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Abstract

Let A be a basic and connected finite-dimensional algebra over an algebraically closed field.
We show that if 4 has all its indecomposable projectives (or injectives) lying in a component of
the Auslander—Reiten quiver consisting entirely of postprojective (or preinjective, respectively)
modules in the sense of Auslander and Smalg then A is a finite enlargement in the postprojective
(or preinjective, respectively) components of a finite set of tilted algebras having complete slices
in these components. We call such an algebra A a left (or right, respectively) glued algebra and
study some of its homological properties in particular in the case where A is itself a tilted
algebra.

1. Introduction

. The starting impetus for this work was the desire to link the theory of preprojective
(called here postprojective, see 2.2) and preinjective partitions, as initiated by Auslan-
der and Smale in {7], with the theory of tilted algebras, as initiated by Happel and
Ringel in [14].

In [11,12], the second author has studied and characterised the components of the
Auslander-Reiten quiver of an artin algebra which consists entirely of postprojective
{or preinjective, respectively) modules in the sense of Auslander and Smale. Such
a component is called there a n-component {or an i-component, respectively). Also, an
algebra A having all its indecomposable projective (or injective, respectively) modules
lying in n-components (or in i-components, respectively) can be characterised by the
property that the injective (or projective, respectively) dimension of almost all (that is,
all but at most finitely many non-isomorphic) indecomposable A-modules is at most
one (see 2.2). However, our approach here is quite different. We introduce the notion
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of left (or right, respectively) glued algebra, which is, roughly speaking, a finite
enlargement in the postprojective (or preinjective) components of a finite set of tilted
algebras having complete slices in these components (see 3.1 for details). Our first
theorem is as follows.

Theorem. (a) An algebra A is left glued if and only if id M = 1 for almost all indecom-
posable A-modules M.

(b) An algebra A is right glued if and only if pd M = 1 for almost all indecomposable
A-modules M.

As a consequence, we establish an existence result for regular cotilting (or tilting)
modules over a left glued (or right glued, respectively) algebra (see 3.6). We also
deduce from this theorem that a representation-infinite algebra A4 is concealed
(in the sense of [20]) if and only if it is both a left and a right glued algebra or,
equivalently, if and only if both the projective and the injective dimensions of
almost all its indecomposable modules are equal to one (see 3.4). This latter
equivalence has also been shown by Skowronski in [23], using different tech-
niques. This leads us to consider the case when a representation-infinite algebra
A is such that pd M > 1 and id M =1 (or id M > 1 and pd M = 1) for almost all
indecomposable 4-modules M. Clearly, such an algebra A is left, but not right
glued (or right, but not left glued, respectively). We shall define notions of left
(or right) extremal subsection and reduced left (or right, respectively) extremal
subsection for such an algebra (see 4.1 and 4.3 for the definitions). This will allow
us to obtain necessary and also sufficient conditions for a representation-infinite
algebra A4 to satisfy the above property. If, in particular, 4 is a tilted algebra,
the underlying graphs of the left (or right) extremal subsection and the reduced
left (or right, respectively) extremal subsection are respectively equal to the
left (or right, respectively) type of A, as defined in [2]. We then obtain the
following.

Proposition. Let A be a representation-infinite tilted algebra.
(a) pd M =2 and id M = 1 for almost all M inind A if and only if A is a left glued
algebra and its reduced right type is a disjoint union of Dynkin graphs.
(b) pd M = 1 and id M = 2 for almost all M in ind A if and only if A is a right glued
algebra and its reduced left type is a disjoint union of Dynkin graphs.

In [2], the same techniques yield a similar result in case A is a tilted algebra which 1s
not necessarily left or right glued.

Our paper is organised as follows. In Section 2, we fix our notation, recall briefly
some results and prove some lemmata that will be used in the sequel. Section 3 is
devoted to the description of left and right glued algebras and their Auslander—Reiten
components. Finally, in Section 4 we discuss the notions of extremal subsections, then
prove the above proposition.
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2. Postprojective and preinjective partitions and components

2.1. Notation. All algebras in this paper are basic, connected, associative, finite-
dimensional algebras with identities over a fixed algebraically closed field k, and all
modules are finitely generated right modules. Following [10], we shall sometimes
equivalently consider an algebra as a k-linear category. For an algebra A, we denote
by mod A4 its module category, and by ind A a full subcategory of mod A4 consisting of
a complete set of representatives of the isomorphism classes of indecomposable
objects in mod A. We shall use freely and without further reference properties of
mod A4, the Auslander-Reiten translations 7= DTr and ¢! = TrD, and the
Auslander—Reiten quiver I'(mod A) of 4 as can be found, for instance, in [4,5,19].
A path xg - x; —» - > x, in I'(mod A4) is called sectional if X1 %% X;- for all
0 <i<mand a full subquiver X of I'(mod 4) is called a subsection if any path in
Z is sectional [9]. A subsection is maximal if it is not properly contained in another
subsection. We shall always identify a point of I'(mod A) with the correspond-
ing object of ind 4, thus a component I'(mod A) with the corresponding full
subcategory of ind 4. Given a full subcategory 4 of ind 4, we denote by add ¥
the additive full subcategory of mod 4 generated by . Given an A-module M, we
denote by pd M its projective dimension and by id M its injective dimension. Given
a k-linear functor F:mod 4 — mod k, we denote by [(F) its length, that is,
I(F) =y dim, F(M), where the sum is taken over all M in ind A. Thus, I(F) < o«
if and only if F(M) =0 for almost all (that is, all but at most finitely many non-
isomorphic) indecomposable modules M.

22. For an algebra A, let Py, ....P,, ... ,P, denote its {(unique) postprojec-
tive partition, and let Lo, ..., I, ... .1, denote its (unique) preinjective partition,
as defined by Auslander-Smals [7]. Following [13], we use the term postprojec-
tive rather than the original preprojective: we believe it is more suggestive. An
A-module M is called postprojective if all its indecomposable summands lie
in ;< Pi, and preinjective if all its indecomposable summands lie in Uiendi

In [7], Auslander and Smale studied the algebras A such that all submodules of Ay
are postprojective, or, equivalently, such that there are no non-zero morphisms from
a module in P, to A,. In [11,12], the second author has given a description of the
components of the Auslander-Reiten quiver of such an algebra containing projective
modules. The following theorem was proved (in [7,11,12]) in the more general case
where 4 is an artin algebra.

Theorem. (a) The Jollowing conditions are equivalent for an algebra A:
(1) Any component of I'(mod A) containing a projective module consists only of
postprojective modules.
(2) I{Hom 4(—, A)) < =
(3) l{(Hom (-, M)) < o for all postprojective modules M.
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(4) Any component I' of I'(mod A) containing a projective module satisfies:
(4.1) almost all modules in T lie in the t-orbit of a projective module; and
(4.2) at most finitely many modules in I' belong to oriented cycles.

(5) For every postprojective module M, the set of all X inind A such that there exists
a sequence of irreducible morphisms X — --- — M, is finite.

(6) id M < 1 for almost all M in ind A.

(7) For every postprojective module M, the set of all X in ind A such that
Hom (X, M) # 0, consists only of postprojective modules.

(b) The following conditions are equivalent for an algebra A:

(1) Any component of I'(mod A) containing an injective module consists only of
preinjective modules.

(2) I(Hom4(DA,-) < .

(3) [(Hom(M,-)) < oo for all preinjective modules M.

(4) Any component I' of I'(mod A) containing an injective module satisfies:
(4.1) almost all modules in I lie in the t-orbit cf an injective module; and
(4.2) at most finitely many modules in I belong to oriented cycles.

(5) For every preinjective module M, the set of all X in ind A such that there exists
a sequence of irreducible morphisms M — --- — X, is finite.

(6) pd M < 1 for almost all M in ind A.

(7) For every preinjective module M, the set of all X in ind A such that
Hom (M, X) # 0, consists only of preinjective modules. [

2.3. Corollary. Let A be an algebra.
(a) I(Hom(~, A)) < oo if and only if there exists a component I of I'(mod A) such
that I' = )i < P;. In particular, I' contains all projectives. /
(b) I(Hom(DA,~)) < oo if and only if there exists a component I of I'imod A) such
that I' = i< L;. In particular, I' contains all injectives.

Proof. We shall only prove (a), since the proof of (b) is dual. The sufficiency follows
from the fact that in Theorem 2.2(a), (2) implies (1). For the necessity, we note that, by
[6, (1.8)], any non-zero morphism e Hom (M, A), with M an A-module, is a sum of
compositions of irreducible morphisms. Since A is connected, we infer that there is
a component I of I'(mod A) containing all projectives. Using the fact that in Theorem
2.2(a), (1) implies (2), we deduce that I' consists only of postprojective modules. In fact,
we have the equality I' = { J; <. P; since, given a module M in J;<, P;, there exists,

by [7, (8.3)], a sequence of irreducible morphisms leading from a projective to M, so
that M liesin I'. "]

2.4. Definition [11]. A component I" of the Auslander—Reiten quiver of an algebra is

called a m-component if
(i) almost all modules in I lie in the t-orbit of a projective module; and
(i) at most finitely many modules in I" belong to oriented cycles.
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Dually, I' is called an t-component if
(i) almost all modules in I' lie in the t-orbit of an injective module; and
(ii) at most finitely many modules in I belong to oriented cycles.

Thus, if an algebra A satisfies /(Hom (-, 4)) < oo (or [(Hom4(DA,-)) < =) then,
by Corollary 2.3, I'(mod A) has a n-component {or an i-component, respectively)
containing all projectives (or all injectives, respectively).

Related notions are those of postprojective and preinjective components. We recall
that a component I of I'(mod A) is a postprojective (or preinjective) component if it
contains no oriented cycles and any module in it lies in the t-orbit of a projective (or of
an injective, respectively). Clearly, postprojective components are r-components, and
preinjective components are 1-components. The converse, however, is not true, as is
shown in the following example.

Example. Let A4 be the radical square zero algebra given by the quiver

a U
N T
\o‘—_o

Then I'(mod A) has the shape shown in Fig. 1, where one has to identify the two
copies of the simple module S(a) at the point a and the horizontal dotted lines denote
the Auslander—Reiten translations. The component containing (all) projectives is
a m-component but not a postprojective component.

2.5. The following result [11, (6.7)] relates the preceding notions.

Proposition. Let A be an algebra, and let I' be a component of I'(mod A).
(a) If I' is a m-component and contains no injective module, then I' is a postprojective
component.

(b) If I is an 1-component and contains no projective module, then I is a preinjective
component. [}

YRR PO -

S(a) S(a)
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2.6. For tilting theory, we refer the reader to [1, 19]. In particular, we recall that tilted
algebras are characterised by the existence of complete slices in a component of their
Auslander—Reiten quiver, called connecting component [19,(4.2)]. A tilted algebra has
at most two connecting components and, if it has two, then it is a concealed algebra
[20, Lecture 2]. We shall also need the following equivalent characterisation, obtained
independently by Liu and Skowrofiski [18,22]: let I be a component of the Auslan-
der-Reiten quiver of an algebra A, a section in I' is a connected full subquiver of
I such that

(1) X contains no oriented cycles;

(2) £ meets each t-orbitin I’ exactly once;

(3) Zisconvex in I, thatis, any pathin I’ with endpoints in X lies entirely in £; and

(4) for each arrowM - Nin T, if M isin %, either N or tN is in X and, if N is inZ,

either M or t”'M is in X.

Thus, a complete slice in a connecting component I of a tilted algebra is an example

of a section in I'. We have the following result.

Theorem [18,22]. An algebra A is tilted if and only if I'(mod A) has a component
I with a faithful section X such that Hom,(M,tN) =0 for all M,N in 2. In this
situation, £ is a complete slice and I' is a connecting component of I'(mod 4). [J

2.7. Lemma. Let A be an algebra, and I be a component of ' (mod A).
(a) If T is a m-component containing a complete slice, then I' is a postprojective
component.
(b) If T is an 1-component containing a complete slice, then I' is a preinjective
component.

Proof. We shall only prove (a), since the proof of (b) is dual. If I contains a complete
slice Z, this slice is a section in I'. By [16, (3.2)], I' may be embedded in ZX. In
particular, I' contains no oriented cycles. Hence the m-component I' is actually
a postprojective component. [}

2.8. Lemma. Let A be an algebra, and I' be a component of I'(mod A).
(a) If I is a postprojective component containing all projectives but no injective, then
I' contains a complete slice, hence A is a tilted algebra.
(b) If I is a preinjective component containing all injectives but no projective, then
I' contains a complete slice, hence A is a tilted algebra.

Proof. We shall only prove (a), since the proof of (b) is dual. Observe that [ is right
stable, that is, 7'M % 0 for all t > 0 and M in I'. Consider the maximal subsection
determined by the indecomposable projectives which correspond to sources in the
ordinary quiver of A, that is, let 2 be the set of all M in I such that there is a path in
I from M to some indecomposable projective, and any such path is sectional. It is
easily seen that X satisfies the conditions of 2.6 and thus is a complete slice. []

[T e B B S

Lad tad

oo »

(1

(I

914

tc
(k



ed
elr
1as
a
red
an-
<of

ind
12,

iple

1ent
this

“tive

ctive

Slete
> In

aally

then

then

right
ction
n the
ith in
Ctis

1. Assem, F.U. Coelho/Journal of Pure and Applied Algebra 96 (1994) 225-243 231

2.9. Lemma. Let A be a tilted algebra, and I be a component of I'(mod A).
(a) If T is a m-component containing all indecomposable projectives, then I' is
a connecting postprojective component.
(b) If T is an 1-component containing all indecomposable injectives, then I' is a con-
necting preinjective component.

Proof. We shall only prove (a), since the proof of (b) is dual. By [24,(7.7)], a tifted
algebra always has a postprojective component "', which is therefore a n-component
containing some indecomposable projectives. Since I" contains all indecomposable
projectives, we must have I' = I'". Assume that I" is not a connecting component. By
Lemma 2.8, it must contain at least one injective. But then it must be a connecting
component, a contradiction. []

3. Left and right glued algebras

3.1. In this section, we shall give a constructive characterisation of the algebras
satisfying the equivalent conditions of Theorem 2.2(a) or (b), and describe the compo-
nents of their Auslander—Reiten quiver. We shall prove that such an algebra is in fact
a finite enlargement of a direct product of tilted algebras.

Definition. (a) Let By, ..., B, be representation-infinite tilted algebras having com-

plete slices Xy, ... , 2, respectively, in the postprojective components and no injectives

in these components, B = By x --- x B, and C be a representation-finite algebra. An

algebra A is called a left glueing of By, ... , B, by C along the slices 2, ... , X, or, more

briefly, to be a left glued algebra if A= C or: ,

(LG1) each of By, ..., B, and C is a full convex subcategory of A and any object in
A belongs to one of these subcategories;

(LG2) no projective A-module is a proper successor of the union Zyu - UL,
considered as embedded in ind 4; and

(LG3) ind B is cofinite in ind A, that is, almost all indecomposable A-modules are
also B-modules.

(b) Let B, ... . B, be representation-infinite tilted algebras having complete slices
Y. ...,%, respectively, in the preinjective components and no projectives in these
components, B = B; x --- x B, and C be a representation-finite algebra. An algebra
Ajis called a right glueing of By, ... . B, by C along the slices Xy, ..., 2, or, more briefly,
to be a right glued algebra if A = C or:

(RG1) each of By, ..., B, and C is a full convex subcategory of 4, and any object in
A belongs to one of these'subcategories;

(RG2) no injective A-module is a proper predecessor of the union X, - UZ,,
considered as embedded in ind 4; and

(RG3) ind B is cofinite in ind A.

T




Fig. 2

In particular, any representation-finite algebra is both left and right glued. If
a representation-infinite algebra A is left glued, then I'(mod A) has the shape shown in
Fig. 2.

The algebra C being an arbitrary representation-finite algebra, the component of
I'(mod A) containing X, U --- UZ, may contain periodic modules and oriented cycles:
it is actually a n-component containing all the projective A-modules (Definition 2.4).
On the other hand, the injective A-modules are either injective B-modules or belong
to the n-component containing the X;. Consequently, the ordinary quiver of A is the
union of the quivers of By, ..., B, and C together with some additional arrows of the
form x — y, with x in the quiver of some B;, and y in the quiver of C. In particular,
a left glued algebra A may be written as a lower triangular matrix algebra

Cc 0
ax(5 4

where M is a B-C-bimodule. Also, it is easily seen that A is epivalent (representa-
tion-equivalent) to B so that 4 is tame if and only if so is each of the tilted algebras
By, ..., B,. Dual comments can be made on right glued algebras.

Example. The algebra of the example in 2.4 is the left glueing of two copies of the
Kronecker algebra, given by the quiver

J S ———
o, @

by the representation-finite radical square zero algebra given by the quiver

along the slices consisting of the indecomposable projective modules.
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3.2. The main result of this section asserts that the left glued (or right glued) algebras
coincide with those satisfying the equivalent conditions of Theorem 2.2(a) (or The-
orem 2.2(b), respectively).

Theorem. (a) An algebra A is a left glued algebra if and only ifid M =1 for almost all
non-isomorphic indecomposable A-modules M.

(b) An algebra A is a right glued algebra if and only if pd M =1 for almost all
non-isomorphic indecomposable A-modules M.

Proof. We shall only prove (a), since the proof of (b) is dual. We clearly may assume
that A is representation-infinite. Suppose first that A4 is a left glueing of By, ... , B, by
C along the slices 2, ... , Z,. We may assume each of the slices 2, of I'(mod B;) to be
fully embedded in I'(mod A): this indeed follows from (LG3) and the fact that we can
replace X; by 17", for any m > 0. Let £ = £, U --- UZ,. Since each Z; lies in the
postprojective component of I'(mod B;), almost all indecomposable B-modules
(where B = By x --- x B,) are successors of Z. On the other hand, (LG2) says that no
projective A-module is a proper successor of X. Therefore, each projective A-module
has at most finitely many predecessors. Consequently, I(Hom (- A)) < oo, which, by
Theorem 2.2, is equivalent to the condition that id M = 1 for almost all non-isomor-
phic indecomposable 4-modules M.

Conversely, suppose that id M = 1 for almost all non-isomorphic indecomposable
A-modules M. It follows from Theorem 2.2 that [(Hom (-, 4)) < o. Since A4 is
connected, it follows from Corollary 2.3 that all indecomposable projective A-mod-
ules belong to the same component I of I'(mod A), which is even a n-component. Let
{er, ... .em, ... ,e,} be a complete set of primitive orthogonal idempotents of 4 or-
dered so that the indecomposable injective 4-module D(Ae;) belongs to I' if and only
if 1<i<m Let e=e; + - + e, P=eA, B=End(l —e)4 and C = End(eA).
Thus, DP € add I'. By Theorem 2.2, this implies that /(Hom (-, DP)) < <o . Therefore
at most finitely many non-isomorphic indecomposable A-modules M satisfy

Hom,(P, M) =~ DHom (M, DP) # 0

and so ind B is cofinite in ind A.

Let I'" be the translation subquiver of I'(mod B) consisting of the indecomposable
B-modules which, when considered as A-modules, belong to I'. By [11, (7.4)], I is
a (finite) union of n=-components I, ..., I;. By construction, none of the I'; contains an
injective module. Consequently, by Proposition 2.5, I, ... | I, are postprojective
components. For each i, let X; be a maximal subsection in I; chosen so that it embeds
fully in I" and has no successor which is a projective A-module. We shall denote by B;
the support algebra of X;.

Since each projective B;-module is a (not necessarily proper) predecessor of %,
there exists a monomorphism 0 — Big,— Up,, where Uy € add X, so that Z, is faithful
in mod B;. Since postprojective components are standard (by [19, (2.4)(11), p. 80]), we

R T ——————
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have that Homy(U,tV ) =0 for all U,V in X, By 2.6, X; is a complete slice in
I'imod B;) and B; is a tilted algebra.

There remains to show (LG1). By construction, each of the connected algebras B; is
a full subcategory of 4 and any object in A belongs to C or to one of By, ... ,B,.
Further, for any arrow «:x - y in the ordinary quiver of 4, with y in the quiver of B,
then x must belong to the quiver of B; as well. Consequently, C is also convex and the
theorem is proven. []

We note that, by Corollary 2.3, the unique n-component of a left glued algebra
containing all the projectives consists of all the postprojective modules.

It also follows from the proof of the theorem that the subcategories By, ... , B, (and
hence C) of A are uniquely determined: indeed, By, ... , B, are the connected compo-
nents of B, which are determined by the condition that its injective modules (are
successors of the slices £; thus must) embed in ind A as those indecomposable
injectives which do not belong to the unique n-component of I'(mod A).

3.3. Corollary. (a) A left glued algebra having no injective postprojective module is
tilted with a complete slice in the postprojective component.

(b) A right glued algebra having no projective preinjective module is tilted with
a complete slice in the preinjective component.

Proof, We shall only prove (a), since the proof of (b) is dual. Let 4 be left glued. It has
a unique m-component I' consisting of all postprojective modules. By hypothesis,
I" contains no injective hence, by Proposition 2.5, it is a postprojective component.
Since moreover I' contains all projectives, the result follows from Lemma 2.8. []

3.4. As a first consequence of Theorem 3.2, we obtain the following new characterisa-
tion of concealed algebras (compare with [23]).

Proposition. Let A be a representation-infinite algebra. The following conditions are
equivalent:

(a) A is a concealed algebra.

(b) A is both a left glued and a right glued algebra.

() pd M =1and id M =1 for almost all M in ind A.

Proof. Assume that A is a concealed algebra. All projective 4-modules belong to the
postprojective component. In particular, each projective has at most finitely many
predecessors so that [(Hom,(~, 4)) < <. By Theorem 2.2, we have id M < 1 for
almost all M in ind A. Similarly, pd M < 1 for almost all M in ind A. We have shown
that (a) implies (c).

Since (c) implies (b) by Theorems 2.2 and 3.2, there remains to show that (b) implies
{a). Since A 1s a right glued algebra, all injective A-modules lie in an 1-component I'.
We claim that I’ contains no projective A-modules. Indeed, if this is not the case, there
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exists a projective module P, in I" whose radical has support in (at least) one of the
glued tilted algebras By, ....B,. Hence P has infinitely many predecessors which
implies (by Theorem 2.2) that [(Hom (-, 4)) = <c, a contradiction to the fact that A4 is
also a left glued algebra. This shows our claim. Since I is an 1-component containing
all injectives but no projective, it follows from 2.5 and Lemma 2.8 that I is a preinjec-
tive component and contains a complete slice.

Dually, 4 has a postprojective component containing all projectives but no injec-
tive, hence containing a complete slice.

Since A has complete slices in two distinct components, it follows from [20, Lecture
2], that A4 is concealed. [

3.5. Let A be aleft glued algebra. We shall now describe the components of I'(mod A).
As we have seen, it has a unique n-component I" containing all indecomposable
projective and postprojective 4-modules. Moreover, if I' contains no injective, then
I' is itself a postprojective component and A is a tilted algebra. Let now I’ be
a component other than I'. It follows from our description of left glued algebras that
I'""is the image of a full embedding inside I'(mod A) of a component of I'(mod B,), for
some | < i <t, containing no projective module. Since B; is a tilted algebra, it follows
from [17] that I'" is of one of the following types:
(i) a preinjective component;
(i1) a stable tube;
(ii) of type ZA; or
(iv) obtained from (ii) or from (iii) by finitely many coray insertions.
A similar description can be given for the components of a right glued algebra. In
this case, they are of the following types:
(i) the unique i-component containing all the indecomposable preinjectives;
(i1} a postprojective component;
(ili) a stable tube;
(iv) of type ZA ; or
(v) obtained from (iii) or from (iv) by finitely many ray insertions.

3.6. We shall also deduce from Theorem 3.2 the following result on the existence of
regular cotilting (or tilting) modules over left (or right, respectively) glued algebras.
A module over a left (or right) glued algebra will be called regular if none of its
indecomposable summands belongs to the n-component or to a preinjective compon-
ent (or to the 1-component or to a postprojective component, respectively).

Proposition. (a) A left glued algebra has a regular cotilting module if and only if it is
a wild tilted algebra with at least 3 non-isomorphic simple modules, and having no
injective postprojective module.

(b) A right glued algebra has a regular tilting module if and only if it is a wild tilted
algebra with at least 3 non-isomorphic simple modules, and having no projective preinjec-
tive module.
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Proof. We shall only prove (a), since the proof of (b) is dual. Assume that the left glued
algebra A4 has a regular cotilting module T,. We first claim that there is no injective
postprojective A-module. Indeed, if this is not the case and [ is an injective postprojec-
tive module, then I must be cogenerated by T (see, for instance, [ 1, (1.6)]) that is, there
exist m >0 and a monomorphism [ — T, Since [ is injective, such a monomor-
phism splits, so that the postprojective module I is a summand of T. This contradic-
tion to our assumption on T establishes our claim. '

By Corollary 3.3, A4 is a tilted algebra with a complete slice in the postprojective
component. Since a regular cotilting module induces a torsion theory (7, #) with
both 7~ and # containing infinitely many non-isomorphic indecomposables, it
follows from [3, Theorem B], that 4 is a wild algebra with at least 3 non-isomorphic
simple. modules. Conversely, assume that A4 is a wild tilted algebra with at least
3 non-isomorphic simple modules, and having no injective postprojective A-module.
By Corollary 3.3, 4 has a complete slice in the postprojective component and no
injective in that component. Moreover, there exists a wild hereditary algebra H with
at least 3 non-isomorphic simple modules and a tilting module Uy without post-
projective direct summands such that 4 = End Ug. By [15, (2.1)], each component
I' of I'(mod H) contains a complete right cone %, closed under successors, and
entirely contained in the class #(U) = {Xu|Homy(U,X) = 0}. By [8,21], H has
a regular (co)tilting module V. We clearly may assume that all the summands of
V belong to the cones %,-. But this implies that T = Exty(U, V) is a regular cotilting
A-module. [

We remark that both conditions in the statement are necessary. Indeed, the radical
square zero algebra A4 given by the quiver
o .
e @ @
—
is a wild tilted algebra with 3 non-isomorphic simple modules, which is left {(but not
right) glued and has an injective postprojective module. Clearly, 4 has no regular

cotilting module.

4. Homological properties of left and right glued algebras

4.1. We have seen in Proposition 3.4 that a representation-infinite algebra A4 is such
that pd M = 1 and id M = 1 for almost all non-isomorphic indecomposable 4-mod-
ules M if and only if it is a concealed algebra, or, equivalently, it is both left and right
glued. It is thus natural to consider the representation-infinite algebras which satisfy
the properties: (a) pd M > 1 and id M = 1 for almost all Minind 4;or(b) pd M =1
and id M > 1 for almost all M in ind A.

Suppose, for instance, that 4 satisfies property (a) above. By Theorem 3.2, 4 is a left
glued algebra and hence contains a unique n-component I'. Moreover, I contains an
injective module, since otherwise, by Corollary 3.3, I' is a connecting postprojective
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component and all modules in I have projective dimension one, a contradiction. In
order to say more on the representation-infinite algebras satisfying properties (a) and
(b), we shall need to introduce graphical invariants for the left glued algebras with
injective postprojective modules and, dually, for the right glued algebras with projec-
tive preinjective modules.

Let A be a representation-infinite left glueing of By, ... , B, by C and I' be its
n-component. As observed above, we can assume that I" contains an injective or,
equivalently, that C is non-zero.

Fix an index i, 1 <i < t. It follows from the description of the ordinary quiver of
A given in Definition 3.1 that there exists a point ¢ in the quiver of C such that there
exists an arrow ending at ¢ and having source in B,. That is, there exists an injective
A-module with one of its socle factors in ind B;. Let Fi be the set of all injective
A-modules I such that there exists an irreducible morphism / — K with K in ind B;
and such that there is no injective in I" which is a proper successor of those summands
of I/soc I which belong to ind B;. Clearly, ¢, is non-empty by our description of 4.
Finally, let # be the union of the #;s.

Let 2 be the subsection of I' consisting of the modules M such that there exists
a path in I' of length at least one from some injective in ¢ to M, and any such path is
sectional. We shall call X the right extremal subsection of I'.

Observe that X as defined above is generally not connected. Also, there exists
a projective module which is a proper successor of X if and only if there exists an
m > 0 such that t~"% is not a maximal subsection.

Dually, let 4 be a representation-infinite right glueing of By, ... ,B, by C and I' be
its unique 1-component. As observed above, we can assume that I contains a projec-
tive or, equivalently, that C is non-zero. For a fixed index i, 1 <i<tlet 2, be the set
of all the projective A-modules P such that there exists an irreducible morphism
K — P, with K in ind B; and such that there is no projective in I" which is a proper
predecessor of those summands of rad P which belong to ind B;. Finally, let 2 be the
union of the 2;’s.

Let 2 be the subsection of I" consisting of the modules M such that there exists
a pathin I' of length at least one from M to some projective in #, and any such path is
sectional. We shall call X the left extremal subsection of T

Again, X is generally not connected. Also, there exists an injective module which is
a proper predecessor of X if and only if there exists an m > 0 such that r~ "% is not
a maximal subsection, '

Example. In the example below Definition 2.4, the right extremal subsection consists
of two copies of the Kronecker quiver, each of which consisting of the projective
module at one of the two sources, and its radical. In this example, no projective is
a proper successor of the right extremal subsection.

4.2. We now recall the notion of type of a tilted algebra (see, for instance, [ 1, (5.1)]). If
A is a tilted algebra, there exists a finite connected quiver without oriented cycles
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¥ and a tilting module T over the path algebra kX of £ such that 4 = End T. Clearly,
this is equivalent to the requirement that I'(mod A4) contains a complete slice whose
underlying quiver is isomorphic to X°®. The quiver X is generally not uniquely
determined by A, but two different quivers X and 2’ whose path algebras tilt to A have
the same underlying graph and can be deduced from each other by an admissible
change of orientation (that is, a sequence of reflections). The underlying graph £ of
a quiver X whose path algebra tilts to A is called the type of A.

Lemma. (a) Let A be a representation-infinite left glueing of By, ... , B, by the non-zero
algebra C, and let I be its right extremal subsection. If no projective is a proper
successor of 2, the underlying graph of X is the disjoint union of the types of By, ..., B,.

(b) Let A be a representation-infinite right glueing of By, ... ,B, by the non-zero
algebra C, and let X be its left extremal subsection. If no injective is a proper predecessor
of X, the underlying graph of X is the disjoint union of the types of By, ... , B..

Proof. Follows directly from the respective definitions. [

It is worthwhile to observe that if A satisfies the conditions of the lemma above,
then its representation type is determined by the underlying graph of its extremal
subsection. Thus, if A is a left glued algebra with an injective postprojective module
and such that no projective is a successor of the right extremal subsection X, then 4 is
tame if and only if the underlying graph of X is a disjoint union of euclidean graphs.
Dually, if A4 is a right glued algebra with a projective preinjective module and such
that no injective is a predecessor of the left extremal subsection X, then A is tame if and
only if the underlying graph of £ is a disjoint union of euclidean graphs.

4.3. In order to state our next result, we shall introduce the notion of reduced right (or
left, respectively) extremal subsection of a left glued algebra having an injective
postprojective module (or of a right glued algebra having a projective preinjective
module, respectively).

Let A be a representation-infinite left glueing of By, ... , B, by the non-zero repres-
entation-finite algebra C, and let X be its right extremal subsection. We define the
reduced right extremal subsection to be the full convex subquiver of X obtained by
deleting all the sources. We should observe that the sources of X correspond to socle
factors of injective 4-modules.

Dually, let A be a representation-infinite right glueing of By, ... , B, by the non-zero
representation-finite algebra C, and let 2 be its left extremal subsection. We define the
reduced left extremal subsection to be the full convex subquiver of X obtained by
deleting all the sinks. Again, we observe that the sinks of X correspond to radical
summands of projective 4-modules.

For instance, in the example below Definition 2.4 the reduced right extremal subsec-

tion consists of the disjoint union of two quivers with one point and no arrow (the point

corresponds to the projective indecomposable at a source in the quiver of A).
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Proposition. Let A be a representation-infinite algebra.

(a) (1) If Ais a left glueing of By, ..., B, by the non-zero representation-finite algebra
C such that no projective is a proper successor of the right extremal subsection,
and its reduced right extremal subsection is a union of Dynkin quivers, then
pdM > 1and id M =1 for almost all M in ind A.

(i) If pd M > 1 and id M =1 for almost all M in ind A, then A is a left glued
algebra containing an injective postprojective module and its reduced right
extremal subsection is a union of Dynkin quivers.

(b) (1) If Aisaright glueing of By, ... , B, by the non-zero representation-finite algebra

C such that no injective is a proper predecessor of the left extremal subsection,

and its reduced left extremal subsection is a union of Dynkin quivers, then

pd M =1 and id M > 1 for almost all M in ind A.

If pd M =1 and id M > 1 for almost all M in ind A, then A is a right glued

algebra containing an projective preinprojective module and its reduced left

extremal subsection is a union of Dynkin quivers.

—

(ii

Proof. We shall only prove (a), since the proof of (b) is dual.

(1) Let A be as in the statement, and 2 = X, U --- UZ, be its right extremal subsection
where, for each i, Z; is a connected component of X. By Lemma 4.2, the underlying graph
2 of 2 is the type of By x -+ x B,. Let us assume that, for each i, £; is the type of B;.

Since A is left glued, we have id M = 1 for almost all M in ind 4 (by Theorem 3.2).
There remains to show that pd M > 1 for almost all M in ind A. Since pd M > 1 if
and only if Hom (D4, tM) # 0 (see, for instance, [19, (2.4)(1), p. 74]), it suffices to
show that Hom 4(DA, N) # 0 for almost all N inind 4. Let us fix an indexi, 1 <i < t.
For each source S in X, there exists an indecomposable injective A-module I and an
irreducible epimorphism I — S.

Let T'= B{M | M € X;} be the tilting B;-module given by the subsection X;. Then
H =End T is a hereditary algebra and, for each source S in X;, the H-module
S" = Homg(T,S) is simple projective. Let U denote the direct sum of all sources in X,
and set U’ = Homg (T, U). Then U’ is a direct sum of simple projective H-modules so
U’ = eH for some non-zero idempotent e € H. The hereditary algebra H' = End(1 — ¢)H
has for type the full convex subquiver Z; of Z; obtained by dropping the summands of
U.Thatis, X} is the (disjoint union of the connected) component(s) of the reduced right
extremal subsection of 4, hence is a (disjoint union of) Dynkin quiver(s), so that H' is
representation-finite. This implies that Homg(U’, X} # 0 for almost all X in ind H.

Let (7, #) denote the torsion theory induced by T in mod B;, that is, 7 is the class
of all B;-modules generated by T, while .# is the class of all B;-modules M such that
Homyp (T, M) = 0. It is easily seen that # consists of all the proper predecessors of %,
in I'(mod B,), hence contains at most finitely many non-isomorphic indecomposables
B;-modules. On the other hand, by the Brenner—Butler theorem

Homg (U, M) =~ Homy(U', Homg (T, M))
for any M in 7. This implies that Homy (U, M) # 0 for almost all M in ind B,.
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Since, for any indecomposable summand S of U, there exists an indecomposable
injective A-module I and an irreducible epimorphism [ —S, we deduce that
Hom (DA, N) # 0 for almost all N in ind B;. This being true for each i, we also have
Hom (DA, N) # 0 for almost all N in ind(B, x --- x B,). Since ind(B; x --- x B,) is
cofinite in ind A, we infer that Hom (DA, N) # 0 for almost all N in ind 4, which
concludes the proof of (i).

(ii) Suppose that pd M > 1 and id M = 1 for almost all M in ind 4. By Theorems
2.2 and 3.2, 4 is a left glueing of, say, representation-infinite tilted algebras By, ... , B,
by the representation-finite algebra C. Moreover, it follows from 4.1 that A has an
injective postprojective module. Let £ = XU --- UZ| be the right extremal subsection
of A where, for each i, £, is the type of B; (see Lemma 4.2),and let 2" = XU --- UZ  be
the reduced right extremal subsection where, for each i, 27 is a full convex subquiver of
z:.

Assume that, for some i, 2} is not a (disjoint union of ) Dynkin quiver(s) and let H' be
the endomorphism algebra of the module B{M |M € 2;}. Then H' is representa-
tion-infinite so that there exist infinitely many non-isomorphic indecomposable
B;-modules (L;);., such that Homg(S; @ - ®S,.L;) =0 for all ie4, where
S, ...,S,, are all sources in X;. We claim that this implies Hom,(DA4,L;) =0 for
all /e A. Indeed, let I be an indecomposable injective A-module and consider the
left minimal almost split morphism f:I — [/soc I. If I/soc I has no summand in
mod B;, clearly Hom,(I,L;,) =0 since any non-zero morphism would factor
through f, an absurdity. If I/soc / has a summand in mod B;, this summand must
be isomorphic to one of Sy, ... ,S,,. Thus, Hom (I, L;) # 0 implies Hom ,(S;, L;) # 0
for some 1 <j<m, a contradiction to our assumption on the family (L;);c4-
This shows that we indeed have Hom (DA, L;) = 0 for all 1€ A, or equivalently,
that pd(r "' L;) < 1 for all A€ A, a contradiction to the hypothesis. [

The next example shows that the hypothesis in Proposition 4.3(a) (i) that there is no
projective which is a successor of the reduced right extremal subsection of A4 is
essential.

Exampie. Let A be the algebra given by the quiver

VAN
NN

bound by fx =0, 2y = 0, 26 = 0 and y¢ = 0. Then A is a representation-infinite left
glueing of the tilted algebra given by the quiver




yosable
¢ that
;0 have
x B,) is
, which

eorems

. B,
has an
isection
ul; be
uiver of

st H be
-esenta-
posable
. where
= for
ider the
rand in
. factor
1d must
L;)#0
(Li)sea-
valently,

ere 1S no
of 4 is

finite left

1. Assem, F.U. Coelho/Journal of Pure and Applied Algebra 96 (1994) 225-243 241

A
N\

bound by fa = 0, by the representation-finite algebra given by the quiver

¢ ——e
Also, the reduced right extremal subsection is given by the quiver

whose underlying graph is the Dynkin graph A;. However, none of the injective
postprojective 4-modules maps into any of the projectives corresponding to the
points 1,2,3 and 4 in the quiver of A. Hence, there exist infinitely many non-
isomorphic indecomposable modules M 4 such that Hom (D A,tM) = 0 or, equiva-
lently, such that pd M = 1. We should notice that the projective modules considered
are all successors of the right extremal subsection.

4.4. Let 4 be a left (or right) glued algebra. In the rest of this section, we shall be
interested in the case where A4 itself is a tilted algebra.

If A a is representation-infinite left glued tilted algebra, it follows from Corollary 3.3
that I'(mod A) has a unique postprojective component I” which is moreover a con-
necting component. We shall now recall from [2, (1.2), (2.4)] the notions of right type
and reduced right type of A. If I' contains no injective module, the right type and the
reduced right type of 4 are defined to be both equal to the empty graph if 4 is
concealed, or to be both equal to the type of 4 (see Lemma 4.2) if 4 is not concealed. If
I" contains an injective module, and X and 2’ denote respectively the right extremal
subsection and the reduced right extremal subsection of 4, then the right type and the
reduced right type of 4 are defined to be equal to the underlying graphs £ of X and 5~
of X', respectively.

Dually, if 4 is a representation-infinite right glued tilted algebra, I'(mod A) has
a unique preinjective component I" which is a connecting component. We define the
left type and reduced left type of A as follows. If I' contains no projective module, the
left type and the reduced left type of A are defined to be both equal to the empty graph
if A is concealed, or to be both equal to the type of 4 if 4 is not concealed. If
I contains a projective module, and £ and 2’ denote respectively the left extremal
subsection and the reduced left extremal subsection of A, then the left type and the
reduced left type of 4 are defined to be equal to the underlying graphs £ of £ and £ of
2, respectively.

E I —
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Proposition. Let A be a representation-infinite tilted algebra.
(a) pd M =2 and id M =1 for almost all M in ind A if and only if A is a left glued
algebra and its reduced right type is a union of Dynkin graphs.
(b) pd M = 1 and id M = 2 for almost all M in ind A if and only if A is a right glued
algebra and its reduced left type is a union of Dynkin graphs.

Proof. We shall only prove (a), since the proof of (b) is dual. We first recall that the
global dimension of A is at most 2, so that pd M > 1 if and only if pd M = 2. The
necessity follows from Proposition 4.3(a) (i1). For the sufficiency, we first observe that
there exists an injective postprojective A-module, since otherwise the type of the tilted
algebra A4 would be a Dynkin graph, contradicting the assumption that A is repres-
entation-infinite. Finally, since A is a tilted algebra, no projective is a successor of its
right extremal subsection. The statement then follows from Proposition 4.3(a)(1). O

4.5. Examples. (i) From every Dynkin diagram, one can constructa left glued algebra
satisfying the conditions of the Proposition. Indeed, let A be any Dynkin diagram, and
A be the corresponding euclidean diagram. We orient A in such a way that the unique
point in 4 which is not in 4 is the unique sink of A, and let B denote the path algebra
of the resulting quiver. We then let 4 be the one-point coextension of B by the simple
B-module corresponding to the unique sink. The algebra A is as required.

(ii) In [3], a torsion-theoretical characterisation was given to tilted algebras which
if tame, are representation-finite or one-parametric and, if wild, are such that one of
the end algebras is zero and the other is hereditary with two non-isomorphic simple
modules. If such a tilted algebra is representation-infinite, it is clearly left or right
glued. If moreover it is not concealed, its reduced right or left type, respectively, is
a disjoint union of Dynkin quivers, so that the above theorem applies in this case.
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