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Abstract. Let B be the split extension of a finite dimensional algebra C by a C-C-bimodule E. We define
a morphism of associative graded algebras ϕ∗ : HH∗(B) → HH∗(C) from the Hochschild cohomology of B
to that of C, extending similar constructions for the first cohomology groups made and studied by Assem,
Bustamante, Igusa, Redondo and Schiffler.

In the case of a trivial extension B = CnE, we give necessary and sufficient conditions for each ϕn to be
surjective. We prove the surjectivity of ϕ1 for a class of trivial extensions that includes relation extensions
and hence cluster-tilted algebras. Finally, we study the kernel of ϕ1 for any trivial extension, and give a
more precise description of this kernel in the case of relation extensions.

Introduction

The purpose of this paper is to study the relation between the first Hochschild cohomology group of
an algebra C with coefficients in the regular bimodule CCC , and that of a relation extension B of C.
We recall that, if k is a field, C a finite dimensional k-algebra and E a C-C-bimodule, equipped with a
product E ⊗C E → E, then the vector space B = C ⊕ E is given an algebra structure if we set

(c, x)(c′, x′) = (cc′, cx′ + xc′ + xx′)

for (c, x), (c′, x′) ∈ C ⊕ E. The algebra B is then called a split extension of C by E. If E2 = 0, then B
is called a trivial extension of C by E, and if moreover C is triangular of global dimension at most two
and E = Ext2

C(DC,C), then B is called the relation extension of C, see [2].
Relation extension algebras are of interest because of their close relationship with cluster-tilted algebras.

Cluster-tilted algebras were defined in [8] (and, independently, in [9] for type A) as a by-product of the
now extensive theory of cluster algebras of S. Fomin and A. Zelevinsky, see, for instance, [15]. They were
the subject of several investigations. In particular, it was proved in [2] that, if C is a tilted algebra, then its
relation extension is cluster-tilted and, conversely, every cluster-tilted algebra is of this form. Of course,
there exist relation extensions which are not cluster-tilted algebras. The first Hochschild cohomology
groups of a tilted algebra C and the corresponding cluster-tilted algebra B were compared by means of a
linear map ϕ : HH1(B)→ HH1(C), see [4, 3, 5]. In each of these papers, it appeared that ϕ is surjective,
but the proof in each case was long and combinatorial.

The present paper arose from an attempt to produce a purely homological proof of the above mentioned
results. We start by proving that, for every split extension B of C and every n ≥ 1, there exists a linear
map ϕn : HHn(B)→ HHn(C) such that ϕ1 coincides with the map ϕ : HH1(B)→ HH1(C) defined above.
Recalling that each of HH∗(B) =

⊕
n>0 HHn(B) and HH∗(C) has an algebra structure given by the cup

product, this leads to our first theorem.

Theorem A. Let B be a split extension of C, then the maps ϕn induce a morphism of associative graded
algebras ϕ∗ : HH∗(B)→ HH∗(C).

The algebra morphism ϕ∗ is called the Hochschild projection morphism. It is to be noted that ϕ∗ is not
in general a morphism of graded Lie algebras and it is not surjective in general, even in the case where B
is a trivial extension of C, see Examples 2.5 and 2.9, respectively.

Using the results of [11], we then proceed to find necessary and sufficient conditions for the surjectivity
of each ϕn, see Proposition 3.5 and Corollary 3.6. These conditions are satisfied, for every n, in the two
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familiar cases where E = CDCC , the minimal injective cogenerator bimodule, and E = CCC , the regular
bimodule.

We then consider the C-C-bimodule Em = ExtmC (DC,C) for any m. This bimodule appeared naturally
in the study of a generalisation of the cluster-tilted algebras, namely the (m − 1)-cluster-tilted algebras,
introduced by H. Thomas in [27]. Indeed, it is shown in [14] that, under some conditions, an (m − 1)-
cluster-tilted algebra can be written as the trivial extension of an iterated tilted algebra C of global
dimension at most m by the bimodule Em. We prove here that, if B is the trivial extension of any algebra
C by the C-C-bimodule Em, then the first Hochschild projection morphism ϕ1 : HH1(B) → HH1(C) is
surjective, see Theorem 3.14.

We next assume that C is triangular of global dimension at most two and that E = E2 = Ext2
C(DC,C),

so that the trivial extension B of C by E is the relation extension of C. We then get our second main
result.

Theorem B. Let B be the relation extension of a triangular algebra C of global dimension at most two
by the C-C-bimodule E = Ext2

C(DC,C). Then we have short exact sequences

(a) 0→ H0(B,E) −→ HH0(B)
ϕ0

−→ HH0(C)→ 0.

(b) 0→ H1(B,E) −→ HH1(B)
ϕ1

−→ HH1(C)→ 0.

This generalises to arbitrary relation extensions the main results of each of [4, 3, 5], furnishing at the
same time a homological interpretation of these results. As a nice consequence of this theorem, we get that,
if C is tilted, so that B is cluster-tilted, then the Hochschild projection morphism ϕ∗ : HH∗(B)→ HH∗(C)
is a surjective morphism of algebras, see Theorem 5.8.

The paper is organised as follows. After a short introductory section whose purpose is to fix the notation
and recall a few useful facts, Section 2 is devoted to the explicit construction of the Hoschchild projection
morphism and thus to the proof of our Theorem A. In Section 3, we specialise to trivial extensions and
find necessary and sufficient conditions for the surjectivity of each of the ϕn. As a consequence, we prove
that, if B is the trivial extension of C by E, then ϕ1 is surjective. The study of the kernel of ϕ1 in
Section 4 then leads us to our Theorem B in Section 5.

1. Preliminaries

1.1. Algebras and quivers. Throughout this paper, k denotes a commutative field, and all algebras
are finite dimensional over k and have an identity.

Given a finite quiver Q = (Q0, Q1), we denote by kQ its path algebra. Two paths w1, w2 in Q are called
parallel if they have the same source s(w1) = s(w2) and the same target t(w1) = t(w2). A relation from

vertex x to vertex y is a linear combination
∑t

i=1 λiwi where λi ∈ k\{0} and the wi are distinct paths
from x to y. Let kQ+ be the two-sided ideal of kQ generated by the arrows. An ideal I of kQ is admissible
if there exists s > 2 such that (kQ+)s ⊆ I ⊆ (kQ+)2. In this case, the pair (Q, I) is called a bound quiver.
The algebra C = kQ/I is basic, connected whenever Q is, and finite dimensional. Moreover, the ideal I
is finitely generated. A system of relations R for C is a subset of

⋃
x,y∈(QC)0

(exIey) such that R, but no

proper subset of R, generates I as a two-sided ideal.
Conversely, if C is a finite dimensional basic and connected k-algebra, there exists a unique connected

quiver Q and (at least) an admissible ideal I of kQ such that C ∼= kQ/I. The ordinary duality between
right and left C-modules is denoted by D = Homk(−, k). Given a vertex x in Q, we denote by ex
the corresponding primitive idempotent of C and by PC(x) = exC, IC(x) = D(Cex) and SC(x) the
corresponding indecomposable right projective, injective and simple C-modules, respectively. For more
details on bound quivers and their use in the representation theory of algebras, we refer the reader to
[5, 6, 25].

1.2. Hochschild cohomology. Let C be a finite dimensional k-algebra and E be a C-C-bimodule which
is finite dimensional over k. The Hochschild complex is the complex

0→ E
b1−→ Homk(C,E)

b2−→ · · · → Homk(C
⊗i, E)

bi+1

−−→ Homk(C
⊗(i+1), E)→ · · ·

where, for each i > 0, C⊗i denotes the i-fold tensor product of C with itself over k. The differentials bi

are defined as follows: b1 : E → Homk(C,E) is given by (b1x)(c) = cx− xc for x ∈ E, c ∈ C, and bi+1 is
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given by

(bi+1f)(c0 ⊗ · · · ⊗ ci) = c0f(c1 ⊗ · · · ⊗ ci) +
i∑

j=1

(−1)jf(c0 ⊗ · · · ⊗ cj−1cj ⊗ · · · ⊗ ci)

+ (−1)i+1f(c0 ⊗ · · · ⊗ ci−1)ci

for a k-linear map f : C⊗i → E and elements c0, · · · , ci in C.
The ith cohomology group of this complex is called the ith Hochschild cohomology group of C with

coefficients in E, and is denoted by Hi(C,E). If CEC = CCC then we denote HHi(C) = Hi(C,C).
We are particularly interested in the first Hochschild cohomology group. Let Der(C,E) be the vector

space of all k-linear maps d : C → E such that, for c, c′ ∈ C, we have d(cc′) = cd(c′) + d(c)c′. Such a
map is called a derivation. A derivation d is inner if there exists x ∈ E such that d = [x,−], that is,
d(c) = [x, c] = xc− cx for all c ∈ C. We denote by Inn(C,E) the subspace of Der(C,E) consisting of the
inner derivations. Then we have H1(C,E) ∼= Der(C,E)/Inn(C,E).

The latter expression may be simplified. Let {e1, · · · , en} be a complete set of primitive orthogonal
idempotents of C. A derivation d : C → E is normalised if d(ei) = 0 for all i. A normalised derivation d
has the nice property that, if c ∈ eiCej , then d(c) ∈ eiEej . Let Der0(C,E) be the subspace of Der(C,E)
consisting of the normalised derivations. Let also Inn0(C,E) = Der0(C,E) ∩ Inn(C,E). Then we have
H1(C,E) ∼= Der0(C,E)/Inn0(C,E).

1.2.1. Structure of HH∗(C). It is well-known that HH∗(C) =
⊕

n>0 HHn(C) is endowed with some extra
structure. It is an associative algebra for the cup-product described as follows: if ζ1 ∈ HHs(C) and
ζ2 ∈ HHt(C) are represented by cocycles f1 ∈ Homk(C

⊗s, C) and f2 ∈ Homk(C
⊗t, C), then ζ1 ^ ζ2 is

the cohomology class of the map f1 × f2 ∈ Homk(C
⊗(s+t), C) defined by

(f1 × f2)(c1 ⊗ · · · ⊗ cs+t) = f1(c1 ⊗ · · · ⊗ cs)f2(cs+1 ⊗ · · · ⊗ cs+t).

It was shown by Gerstenhaber in [16] that this cup-product is graded commutative, that is, ζ1 ^ ζ2 =
(−1)stζ2 ^ ζ1, by means of special operations which he also used to construct a graded Lie product
[−,−] on HH∗−1(C). We shall not need this graded Lie bracket, but let us point out that its restriction
to HH1(C) is the natural Lie bracket on derivations, given by [d, d′] = d ◦ d′ − d′ ◦ d.

1.2.2. One-point extensions. We need a result due to D. Happel. We recall that, if C is an algebra and
M a finitely generated right C-module, then the one-point extension of C by M is the k-algebra

C[M ] =

(
C 0
M k

)
=

{(
c 0
m λ

)
| c ∈ C,m ∈M,λ ∈ k

}
with the usual addition, and the multiplication induced from the C-module structure of M . We have the
following result.

Theorem 1.1. [20, Theorem 5.3] Let B = C[M ]. Then there exists a long exact cohomology sequence

0→ HH0(B)→ HH0(C)→ EndCM/k → HH1(B)→ HH1(C)→ Ext1
C(M,M)→ · · ·

For all unexplained notions and results about Hochschild cohomology, we refer the reader to [10, 20,
23, 16].

2. The Hochschild projection morphisms

Let C be a finite-dimensional k-algebra and let E be a finitely generated C-C-bimodule equipped with
a product, that is, an associative C-C-bimodule morphism E ⊗C E → E. The split extension of C by E
is the k-algebra B which is equal to C ⊕ E as a k-vector space and whose product is given by

(c, e)(c′, e′) = (cc′, ce′ + ec′ + ee′)

for all (c, e), (c′, e′) in C ⊕ E. With this multiplication, E becomes a two-sided ideal in B, hence a
B-B-bimodule. If E is a nilpotent ideal, that is, E is contained in the radical of B, then we say that B
is a split-by-nilpotent extension of C by E. If E2 = 0, then we say that B is the trivial extension of C by
E, which we denote by B = C n E.
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Given such a split extension B of C by E, there is an exact sequence of vector spaces

0→ E
i−→ B

p

�
q
C → 0

in which p : (c, x) 7→ c and i : x 7→ (0, x). Clearly, p is an algebra morphism which has a section
q : c 7→ (c, 0). This sequence may also be viewed as a sequence of B-B-bimodules, where the B-B-
bimodule structure of C is defined by means of p : B → C. Finally, it may also be viewed as a split exact
sequence of C-C-bimodules by means of q.

Now let d : B → B be a k-linear map. Then pdq : C → C is also k-linear. It was shown in [4, 4.1] that
this correspondence induces a map between the first Hochschild cohomology groups. The same morphism
was studied in [5, 3]. Here, we extend this to the nth Hochschild cohomology groups.

Lemma 2.1. Let B be the split extension of C by E. Let bnB (respectively bnC) denote the nth differential
in the Hochschild complex of B with coefficients in B (respectively of C with coefficients in C). Then for
any f ∈ Homk(B

⊗n, B) we have

bn+1
C (pfq⊗n) = pbn+1

B (f)q⊗(n+1).

Proof. If n = 0, then f ∈ Homk(k,B) may be identified with an element in B. For any c ∈ C we have

bC(p(f))(c) = p(f)c− cp(f) = p(f)pq(c)− pq(c)p(f) = p(fq(c)− q(c)f) = p(bB(f)(q(c))) = (pbB(f)q)(c)

using the facts that pq = idC and that p is an algebra morphism.
Now assume that n > 0. For any c0 ⊗ · · · ⊗ cn ∈ C⊗(n+1), using similar arguments as well as the fact

that q is also an algebra morphism, we have

bn+1
C (pfq⊗n)(c0 ⊗ · · · ⊗ cn) = c0 pfq

⊗n(c1 ⊗ · · · ⊗ cn) +
n∑
i=1

(−1)ipfq⊗n(c0 ⊗ · · · ⊗ ci−1ci ⊗ · · · ⊗ cn)

+ (−1)n+1pfq⊗n(c0 ⊗ · · · ⊗ cn−1) cn

= pq(c0) pf(q(c1)⊗ · · · ⊗ q(cn))

+
n∑
i=1

(−1)ipf(q(c0)⊗ · · · ⊗ q(ci−1ci)⊗ · · · ⊗ q(cn))

+ (−1)n+1pf(q(c0)⊗ · · · ⊗ q(cn−1)) pq(cn)

= p
(
q(c0) f(q(c1)⊗ · · · ⊗ q(cn))

+

n∑
i=1

(−1)if(q(c0)⊗ · · · ⊗ q(ci−1)q(ci)⊗ · · · ⊗ q(cn))

+ (−1)n+1f(q(c0)⊗ · · · ⊗ q(cn−1)) q(cn)
)

= pbn+1
B (f)q⊗(n+1)(c0 ⊗ · · · ⊗ cn). �

Corollary 2.2. Let B be the split extension of C by E. Then there exists a k-linear map ϕn : HHn(B)→
HHn(C) given by [f ] 7→ [pfq⊗n].

The map ϕn is called the nth Hochschild projection morphism.

Proof. Assume that f ∈ Homk(B
⊗n, B) is a cocycle, that is, that bn+1

B (f) = 0. Then the formula in

Lemma 2.1 shows that bn+1
C (pfq⊗n) = 0 so that pfq⊗n is a cocycle.

Moreover, if f is a coboundary, that is, f = bnB(g) for some cochain g ∈ Homk(B
⊗(n−1), B), then, using

Lemma 2.1, pfq⊗n = pbnB(g)q⊗n = bnC(pgq⊗(n−1)) is also a coboundary. Therefore we have a well-defined
linear map ϕn : HHn(B)→ HHn(C) which sends [f ] to [pfq⊗n]. �

We now prove that the morphisms ϕn induce a morphism of algebras from HH∗(B) to HH∗(C).

Theorem 2.3. Considering HH∗(B) =
⊕

n>0 HHn(B) and HH∗(C) as algebras with the cup-product, the
maps ϕn induce an algebra morphism ϕ∗ : HH∗(B)→ HH∗(C).
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Proof. Fix ζ1 ∈ HHs(B) and ζ2 ∈ HHt(B). Let f1 ∈ Homk(B
⊗s, B) (respectively f2 ∈ Homk(B

⊗t, B))
be a cocycle representative of ζ1 (respectively of ζ2). Then pf1q

⊗s (respectively pf2q
⊗t) is a cocycle

representative of ϕs(ζ1) (respectively of ϕt(ζ2)).
Using the notation in paragraph 1.2.1, we have(

(pf1q
⊗s)× (pf2q

⊗t)
)

(c1 ⊗ · · · ⊗ cs+t) = pf1(q(c1)⊗ · · · ⊗ q(cs))pf2(q(cs+1)⊗ · · · ⊗ q(cs+t))
= p (f1(q(c1)⊗ · · · ⊗ q(cs))f2(q(cs+1)⊗ · · · ⊗ q(cs+t)))
= p(f1 × f2)(q(c1)⊗ · · · ⊗ q(cs+t)))

= p(f1 × f2)q⊗(s+t)(c1 ⊗ · · · ⊗ cs+t).

Therefore (pf1q
⊗s)×(pf2q

⊗t) = p(f1×f2)q⊗(s+t) and taking cohomology classes yields ϕs(ζ1) ^ ϕt(ζ2) =
ϕs+t(ζ1 ^ ζ2).

Finally, the identity element in HH∗(B) is 1B, the cohomology class of the map uB ∈ Homk(k,B)
which sends 1 to 1, and similarly for HH∗(C). We have

ϕ0(1B) = [puBq
⊗0] = [uC ] = 1C . �

Remark 2.4. In general, ϕ∗ is not a morphism of graded Lie algebras. Indeed, in the following example
the Hochschild projection morphism ϕ1 : HH1(B) → HH1(C) is not a morphism of Lie algebras, so that
ϕ∗ cannot be a morphism of graded Lie algebras.

Example 2.5. Let C be the Nakayama algebra of dimension 4 whose quiver is

0
α0

44 1
α1

ss

bound by α0α1 = 0 = α1α0. Nakayama algebras have been much studied, and in particular their
Hochschild cohomology was determined by K. Erdmann and T. Holm in [13], where the algebra C is
denoted by B2

2 .
Let B be the algebra of dimension 8 whose quiver is

0 a0 77

ā1

?? 1
a1ww

ā0

��

bound by a0a1 = 0, a1a0 = 0, ā0ā1 = 0, ā1ā0 = 0, a0ā0 = ā1a1 and a1ā1 = ā0a0. We shall denote
the indices for the vertices and arrows in both algebras modulo 2 so that, for instance, a2 = a0. The
Hochschild cohomology of this algebra was studied in [26].

Now consider the morphism of algebras p : B → C determined by p(ei) = ei, p(ai) = αi and p(āi) =
(−1)iαi+1. This map is surjective with corresponding section the algebra map q : C → B determined
by q(αi) = ai. Moreover, a straightforward computation shows that Ker p as a k-vector space has basis
{a1 − ā0, a0 + ā1, a0ā0, a1ā1}. Furthermore, using the relations in B and the fact that all paths of length
at least 3 in B vanish, it is immediate that (Ker p)2 = 0.

Therefore we have a short exact sequence

0→ E = Ker p→ B
p

�
q
C → 0

with E2 = 0, hence B is isomorphic to the trivial extension C n E. In fact, E ∼= DC as C-C-bimodules,
so that B is the trivial extension of C by DC, the isomorphism DC → E being given by α∗0 7→ ā0 − a1,
α∗1 7→ ā1 + a0 and e∗i 7→ aiāi (where {e∗i , α∗i ; i = 0, 1} denotes the dual basis of DC).

We now determine ϕ1. It was shown in [13, Proposition 5.3] that dimk HH1(C) = 1 and in [26, Propo-
sition 6.1] that dimk HH1(B) = 4. Moreover, a basis of HH1(B) was given in [26, Proposition 6.2], which
in terms of derivations is the set {[u0], [u1], [v0], [v1]} where

. u0 is the normalised derivation determined by u0(ai) = ai and u0(āi) = 0,

. u1 is the normalised derivation determined by u1(āi) = (−1)iai+1 and u1(ai) = 0,

. v0 is the normalised derivation determined by v0(ai) = (−1)iāi+1 and v0(āi) = 0,
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. v1 is the normalised derivation determined by v1(āi) = −āi and v1(ai) = 0.

It is then easy to check that ϕ1([u0]) = [ξ] = −ϕ1([v0]) and that ϕ1([u1]) = 0 = ϕ1([v1]), where
ξ : C → C is the normalised derivation determined by ξ(αi) = αi for i = 1, 2.

Now consider the bracket [u0, v0] = u0v0−v0u0. It sends āi to 0 and ai to −v0(ai) so that [u0, v0] = −v0.
Therefore ϕ1([[u0], [v0]]) = ϕ1([[u0, v0]]) = ϕ1(−[v0]) = [ξ].

On the other hand, [ϕ1([u0]), ϕ1([v0])] = [[ξ],−[ξ]] = 0.
Therefore ϕ1([[u0], [v0]]) 6= [ϕ1([u0]), ϕ1([v0])] and ϕ1 is not a morphism of Lie algebras.

Let B be the split extension of C by E. We shall now compare the Hochschild cohomology groups of
B and C by means of the Hochschild projection morphism. Applying the functor HomB-B(B,−) to the
short exact sequence of B-B-bimodules

0→ E
i−→ B

p−→ C → 0

yields a long exact cohomology sequence

0→ H0(B,E)→ HH0(B)→ H0(B,C)
δ0B−→ H1(B,E)

→ HH1(B)→ H1(B,C)
δ1B−→ H2(B,E)→ HH2(B)→ · · ·

· · · → Hn(B,C)
δnB−→ Hn+1(B,E)→ HHn+1(B)→ Hn+1(B,C)

δn+1
B−−−→ · · ·

(2.1)

where δnB denotes the nth connecting morphism. Our first observation is that HHn(C) embeds in Hn(B,C)
and that, if n = 0, this embedding is an isomorphism. We begin with a lemma.

Lemma 2.6. Let B be the split extension algebra of C by a C-C-bimodule E. Let bnB (respectively bnC)
be the differentials in the Hochschild complex of B (respectively C) with coefficients in C. Then, for any
cochains f ∈ Homk(C

⊗n, C) and g ∈ Homk(B
⊗n, C), we have

bn+1
B (fp⊗n) = bn+1

C (f)p⊗(n+1) and bn+1
C (gq⊗n) = bn+1

B (g)q⊗(n+1).

Proof. Let us prove the first identity. For n > 1 and for any b0 ⊗ · · · ⊗ bn ∈ B⊗(n+1) we have

bn+1
B (fp⊗n)(b0 ⊗ · · · ⊗ bn) = b0 · fp⊗n(b1 ⊗ · · · ⊗ bn) +

n∑
i=1

(−1)ifp⊗n(b0 ⊗ · · · ⊗ bi−1bi ⊗ · · · ⊗ bn)

+ (−1)n+1fp⊗n(b0 ⊗ · · · ⊗ bn−1) · bn
= p(b0)f(p(b1)⊗ · · · ⊗ p(bn))

+
n∑
i=1

(−1)if(p(b0)⊗ · · · ⊗ p(bi−1)p(bi)⊗ · · · ⊗ p(bn))

+ (−1)n+1f(p(b0)⊗ · · · ⊗ p(bn−1))p(bn)

= bn+1
C (f)p⊗(n+1)(b0 ⊗ · · · ⊗ bn)

using the facts that p is an algebra morphism and that C is a B-B-bimodule via p. If n = 0, then the
cocycle f may be viewed as an element in C, and for any b0 ∈ B we have

b1B(f)(b0) = b0 · f − f · b0 = p(b0)f − fp(b0) = b1C(f)(p(b0))

so that b1B(f) = b1C(f)p.
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For the second identity, we shall use the fact that if c and c′ are in C, then cc′ = pq(c)c′ = q(c) · c′ since
pq = idC and B acts on C via p. Similarly, cc′ = c · q(c′). Now take c0⊗ · · ·⊗ cn ∈ C⊗n with n > 1. Then

bn+1
C (gq⊗n)(c0 ⊗ · · · ⊗ cn) = c0gq

⊗n(c1 ⊗ · · · ⊗ cn) +
n∑
i=1

(−1)igq⊗n(c0 ⊗ · · · ⊗ ci−1ci ⊗ · · · ⊗ cn)

+ (−1)n+1gq⊗n(c0 ⊗ · · · ⊗ cn−1)cn

= q(c0) · g(q(c1)⊗ · · · ⊗ q(cn))

+
n∑
i=1

(−1)ig(q(c0)⊗ · · · ⊗ q(ci−1)q(ci)⊗ · · · ⊗ q(cn))

+ (−1)n+1g(q(c0)⊗ · · · ⊗ q(cn−1)) · q(cn)

= bn+1
B (g)q⊗(n+1)(c0 ⊗ · · · ⊗ cn).

Here again, if n = 0 then g may be viewed as an element in C, and for any c0 ∈ C we have

b1C(g)(c0) = c0g − gc0 = q(c0) · g − g · q(c0) = b1B(g)(q(c0))

so that b1C(g) = b1B(g)q. �

Lemma 2.7. Let B be the split extension algebra of C by a C-C-bimodule E. Then

(a) There is an isomorphism HH0(C) ∼= H0(B,C).
(b) For every integer n > 0, there is a monomorphism σn : HHn(C) ↪→ Hn(B,C) which sends [f ] to

[fp⊗n] with retraction νn : Hn(B,C)� HHn(C) given by [g] 7→ [gq⊗n].

Proof. The relations in Lemma 2.6 show that σn and νn are well-defined maps. Clearly, we have νnσn =
idHHn(C). Therefore σn is injective with retraction νn and we have proved (b).

Now to prove (a), we use the identity Homk(p, C)b1C = b1B from Lemma 2.6 (for n = 0) and the fact
that Homk(p, C) : Endk(C)→ Homk(B,C) is injective:

HH0(C) = Ker b1C = Ker(Homk(p, C)b1C) = Ker b1B = H0(B,C). �

Remark 2.8. In the case of cluster-tilted algebras, it was proved in [4, 3, 5] that the first Hochschild
projection morphism ϕ1 : HH1(B) → HH1(C) is surjective. It is therefore natural to ask whether the
Hochschild projection morphism ϕ∗ : HH∗(B) → HH∗(C) is surjective or not. This is not the case in
general, even for trivial extensions, as the following example shows, but we shall see some important cases
where it is in Section 3.

Example 2.9. Let B be the algebra given by the quiver

1
α //

β ��=== 2 ε
yy

3
γ

@@���

bound by ε2 = 0 and αε = βγε. Let E be the ideal in B generated by ε and let C be the path algebra of
the quiver

1
α //

β ��=== 2

3
γ

@@���

Then B is the trivial extension of C by E, and the maps p : B → C and q : C → B are the natural maps.
We assume that the characteristic of the field k is not 2.

Since C is hereditary, dimk HH1(C) = 2 by [20, Proposition 1.6]. Moreover, B can be obtained by
taking the one-point extension of the one-point extension of the algebra k[x]/(x2), and therefore it follows
using Theorem 1.1 that dimk HH1(B) = 3.

In order to describe ϕ1, we need explicit bases of HH1(C) and HH1(B).
Any normalised derivation d : C → C is entirely determined by

d(α) = λ1α+ λ2βγ

d(β) = λ3β

d(γ) = λ4γ.
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Moreover, the inner derivations d1 and d2 associated to the vertices e1 and e2 are determined by


d1(α) = −α
d1(β) = −β
d1(γ) = 0

and


d2(α) = α

d2(β) = 0

d2(γ) = γ.

It then follows that modulo inner derivations, the normalised derivation d above is equivalent to the
normalised derivation d′ determined by d′(α) = (λ1 − λ3 − λ4)α + λ2βγ, d

′(β) = 0 and d′(γ) = 0. Since
dimk HH1(C) = 2, it follows that a basis of HH1(C) is given by the normalised derivations u1 and u2

determined by u1(α) = α, u2(α) = βγ and ui(β) = 0 = ui(γ) for i = 1, 2.
Any normalised derivation d : B → B is entirely determined by


d(α) = λ1α+ λ2βγ + µ1αε

d(β) = λ3β

d(γ) = λ4γ + µ2γε

d(ε) = µ0e2 + µ3ε.

Moreover, since 0 = d(ε2) = 2µ0ε we must have µ0 = 0, and d(αε−βγε) = 0 implies that λ1+λ2−λ3−λ4 =
0. It then follows as above that modulo inner derivations (associated to e1, e2 and ε), d is equivalent to the
normalised derivation d′ defined by d′(α) = (λ1−λ3−λ4)α+λ2βγ+(µ1−µ2)αε = λ2(α−βγ)+(µ1−µ2)αε
and d′(ε) = µ3ε. Since dimk HH1(B) = 3, it follows that a basis of HH1(B) is given by the normalised
derivations v1, v2 and v3 determined by v1(ε) = ε, v2(α) = α − βγ, v3(α) = αε and all other arrows are
sent to 0.

Then v1q = 0 = v3q hence ϕ1([v1]) = 0 = ϕ1([v3]) and therefore dimk Imϕ1 6 1 < dimk HH1(C) so
that ϕ1 cannot be surjective. Note that ϕ1([v2]) = [u1 − u2] 6= 0.

In particular, ϕ∗ is not surjective.

3. Trivial extensions

In this section, we consider the case where B = C n E is a trivial extension, that is, E2 = 0. Our
objective is to give a necessary and sufficient condition for the Hochschild projection morphisms ϕn :
HHn(B) → HHn(C) to be surjective. We then prove that this condition holds for the two important
cases of trivial extension algebras, namely those where E = CDCC is the minimal injective cogenerator
bimodule, and those where E = CCC is the regular bimodule. Our main concern however is with the
relation bimodule E = Ext2

C(DC,C) of a triangular algebra C of global dimension two; in this case, B is
the relation extension of C, see [2]. We give a necessary and sufficient condition for the first Hochschild
projection morphism ϕ1 to be surjective, valid even in the more general case where C is not assumed to be
triangular of global dimension two and E = Em = ExtmC (DC,C). Such trivial extensions B = CnEm are
related, under some conditions, to (m− 1)-cluster-tilted algebras, as was mentioned in the introduction.

We start with some background from [11].
Let B = CnE be the split extension of C by E. As C-C-bimodules, we have B = E⊕C and therefore

B⊗n =
⊕

s+r=nE
s,r where Es,r is the subspace of B⊗(s+r) generated by the tensors x1 ⊗ · · · ⊗ xs+r with

exactly s of the xi in E and r of the xi in C.
Consequently, if X is any B-B-bimodule, the Hochschild complex Homk(B

⊗∗, X) organises into a
double complex Homk(E

∗,∗, X), and the Hochschild differential bn+1
X decomposes into horizontal dif-

ferentials ds+1,r
h : Homk(E

s,r, X) → Homk(E
s+1,r, X) and vertical differentials ds,r+1

v : Homk(E
s,r, X) →

Homk(E
s,r+1, X) where s and r are non-negative integers such that s+r = n, that is, bn+1

X =
∑

s+r=n(ds+1,r
h +
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ds,r+1
v ). This can be illustrated in the following diagram.

Homk(E
0,n+1, X)

⊕

Homk(E
0,n, X)

d
0,n+1
v

OO

d
1,n
h

//

⊕
Homk(E

1,n, X)

⊕K
K

K
K

K
K

K
K

K
K

K
KHomk(E

1,n−1, X)

d
1,n
v

OO

⊕K
K

K
K

K
K

K
K

K
K

K
K Homk(E

s,r+1, X)

⊕

Homk(E
s,r, X)

d
s,r+1
v

OO

d
s+1,r
h

//

⊕RRR

RRR

Homk(E
s+1,r, X)

⊕RRR

RRR

Homk(E
n,0, X)

d
n+1,0
h

// Homk(E
n+1,0, X)

We shall denote the sth column in this double complex (with vertical differential) by Cs(X).
The next proposition was proved in [11].

Proposition 3.1 ([11]). The following results hold for the split extension B of C by E:

(a) Hn(C0(X)) = ExtnC-C(C,X) = Hn(C,X).
(b) Hn(C1(X)) = ExtnC-C(E,X).
(c) H0(Cs(X)) = HomC-C(E⊗Cs, X).

If moreover B = C n E is the trivial extension of C by E and if X satisfies XE = 0 = EX, then:

(d) the horizontal differential dh is zero;
(e) Hn(B,X) =

⊕
s+r=n Hr(Cs(X));

(f) the connecting morphism δnB : Hn(B,C) → Hn+1(B,E) decomposes into δnB =
⊕

s+r=n δ
s,r where

δs,r : Hr(Cs(C))→ Hr(Cs+1(E)).
Moreover, δs,r([ζ]) = [idE ^ ζ] + (−1)s+r+1[ζ ^ idE ] where, if f : B⊗s → C and g : B⊗r → C,

f ^ g : B⊗(s+r) f⊗g−−→ C ⊗ C → C ⊗B C.

Proof. (a) is in [11, p. 24], (b) is in [11, Theorem 2.2], (c) is in [11, Remark 2.3], (d) and (e) follow from
[11, Theorem 3.1] and (f) from [11, Proposition 3.6 and Theorem 4.1]. �

Corollary 3.2. Let B be the trivial extension of C by E. We have a decomposition

Hn(B,C) ∼=
⊕
s+r=n

Hr(Cs(C)) = HHn(C)⊕
⊕

s+r=n, s>0

Hr(Cs(C)).

Proof. Apply Proposition 3.1(e) with X = q(C) ∼= C. �

We now give the connection with the Hochschild projection morphisms.

Lemma 3.3. Let ψn be the isomorphism Hn(B,C) →
⊕

s+r=n Hr(Cs(C)) and let π0,n :⊕
s+r=n Hr(Cs(C))→ HHn(C) be the natural projection.
Then π0,nψn = νn is the retraction in Lemma 2.7, and if HHn(p) : HHn(B) → Hn(B,C) is the mor-

phism induced on the Hochschild cohomology by p, then π0,nψn HHn(p) = ϕn is the Hochschild projection
morphism.

Proof. The decomposition Hn(B,C) ∼=
⊕

s+r=n Hr(Cs(C)) arises from the isomorphism (q, i) : C⊕E → B
of k-vector spaces which induces an isomorphism

Homk(B
⊗n, C)

∼=−→ Homk(C
⊗n, C)⊕

⊕
s+r=n, s>0

Homk(E
s,r, C)
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on the level of cochains, therefore the projection onto the first component is given by [f ] 7→ [fq⊗n] =
νn([f ]).

Moreover, if f ∈ Homk(B
⊗n, B) then νn HHn(p)([f ]) = νn([pf ]) = [pfq⊗n] = ϕn([f ]), which concludes

the proof. �

Remark 3.4. In the same way, we can prove that if πn,n :
⊕

s+r=n Hr(Cs(C)) → H0(Cn(C)) =

HomC-C(E⊗Cn, C) is the projection onto the last component, then πn,nψn : Hn(B,C) →
HomC-C(E⊗Cn, C) is given by [f ] 7→ fi⊗n, where i : E → B is the embedding, and πn,nψn HHn(p) :
HHn(B)→ HomC-C(E⊗Cn, C) is given by [f ] 7→ pfi⊗n.

We shall now study the surjectivity of ϕ∗. We keep the notation above.

Proposition 3.5. For any n > 0, the nth Hochschild projection morphism ϕn : HHn(B) → HHn(C) is
surjective if, and only if, δ0,n = 0.

Proof. The long exact cohomology sequence (2.1) on page 6 combined with the decomposition in Lemma 3.3
yield an exact sequence

HHn(B)
ψn HHn(p)−−−−−−→ HHn(C)⊕

⊕
s+r=n, s>0

Hr(Cs(C))
δnBψ

−1
n−−−−→ Hn+1(B,E).

Therefore ϕn = π0,nψn HHn(p) is surjective if, and only if, HHn(C) ⊂ Imψn HHn(p) = Ker δnBψ
−1
n which

is equivalent to δ0,n = (δnBψ
−1
n )|HHn(C) = 0. �

We shall say that a C-C-bimodule E is symmetric over Z(C) if it is symmetric when viewed as a
bimodule over the centre Z(C) of C, that is, for any z ∈ Z(C) and any x ∈ E we have zx = xz.
For instance, if C is a triangular algebra (that is, C has an acyclic quiver), then Z(C) ∼= k and any
C-C-bimodule is symmetric over Z(C).

Corollary 3.6. (a) The Hochschild projection morphism ϕ0 is surjective if, and only if, E is sym-
metric over Z(C).

(b) For n > 1, the Hochschild projection morphism ϕn is surjective if, and only if, for any Hochschild
cocycle ζ ∈ Homk(C

⊗n, C), there exists a morphism α ∈ Homk(E
1,n−1, E) that satisfies the fol-

lowing three conditions for all θ ∈ E and all c = c1 ⊗ · · · ⊗ cn ∈ C⊗n:

θ · ζ(c) = −α(θ · c1 ⊗ c2 ⊗ · · · ⊗ cn) +
n−1∑
i=1

(−1)i+1α(θ ⊗ c1 ⊗ · · · ⊗ cici+1 ⊗ · · · ⊗ cn)

+ (−1)n+1α(θ ⊗ c1 ⊗ · · · ⊗ cn−1) · cn

(C1)

(−1)n+1ζ(c) · θ = c1 · α(c2 ⊗ c3 ⊗ · · · ⊗ cn ⊗ θ) +
n−1∑
i=1

(−1)iα(c1 ⊗ · · · ⊗ cici+1 ⊗ · · · ⊗ cn ⊗ θ)

+ (−1)nα(c1 ⊗ · · · ⊗ cn−1 ⊗ cn · θ)
(C2)

0 = dvα(c1 ⊗ · · · ⊗ ci ⊗ θ ⊗ ci+1 ⊗ · · · ⊗ cn) for all i = 1, 2, . . . , n− 1. (C3)

Proof. (a) We have HH0(B) = Z(B), HH0(C) = Z(C), and ϕ0 : Z(B) → Z(C) is the restriction of
the projection p : B → C to Z(B).
. Assume that E is symmetric over Z(C). If z ∈ Z(C), then z = p(z, 0). Moreover, for any

(c, x) ∈ B = C n E, we have

(z, 0)(c, x)− (c, x)(z, 0) = (zc, zx)− (cz, xz) = (zc− cz, zx− xz) = 0,

therefore (z, 0) ∈ Z(B) and z = ϕ0(z, 0). Hence ϕ0 is surjective.
. Assume that ϕ0 is surjective. Take z ∈ Z(C) and x ∈ E. There exists (c, y) ∈ Z(B) such

that z = ϕ0(c, y) = p(c, y) = c. Therefore (z, y) ∈ Z(B) and we have

0 = (z, y)(0, x)− (0, x)(z, y) = (0, zx− xz)

so that zx = xz.
This is true for any z ∈ Z(C) and any x ∈ E, therefore E is symmetric over Z(C).
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Note that this can also be deduced from Proposition 3.5 as follows. If n = 0, then δ0,0 = δ0
B :

H0(B,C)→ H0(B,E). Moreover, by [11, Proposition 3.3], the connecting morphism δ0
B vanishes

if, and only if, E is symmetric over Z(C). Claim (a) now follows from Proposition 3.5.
(b) Now assume that n > 1. The map δ0,n vanishes if, and only if, for any cocycle ζ ∈ Homk(C

⊗n, C),
the map fζ = idE ^ ζ + (−1)n+1ζ ^ idE representing δ0,n([ζ]) is a coboundary. Since the
horizontal differential dh vanishes, we must prove that fζ is in the image of the vertical differential.
Since fζ ∈ Homk(E

1,n, E), we must find α ∈ Homk(E
1,n−1, E) such that dv(α) = fζ .

The formula fζ = idE ^ ζ + (−1)n+1ζ ^ idE can be expressed as follows:

(fζ)|E⊗C⊗n = idE ^ ζ

(fζ)|C⊗n⊗E = (−1)n+1ζ ^ idE

and fζ restricted to the other components in E1,n vanishes. This translates as: for any θ ∈ E and
any c = c1 ⊗ · · · ⊗ cn ∈ C⊗n,

fζ(θ ⊗ c) = θ · ζ(c)

fζ(c⊗ θ) = ζ(c) · θ
fζ(c1 ⊗ · · · ⊗ ci ⊗ θ ⊗ ci+1 ⊗ · · · ⊗ cn) = 0 for 1 6 i 6 n− 1.

The vertical differential dv is just the Hochschild differential (co-)restricted to the spaces in a
given column Cs(X), therefore dv(α) evaluated at an element in one of the components of E1,n is
the right hand side of the appropriate equation (C1), (C2) or (C3). It follows that dv(α) = fζ if
and only if α satisfies Conditions (C1), (C2) and (C3). �

Recall that the vector space DC is a C-C-bimodule for the usual actions, that is, for any f ∈ DC,
c ∈ C and x ∈ C,

(f · c)(x) = f(cx) and (c · f)(x) = f(xc).

Corollary 3.7. Assume that B = C n DC. Then for all n > 0, the Hochschild projection morphism
ϕn : HHn(B)→ HHn(C) is surjective, so that ϕ∗ : HH∗(B)→ HH∗(C) is surjective.

Proof. It was proved in [11, Proposition 5.9] that δ0,n = 0 for any n > 1 in this case. If ζ is any Hochschild
cocycle in Homk(C

⊗n, C), the morphism α ∈ Homk(E
1,n−1, E) satisfying relations (C1), (C2) and (C3)

was given explicitly on each component C⊗p⊗DC⊗C⊗q by α(x⊗θ⊗y)(c) = (−1)n(p+1)+1θ(ζ(y⊗ c⊗x))

for all x ∈ C⊗p, y ∈ C⊗q, θ ∈ E = DC and c ∈ C. It follows from Proposition 3.5 that for all n > 1 the
Hochschild projection morphism ϕn is surjective.

Finally, it is easy to check that the C-C-bimodule DC is symmetric over Z(C), therefore ϕ0 is surjective.
�

Corollary 3.8. Assume that B = C n C. Then for all n > 0, the Hochschild projection morphism
ϕn : HHn(B)→ HHn(C) is surjective.

Proof. Clearly, the bimodule C is symmetric over Z(C), therefore ϕ0 is surjective.
For n > 1, it is easy to check that if ζ is any Hochschild cocycle in Homk(C

⊗n, C), the morphism
α = −ζ ∈ Homk(E

1,n−1, E) = Homk(C
⊗n, C) satisfies Conditions (C1), (C2) and (C3). Let us for

instance check (C1) and leave the other conditions to the reader. Since bn+1
B (ζ) = 0, we have, for any

θ ∈ E = C and any c = c1 ⊗ · · · ⊗ cn ∈ C⊗n,

0 = bn+1
B (ζ)(θ ⊗ c) = θζ(c)− ζ(θc1 ⊗ c2 ⊗ · · · ⊗ cn)

−
n−1∑
i=1

(−1)iζ(θ ⊗ c1 ⊗ · · · ⊗ cici+1 ⊗ · · · ⊗ cn)− (−1)nζ(θ ⊗ c1 ⊗ · · · ⊗ cn−1)cn

= θζ(c) + α(θc1 ⊗ c2 ⊗ · · · ⊗ cn)

+

n−1∑
i=1

(−1)iα(θ ⊗ c1 ⊗ · · · ⊗ cici+1 ⊗ · · · ⊗ cn) + (−1)nα(θ ⊗ c1 ⊗ · · · ⊗ cn−1)cn

and (C1) follows. �
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We shall now consider the case where E = Em = ExtmC (DC,C) where m is a non-negative integer and
n = 1. In this situation, ζ ∈ Homk(C,C) is a derivation (since n = 1).

The space Em = ExtmC (DC,C) is naturally a C-C-bimodule, where the left action is on the target C
of θ and the right action is given by the left action on the component DC of the argument of θ. More
precisely, if c ∈ C and θ ∈ Homk(DC ⊗ C⊗m, C) is a cocycle representing an element in Em, then for all
a ∈ C⊗m and all f ∈ DC we have

(c · θ)(f ⊗ a) = c θ(f ⊗ a)

(θ · c)(f ⊗ a) = θ(c · f ⊗ a).
(3.1)

Definition 3.9. Given a derivation ζ ∈ Homk(C,C) and an integer m > 0, define αm : Homk(DC ⊗
C⊗m, C)→ Homk(DC ⊗ C⊗m, C) by

αm(θ)(f ⊗ a) =
s∑
j=1

θ(f ⊗ a1 ⊗ · · · ⊗ ζ(aj)⊗ · · · ⊗ am)− θ(f ◦ ζ ⊗ a)− ζ(θ(f ⊗ a))

for all θ ∈ Homk(DC ⊗ C⊗m, C), for all a = a1 ⊗ · · · ⊗ am ∈ C⊗m and for all f ∈ DC.

We shall prove in Corollary 3.12 and Lemma 3.13 that αm defines a morphism in Homk(E
1,n−1
m , Em) =

EndkEm which satisfies Conditions (C1) and (C2), Condition (C3) being empty for n = 1.

Remark 3.10. For any derivation ζ ∈ Homk(C,C), if f ∈ DC and c ∈ C, we have the following relations:

c · (f ◦ ζ) = (c · f) ◦ ζ + ζ(c) · f
(f ◦ ζ) · c = (f · c) ◦ ζ + f · ζ(c).

(3.2)

Indeed, since ζ is a derivation, for any a ∈ C we have

(c · (f ◦ ζ))(a) = f(ζ(ac)) = f(ζ(a)c+ aζ(c)) = f(ζ(a)c) + f(aζ(c))

= (c · f)(ζ(a)) + (ζ(c) · f)(a) = ((c · f) ◦ ζ + ζ(c) · f) (a)

and the proof of the second relation is similar.

In the sequel, denote by ∂ the differential in the complex Homk(DC ⊗ C⊗∗, C) whose cohomology is
Ext∗C(DC,C).

Lemma 3.11. For every integer m > 0 and every θ ∈ Homk(DC ⊗ C⊗m, C), we have

∂(αm(θ)) = αm+1(∂θ),

that is, there is a commutative diagram

Homk(DC ⊗ C⊗m, C)
αm //

Homk(∂,C)
��

Homk(DC ⊗ C⊗m, C)

Homk(∂,C)
��

Homk(DC ⊗ C⊗(m+1), C)
αm+1 // Homk(DC ⊗ C⊗(m+1), C)

.
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Proof. Take a = a0 ⊗ · · · ⊗ am ∈ C⊗m+1 and f ∈ DC. Then:

∂(αm(θ))(f ⊗ a) = αm(θ)(f · a0 ⊗ a1 ⊗ · · · ⊗ am) +
m∑
i=1

(−1)iαm(θ)(f ⊗ a0 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ am)

+ (−1)m+1αm(θ)(f ⊗ a0 ⊗ · · · ⊗ am−1)am

=

m∑
j=1

θ(f · a0 ⊗ a1 ⊗ · · · ⊗ ζ(aj)⊗ · · · ⊗ am)− θ((f · a0) ◦ ζ ⊗ a1 ⊗ · · · ⊗ am)

− ζ(θ(f · a0 ⊗ a1 ⊗ · · · ⊗ am))

+

m∑
i=1

(−1)i
[ i−2∑
j=0

θ(f ⊗ a0 ⊗ · · · ⊗ ζ(aj)⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ am)

+ θ(f ⊗ a0 ⊗ · · · ⊗ ζ(ai−1ai)⊗ · · · ⊗ am)

+
m∑

j=i+1

θ(f ⊗ a0 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ ζ(aj)⊗ · · · ⊗ am)

− θ(f ◦ ζ ⊗ a0 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ am)

− ζ(θ(f ⊗ a0 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ am))
]

+ (−1)m+1
[m−1∑
j=0

θ(f ⊗ a0 ⊗ · · · ⊗ ζ(aj)⊗ · · · ⊗ am−1)am

− θ(f ◦ ζ ⊗ a0 ⊗ · · · ⊗ am−1)am − ζ(θ(f ⊗ a0 ⊗ · · · ⊗ am−1))am

]
by definition of αm. We now exchange the sums over i and j, use relation (3.2) in the second line, and
the fact that ζ is a derivation in the fifth and last lines below, to get

∂(αm(θ))(f ⊗ a) =
m∑
j=1

θ(f · a0 ⊗ a1 ⊗ · · · ⊗ ζ(aj)⊗ · · · ⊗ am)

(3.2)
+ θ

([
− (f ◦ ζ) · a0 + f · ζ(a0)

]
⊗ a1 ⊗ · · · ⊗ am

)
− ζ(θ(f · a0 ⊗ a1 ⊗ · · · ⊗ am))

+
m−2∑
j=0

m∑
i=j+2

(−1)iθ(f ⊗ a0 ⊗ · · · ⊗ ζ(aj)⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ am)

+

m∑
i=1

(−1)iθ(f ⊗ a0 ⊗ · · · ⊗ [ai−1ζ(ai) + ζ(ai−1)ai]⊗ · · · am)

+

m∑
j=1

j−1∑
i=1

(−1)iθ(f ⊗ a0 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ ζ(aj)⊗ · · · ⊗ am)

+
m∑
i=1

(−1)i+1θ(f ◦ ζ ⊗ a0 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ am)

+
m∑
i=1

(−1)i+1ζ(θ(f ⊗ a0 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ am))

+ (−1)m+1
[m−1∑
j=0

θ(f ⊗ a0 ⊗ · · · ⊗ ζ(aj)⊗ · · · ⊗ am−1)am

− θ(f ◦ ζ ⊗ a0 ⊗ · · · ⊗ am−1)am

− ζ(θ(f ⊗ a0 ⊗ · · · ⊗ am−1)am) + θ(f ⊗ a0 ⊗ · · · ⊗ am−1)ζ(am)
]
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The fifth line can be rewritten as

m∑
i=1

(−1)iθ(f ⊗ a0 ⊗ · · · ⊗ ai−1ζ(ai)⊗ · · · am) +
m−1∑
i=0

(−1)i+1θ(f ⊗ a0 ⊗ · · · ⊗ ζ(ai)ai+1 ⊗ · · · am).

We now rewrite the expression we have obtained for ∂(αm(θ))(f⊗a), keeping the terms in the same order
but isolating some terms for j = 0 or j = m and relabelling the summation index from i to j in some
cases.

∂(αm(θ))(f ⊗ a) =

m−1∑
j=1

θ(f · a0 ⊗ a1 ⊗ · · · ⊗ ζ(aj)⊗ · · · ⊗ am) + θ(f · a0 ⊗ a1 ⊗ · · · ⊗ am−1 ⊗ ζ(am))

− θ((f ◦ ζ) · a0 ⊗ a1 ⊗ · · · ⊗ am) + θ(f · ζ(a0)⊗ a1 ⊗ · · · ⊗ am)

− ζ(θ(f · a0 ⊗ a1 ⊗ · · · ⊗ am))

+

m∑
i=2

(−1)iθ(f ⊗ ζ(a0)⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ am)

+
m−2∑
j=1

m∑
i=j+2

(−1)iθ(f ⊗ a0 ⊗ · · · ⊗ aj−1 ⊗ ζ(aj)⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ am)

+
m−1∑
j=1

(−1)jθ(f ⊗ a0 ⊗ · · · ⊗ aj−2 ⊗ aj−1ζ(aj)⊗ · · · ⊗ am)

+ (−1)mθ(f ⊗ a0 ⊗ · · · ⊗ am−1ζ(am))

− θ(f ⊗ ζ(a0)a1 ⊗ a2 ⊗ · · · ⊗ am)

+

m−1∑
j=1

(−1)j+1θ(f ⊗ a0 ⊗ · · · ⊗ aj−1 ⊗ ζ(aj)aj+1 ⊗ · · · ⊗ am)

+
m−1∑
j=1

j−1∑
i=1

(−1)iθ(f ⊗ a0 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ ζ(aj)⊗ · · · ⊗ am)

+

m−1∑
i=1

(−1)iθ(f ⊗ a0 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ am−1 ⊗ ζ(am))

−
m∑
i=1

(−1)iθ(f ◦ ζ ⊗ a0 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ am)

−
m∑
i=1

(−1)iζ(θ(f ⊗ a0 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ am))

+ (−1)m+1θ(f ⊗ ζ(a0)⊗ a1 ⊗ · · · ⊗ am−1)am

+ (−1)m+1
m−1∑
j=1

θ(f ⊗ a0 ⊗ · · · ⊗ ζ(aj)⊗ · · · ⊗ am−1)am

− (−1)m+1θ(f ◦ ζ ⊗ a0 ⊗ · · · ⊗ am−1)am

− (−1)m+1ζ(θ(f ⊗ a0 ⊗ · · · ⊗ am−1)am) + (−1)m+1θ(f ⊗ a0 ⊗ · · · ⊗ am−1)ζ(am).

We finally reorder the terms in this expression:

∂(αm(θ))(f ⊗ a) =

m−1∑
j=1

[
θ(f · a0 ⊗ a1 ⊗ · · · ⊗ ζ(aj)⊗ · · · ⊗ am)

+

j−1∑
i=1

(−1)iθ(f ⊗ a0 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ ζ(aj)⊗ · · · ⊗ am)
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+ (−1)jθ(f ⊗ a0 ⊗ · · · ⊗ aj−2 ⊗ aj−1ζ(aj)⊗ · · · ⊗ am)

+ (−1)j+1θ(f ⊗ a0 ⊗ · · · ⊗ aj−1 ⊗ ζ(aj)aj+1 ⊗ · · · ⊗ am)

+

m∑
i=j+2

(−1)iθ(f ⊗ a0 ⊗ · · · ⊗ aj−1 ⊗ ζ(aj)⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ am)

+ (−1)m+1θ(f ⊗ a0 ⊗ · · · ⊗ ζ(aj)⊗ · · · ⊗ am−1)am

]
−
[
θ((f ◦ ζ) · a0 ⊗ a1 ⊗ · · · ⊗ am)

+
m∑
i=1

(−1)iθ(f ◦ ζ ⊗ a0 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ am)

+ (−1)m+1θ(f ◦ ζ ⊗ a0 ⊗ · · · ⊗ am−1)am

]
−
[
ζ(θ(f · a0 ⊗ a1 ⊗ · · · ⊗ am))

+
m∑
i=1

(−1)iζ(θ(f ⊗ a0 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ am))

+ (−1)m+1ζ(θ(f ⊗ a0 ⊗ · · · ⊗ am−1)am)
]

+
[
θ(f · ζ(a0)⊗ a1 ⊗ · · · ⊗ am)− θ(f ⊗ ζ(a0)a1 ⊗ a2 ⊗ · · · ⊗ am)

+
m∑
i=2

(−1)iθ(f ⊗ ζ(a0)⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ am)

+ (−1)m+1θ(f ⊗ ζ(a0)⊗ a1 ⊗ · · · ⊗ am−1)am

]
+
[
θ(f · a0 ⊗ a1 ⊗ · · · ⊗ am−1 ⊗ ζ(am))

+ (−1)mθ(f ⊗ a0 ⊗ · · · ⊗ am−1ζ(am))

+

m−1∑
i=1

(−1)iθ(f ⊗ a0 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ am−1 ⊗ ζ(am))

+ (−1)m+1θ(f ⊗ a0 ⊗ · · · ⊗ am−1)ζ(am)
]

=
m−1∑
j=1

∂θ(f ⊗ a0 ⊗ · · · ⊗ ζ(aj)⊗ · · · ⊗ am)− ∂θ(f ◦ ζ ⊗ a)− ζ(∂θ(f ⊗ a))

+ ∂θ(f ⊗ ζ(a0)⊗ a1 ⊗ · · · ⊗ am) + ∂θ(f ⊗ a0 ⊗ · · · ⊗ am−1 ⊗ ζ(am))

= αm+1(∂θ)(f ⊗ a).

This completes the proof. �

Corollary 3.12. The map αm defines a map from Em to Em, again denoted by αm.

Proof. It follows from Lemma 3.11 that αm sends cocycle to cocycle and coboundary to coboundary, that
is, αm defines a map from Em to Em. �

Lemma 3.13. The map αm : Em → Em satisfies Equations (C1) and (C2) for n = 1.

Proof. Note that for n = 1, the equations become

θ · ζ(c) = −αm(θ · c) + αm(θ) · c (C1)

ζ(c) · θ = c · αm(θ)− αm(c · θ) (C2)

for all θ ∈ Em and all c ∈ C.
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Now for any c ∈ C, θ ∈ Em, f ∈ DC and a = a1 ⊗ · · · ⊗ am ∈ C⊗m we have

(−αm(θ · c) + αm(θ) · c)(f ⊗ a) = −αm(θ · c)(f ⊗ a) + αm(θ)(c · f ⊗ a)

= −

 m∑
j=1

(θ · c)(f ⊗ a1 ⊗ · · · ⊗ ζ(aj)⊗ · · · ⊗ am)− (θ · c)(f ◦ ζ ⊗ a)− ζ((θ · c)(f ⊗ a))


+

 m∑
j=1

θ(c · f ⊗ a1 ⊗ · · · ⊗ ζ(aj)⊗ · · · ⊗ am)− θ((c · f) ◦ ζ ⊗ a)− ζ(θ(c · f ⊗ a))


(3.1)
= θ(c · (f ◦ ζ)⊗ a)− θ((c · f) ◦ ζ ⊗ a)

(3.2)
= θ(ζ(c) · f ⊗ a)

(3.1)
= (θ · ζ(c))(f ⊗ a)

where in the last three equalities, we have used respectively (3.1), (3.2) then (3.1) again, thus proving
Equation (C1) and

(c · αm(θ)− αm(c · θ))(f ⊗ a) = c αm(θ)(f ⊗ a)− αm(c · θ)(f ⊗ a)

=

 m∑
j=1

c θ(f ⊗ a1 ⊗ · · · ⊗ ζ(aj)⊗ · · · ⊗ am)− c θ(f ◦ ζ ⊗ a)− cζ(θ(f ⊗ a))


+

 m∑
j=1

(c · θ)(f ⊗ a1 ⊗ · · · ⊗ ζ(aj)⊗ · · · ⊗ am)− (c · θ)(f ◦ ζ ⊗ a)− ζ((c · θ)(f ⊗ a))


(3.1)
= −c ζ(θ(f ⊗ a)) + ζ(c θ(f ⊗ a))

= ζ(c) θ(f ⊗ a) since ζ is a derivation

= (ζ(c) · θ) (f ⊗ a),

using (3.1) in the third equality, which proves Equation (C2). �

Theorem 3.14. Let B = CnEm be the trivial extension of C by the C-C-bimodule Em = ExtmC (DC,C),
for some integer m > 0. Then the first Hochschild projection morphism ϕ1 : HH1(B) → HH1(C) is
surjective.

Proof. By Corollary 3.6, ϕ1 is surjective if, and only if, for any derivation ζ ∈ Homk(C,C), there exists
α ∈ Homk(E

1,n−1, E) = EndkEm that satisfies Equations (C1) and (C2), Equation (C3) being empty for
n = 1. Corollary 3.12 shows that αm is a well-defined map in EndkEm and we have proved in Lemma 3.13
that it satifies Equations (C1) and (C2). Therefore ϕ1 is surjective. �

4. Study of the kernel of ϕ1

We now return to the general situation of a trivial extension B = CnE of a finite-dimensional algebra
C by an arbitrary C-C-bimodule E. In the cases where ϕ∗ is surjective, it is natural to ask what its kernel
is. We answer this question for ϕ0 and ϕ1 in homological terms.

Lemma 4.1. Let B = CnE be the trivial extension of C by a C-C-bimodule E which is symmetric over
Z(C). Then there exists a short exact sequence of vector spaces

0→ H0(B,E)→ HH0(B)
ϕ0

−→ HH0(C)→ 0.

Proof. Since E is symmetric over Z(C), it follows from Corollary 3.6 that ϕ0 is surjective. Moreover,
ϕ0 : Z(B)→ Z(C) identifies with the restriction of p to Z(B), and its kernel is the subspace of elements
in E that are central in B, which is isomorphic to HomB-B(B,E) = H0(B,E). �

Following the notation in [24], we let E(E) denote the k-subspace of HomC-C(E,C) consisting of all
C-C-bimodule morphisms f : E → C such that, for any x, y in E, we have f(x)y+xf(y) = 0. Identifying
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E with i(E) and taking into account the fact that the C-C-bimodule structure of E is given by means of
q, this condition can be written qf(x)y + xqf(y) = 0.

We shall see in Corollary 5.5 that if C is a triangular algebra of global dimension at most two and if
E = Ext2

C(DC,C), we have E(E) = 0. This is generally not the case, as Example 2.5 continued below
shows.

Example 4.2. We compute E(E) in Example 2.5. Any morphism f ∈ HomC-C(E,C) is entirely de-
termined by the 4-tuple (f(a1 − ā0), f(a0 + ā1), f(a0ā0), f(a1ā1)) ∈ C4. Since f is a morphism of C-C-
bimodules, we must have f(ai + (−1)iāi+1) ∈ eiCei+1 = kαi and f(aiāi) ∈ eiCei = kei for i ∈ Z/2Z.
Moreover,

f(αi+1 · (ai + (−1)iāi+1)) = f(q(αi+1)(ai + (−1)iāi+1)) = f(ai+1(ai + (−1)iāi+1))

= f((−1)iai+1āi+1)

and f(αi+1 · (ai + (−1)iāi+1)) = αi+1f(ai + (−1)iāi+1) = 0 (since αi+1αi = 0 in C).

Therefore f(aiāi) = 0 for i ∈ {0, 1}.
Now let f ∈ HomC-C(E,C) be defined by f(ai + (−1)iāi+1) = λiαi with λi ∈ k. We want a necessary

and sufficient condition for f to be in E(E), that is, to satisfy the relation qf(x)y+xqf(y) = 0 for all x, y
in E. Since f(aiāi) = 0, paths of length three vanish in B and f and q are morphisms of C-C-bimodules,
it is enough to check this when x, y are in the set {a1− ā0, a0 + ā1} and when the source of y is target of
x, that is, x and y are different. We have

qf(ai + (−1)iāi+1)(ai+1 − (−1)iāi) + (ai + (−1)iāi+1)qf(ai+1 − (−1)iāi)

= λiai(ai+1 − (−1)iāi) + (ai + (−1)iāi+1)λi+1ai+1

= (−1)i (−λiaiāi + λi+1āi+1ai+1)

= (−1)i(λi+1 − λi)aiāi
for i ∈ {0, 1} so that f ∈ E(E) if, and only if, λ0 = λ1.

Finally, E(E) = kζ where ζ : E → C is the morphism of C-C-bimodules defined on our basis of E by
ζ(a0 + ā1) = α0, ζ(a1 − ā0) = α1 and ζ(aiāi) = 0 for i ∈ {0, 1}.
Lemma 4.3. Let B = CnE be the trivial extension of C by a C-C-bimodule E and let δ1

B : H1(B,C)→
H2(B,E) be the connecting morphism. Assume that δ0,1 = 0. Then

Ker δ1
B = HH1(C)⊕ E(E).

Proof. We apply the results in Proposition 3.1 with X = q(C) ∼= C and X = E, which gives the identities

H1(B,C) = H0(C1(C))⊕H1(C0(C)) = HomC-C(E,C)⊕HH1(C)

H2(B,E) = H0(C2(E))⊕H1(C1(E))⊕H2(C0(E))

= HomC-C(E ⊗C E,E)⊕ Ext1
C-C(E,E)⊕H2(C,E).

Moreover, δ1
B = δ1,0 + δ0,1, where the map δ1,0 : HomC-C(E,C)→ HomC-C(E ⊗C E,E) is given by

δ1,0(f) = idE ⊗Cf + f ⊗C idE

for any f ∈ HomC-C(E,C) and δ0,1 : HH1(C) → Ext1
C-C(E,E) vanishes by assumption. Therefore

δ1
B = δ1,0. Moreover, by definition, Ker δ1,0 = E(E). The result then follows. �

Theorem 4.4. Let B = C nE be the trivial extension of C by a C-C-bimodule E and assume that E is
symmetric over Z(C). Assume that the Hochschild projection morphism ϕ1 is surjective. Then we have
a short exact sequence

0→ H1(B,E)⊕ E(E)→ HH1(B)
ϕ1

−→ HH1(C)→ 0.

Proof. Since E is symmetric over Z(C), it follows from [11, Proposition 3.3] that the connecting morphism
H0(B,C)→ H1(B,E) vanishes. Moreover, δ0,1 = 0 by Proposition 3.5 because ϕ1 is surjective. Therefore
there exists a short exact sequence of vector spaces

0→ H1(B,E)
j−→ HH1(B)

(
ϕ1

ρ

)
−−−−→ HH1(C)⊕ E(E)→ 0.
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Let (s, t) be a section of the surjection

(
ϕ1

ρ

)
, so that s is a section of ϕ1, t is a section of ρ and we have

the relations ϕ1t = 0 = ρs. Then Kerϕ1 = Im j ⊕ Im t. Indeed, if b ∈ Kerϕ1 then b = (b− tρ(b)) + tρ(b)

with b− tρ(b) ∈ Kerϕ1 ∩Ker ρ = Ker

(
ϕ1

ρ

)
= Im j, and it is easy to check that Im j ∩ Im t = 0.

Finally, we have Kerϕ1 ∼= H1(B,E)⊕ E(E) as required. �

Remark 4.5. In case E = DC, the exact sequence in Theorem 4.4 follows from [11, Theorem 5.7]

Example 4.6. Let us continue Examples 2.5 and 4.2. We keep the same notation. The expression of ϕ
in our basis {[u0], [u1], [v0], [v1]} shows that Kerϕ = span {[u0 + v0], [u1], [v1]}.

It was shown in [13, Proposition 4.4] that Z(C) ∼= HH0(C) ∼= k. In particular, E is symmetric
over the centre Z(C). Therefore the theorem above and the results in the previous examples show
that dimk H1(B,E) = dimk HH1(B) − dimk HH1(C) − dimk E(E) = 4 − 1 − 1 = 2. Moreover, u0 + v0

and u1 + v1 are derivations from B to E whose cohomology classes are linearly independant, therefore
{[u0 + v0], [u1 + v1]} is a basis of H1(B,E). This can in fact be checked directly in this example using the
minimal projective resolution of the B-B-bimodule B given in [26, 1.1] or the bar resolution of B.

Note that, using Remark 3.4, the map ρ is given by ρ([u0]) = ζ = ρ([v1]) and ρ([u1]) = −ζ = ρ([v0])
and that Kerϕ ∩Ker ρ = span {[u0 + v0], [u1 + v1]} = H1(B,E).

The statements that follow, which give decompositions of H1(B,E), were proved in [5] under the
assumption that B is cluster-tilted with C tilted and E = Ext2

C(DC,C), but they remain valid in our
more general situation. We include the proofs for the benefit of the reader. Recall that Der0(B,E)
denotes the group of normalised derivations from B to E, see paragraph 1.2.

Lemma 4.7. Let B be the trivial extension of an algebra C by a C-C-bimodule E. Then

Der0(B,E) ∼= Der0(C,E)⊕ EndC-CE.

Proof. Let δ be an element in Der0(B,E) and define k-linear maps d : C → E, f : E → E by setting

d(c) = δ(c, 0) for all c ∈ C
f(x) = δ(0, x) for all x ∈ E

that is, d = δ|C and f = δ|E . We first show that d ∈ Der0(C,E). Let c, c′ ∈ E, then

d(cc′) = δ(cc′, 0) = δ((c, 0)(c′, 0)) = (c, 0)δ(c′, 0) + δ(c, 0)(c′, 0) = cd(c′) + d(c)c.

Moreover, d(ei) = δ(ei, 0) = 0 for every primitive idempotent ei of B.
Next, we prove that f ∈ EndC-CE. Let c ∈ C, x ∈ E, then

f(cx) = δ(0, cx) = δ((c, 0)(0, x)) = (c, 0)δ(0, x) + δ(c, 0)(0, x) = cf(x) + d(c)x = cf(x),

because d(c) ∈ E and E2 = 0. Similarly, f(xc) = f(x)c.
Because δ = d + f , this proves that Der0(B,E) = Der0(C,E) + EndC-CE. Now Der0(C,E) ⊆

Homk(C,E) and EndC-CE ⊆ Endk(E). Therefore Homk(C,E) ∩ EndkE = 0, which implies the state-
ment. �

Proposition 4.8. Let B be the trivial extension of an algebra C by a C-C-bimodule E. Then

H1(B,E) ∼= H1(C,E)⊕ EndC-CE.

Proof. We claim that the direct sum decomposition Der0(B,E) = Der0(C,E)⊕ EndC-CE of Lemma 4.7
above induces on the level of the inner derivations the decomposition Inn0(B,E) = Inn0(C,E)⊕ 0, that
is, if δ ∈ Inn0(B,E) then d = δ|C ∈ Inn0(C,E) and f = δ|E = 0.

Since δ ∈ Inn0(B,E), there exists x0 ∈ C such that δ = [x0,−], that is, for all (c, x) ∈ B we have

δ(c, x) = (0, x0)(c, x)− (c, x)(0, x0) = (0, x0c− cx0)

(note that we identify E and i(E)).
It follows immediately that δ|C : c 7→ x0c− cx0 is an inner derivation from C to E and that δ|E = 0.
The statement then follows by taking quotients:

H1(B,E) ∼=
Der0(B,E)

Inn0(B,E)
∼=

Der0(C,E)⊕ EndC-CE

Inn0(C,E)⊕ 0
∼= H1(C,E)⊕ EndC-CE. �
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5. Relation extensions

From now on, we assume that the base field k is algebraically closed, so that all our algebras are given
by bound quivers. Let C be an algebra of global dimension at most two. We recall from [2] that the
relation extension of C is the trivial extension of C by E2 = Ext2

C(DC,C) equipped with its natural
C-C-bimodule structure (as in (3.1)). The best known class of relation extensions is provided by the
cluster-tilted algebras: let C be a tilted algebra, then the relation extension B = C n E2 is cluster-tilted
and every cluster-tilted algebra arises in this way, see [2, Theorem 3.4]. The purpose of this section is to
prove that the main result of [3], proved in case B is cluster-tilted, remains valid for any relation extension
of a triangular algebra of global dimension at most two.

The quiver of a relation extension is easily computed by means of [2, Theorem 2.6], which we restate
for future reference. Recall that, if C = kQC/I is a bound quiver algebra, then a system of relations R
for C is a subset of

⋃
x,y∈(QC)0

(exIey) such that R, but no proper subset of R, generates I as a two-sided

ideal.

Lemma 5.1. Let C = kQC/I be an algebra of global dimension at most two and let R be a system of
relations for C. The quiver QB of the relation extension B = C n E2 is constructed as follows:

(a) (QB)0 = (QC)0.
(b) For x, y ∈ (QB)0, the set of arrows in QB from x to y equals the set of arrows in QC from x to y

(called the old arrows) plus card(R ∩ eyIex) additional arrows (called the new arrows).

Thus, if C is not hereditary, then B is not triangular so we may define a potential on its quiver, see
[12]. Let R = {ρ1, · · · , ρt}. Because of Lemma 5.1, to each relation ρi from xi to yi, say, there corresponds

a new arrow αi : yi → xi. The Keller potential on QB is WB =
∑t

i=1 ρiαi. Potentials are considered up
to cyclic permutations: two potentials are cyclically equivalent if their difference lies in the linear span of
all elements of the form α1α2 · · ·αm − αmα1α2 · · ·αm−1, where α1α2 · · ·αm is a cycle. For a given arrow
β, the cyclic partial derivative ∂β of a potential W is defined on each cyclic summand β1 · · ·βs of W by
∂β(β1 · · ·βs) =

∑
i:β 6=βi βi+1 · · ·βsβ1 · · ·βi−1. In particular, the cyclic derivative is invariant under cyclic

permutaton. The Jacobian algebra J (QB,WB) is the one given by the quiver QB bound by the ideal
generated by all the cyclic partial derivatives ∂αWB of the Keller potential WB with respect to each arrow
α ∈ (QB)1, see [22]. We now derive a system of relations for B (compare [7, Proposition 3.19]).

Lemma 5.2. Let C be an algebra of global dimension at most two, B its relation extension and WB the
Keller potential, then B ∼= J (QB,WB)/J where J is the square of the ideal generated by the new arrows.

Proof. It was shown by Keller in [22, Theorem 6.12 (a)] that J (QB,WB) is isomorphic to the endomor-
phism algebra of the tilting object C in the (Amiot’s generalised) cluster category associated with the
algebra C. On the other hand, Amiot proved in [1, Proposition 4.7] that this endomorphism algebra is
isomorphic to the tensor algebra of the bimodule E2 = Ext2

C(DC,C). Also, she proved that the quiver
of the tensor algebra of E2 is isomorphic to the quiver of J (QB,WB). Taking now the quotient of the
tensor algebra by the two-sided ideal J generated by all tensor powers E⊗m2 with m > 2, we get exactly
the algebra B. But now J is the square of the ideal generated by the new arrows. �

Thus B ∼= kQB/IB where QB is computed as in Lemma 5.1, while IB is generated by all the cyclic
partial derivatives ∂αWB with α ∈ (QB)1, and all the paths in QB containing at least two new arrows.

Example 5.3. We borrow this example from [2, Example 2.7]. Let C be given by the quiver

2 β

%%JJJJJJ

1

α
99tttttt

γ

33 3

bound by αβ = 0. Applying Lemma 5.1, we get a new arrow δ : 3→ 1. The quiver QB of B = C nE2 is
therefore

2 β

%%JJJJJJ
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α
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γ

33 3
δ

ss
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We have WB = αβδ while J =< δ >2. Thus B is given by the quiver QB bound by δα = 0, αβ = 0, βδ = 0
and δγδ = 0. Note that B is not a cluster-tilted algebra.

Lemma 5.4. Let B be the trivial extension of an algebra C by a C-C-bimodule E. Then f ∈ E(E) if and
only if there exists a derivation f̄ : B → C which restricts to f and vanishes on C.

Proof. Assume f ∈ E(E) and define f̄ : B → C by f̄(c, x) = f(x) for c ∈ C, x ∈ E. Clearly, f̄ vanishes
on C. We prove that f̄ is a derivation. Let (c, x), (c′, x′) ∈ B, then

(c, x)f̄(c′, x′) + f̄(c, x)(c′, x′) = (c, x)f(x′) + f(x)(c′, x′)

= (cf(x′) + f(x)c′, xf(x′) + f(x)x′)

= (cf(x′) + f(x)c′, 0)

because f ∈ E(E). Using that f is a morphism of bimodules, we get

(c, x)f̄(c′, x′) + f̄(c, x)(c′, x′) = (f(cx′ + xc′), 0)

= f̄(cc′, cx′ + xc′)

= f̄((c, x)(c′, x′)).

This establishes our claim.
Conversely, let f : B → C be a derivation which vanishes on C. Then f restricts to a k-linear map

from E to C. We claim that it is in fact a morphism of C-C-bimodules. Let c ∈ C, x ∈ E. Viewing both
as elements of B and using that f is a derivation on B, we get

f(cx) = f(c)x+ cf(x) = cf(x)

because f(c) = 0. Similarly, f(xc) = f(x)c. There remains to prove that f ∈ E(E). Let x, x′ ∈ E. Since
f is a derivation, we have

xf(x′) + f(x)x′ = f(xx′) = f(0) = 0

because xx′ ∈ E2 = 0. �

Lemma 5.5. Let B be the relation extension of a triangular algebra C of global dimension at most two
by the C-C-bimodule E2. Then E(E2) = 0.

Proof. Let f ∈ E(E2). Because of Lemma 5.4, f extends to a derivation f̄ : B → C which vanishes on
C. Let γ : x→ y be a new arrow, that is, a generator of E2 as C-C-bimodule. Then f̄ sends γ ∈ exE2ey
into exCey: indeed, f̄(γ) = f̄(exγey) = exf̄(γ)ey because f̄(ex) = f̄(ey) = 0, both elements ex, ey lying
in C. Now, the existence of a new arrow γ : x→ y means that there exists a path from y to x (actually,
there exists a relation from y to x) in C, that is, formed entirely of old arrows. Because C is triangular,
we have exCey = 0 and so f̄ = 0. This finishes the proof. �

Corollary 5.6. Let B be the relation extension of a triangular algebra C of global dimension at most two
by the C-C-bimodule E2. Then Ker δ1

B
∼= HH1(C).

We are now able to prove the main result of this section which is our Theorem B.

Theorem 5.7. Let B be the relation extension of a triangular algebra C of global dimension at most two
by the C-C-bimodule E2. Then we have short exact sequences

(a) 0→ H0(B,E2) −→ HH0(B)
ϕ0

−→ HH0(C)→ 0.

(b) 0→ H1(B,E2) −→ HH1(B)
ϕ1

−→ HH1(C)→ 0.

Proof. Part (a) follows from Lemma 4.1, since E2 is symmetric over Z(C) = k. The short exact sequence
in (b) follows from Lemma 5.5 and Theorem 4.4. �

We give an application to cluster-tilted algebras.

Corollary 5.8. Let B be a cluster-tilted algebra and let C be a tilted algebra such that B = CnE2. Then
the algebra morphism ϕ∗ : HH∗(B)→ HH∗(C) is surjective. Moreover, there is an exact sequence

0→ H0(B,E2)⊕H1(B,E2)→ HH∗(B)
ϕ∗
−→ HH∗(C)→ 0.
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Proof. By [21], since C is tilted, HHn(C) = 0 for all n > 2. The result then follows from Theorem 5.7. �

We return to the more general situation of relation extensions.

Corollary 5.9. Let B be the relation extension of a triangular algebra C of global dimension at most two
by the C-C-bimodule E2. Then we have a short exact sequence

0 −→ H1(C,E2)⊕ EndC-CE2 −→ HH1(B)
ϕ1

−→ HH1(C)→ 0.

Proof. This follows from Theorem 5.7 and Proposition 4.8. �

Example 5.10. Let C and B be the algebras in Example 5.3.
We first claim that H1(C,E2) = 0. It suffices to prove that Der0(C,E2) = 0. Indeed, for any old arrow

ξ ∈ {α, β, γ} from x to y, and d ∈ Der0(C,E2), we have d(ξ) = exd(ξ)ey ∈ exE2ey. Therefore there exists
a path from x to y in B passing through the new arrow δ and parallel to the arrow ξ. Now any such path
is easily seen to be zero. Therefore Der0(C,E2) = 0 and so H1(C,E2) = 0.

This implies that H1(B,E2) ∼= EndC-CE2. Now, the C-C-bimodule E2 has simple top generated by
the new arrow δ and is actually 4-dimensional, with basis {δ, δγ, γδ, γδγ}. Therefore EndC-CE2

∼= k and
so H1(B,E2) ∼= k. Because we also have HH1(C) ∼= k as can be seen, for instance, using D. Happel’s
sequence in 1.2, we get HH1(B) ∼= k2.

The following corollary gives a lower bound on the increase in the dimension of the Hochschild coho-
mology group (compare with [3, 4.3]).

Corollary 5.11. Let B be the trivial extension of an algebra C by a C-C-bimodule E which is symmetric
over Z(C). Assume that E =

⊕n
i=1Ei is a direct sum decomposition into indecomposable summands as

a C-C-bimodule. Then

(a) dimk HH1(B)− dimk HH1(C) > n.
(b) Equality holds in (a) if, and only if, H1(C,E) = 0, E(E) = 0 and

dimk HomC-C(Ei, Ej) =

{
k if i = j

0 if i 6= j.

Proof. (a) This follows from Corollary 5.9 and from the fact that the idEi provide n linearly indepen-
dent elements in EndC-CE.

(b) This follows from the facts that dimk EndC-CE > n and that equality holds if, and only if,
n = dimk EndC-CE + dimk H1(C,E) + dimk E(E). �

Even in the case of a relation extension, when ϕ1 is surjective, the higher Hochschild projection mor-
phisms need not be surjective, as Example 5.12 below illustrates. In order to give this example, we need
some background on minimal projective resolutions.

It is well-known that Hi(C,E) = ExtiC-C(C,E). This means in particular that in order to com-
pute the Hochschild cohomology spaces, we can compute the Hochschild cohomology of the complex
(HomC-C(P∗, E),HomC-C(d∗, E)), where (P∗, d∗) is any projective resolution of the C-C-bimodule C.
Traditionally, we choose P∗ = Bar∗, the bar resolution, given by Barn = C⊗n+2 with differential dn :
Barn+1 → Barn defined by

c0 ⊗ · · · ⊗ cn+2 =
n+1∑
i=0

(−1)ic0 ⊗ · · · ⊗ cici+1 ⊗ · · · ⊗ cn+2.

Applying HomC-C(−, E) to this resolution and using the isomorphism HomC-C(C⊗V⊗C,E) ∼= Homk(V,E)
for any vector space V gives the complex that we have been using throughout this paper.

However, for the computation of higher Hochschild cohomology groups, the bar resolution is often too
large, and it is therefore necessary to choose for P∗ a minimal projective resolution of C. If C = kQ/I
is a bound quiver algebra, it was proved in [20] that if P∗ is a minimal projective resolution of the C-

C-bimodule C, then Pn =
⊕

x,y∈Q0
(Cex ⊗ eyC)dimk ExtnC(SC(x),SC(y)). However, this result does not give

any information on the maps dn : Pn → Pn−1, which are needed in order to compute the Hochschild
cohomology spaces explicitly. Finding these maps is in fact a difficult problem, solved only in some
special cases such as stacked monomial algebras in [18]. However, we shall only compute HH1(C) and
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HH2(C), and a minimal projective resolution (P∗, d∗) with maps up to (P3, d3) has been described by in
[17]. Let R be a system of relations for C = kQ/I. Set

P0 =
⊕
x∈Q0

Cex ⊗ exC,

d0(ex ⊗ ex) = ex

P1 =
⊕
a∈Q1

Ces(a) ⊗ et(a)C,

d1(es(a) ⊗ et(a)) = a⊗ et(a) − es(a) ⊗ a = aet(a) ⊗ et(a) − es(a) ⊗ es(a)a

P2 =
⊕
r∈R

Ces(r) ⊗ et(r)C,

d2(es(r) ⊗ et(r)) =

n∑
i=1

si∑
j=1

ciα1,i · · ·αj−1,ies(αj,i) ⊗ et(αj,i)αj+1,i · · ·αsi,i

for any r =
∑n

i=1 ciα1,i · · ·αsi,i ∈ R. The descriptions of P3 and d3 are a little more technical. It was
proved in [19] that there exist sets gn for n > 0 such that g0 = {ex;x ∈ Q0}, g1 = Q1, g

2 = R and for
n > 3, the elements in gn are elements x ∈ ∪i,j∈Q0eikQej satisfying x =

∑
y∈gn−1 yαy =

∑
z∈gn−2 zβz

for unique αy and βz in kQ having special properties and such that (R∗, δ∗) is a minimal projective right
resolution of the C-module C/rad (C), where Rn =

⊕
x∈gn et(x)C and δn : Rn → Rn−1 is defined by

δn(et(x)) =
∑

y∈gn−1 αyet(x).

E.L. Green and N. Snashall then defined P3 =
⊕

x∈g3 Ces(x) ⊗ et(x)C. Moreover, if x ∈ g3, then x may

be written uniquely x =
∑

r∈R rαr =
∑

r∈R γrrγ
′
r where αr and γr are in kQ+. The map d3 is then given

by d3(es(x) ⊗ et(x)) =
∑

r∈R(es(r) ⊗ et(r)αr − γres(r) ⊗ et(r)γ′r). Finally, they proved in [17, Theorem 2.9]
that the sequence

P3 d3−−→ P2 d2−−→ P1 d1−−→ P0 d0−−→ C → 0

forms part of a minimal projective resolution of the C-C-bimodule C.

Example 5.12. We return to Example 5.10 and use minimal projective resolutions to compute HH2(C),
HH2(B) and determine ϕ2.

Using the results described above, a minimal projective C-C-bimodule resolution of C is given by

0→ P2 = Ce1 ⊗ e3C
d2−→ P1 = (Ce1 ⊗ e2C)⊕ (Ce2 ⊗ e3C)⊕ (Ce1 ⊗ e3C)

d1−→ P0 =
3⊕
i=1

Cei ⊗ eiC → 0.

Therefore HH∗(C) is the cohomology of the complex

0→ HomC-C(P0, C)
d1−→ HomC-C(P1, C)

d2−→ HomC-C(P2, C)→ 0.

A morphism f ∈ HomC-C(P0, C) is entirely determined by f(ei ⊗ ei) = λiei ∈ eiCei for i = 1, 2, 3, where
λi ∈ k. Therefore

d1f(e1 ⊗ e2) = (λ2 − λ1)α

d2f(e2 ⊗ e3) = (λ3 − λ2)β

d3f(e1 ⊗ e3) = (λ3 − λ1)γ

so that dimk Ker d1 = 1 and dimk Im d1 = 2. A morphism g ∈ HomC-C(P1, C) is entirely determined by
g(e1 ⊗ e2) = µ1α ∈ e1Ce2, g(e2 ⊗ e3) = µ2β ∈ e2Ce3, g(e1 ⊗ e3) = µ3γ ∈ e1Ce3, where µi ∈ k. Therefore
d2g(e1 ⊗ e3) = 0 and we have dimk Ker d2 = 3 and Im d2 = 0.

It then follows that dimk HH0(C) = dimk HH1(C) = dimk HH2(C) = 1 and dimk HHn(C) = 0 for
n > 3, and moreover that a basis for HH1(C) (respectively HH2(C)) is given by the cohomology class of
ζC (respectively ξC) determined by ζC(e1⊗e2) = α, ζC sends e2⊗e3 and e1⊗e3 to 0 and ξC(e1⊗e3) = γ.
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The computation for B is more complicated. The sets gn for n = 0, 1, 2, 3 are given by

g0 = {ei; i = 1, 2, 3}
g1 = {α;β; γ; δ}
g2 =

{
g2

1 := αβ; g2
2 := δα; g2

3 := βδ; g2
4 := δγδ

}
g3 = {αβδ = g2

1δ = αg2
3; βδα = g2

3α = βg2
2; δαβ = g2

2β = δg2
1;

βδγδ = g2
3γδ = βg2

4; δγδγδ = g2
4γδ = δγg2

4; δγδα = g2
4α = δγg2

1}

so that the beginning of a minimal projective resolution of the B-B-bimodule B is given by

· · · → Q3 =

(
3⊕
i=1

(Bei ⊗ eiB)

)
⊕ (Be2 ⊗ e1B)⊕ (Be3 ⊗ e1B)⊕ (Be3 ⊗ e2B)

∂3−→ Q2 = (Be1 ⊗ e3B)⊕ (Be3 ⊗ e2B)⊕ (Be2 ⊗ e3B)⊕ (Be3 ⊗ e1B)

∂2−→ Q1 = (Be1 ⊗ e2B)⊕ (Be2 ⊗ e3B)⊕ (Be1 ⊗ e3B)⊕ (Be3 ⊗ e1B)

∂0−→ Q0 =
3⊕
i=1

(Bei ⊗ eiB)→ B → 0

with

∂2(e1 ⊗ e3) = e1 ⊗ β + α⊗ e3 ∂2(e2 ⊗ e1) = e2 ⊗ δ + β ⊗ e1

∂2(e3 ⊗ e1) = e3 ⊗ γδ + δ ⊗ δ + δγ ⊗ e1 ∂2(e3 ⊗ e2) = e3 ⊗ αδ ⊗ e2

∂3(e1 ⊗ e1) = e1 ⊗ δ − α⊗ e1 ∂3(e2 ⊗ e2) = e2 ⊗ γδ − β ⊗ e2

∂3(e3 ⊗ e3) = e3 ⊗ α− β ⊗ e3 ∂3(e2 ⊗ e1) = e2 ⊗ γδ − δγ ⊗ e1

∂3(e3 ⊗ e1) = e3 ⊗ β − δ ⊗ e1 ∂3(e3 ⊗ e2) = e3 ⊗ α− δγ ⊗ e2.

Therefore the first Hochschild cohomology groups for B are the cohomology groups of the complex

0→ HomB-B(Q0, B)
∂1−→ HomB-B(Q1, B)

∂2−→ HomB-B(Q2, B)
∂3−→→ HomB-B(Q3, B)→ · · ·

in which ∂i = HomB-B(∂i, B) for all i. A computation similar to that above shows that dimk Im ∂1 = 3,
dimk Ker ∂1 = 2, Im ∂2 = 0, dimk Ker ∂2 = 5 and dimk Ker ∂3 = 2 so that dimk HH0(B) = dimk HH1(B) =
dimk HH2(B) = 2, and that a basis for HH1(B) (respectively HH2(B)) is given by

{
ζ1
B; ζ2

B

}
(respectively{

ξ1
B; ξ2

B

}
) determined by ζ1

B(e1 ⊗ e2) = α, ζ1
B(e1 ⊗ e3) = γ, ξ1

B(e1 ⊗ e3) = γδγ and ξ2
B(e3 ⊗ e1) = δ, and

ζjB and ξjB send all other generators of the corresponding projective to 0.

We now check that ϕ2(ξjB) = 0 for j = 1, 2 so that ϕ2 = 0. There exist comparison morphisms
ωnB : Qn → Barn(B) and τnB : Barn(B) → Qn between the minimal and the bar resolutions of B, and
similarly for C. Given a cocycle f ∈ HomB-B(Qn, B), we have [f ] = [τnB(f)] and for any cocycle g ∈
Homk(B

⊗n, B) ∼= HomB-B(Barn(B), B) we have [g] = [τnB(g)]. Moreover, if g ∈ HomB-B(Barn(B), B),

then via the isomorphism Homk(B
⊗n, B) ∼= HomB-B(Barn(B), B), we have ϕn([g]) = [pgq⊗(n+2)]; indeed,

if ḡ ∈ Homk(B
⊗n, B) is the corresponding linear map, we have, with arguments similar to those in the

proof of Lemma 2.7,

pgq⊗(n+2)(c0 ⊗ c1 ⊗ · · · ⊗ cn ⊗ cn+1) = p (q(c0)g(1⊗ q(c1)⊗ · · · ⊗ q(cn)⊗ 1)q(cn+1))

= c0p(ḡ(q(c1)⊗ · · · ⊗ q(cn)))cn+1

= c0pḡq
⊗n(c1 ⊗ · · · ⊗ cn)cn+1

which is the element in HomC-C(C⊗(n+2), C) corresponding to pḡq⊗n ∈ Homk(C
⊗n, C), the cocycle rep-

resenting ϕn([ḡ]), as required. It then follows that ϕn([f ]) is given by the cohomology class of the
composition

Pn
ωn
C−−→ Barn(C)

q⊗(n+2)

−−−−−→ Barn(B)
τnB−→ Qn

f−→ B
p−→ C.

Our claim is then a consequence of the fact that p(δ) = 0 which implies that pξiB = 0 for i = 1, 2.
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