arrows £ and £ (for £ € {«, 3,7, \,0,u}). Then, by [19, 2.3], R is the radical square
zero k-algebra given by the quiver

é\
3 I/

According to our Theorem 1.2, R is also a strict laura algebra.
We now draw the unique non-semiregular faithful component of I'(mod A).

_______ 2.__._._.______._ .__.__._.__._._.4 —_— e — — = -
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(where indecomposable modules are represented by their Loewy series and horizontal dot-
ted lines describe the Auslander-Reiten translation). The unique non-semiregular faithful
component of I'(mod R) is

Notice that I'(mod A) has two postprojective (or preinjective) components, while I'(mod R)
has only one.

6 Skew toupie algebras.

Throughout this section, all algebras are finite dimensional over an algebraically closed field,
thus are bound quiver algebras.

Let n, 1 be two positive integers. We define the complete bipartite quiver Q7 to have as its
only points n sources aq, -+, a, and [ sinks by, - - -, b; and, for each pair (7, ) with 1 <i <mn,
1 < j <1, there is an arrow a; — b; and these are the only arrows of Q7. A skew toupie
quiver @ is defined as follows: it consists of a complete bipartite quiver Q7', its opposite
quiver (Q}')°" as well as [ disjoint paths wi,---,w; from the sinks of Q}' to the sources of
(Qr')°P. Thus, a skew toupie is a quiver of the form:

An algebra R = kQ/I is called a skew toupie algebra if its quiver @ is a skew toupie
quiver. Our objective in this section in to exhibit a family of skew toupie algebras which are
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laura, and even weakly shod.
If, above, @ has exactly one source and one sink (that is, n = 1), then @ is a toupie
quiver, and R = kQ/I is a toupie algebra, as defined and studied in [9].

PROPOSITION 6.1 Let R = kQ/I be a skew toupie algebra. Then R is a weakly shod
algebra provided:

(1) The ideal I is generated by all possible commutativity relations. In this case, R is tilted.

(2) The ideal I is monomial, and generated by at least one subpath of each of the w;. In
this case, R is tilted if and only if each path w; is bound by exactly one relation.

(8) The ideal I is generated by the sums of all paths from each source to each sink, and
moreover nl € {2,3} or the length of each w; does not exceed one. In this case, R is
canonical if | = 3, and tilted otherwise.

Proof. We consider the toupie quiver Q" with m = nl branches

7

Clp; l C2po 1‘ Cmpm‘_L

For each i with 1 < i <m, weseti =i+[lifi+]l<mand? =i1+1—mifi+1>m.
We suppose that, for each i with 1 < ¢ < m, we have p; = py and, if i < [, we set
pi = L(w;) + 1, where ¢(w;) denotes the length of the path w;. We finally denote by ~; the
path ¢;;, — ¢, — -+ = Cip, s for1<i<m.

We define on Q' an action of the cyclic group Z/nZ =< o > as follows: we set o(c) = ¢,
o(c') = ¢ and, for each pair (i,7), with 1 <i <m and 1 < j < p;, o(¢;j) = ¢yr; where @’ is
as above. We let ¢ have the induced action on the arrows. This defines indeed an action on
@’ (and hence on the path algebra kQ’) because of our assumption on the p;.

C11 C21

~—
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Let A =kQ'/I', where I’ is an admissible ideal of one of the following forms:
(1) I’ is generated by all possible commutativity relations.

(2) I' is a monomial ideal generated by at least one subpath of each of the ;. Moreover, for
each i such that 1 <+ < m, the path ~y; is isomorphic to ;, as full convex subcategories
of A (again, i’ is as above).

(3) I’ is generated by the sum of all paths from ¢ to ¢’ and moreover m € {2,3} or p; < 2
for all i.

Clearly, the action of Z/nZ on kQ' leaves invariant the ideal I’. Thus, by [19, 2.1], Z/nZ
acts on A.

Now, it follows from the main result of [9] that, in each of these cases, A is a weakly shod
algebra. Furthermore, in the case (1) it is always tilted, while, in the case (2), it is tilted if
and only if each path ~; is bound by exactly one relation, and, finally, in the case (3), it is
canonical if and only if m = 3 and [ > 1 (thus [ = 3) and tilted in all the other cases.

By [19, 2.3], we get A[Z/nZ]’ = R, as given in the statement of our proposition. The
assertion now follows from Theorem 1.2. O

6.1 Remarks and examples.

(a) If I =1, then R has as quiver the following tree

aie oall

/

ag e * (o
\b b’/
:  —_— . e  — > :

~

Ap e LX)

(b) The tubular canonical algebra given by the quiver

/ .é.\

\._—_). /
bound by the ideal generated by the sum of all paths from the source to the sink
provides an example of a (skew) toupie algebra which is quasi-tilted, but not tilted.
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(¢) Let A be given by the toupie quiver

c
L3
cllfcm./cglf/\cu.\c“ﬁ
1 ~1 -~
Ve
s ( C229 s ( C429 s (C62
/ ~ / ~ / ~
p C12 , C32 p C52
] 1 ]
\ 623 » \ 643' \ 063
\ \ \
N C13 N C33e \ C53
AN N
N Co4e N Cqq N Ce4
Cl4 Ca5e C34'\7 Cs Ce
\.I
c

bound by the relations denoted by the shown dotted lines. We define an action of
Z/3Z =< o > as follows: o(c) = ¢, o(c') =, o(c1i) = c3i, 0(c3i) = ¢z for 1 < i < 4,
o(ca;) = caj, 0(caj) = cgj for 1 < j < 5. In this case, R is given by the quiver

bound by the relations denoted by the shown dotted lines. According to 6.1 or, directly,

by the main result of [16], R is tilted.
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