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Abstract

In this paper, we associate an algebra A(Γ) to a triangulation Γ
of a surface S with a set of boundary marking points. This algebra
A(Γ) is gentle and Gorenstein of dimension one. We also prove that
A(Γ) is cluster-tilted if and only if it is cluster-tilted of type A or Ã,
or if and only if the surface S is a disc or an annulus. Moreover all
cluster-tilted algebras of type A or Ã are obtained in this way.

1 Introduction

Among the main recent results in the fast-growing theory of cluster algebras
is the paper of Fomin, Shapiro and Thurston [16], relating triangulations of
oriented surfaces to cluster algebras. This approach, which existed since the
beginning of the theory [12], was followed, among others, in [24, 28]. In the
same spirit, we consider in the present paper an unpunctured oriented surface
S, and a finite set of points M lying on the boundary of S, and intersecting
every boundary component of S. We then associate to a triangulation Γ of
the marked surface (S,M) a quiver Q(Γ), and a potential on Q(Γ) (in the
sense of [13]), thus defining an algebra A(Γ), namely the (non-completed)
Jacobian algebra defined by Q(Γ) and the associated potential.
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Sherbrooke. Gabrielle Charbonneau was working under a summer research fellowship of
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Such an algebra A(Γ) has some very nice properties: it is always Gorenstein
of dimension one, and also it is a gentle algebra in the sense of [5]. In
the unpunctured case studied here, our definition coincides with Labardini’s
definition of a quiver with potential associated to a (possibly punctured)
surface [24]. But in the punctured case, one does not get gentle algebras,
or even string algebras. For instance, a once-punctured disc gives rise to
cluster-tilted algebras of type D, see [28].

Gentle algebras form a particularly nice subclass of the class of string algebras
of [11] and are much investigated in the representation theory of algebras.

For instance, this subclass contains the tilted algebras of type A and Ã (see
[1] and [5], respectively) and it is closed under tilting and even under derived
equivalence (see [29] and [30], respectively).

Our objective in this paper is twofold. Firstly, we ask which gentle algebras
arise in this way, that is, are induced from triangulations of an unpunctured
surface with boundary marked points. We show in (2.8) below that this is
the case for every gentle algebra where every relation lies on what we call a 3-
cycle with radical-square zero (see (2.2) or [10] for the definition). Secondly,
we ask which gentle algebras are cluster-tilted. The class of cluster-tilted
algebras, introduced in [9], has been much investigated and is by now well-
understood (see, for instance, [2, 6, 8, 10, 12, 22, 23, 28]). In particular, it
was shown in [2] that every cluster-tilted algebra is the relation-extension of
a tilted algebra, that is, it is the trivial extension of a tilted algebra C by the
C − C−bimodule Ext2

C(DC,C). We may now state the main result of this
paper.

Theorem 1.1 Let A(Γ) be the algebra associated to the triangulation Γ of
an unpunctured marked surface (S,M). Then the following statements are
equivalent:

(1) A(Γ) is cluster-tilted

(2) A(Γ) is cluster-tilted of type A and Ã

(3) A(Γ) is the relation-extension of a tilted algebra of type A and Ã

(4) the surface S is a disc or an annulus.

Moreover, all cluster-tilted algebras of type A (or Ã) are of the form A(Γ)
for some triangulation of a disc S (or an annulus S, respectively).
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Actually, we prove in (3.3) that a cluster-tilted algebra is gentle if and only if

it is of type A and Ã, or if and only if it is the relation-extension of a gentle
tilted algebra, and the latter coincide with the tilted algebras of type A or
Ã, respectively.

The case where S is a disc has already been studied in [12], and it is known
that the bound quivers of all cluster-tilted algebras of type A arise from
triangulations of the (unpunctured) disc. These algebras have also been
described explicitly in [10]. Also, the potential we use for defining the cluster-

tilted algebras of type Ã is a particular case of the potential recently defined
by B. Keller [22]. However, we do not use this fact, but rather present another
proof (anterior to Keller’s result), which uses [2] and properties of the second
extension group.

The paper is organised as follows: in section 2, we define our algebras A(Γ)
and prove their main properties in (2.7). Section 3 is devoted to the clas-
sification of the gentle cluster-titled algebras and section 4 to the proof of
our main theorem and some of its consequences. We end the paper with an
example of an algebra A(Γ) which is not of polynomial growth.

2 Algebras arising from surface triangulations

Throughout this paper, the algebras we consider are basic connected algebras
over a fixed algebraically closed field k. Unless otherwise stated, all algebras
are finite-dimensional. Consequently, they are given in the form A = kQ/I
where Q is a quiver and I is an admissible ideal of the path algebra kQ, see
[4]. The pair (Q, I) is called a bound quiver, and the algebra A = kQ/I is
referred to as a bound quiver algebra.
Given a bound quiver algebra A = kQ/I, for every vertex x of Q we denote
by ex the idempotent of A associated to x. Also, Px, Ix and Sx will be the
corresponding indecomposable projective module, indecomposable injective
module and simple module, respectively.

We study in this section the algebra associated with a surface triangulation.
For background material on oriented surfaces we refer to [25].

3



2.1 The medial quiver Q(Γ)

We first recall from [16] the construction of a quiver for every triangulation
of a marked surface: Let S be an oriented surface with boundary ∂S, and let
M be a finite set of points on ∂S intersecting each connected component of
the boundary ∂S. In this paper, we only consider the case where there are no
punctures, that is we request that the set of marked points M be contained in
the boundary ∂S. The pair (S,M) is referred to as an unpunctured bordered
surface with marked points.
An arc γ in (S,M) is a curve in S such that

• the endpoints of γ are marked points in M

• γ does not intersect itself, except that its endpoints may coincide

• γ intersects the boundary of ∂S only in its endpoints

• γ does not cut out a monogon (that is, γ is not contractible into a point
of M).

We call an arc γ a boundary arc if it cuts out a digon (that is, γ is homotopic
to a curve δ on the boundary ∂S such that δ intersects M only in its end-
points). Otherwise, γ is said to be an internal arc. Each arc γ is considered
up to homotopy in the class of such curves. A triangulation of (S,M) is a
maximal collection Γ of arcs that do not intersect in the interior of S (more
precisely, there are curves in their respective homotopy classes that do not
intersect in the interior of S).

Proposition 2.1 ([16, (2.10)]) In each triangulation of (S,M), the num-
ber of internal arcs is

n = 6g + 3b+ c− 6

where g is the genus of S, b is the number of boundary components, and
c = |M | is the number of marked points.

The proposition also indicates that in some cases a triangulation does not
exist (for instance a disc with one marked point would give n = −2). We
consider from now on only marked surfaces (S,M) that admit a triangulation.
Given a triangulation Γ, we also refer to M as the set of vertices of Γ. The
triangles are the components of S\Γ with the arcs of Γ as edges.
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We denote by Q(Γ) the medial quiver of internal arcs of Γ. That is, Q(Γ) is
the quiver whose set of points is the set of internal arcs of Γ, and the arrows
are defined as follows: whenever there is a triangle T in Γ containing two
internal arcs a and b, then Q(Γ) contains an arrow a→ b if a is a predecessor
of b with respect to clockwise orientation at the joint vertex of a and b in T
(here we use that S is an oriented surface, thus inducing an orientation on
the triangle T which allows to talk about clockwise orientation).

Example. We illustrate the construction of Q(Γ) when Γ is a triangulation
of an octagon:
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Lemma 2.2 The quiver Q(Γ) contains no oriented cycles of length ≤ 2.

Proof. We first show that Q(Γ) contains no loops. A loop α at the point a
of Q(Γ) would arise from a triangle T in Γ in the following way:
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But in this case the triangle T is homeomorphic to
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a

which means that x is an internal vertex, contradicting our assumption that
M is contained in the boundary of S.
We now show that Q(Γ) contains no oriented cycles of length two. Indeed,
such a cycle corresponds to the following situation in Γ:
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Then a neighbourhood of x is homeomorphic to
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which again contradicts the assumption that Γ contains no internal vertices.
�

Remark. In [16] the authors associate a skew-symmetric matrix B(Γ) to a
triangulation Γ of (S,M). This construction is equivalent to the construction
of the quiver Q(Γ) we consider here. Since Q(Γ) contains no oriented cycles of
length ≤ 2, it is uniquely determined by a skew-symmetric matrix B (where
the number of arrows between two vertices is given by the entries of B, and
the direction of the arrows is determined by the sign of the matrix entries).
It is easy to see that B coincides with B(Γ). Thus all the results from [16]
apply, in particular, mutations of the quiver Q(Γ) correspond to flips of the
triangulation Γ:
Let b be an internal arc of Γ. Thus b is one diagonal of the quadrilateral
formed by the two triangles of Γ that contain b. A flip in b replaces the edge
b by the other diagonal b∗ of the same quadrilateral. Keeping all other edges
unchanged, one obtains a new triangulation µb(Γ).
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An essential ingredient in the definition of cluster algebras by Fomin and
Zelevinsky [17] is the mutation of skew-symmetric matrices. Reformulated
in the language of quivers, one obtains a mutation of quivers Q 7→ µb(Q).
The following proposition shows that flips of the triangulation commute with
these quiver mutations:

Proposition 2.3 ([16, Prop 4.8]) Suppose that the triangulation µb(Γ) is
obtained from Γ by a flip replacing the diagonal labeled b. Then

Q(µb(Γ)) = µb(Q(Γ))
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2.2 The algebra A(Γ)

We define in this section an algebra A(Γ) for each triangulation Γ of the un-
punctured marked surface (S,M). Our construction generalizes the one given
in [12] for polygons. An even more general case is considered by Labardini
in [24], where such an algebra A(Γ) is defined for a general marked surface
(allowing punctures). If there are no punctures, the definitions coincide.
A triangle T in Γ is called an internal triangle if all edges of T are internal
arcs. Every internal triangle T in Γ gives rise to an oriented cycle αTβTγT
in Q(Γ). We define

W =
∑
T

αTβTγT

where the sum runs over all internal triangles T of Γ. Then W is a potential
on Q(Γ) and we define A(Γ) to be the (non-completed) Jacobian algebra of
(Q,W ) (see [13], [21]). Thus A(Γ) can be described as a quotient A(Γ) =
kQ(Γ)/I(Γ) of the path algebra kQ(Γ) by the ideal I(Γ) generated by all
paths αTβT , βTγT and γTαT whenever T is an internal triangle of Γ. In
[24, Theorem 30] it is shown that flips in the triangulation correspond to
mutations of the quiver with potential (Q(Γ),W ) as defined in [13].

The following result is shown in [24, Theorem 36] for the more general case
of punctured marked surfaces.

Lemma 2.4 Let Γ be a triangulation of an unpunctured marked surface
(S,M). Then the algebra A(Γ) is finite-dimensional.

We show in Lemma 2.5 that the algebras A(Γ) belong to a class of algebras
called gentle algebras. Recall from [5] that a finite-dimensional algebra is
gentle if it admits a presentationA = kQ/I satisfying the following conditions
on the quiver Q and the ideal I:

(G1) At each point of Q start at most two arrows and stop at most two
arrows.

(G2) The ideal I is generated by paths of length 2.

(G3) For each arrow β there is at most one arrow α and at most one arrow
γ such that αβ ∈ I and βγ ∈ I.

(G4) For each arrow β there is at most one arrow α and at most one arrow
γ such that αβ 6∈ I and βγ 6∈ I.
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If the pair (Q, I) satisfies conditions (G1) to (G4), we call it a gentle bound
quiver, or a gentle presentation of A = kQ/I. Note that in contrast to [5],
we do not assume that A = kQ/I is triangular. An algebra A = kQ/I
where I is generated by paths and (Q, I) satisfies the two conditions (G1)
and (G4) is called a string algebra (see [11]), thus every gentle algebra is
a string algebra. The gentle algebras can be characterized by the fact that
their repetitive category is special biserial [5, 26].

We recall here the classification of indecomposable modules over a string
algebra A = kQ/I which is given in [11] in terms of reduced walks in the
quiver Q: A string in A is by definition a reduced walk w in Q avoiding the
zero-relations, thus w is a sequence

w = x1
α1←→ x2

α1←→ · · · αn−1←→ xn

where the xi are vertices of Q and each αi is an arrow between the vertices
xi and xi+1 in either direction such that w does not contain a sequence of

the form
β←− β−→ or

β1−→ · · · βs−→ with β1 · · · βs ∈ I or their duals. A string
is cyclic if the first and the last vertex coincide. A band is defined to be a
cyclic string b such that each power bn is a string, but b itself is not a proper
power of some string c.
We refer to [11] for the definition of a string module M(w) for every string
w of A and a family of band modules M(b, λ, n) for every band b, and each
λ ∈ k and n ∈ N. The dimension vector dimM(w) of the string module
M(w) is obtained by counting how often the string w passes through each
vertex x of the quiver Q, thus

dimM(w) = (
∑

1≤i≤n

δx,xi
)x∈Q0

when w is the walk passing through the vertices x1, . . . , xn as above and
δx,xi

= 1 for x = xi and δx,xi
= 0 otherwise.

All string and band modules are indecomposable, and in fact every inde-
composable A−module is either a string module M(w) or a band module
M(b, λ, n), see [11].

We now return to the study of algebras stemming from surface triangulations:

Lemma 2.5 Let Γ be a triangulation of an unpunctured marked surface
(S,M). Then A(Γ) is a gentle algebra.
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Proof. By Lemma 2.4, the algebra A(Γ) is finite-dimensional, so we only
need to verify conditions (G1) to (G4) for the bound quiver (Q(Γ), I(Γ)) of
A(Γ).
(G2) By definition, the ideal I(Γ) is generated by paths of length two.

(G1) Let a be a point of Q(Γ) corresponding to an internal arc a of Γ. Since Γ
is a triangulation of a surface, the arc a is contained in at most two triangles:
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a

Hence there are at most two arrows α1 : b1 → a and α2 : b2 → a of Q(Γ)
ending in a. The same holds for arrows starting in a point a.

(G3),(G4) Suppose now that Q(Γ) contains α1, α2, β as follows:
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a c

We have to show that precisely one of α1β,α2β belongs to I(Γ). In Γ, the
internal arcs a, b1, b2 belong to two triangles as considered in the proof of
(G1). The arrow β encodes that the arc c is a successor of a in one of these
triangles, say the one formed by a, b1, c. This gives rise to the relation α1β,
and α2β does not belong to I(Γ) since α2 and β arise from different triangles.
�

From the construction of A(Γ) it is clear that for each αβ ∈ I(Γ) there is
an arrow γ in Q(Γ) such that βγ ∈ I(Γ) and γα ∈ I(Γ). In the following
lemma we study a homological property of all gentle algebras satisfying this
condition.

Lemma 2.6 Let A = kQ/I be a gentle algebra such that for each αβ ∈ I
there is an arrow γ in Q such that βγ ∈ I and γα ∈ I. Then A is Gorenstein
of dimension one.

Proof. We have to show that for every vertex x of Q, the corresponding
indecomposable injective A−module Ix has projective dimension at most
one. To do so, we construct explicitly a projective resolution of Ix. We write
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the string module Ix as Ix = M(u1α1α
−1
2 u−1

2 ) where u1 and u2 are oriented
paths. Both paths might have length zero, and in this case, also the arrows
α1 and α2 might not be present. The following figure is used throughout the
proof:

e1
w1 ///o/o/o/o/o/o/o/o f1

a1
u1 ///o/o/o/o/o/o/o/o

γ1

??��������
b1

α1
  AAAAAAAA

c1oo v1 ///o/o/o/o/o/o/o d1

x
β1

>>}}}}}}}}

β2

  AAAAAAAA

a2
u2 ///o/o/o/o/o/o/o/o

γ2
��???????? b2

α2

>>}}}}}}}}
c2oo v2 ///o/o/o/o/o/o/o d2

e2
w2 ///o/o/o/o/o/o/o/o f2

Note that {x, c1, b1} and {x, c2, b2} form oriented cycles in Q such that the
composition of any two consecutive arrows is zero. Let p0 : P (0) → Ix be a
projective cover, then

P (0) = M(w−1
1 γ−1

1 u1α1β2v2)⊕M(w−1
2 γ−1

2 u2α2β1v1)

and
Ker p0 = M(w1)⊕M(w2)⊕M(v−1

1 β−1
1 β2v2)

(note that some summands of the terms of this sequence can be zero). We
show that Ker p0 is projective, thus obtaining the desired projective resolution

0 // Ker p0
// P (0)

p0 // Ix // 0

In order to see that the first two summands of P (1) are projective (namely
the indecomposable projectives Pe1 and Pe2) one has to show that there are
no other arrows starting at the vertices e1, e2. Suppose there is an arrow
δ1 : e1 → y in Q. Since the algebra A is gentle, the composition γ1δ1 lies
in the ideal I. The assumption of the lemma guarantees the existence of a
cycle γ1δ1ε1 such that γ1δ1, δ1ε1, ε1γ1 ∈ I. But then the simple A−module
Sy would be a composition factor of Ix, contradicting the assumption Ix =
M(u1α1α

−1
2 u−1

2 ). �
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In the following Theorem we describe coverings of the bound quiver of A(Γ).
As in [10] we say that an oriented cycle αβγ is a 3-cycle, and by a 3-cycle
with radical square zero we mean a cycle αβγ in an algebra kQ/I such that
αβ, βγ, γα ∈ I. For background on Galois coverings we refer to [14].

Theorem 2.7 Let Γ be a triangulation of an unpunctured marked surface
(S,M). Then

(1) the algebra A(Γ) is a gentle algebra

(2) the algebra A(Γ) is Gorenstein of dimension one

(3) there is a relation in A(Γ) from x to y only if there is an arrow y → x

(4) A(Γ) admits a Galois covering by a quiver Q̃ satisfying

(T1) Every simple cycle in Q̃ is a 3-cycle with radical square zero

(T2) The only relations are those in the 3-cycles

Proof. Part (1) is shown in Lemma 2.5. Part (3) and (4) follow directly from
the definition of A(Γ). Part (2) is shown in Lemma 2.6 since the condition
imposed on the gentle algebra A there clearly holds for the algebra A(Γ). �

Note that the finite quivers satisfying conditions (T1) and (T2) from the
previous theorem form precisely the class of quivers Qn considered in [10],
where also the same relations are imposed.

2.3 Recovering topological data from A(Γ)

The condition (4) in Theorem 2.7 is very strong. Combined with the fact
that the algebra is gentle, it implies the remaining conditions (2) and (3).
We show in this section that a gentle algebra satisfying condition (4) actually
defines an unpunctured marked surface.

First we give a different combinatorial description of the algebras studied
here. Consider the following two bound quivers, where type I is a quiver of
type A2, and type II is a 3-cycle with radical square zero:

Type I d d- Type II d d
dppp p p pppp


� JJĴ�
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Using these bound quivers one can construct algebras in the following way:
Suppose we start with a collection C of disjoint blocks of type I and II. Choose
a partial matching (that is to say a partial bijection) π of the vertices in C,
where matching a vertex to itself or to another vertex of the same block is
not allowed. Identifying (or ”gluing”) the vertices within each pair of the
matching we obtain an algebra A(C, π). We consider only matchings where
the algebra A(C, π) is connected. Note that the algebra A(C, π) might be
infinite-dimensional.

The procedure of gluing blocks is considered in a more general situation
(using plenty of building blocks) in [7], where the resulting algebras are called
kit algebras. A similar construction to glue blocks of type I, II and four more
types is described in [16].

We show below that the gentle algebras that admit a Galois covering satis-
fying conditions (T1) and (T2) from Theorem 2.7 are algebras of the form
A(C, π), thus results from [16] concerning these algebras can be applied.

Proposition 2.8 Let A = Q/I be a gentle algebra where every relation lies
on a 3-cycle with radical square zero. Then there exists an unpunctured
marked surface (S,M) with a triangulation Γ such that A(Γ) = A.
Moreover, the topology of (S,M) is uniquely determined by A. More precisely,
for any (S ′,M ′) 6= (S,M) and any triangulation Γ′ of (S ′,M ′), the quiver
Q(Γ′) is not mutation-equivalent to Q.

Proof. The statement follows from [16, (14.1)] once we show that the algebra
A admits a unique block decomposition A = A(C, π) using blocks of type I
and II. We define thus C to be the disjoint union of all 3-cycles with radical
square zero of A together with the disjoint union of all remaining arrows from
A. Denote by f the quiver morphism f : C → Q that identifies the blocks
of C with their images in Q.

We first show that |f−1(x)| ≤ 2 for each vertex x ∈ Q. Indeed, if f−1(x)
contains three different vertices, then there are three different arrows in Q
adjacent to the vertex x. But since the algebra A is gentle, there has to be
one relation between these three arrows. However, the set C is constructed
in such a way that all relations of A belong to one of the components in C, so
there are no relations between arrows corresponding to different components
of C, and so the fiber f−1(x) contains at most two vertices.
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We now define a matching π on C relating x1 to x2 whenever f−1(x) =
{x1, x2}. As required in the definition of A(C, π), we do not match a vertex
to itself or to some vertex in the some block. It is clear from the construction
that A = A(C, π). Moreover, the choice of blocks of type I or II is unique
since all relations have to correspond to a block of type II. �

3 Gentle cluster-tilted algebras

3.1 Cluster-tilted algebras

Let ∆ be an acyclic quiver. In [8] the cluster category C∆ is studied in
order to obtain a categorical interpretation of the cluster variables of the
cluster algebra associated with ∆. It is shown in [8] that clusters correspond
bijectively to tilting objects T in C∆. Their endomorphism rings EndC∆(T )
are called cluster-tilted algebras of type ∆. They were introduced and studied
in [9].
We use here a different description that has been given in [2]. Denote by A
the hereditary algebra A = k∆. An A-module T is called a tilting module
provided Ext1

A(T, T ) = 0 and the number of isomorphism classes of indecom-
posable summands of T equals the number of isomorphism classes of simple
A-modules. In this case, the endomorphism ring EndA(T ) is called a tilted
algebra of type ∆.
Let C be an algebra of global dimension two. The trivial extension

C̃ = C n Ext2
C(DC,C)

of C by the C − C−bimodule Ext2
C(DC,C) is called the relation-extension

of C.
The following theorem allows to view cluster-tilted algebras as relation-
extensions of tilted algebras.

Theorem 3.1 ([2]) An algebra Λ is cluster-tilted of type ∆ if and only if
there exists a tilted algebra C of type ∆ such that Λ is isomorphic to the
relation-extension C̃ of C.

Every cluster-tilted algebra satisfies conditions (2) and (3) from Theorem 2.7,
see [23]. The bound quivers of cluster-tilted algebras of type A are explicitly
described in [10], Prop. 3.1. In fact they were already described in [12] as the
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algebras A(Γ) arising from a triangulation of an unpunctured polygon. The
following proposition is contained in [10], but it also follows from theorem
3.3 below.

Proposition 3.2 ([10, (10)]) An algebra A is cluster-tilted of type A pre-
cisely when A is gentle and there is a presentation A = kQ/I which satisfies
conditions (T1) and (T2) from theorem 2.7.

In particular, the cluster-tilted algebras of type A are gentle. We describe in
the following theorem which of the gentle algebras are cluster-tilted:

Theorem 3.3 Let C = kQC/IC be a tilted algebra, and C̃ be its relation-
extension. The following are equivalent.

1. C is gentle;

2. C is tilted of type A or Ã;

3. C̃ is gentle; and

4. C̃ is cluster-tilted of type A or Ã.

The rest of this section is devoted to prove Theorem 3.3.

3.2 Preliminaries

One part of the proof of the main theorem follows from a result of [29] which
says that the class of gentle algebras is stable under tilting.

Lemma 3.4 If a tilted algebra is gentle, then it is tilted of type A or Ã.

Proof. Let ∆ be a quiver such that C is tilted of type ∆. Then there exists
a tilting C-module T such that End T = k∆. According to [29], k∆ is a
gentle algebra. This implies that the quiver ∆ is of type A or Ã. �

Lemma 3.5 If C̃ is gentle, then so is C.

Proof. This follows from [3, (2.7)]. �

Finally, another part of the proof follows directly from 3.1.

Lemma 3.6 C is tilted of type A or Ã if and only if C̃ is cluster-tilted of
type A or Ã.

All that is left to do is to suppose that C is tilted of type A or Ã and show
that C̃ is gentle. We do this in the next subsection.
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3.3 Relation-extensions of tilted algebras of types A
and Ã

Suppose that C = kQC/IC is tilted of type A or Ã. Applying Lemmas 3.6
and 3.5, we get that C is gentle. Moreover, the quiver of C̃ is known, as are
some of its relations, namely those already in C (see [2] and [3]). The aim
here is to study the remaining relations of C̃.
First, the bound quiver of a tilted algebra of type A has been described in
[1] and that of a tilted algebra of type Ã in [27]. The criterion given here is
derived from [20].

We recall that a double-zero in a gentle algebra is a walk of the form αβωγδ,
where α, β, γ and δ are arrows such that αβ and γδ are relations, while ω is
a non-zero walk (that is, a walk which does not contain any relation). Note
that ω may be trivial.

Example 3.7 The algebra

• β //
φ

��@@@@@@@ •

•

α
??~~~~~~~

γ
��@@@@@@@ •

ψ

??~~~~~~~

ε

��@@@@@@@

•
δ

??~~~~~~~
•

where αβ = φψ = δε = 0, is gentle with a double-zero (namely φψβ−1φψ).

Proposition 3.8 ([1, 5])

1. An algebra is tilted of type A if and only if it admits a bound quiver
presentation kQ/I with (Q, I) a gentle tree with no double-zero.

2. An algebra is tilted of type Ã if and only if it admits a bound quiver
presentation kQ/I with (Q, I) a gentle presentation with no double-zero
and a unique (non-oriented) cycle such that, if the cycle is a band, then
all arrows attached to the cycle either enter it or leave it.
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Example 3.9 Consider the algebras given by the bound quivers

•

α
$$IIIIIIIIII • • φ // •

β

&&NNNNNNNNNNNNN

•
β

::uuuuuuuuuu

γ
$$IIIIIIIIII • •

α

88ppppppppppppp

γ
&&NNNNNNNNNNNNN •

•
δ

??~~~~~~~
•

ψ
// •

δ

88ppppppppppppp

αβ = 0 αβ = γδ = 0

Using proposition 3.8, we see that the first one is tilted of type A, while the
second one is tilted of type Ã.

3.3.1 A vanishing criterion

We need a criterion allowing to verify whether a given exact sequence repre-
sents the zero element in the second extension group. We recall the following
result from [18, (II.1.3)].

Lemma 3.10 Given a morphism f : M −→ N , the exact sequence

0 // Ker f //M
f // N // Coker f // 0

represents the zero element of Ext2(Coker f,Ker f) if and only if there exists
a module X such that the sequence

0 //M
(p,g)t

// Im f ⊕X (j,h) // N // 0

is exact, where p and j are the natural morphisms arising from f .

The following lemma will be used frequently.

Lemma 3.11 Let (Q, I) be a gentle presentation of an algebra C, and let
α : c −→ b and β : b −→ a be arrows in Q. Let σ and η be strings, not passing
through b, such that βσ and ηα are strings. Let f : M(βσ) −→ M(ηα) be a
morphism such that Im f = Sb.
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Then the exact sequence

e : 0 // Ker f //M(βσ)
f //M(ηα) // Coker f // 0

represents a non-zero element of Ext2
C(Coker f,Ker f) if and only if αβ lies

in I.

Proof. In view of 3.10, the sequence e represents a non-zero element of
Ext2

C(Coker f,Ker f) if and only if there exists no short exact sequence of
the form

0 //M(βσ)
(p,g)t

// Im f ⊕X (j,h) //M(ηα) // 0,

where f = jp is the canonical factorisation.
Assume such a sequence exists. Since Sb appears exactly once as a compo-
sition factor of M(βσ) and M(ηα), then it also appears exactly once as a
composition factor of X. Therefore, there exists a unique indecomposable
summand Y of X admitting Sb as a composition factor. Note that, since p
is an epimorphism, while (p, g)t is a monomorphism, then g : M(βσ) −→ X
must be a monomorphism. Since the evaluation M(βσ)β of the module
M(βσ) on the arrow β is non-zero, we must have Xβ 6= 0. Now, Sb is a
composition factor of Y , hence Yβ 6= 0 as well. In the same way, we find that
Yα 6= 0.
On the other hand, Y must be a string or a band module. The above rea-
soning implies that αβ must then be a subpath of a string or a band, which
implies that αβ /∈ I, as required.
Conversely, if αβ /∈ I, then we have a short exact sequence

0 //M(βσ) // Sb ⊕M(ηαβσ) //M(ηα) // 0,

and hence e represents the zero element in Ext2
C(Coker f,Ker f). �

3.3.2 Arrows

From now on, let C be a tilted algebra. We give a description of the elements
of C̃ = C n Ext2

C(DC,C) corresponding to the arrows of its ordinary quiver.
In [2, (2.4)], it is proved that the quiver of C̃ is obtained from that of C by
adding an arrow from x to y for each relation from y to x. The elements of C̃
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corresponding to the arrows of C are of the form (α, 0), where α is an arrow
of C.
The other arrows correspond to relations in C. Let αβ be a relation from x
to y in C, and let ξαβ be the corresponding new arrow in C̃.

Lemma 3.12 The new arrow ξαβ lies in 0⊕ Ext2
C(Ix, Py).

Proof. This new arrow lies in eyC̃ex, which can be written as the direct
sum eyCex ⊕ eyExt2

C(DC,C)ex. We know from (3.8) that the quiver of C
contains no double-zero. Consequently, there are no paths from y to x, and
hence eyCex = 0. Moreover, eyExt2

C(DC,C)ex = Ext2
C(Ix, Py). The element

ξαβ thus lies in 0⊕ Ext2
C(Ix, Py). �

The following lemma gives the dimension and a basis of the extension space
involved in the last expression.

Lemma 3.13 Let α : c −→ b and β : b −→ a be two arrows of C such that
αβ ∈ IC.

(a) The dimension of the vector space Ext2
C(Ic, Pa) is 1 or 2. Moreover,

its dimension is 2 if, and only if, the following situation occurs in the
bound quiver of C :

c α // b
β // a

σ

��
�_

�_
�_

�_

x
γ //

η
@@@�

@�
@�

@�
@�

y δ // x,

where γ and δ are arrows, η and σ are paths, possibly stationary, with-
out relations, and αβ, γδ are relations.

(b) If the dimension of the space is 1, then a basis is given by the sequence

e1 : 0 // Pa //M(βσ) //M(ηα) // Ic // 0,

where η and σ are paths such that Ic = M(η) and Pa = M(σ).

(c) If the dimension of the space is 2, then a basis is given by the sequences

e1 : 0 // Pa //M(βσ) //M(ηα) // Ic // 0

e2 : 0 // Pa //M(σδ−1) //M(γ−1η) // Ic // 0,

where γ, δ, η and σ are as in the figure in 1.
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Proof.

(a) It is known from [2] that there is a new arrow from a to c; thus the
dimension cannot be zero. On the other hand, since C is gentle and
without double-zero, the situation of the relation αβ can be described
by the following figure, where dotted lines represent relations.

j
ψ ///o/o/o/o/o/o/o/o k

e ι ///o/o/o/o/o/o/o/o

φ
AA��������

f

d
γ ///o/o/o/o/o/o/o/o

δ

AA��������

;;

c
α

��========
++ a

η ///o/o/o/o/o/o/o i

b

β
@@��������

θ

��>>>>>>>>

g σ ///o/o/o/o/o/o/o h

This diagram allows us to compute a projective resolution of Ic in
mod C :

0
p3 // P (2)

p2 // P (1)
p1 // P (0)

p0 // Ic // 0.

where P (2) = M(ψ) ⊕M(η), P (1) = M(ι−1φψ) ⊕M(σ−1θ−1βη) and
P (0) = M(ι−1δ−1γαθσ). Note that some direct summands of the terms
of this sequence can be zero. Applying HomC(−, Pa), we get a complex

0 // HomC(Ic, Pa)
(p0,Pa)// HomC(P (0), Pa)

(p1,Pa) //

(p1,Pa)// HomC(P (1), Pa)
(p2,Pa)// HomC(P (2), Pa)

(p3,Pa)// 0.

.

This yields

Ext2
C(Ic, Pa) =

Ker Hom(p3, Pa)

Im Hom(p2, Pa)
=

Hom(M(ψ), Pa)⊕ Hom(M(η), Pa)

Im Hom(p2, Pa)
.
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Since Pa = M(η), then dim Hom(M(η), Pa) = 1, and since
Hom(M(σ−1θ−1βη), Pa) = 0, no morphism in Hom(M(η), Pa) factors
through p2.

Moreover, Hom(M(ψ), Pa) is non-zero if, and only if, j = i. In this case,
ψ has no choice but to be the trivial path in i, and dim Hom(M(ψ), Pa) =
1. Since Hom(M(ι−1φψ, Pa) = 0, no morphism in Hom(M(ψ), Pa) fac-
tors through p2.

Hence no morphism in Hom(M(ψ), Pa)⊕Hom(M(η), Pa) factors through
p2. Thus the dimension of this space is either 1 or 2, and it is 2 exactly
when i = j. In this case, and in this case only, we have

c α // b
β // a

���^
�^

�^
�^

�^

d //

AAA�
A�

A�
A�

A�

e // j

as desired.

(b) It follows from (3.11) that e1 is non-zero. The result follows.

(c) It follows from (3.11) that e1 and e2 are non-zero.

It remains to be shown that e1 and e2 are linearly independant. Sup-
pose there exists a non-zero scalar λ such that e2+λe1 = 0. Computing
this sum, we get the sequence

0 // Pa //M(βσδ−1)
f //M(γ−1ηα) // Ic // 0

where all morphisms are multiples of the natural morphisms between
string modules.

Here, applying (3.11) is not possible, since Im f = Sb⊕Sy, but a similar
technique of proof can be used.

Suppose there exists a module X and morphisms g and h such that the
sequence

0 //M(βσδ−1)
(p,g)t

// (Sb ⊕ Sy)⊕X
(j,h) //M(γ−1ηα) // 0

is exact, where f = jp is the canonical factorisation. Since Sb appears
exactly once as a composition factor of M(βσδ−1) and M(γ−1ηα), then
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it also appears exactly once as a composition factor of X. Therefore,
there exists a unique indecomposable summand Y of X admitting Sb
as a composition factor. As in the proof of 3.11, we show that Yβ 6= 0
and Yα 6= 0. Therefore, αβ must be a subpath of a string or a band,
which is a contradiction, since it is a relation.

The sequences e1 and e2 thus form a basis of the extension space. �

It remains to determine which of the basis elements are represented by arrows
of C̃.

Lemma 3.14 Let α : c −→ b and β : b −→ a be two arrows of the quiver of
C such that αβ is a relation. Let ξαβ be the corresponding new arrow in C̃.
With the notation of (3.13), the element (0, e1) can be chosen to represent
ξαβ.

Proof. The space 0⊕ Ext2
C(Ic, Pa) contains at least one arrow.

If its dimension is 1, then the result is obvious.
If its dimension is 2, then lemma (3.13) describes the situation of αβ in the
quiver of C. Two cases arise.
First, suppose that η and σ are both trivial paths.

b
β

��????????

c

α
@@�������� ++ 33

γ
��>>>>>>> aks

y
δ

??�������

In this case, two arrows from a to c are added to the quiver. Both (0, e1)
and (0, e2) must thus represent arrows of C̃.
Second, suppose η and σ are not both trivial. In this case, lemma (3.13)
implies that Ext2

C(Ix, Pz) is of dimension 1, and that a basis is given by

e′ : 0 // Pz //M(δ) //M(γ) // Ix // 0.

Reasoning as above, we get that (0, e′) represents the new arrow from z to
x. Moreover, a straightforward calculation yields (σ, 0)(0, e′)(η, 0) = (0, e2).
Since one of η and σ is not trivial, one of (0, η) and (0, σ) must lie in rad C̃.
Therefore (0, e2) ∈ rad2C̃, and (0, e1) ∈ rad C̃ \rad2C̃; in other words, (0, e1)
represents an arrow from a to c. �
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3.3.3 Relations

Knowing how to write arrows in C̃ allows us to compute the relations.

Lemma 3.15 Let C = kQC/IC and C̃ = kQC̃/IC̃.

1. Let ω1, ω2, . . . , ωn be paths from x to y in the quiver of C, and let
λ1, λ2, . . . , λn ∈ k. Then

∑n
i=1 λi(ωi, 0) = 0 in C̃ if, and only if,∑n

i=1 λiωi = 0 in C.

2. Let α : c −→ b and β : b −→ a be two arrows in the quiver of C
such that αβ is a relation. Let (0, e1) be the element representing
the corresponding new arrow, where e1 is as in lemma (3.13). Then
(0, e1)(α, 0) = 0 and (β, 0)(0, e1) = 0.

3. The ideal IC̃ is generated by the relations of C and those described in
2.

Proof.

1. This is shown in [3].

2. Viewing α as an element of End DC, more precisely as a morphism
from Ib to Ic, we can compute e1β:

e1β : 0 // Pa //M(βσ) //M(ηα)⊕M(ϕγ) // Ib // 0,

where Ib = M(ηαγ−1ϕ−1). This sequence represents the zero element,
because of (3.10) and exactness of the sequence

0 //M(βσ) // Sb ⊕M(ϕγβσ)⊕M(ηα) //M(ϕγ)⊕M(ηα) // 0

Therfore (0, e1)(α, 0) = 0.

In a dual way, we prove that (β, 0)(0, e1) = 0.

3. It is sufficient to show that new arrows in the quiver of C̃ are not
involved in other relations than those described in 2.

First suppose that w is a monomial relation involving new arrows and
other than those relations described in 2. Then it must contain exactly
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one new arrow ξ, corresponding to a relation αβ; otherwise the quiver
of C would contain a double-zero. Write w = uξv, where u and v are
non-zero paths consisting of arrows of C. Let e1 be the sequence as in
(3.13) corresponding to ξ. Then (u, 0)(0, e1)(v, 0) = (0, ue1v), where
ue1v is the sequence

0 //M(u−1u′) //M(βu−1u′) //M(v′v−1α) //M(v′v−1) // 0,

where u′ and v′ are paths in the quiver of C. The figure below illustrates
the local situation, where αβ = γ′δ′ = 0, the last arrow of u and the
first of t form a relation, as for the last of v and v′ and the first of w′

and w, respectively.

u ///o/o/o

u′

�� �O
�O
�O

t

OO
O�
O�
O� ξ //

α

���������
v ///o/o/o w ///o/o/o

w′

OO
O�
O�
O�

β
__???????

v′

OO
O�
O�
O� γ′ // z′ ///o/o/o

δ′

�� t′ ///o/o/o

This yields the following commutative diagram, where the first line is
a projective resolution of M(v′v−1) :

0 // P (2)
p2 //

(f,0)

��

P (1)
p1 //

(0,g,0)

��

P (0)
p0 //

(h,`)

��

M(v′v−1) // 0

0 //M(u−1u′) //M(βu−1u′) //M(v′v−1α) //M(v′v−1) // 0,

where P (2) = M(t)⊕M(t′), P (1) = M(w′w)⊕M(z−1γ−1βt)⊕M(z′−1δ′t′)
and P (0) = M(z−1γ−1α−1vw)⊕M(z′−1γ′−1v′w′), and all non-zero mor-
phisms are the natural morphisms between string modules. It is then
seen that (f, 0) cannot factor through p2, and thus the lower exact se-
quence is non-zero. Hence there are no other monomial relations than
those in 2.

Now suppose we have a minimal relation of the form
∑m

i=1 λiwi, where
each λi is a non-zero scalar, each wi is a path in the quiver of C̃ and
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m ≥ 2. At least one of the wi must pass through a new arrow, and
since C contains no double zero, this implies that each wi must pass
through exactly one new arrow, say ξi, corresponding to a relation αiβi.
Write wi = uiξivi, where ui and vi are paths of the quiver of C.

Since the quiver of C contains at most one cycle, we must have m = 2.
Since k is a field, we may suppose that λ1 = 1. Letting e1 and e2 be
the sequences associated to ξ1 and ξ2, respectively, we get that u1e1v1

and λ2u2e2v2 both are sequences of the form above. Their sum is the
sequence

0 //M(u−1
2 u1) //M(β2u

−1
2 u1β

−1
1 ) //

//M(α−1
2 v2v

−1
1 α1) //M(v1v

−1
2 ) // 0.

By an argument similar to the one given in the proof of (3.13)(c), this
element is not zero, a contradiction. Hence no binomial relations exist
in C̃.

�

The relations described in the preceding lemma make C̃ a gentle algebra.

Lemma 3.16 If C̃ is cluster-tilted of type A or Ã, then C̃ is gentle.

Proof. The relations of C̃ are known (see 3.15). Moreover, C is gentle.
Suppose that there are r new arrows. Let us add the new arrows and the
corresponding new relations one by one, thus obtaining a sequence C =
C0, C1, . . . , Cr = C̃ of algebras. We show that Ci is gentle for all i in
{0, 1, 2, . . . , r}.
Since C is gentle, then so is C0. Suppose that Ci is gentle, where i is in
{0, 1, 2, . . . , r − 1}. To get Ci+1, we add one new arrow, say γ from x to y.
This arrow comes from a relation αβ from y to x in C. We must add the
relations βγ and γα to obtain Ci+1.
Since Ci is gentle, there were already at most two arrows starting from x in
Ci. Suppose that there were two, say η1 and η2. Since Ci is gentle, then β
is involved in a relation with one of the two, say η1. The arrow η1 cannot
be in C, otherwise there would be a double zero involving αβ and βη1. So
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the arrow η1 comes from a relation σβ in C. Since C is gentle, we must have
that σ = α, so that η1 = γ, which is absurd because γ is not in Ci.
Therefore, in Ci, there is at most one outgoing arrow from x, and this arrow
is not involved in a relation with β. This shows that in Ci+1, there are at
most two arrows starting from x, say η and γ, and that βη is not a relation
while βγ is. Moreover, there is at most one more arrow ending in x, say δ,
and since Ci is gentle, we have that δη is a relation, while δγ is not. So the
relations at x are those found in a gentle algebra.
Using a similar argument for the vertex y, we get that Ci+1 is a gentle algebra.
By induction, C̃ is a gentle algebra. �

Example 3.17 Lemma 3.15 allows us to compute the relation-extension of
any gentle tilted algebra. As an illustration, consider the two algebras given
in example 3.9. The relation-extension of each is given in the following dia-
gram:

•

α
((QQQQQQQQQQQQQQQ •ιoo • φ // •

β

((QQQQQQQQQQQQQQQ

•
β

66mmmmmmmmmmmmmmm

γ
((QQQQQQQQQQQQQQQ • •

α

66mmmmmmmmmmmmmmm

γ
((QQQQQQQQQQQQQQQ •σ

ρks

•
δ

??~~~~~~~
•

ψ
// •

δ

66mmmmmmmmmmmmmmm

αβ = ια = βι = 0 αβ = γδ = ρα = 0

βρ = σγ = δσ = 0 .

3.3.4 Proof of the main theorem

Now the proof of theorem 3.3, which has been written in separate parts
during the last sections, can be stated properly.

Proof (of theorem 3.3): 1 implies 2 is shown in (3.4), 2 implies 4 in (3.6),
4 implies 3 in (3.16) and 3 implies 1 in (3.5). �
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4 Geometry of surfaces and A(Γ)

We study in this section more connections between geometric properties of
the marked surface (S,M) and properties of the algebra A(Γ) given by a
triangulation of (S,M).

4.1 Cluster-tilted algebras arising from surfaces

We first address the question which of the algebras A(Γ) are cluster-tilted.
Recall that all algebras A(Γ) share the properties (2) and (3) from Theorem
2.7 with every cluster-tilted algebra. Moreover, it is shown in [12] and [10]
that the cluster-tilted algebras of type A are algebras A(Γ) arising from
a triangulation of an unpunctured polygon. In this section, we show the
following generalization:

Theorem 4.1 Let A(Γ) be the algebra associated to the triangulation Γ of
an unpunctured marked surface (S,M). Then the following statements are
equivalent:

(1) the algebra A(Γ) is cluster-tilted

(2) the algebra A(Γ) is cluster-tilted of type A or Ã

(3) S is a disc or an annulus

Moreover, all cluster-tilted algebras of type A (or Ã) are of the form A(Γ)
for some triangulation Γ of a disc S (or an annulus S, respectively).

Proof. It is clear that (2) implies (1). Let us show the converse: Suppose
that the algebra A(Γ) is cluster-tilted. Thus there is a sequence of mutations
transforming the quiver with potential defining A(Γ) into some quiver Q
with zero potential. This sequence of mutations corresponds to a sequence of
flips, transforming the triangulation Γ of (S,M) into a triangulation T with
Q(T ) = Q and zero potential. Hence A(T ) = kQ is hereditary. Since we
know from (2.7) that A(T ) is gentle, this leaves only the possibilities that Q

is of type A or Ã. Therefore the algebra A(Γ) is cluster-tilted of type A or Ã
We prove now the equivalence of (2) and (3). Since all triangulations on
(S,M) are flip-equivalent (see [19]) and flips of the triangulation correspond
to mutations of the corresponding quiver with potential, it is sufficient to
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consider one particular triangulation. In case S is a disc, we choose the
triangulation to be in the form of a fan, giving rise to a linear oriented quiver
of type A. In case where S is an annulus, we choose the triangulation given
by two fans in opposite direction as shown in the following figure (identify
the left and right vertical edge):

u u u u

u u u q q q
q q q

q q q
q q q

u
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�
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#
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�
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�
�
�
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The corresponding quiver is of type Ã with zero potential, thus (3) implies
(2). Conversely, we know from proposition 2.8 that the quivers Q(Γ) uniquely
determine the topology of the unpunctured marked surface (S,M). Therefore
S is a disc or an annulus, respectively, and since all triangulations are flip-
equivalent, it is clear that all cluster-tilted algebras of the corresponding type
occur. �

4.2 Curves in (S,M) and string modules

In this section we are comparing strings in A(Γ) to curves in (S,M). By a
curve in (S,M) we mean a curve γ in S whose endpoints lie in M and where
all points except the endpoints lie in the interior of S. We usually consider
curves up to homotopy. For instance, for two distinct curves γ and δ in
(S,M), the intersection number IΓ(γ, δ) is defined as the minimal number of
transversal intersections of two representatives of the homotopy classes of γ
and δ. Denote the internal arcs of the triangulation Γ by {a1, . . . , an}. Then
we define the intersection vector IΓ(γ) of a curve γ as

IΓ(γ) = (IΓ(γ, a1) . . . , IΓ(γ, an))

Proposition 4.2 Let Γ be a triangulation of an unpunctured marked sur-
face (S,M). Then there exists a bijection {γ} 7→ w(γ) between the homotopy
classes of curves in (S,M) not homotopic to an arc in Γ and the strings of
A(Γ). Under this bijection, the intersection vector corresponds to the dimen-
sion vector of the corresponding string module, that is

IΓ(γ) = dimM(w(γ))
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Proof. Let w = x1
α1←→ x2

α2←→ · · · αs−1←→ xs be a string in A(Γ). We
define a curve γ(w) in (S,M) as follows: The arcs x1 and x2 belong to the
same triangle T1 since they are joined by an arrow in A(Γ). We connect the
midpoints of x1 and x2 by a curve γ1 in the interior of T1. Proceeding in the
same way with the remaining arcs x2, . . . , xs we obtain curves γ2, . . . , γs−1

connecting the midpoints of the respective arcs. The internal arc x1 belongs
to two triangles, the triangle T1 which we considered above and another
triangle T0. Let P ∈ M be the marked point in T0 opposite to the arc x1.
We now connect P with the midpoint of x1 by a curve γ0 in the interior of
T0, and proceed in the same way on the other end of the string w, connecting
the midpoint of xs with a marked point Q by some curve γs. The curve γ(w)
is then defined as the concatenation of the curves γ0, . . . , γs.

t
t

t
t t t

t

t
t

t
t

t

t

qq q
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P Q
x1 x2 x3 xs
γ1γ0 γ2 γ3 γs−1 γs

By construction the points of intersection of the curve γ(w) with arcs in Γ
are indexed by the vertices of the string w. The curve intersects the arcs of Γ
transversally, and since the string w is reduced, none of the γi is homotopic
to a piece of an arc in Γ. Thus the intersection numbers are minimal, and
IΓ(γ(w)) = dimM(w). Since γ(w) has non-trivial intersection with arcs of
Γ, it is clear that it is not homotopic to an arc in the triangulation Γ.

Conversely, let γ : [0, 1] → S be a curve in (S,M) which is not homotopic
to an arc in Γ. We assume that the curve γ is chosen (in its homotopy
class) such that it intersects the arcs a of Γ transversally (if at all) and
such that the intersection numbers IΓ(γ, a) are minimal. Orienting γ from
P = γ(0) ∈ M to Q = γ(1) ∈ M , we denote by x1 the first internal arc
of Γ that intersects γ, by x2 the second arc, and so on. We thus obtain a
sequence x1, . . . , xs of (not necessarily different) internal arcs in Γ. Since the
intersection numbers are minimal, we know that xi 6= xi+1. Thus there are
arrows, either αi : xi → xi+1 or αi : xi+1 → xi in Q(Γ), and we obtain a walk

w(γ) = x1
α1←→ x2

α1←→ · · · αs−1←→ xs in Q(Γ). The fact that γ intersects the
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arcs of Γ transversally implies that the walk w(γ) is reduced and avoids the
zero-relations, thus w(γ) is a string in A(Γ).
It follows from their construction that the two maps between strings and
homotopy classes of curves defined above are mutually inverse. �

Remark: Recall that two string modules M(w) and M(v) are isomorphic
precisely when v = w or v = w−1. The inverse string w−1 corresponds to
orienting the curve in opposite direction.

Proposition 4.3 Let Γ be a triangulation of an unpunctured marked surface
(S,M). Then there exists a bijection between the homotopy classes of closed
curves in (S,M) and powers bn of bands b of A(Γ).

The proof is analogous to the proof the previous proposition.

4.3 An example of non-polynomial growth

We finally present in this section an example of a gentle algebra A(Γ) which
is of non-polynomial growth. Let S be a sphere with three holes and choose
one marked point in each boundary component. We fix the following trian-
gulation Γ of (S,M) :
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Then the algebra A(Γ) is given by the following quiver with relations εiρi =
0, ρiσi = 0 and σiεi = 0 for i = 1 and i = 2.

b1

��

σ1

  @@@@@@

a1

α

��

ρ1
>>}}}}}}

β
��

c1ε1
oo

γ

��

b2
σ2

~~}}}}}}

a2 ε2
// c2

ρ2
``@@@@@@

The string algebra A(Γ) admits the following two bands

ξ = b2
σ2−→ a2

α←− a1
ρ1−→ b1

β−→ b2

and
η = b2

ρ2←− c2
γ←− c1

σ1←− b1
β−→ b2

Since ξ and η can be composed arbitrarily, the algebra A(Γ) is of non-
polynomial growth, see [31]. Note that the algebras of non-polynomial growth
are never cluster-tilted.
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[5] I. Assem, A.Skowroński, Iterated tilted algebras of type Ãn, Math. Z.
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