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Let k be a commutative field, and A a finite-dimensional
k-algebra (which we assume associative and with identity). All A-
modules will be finite~dimensional right A-modules. By mod A we
denote the category of finite-dimensional right A-modules. Homo-
morphisms will always be written on the opposite side of the scalars.

Following [5], a module TA is called a tilting module pro-
vided the following properties are satisfied:

(T1)  There is a short exact sequence 0 PA > QA > TA - 0

with P, Q projective (thus, pd T, < 1) ,

A
1

(T2) ExtA(T,T) =0 ,

(T3) There is a short exact sequence 0 - AA - Tg hd T; + 0

"

with T', T direct sums of summands of T,-

If A is hereditary, and TA a tilting module, then
B = End TA is called a tilted algebra [5]. We shall introduce the

notion of a going down tilting series and that of a generalized

tilted algebra (see §1). These are, roughly speaking, those

2101

Copyright © 1981 by Marcel Dekker, Inc.



2102 ASSEM AND HAPPEL

finite-dimensional k~algebras which can be reached from a

hereditary algebra by a finite number of applications of the tilt-
ing process. The aim of this paper is to give a complete classific-
ation of those generalized tilted algebras which are of type An
(that is, which can be reached from all path algebras kA, where

the underlying graph A is An). In fact, we shall prove:

¥

Theorem: A finite-dimensional k-algebra A is a generalized
tilted algebra of type An if and only if the bounden quiver

(Q, (pa)ae I) of A satisfies the following conditions:

(i) Q@ 1is a tree,
(ii) Every point in @ has at most four neighbours,
(iii) All relations p, are of length two,

(iv) If a point has four neighbours, then

is a full subquiver of (Q, (p) )

a'ael 6]

(v) If a point has three neighbours, then 0 <— 0 <— 0

or 0_<— 0 éff,O is a full subquiver of (Q, (Da)ae I) P

(vi) There is no full subgquiver of (Q, (pu)ue I) of the

- 0 PP
forms 07 < 02/// and O:—~¢ O///ao (where the dotted lines
-~ ﬁ\\\o

— i \\\~-O

indicate zero relations),
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The main tool in proving the necessity of these conditions is
the observation that most local properties of the Auslander-Reiten
guiver of an algebra remain unchanged when applying the tilting
process. In the converse part, we actually construct the tilting
series starting from an algebra satisfying the stated conditions
and reaching a hereditary algebra of type An by generalizing the

so-called APR-tilts [2].

This answers for a subclass of algebras a question in [2]
which algebras can be tilted to a hereditary algebra. Observe that
the theorem immediately implies that generalized tilted algebras
can be of arbitrary global dimension (see (2.5)). This answers a

question of M. Auslander.

Note that a particular class of generalized tilted algebras

of type A was studied in [6].

For the convenience of the reader, we have collected in §1
the material we need from the general theory of tilting modules.

§2 then contains the proof of the theorem.

§1. Preliminaries and notations

(1.1) We shall use the letter § to denote a quiver, Q
its underlying graph. Points of @ will be denoted by small letters
such as a, b, ..., 1, j, ... . Relations in @ will be denoted by
the letter p , we shall always assume the paths entering the
relations to be the minimal paths satisfying the relations.

Recall that any finite-dimensional k-algebra with A/rad A

being a product of copies of k is given by a bounden quiver
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©, (Da)ng I) [4]. we shall denote by S(a), S(i), ... the
simple A-modules corresponding to the points a, i, ... of ¢ .
We shall denote by P(a) (respectively I(a)} the indecomposable

projective (respectively injective) such that P(a)/rad P(a) = S{a)

(respectively soc I{a) = S(a))

(1.2) We shall use freely the properties of Auslander-Reiten
sequences and irreducible maps such as can be found, for instance,
in [1} or [4]. Recall that the Auslander-Reiten quiver FA of
the algebra A is defined to have as points the isomorphism
classes [M] of indecomposable A-modules, and there is an arrow
[M] » [N] provided there exists an irreducible map M > N. Note
that this quiver is endowed with the (partially defined) Auslander-
Reiten translation T = DTr and has the following property: if
for some vertex =z, Tz is defined, then the set of end points of

arrows Tz -y coincides with the set of starting points of

arrows y -+ z and this set is finite.

One may also regard the Auslander-Reiten quiver as part of a
two~dimensional simplicial complex, with edges both the underlying
edges of the arrows, as well as additional edges [X] » [7z] for
each Auslander-Reiten sequence 0 > X = Y + Z + 0 and with triangles

of the form
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in case Yi is an indecomposable direct summand of Y in the
Auslander-Reiten sequence 0 > X > Y +> 2 - 0 . Thus we have a
topological structure on this simplicial complex. We refer the

reader to [7].

(1.3) Assume now that A 1is a finite-dimensional k-algebra,
and TA a tilting module with End TA = B, We consider two full
subcategories of mod A : T(TA) which is the full subcategory of
all modules generated by TA (or, equivalently, of all modules MA
such that Exti(T,M) = 0) and F(TA) , which is the full sub-
category of all modules cogenerated by TTA (or, equivalently, of
all modules MA such that HomA(T,M) = 0). Always the pair

(T(TA), F(TA)) forms a torsion theory for mod A.

There are two corresponding full subcategories of mod B

defined by:
X = X(T) = {ng ] N, ® T, =0}
B
and Y = V(TA) = (v | Tor, (Ny, .T,) = 0} . Then we have the
following:

Theorem of Brenner~Butler: Let TA be a tilting module with
End TA = B. Then also BT is a tilting module, and A = End BT P
canonically. Moreover the subcategories T(Tz) and V(TA) are
equivalent under the restrictions of the functors HomA(T,~) and
-@BTA which are mutually inverse to each other, and similarly,
the subcategories F(TA) and X(TA} are equivalent under the
restrictions of the functors thi(T,«) and Tor§(~°, T} which

are again mutually inverse to each other. []
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For the proof, we refer the reader to [5].

(1.4) Given a hereditary algebra A , a going~down tilting

series from A , (Ai, TAi)i e N consists of a family of algebras
Ai , and a family of tilting modules TA such that:

i

[}
= End T ,
(2) Ai+l n Ai
(3) The induced torsion theories (X(TA ) V(TA }) are

i i
all splitting.

A finite-~dimensional algebra B will be called a generalized
tilted algebra if there exists a hereditary algebra A , a going-
down tilting series (A., T_ ). from A, and an m ¢ N such

i AileN
that B = Am . B will be called generalized tilted of type ‘An

if A 1is the path algebra of a quiver whose underlying graph is An

2. Proof of the theorem

(2.1) Let us start by defining two sets of properties that
will be used later: here A simply denotes a finite-dimensional

k-algebra.

Properties (y): The Auslander-Reiten quiver FA of A satisfies
the following:

(Yl) FA is simply connected,

(yz) There are at most two irreducible maps with prescribed
domain or codomain,

(y3) If PA is projective, with indecomposable radical R ,

then there is at most one irreducible map of codomain R . Dually,
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if IA is injective with 1I/Soc I indecomposable, then there is

at most one irreducible map of domain I/Soc I.

Properties (k): The hounden quiver (Q, (Qa)aeil) of A satisfies

the following:
(Kl) 5' is a tree,
(K2) Every point has at most four neighbours,

(KB) All relations pa in Q are of length two,

(x,) If a point has four neighbours, then

~0 is a full subquiver of (Q, (p ) ).

/\ a o e I
o%- - Mo 0

5) If a point has three neighbours, then O0_<— 0 <—0
o e

Lo e i 11 i
or O\.__ 9'__”‘0 is a fu subquiver of (Q'(pa)ué I)'

(k_) There is no full subquiver of (Q,(pa)a6 I) of one of

0T~

~ ~
~
the forms 0«0 or \\\30 —>0

0_(/’// o/"

(where 5' denotes the underlying graph of @ and the zero relations

are indicated by dotted lines.)

The following lemma is crucial for the proof:

Lemma: Let A be a finite-dimensional algebra of finite
representation type satisfying the properties (Yz) and (y3) .
then, for every indecomposable MA' the set of all (isomorphism
classes) of indecomposable modules NA such that there exists a
non-zero map N + M , but no non-zerc map N -+ tM , is the union

of two full linear subquivers of FA intersecting at [M]
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Dually, the set of all (isomorphism classes) of indecompos-

able modules LA such that there exists a non-zero map M ~ L ,

but no non-zero map T—lM + L , is the union of two full linear

subquivers of FA intersecting at [M].

Proof: We start by constructing two linear subquivers of FA

intersecting at [M]. Assume first that M is not projective,
then, by (yz) , the Auslander-Reiten sequence ending in M has

at most two terms, thus there exist indecomposables E F such

1771
that

2}
£1 (91f1)>

0 ™ ——>
>TM Fl@El

M > 0

is an Auslander-Reiten sequence. If M is projective, then, again
by (YZ) ., there are at most two irreducible maps into M which we

denote again by 9y : Fl + M and fl H El > M.

Now, assume that- El # 0 , then if E is not projective,

1

there exists an Auslander-Reiten sequence

{Tflx
£! £ £
T O U L
1 2 2 1
where Eé = ™™ . Thus we have defined f2 : 82 > El . If on the

other hand El is not projective, then, by (73) , M cannot be

projective, thus there are at most two irreducible maps with

codomain El , one of which is fi @ TM El . 1f there is another

irreducible map into E we define this map to be f2 . Otherwise

1

the construction stops.
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Inductively, if Ei has been defined (and is non-zero} for

all i< t, and E is not projective, there exists an Auslander-

t

Reiten sequence with at most two middle terms ending in E_ :

t
Tf
t ¥
{f'} (£, £ )
> e T ey

If E is projective, rad Et = rE & E , and we define

t -1 t+1
ft B Et+l 4»Et to be the inclusion map. The process stops when
Et = 0 or there is only one irreducible map into Et—l . The set

(Et)t together with M defines by construction a linear subquiver
of FA {indeed, (Yg) ensures that there is no branching), and

will be denoted by L{fl)

Similarly 84 defines a linear subquiver L(gl).
Now let N be an indecomposable such that there exists a non-zero
map h : N + M , but no non-zeroc map N -+ tM . We claim that

Nl « L(fl) U L(gl)
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BEither h : N > M is an isomorphism, or else it factors

through the right almost split map (g fl) H Fl (] El + M . Thus

1

we may assume that there exists a non-zeroc map hl : N > El such

that h = f£f_ h

171
Thus, assume that hl is not an isomorphism, then it factors
through (fi f2) : M8 EZ > El . But it cannot factor through 1M,

by hypothesis. Hence there exists a non-zero map h2 : N - E2

such that hl = f2 h2

Inductively, either N ~ Ei for some i < t , or else, by

the same argument, there exists an ht+l : N - Et+l such that

he =i Py -

Since for some m we have Em = 0, it follows that
N £ .
[N] e n( l)

Similarly, if there exists a non-zerc map hi : N > Fl such

that h = 9, hi , . we have [N] ¢ L(gl) .

On the other hand, if Et € L(fl) (Et # 0) , then the map

fl f2 ...... ft : Et + M is non-zero. This can be proved by an eas’

argument, assuming that t 1is minimal with fl ... £ = 0 and provi

that then fl is a monomorphism, thus getting a contradiction.

Similarly, if P, _ € L(gl) (Ft # 0) , the map 9y 9y - g, :

t t

Ft + M 1is non~zero. This proves the first half of the lemma, the

second half is dual. [J

{2.2) The following proposition is the first step towards

the proof of the theorem.
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Proposition: Let B be a generalized tilted algebra of type

A, then B satisfies the properties (y) and (x).

n
Proof: We shall prove this proposition by induction on the
length of the going down tilting series needed to reach B . Since

all the statements are trivial for An + we let A be a generalized
tilted algebra satisfying (y) and (x), and TA a tilting module
such that B = End TA. Then:

(Yl) The Auslander-Reiten quiver FB of B is simply

connected.

Indeed, assume this is not the case, we would then have in FB

two oriented paths w,, w

1 from the point M

to the point M2

2 1

which are not homotopic. We can of course assume that Wy and v,
are minimal with this property. Thus M is injective and M is

1 2

projective and wl, L have no common arrow. Since M2 is

projective, it belongs to V(TA)' Hence modules lying on the paths

w, and w, are in V(TA).

Applying the functor -~ ® BTA ,» Wwe obtain two paths &l and

w in T_ , from Ml ® BTA to M2 @ T (since A is of finite

2 A B A
representation type). Now, since M2 is projective, M2 (<] B’I‘A is
an indecomposable summand T' of T and, since Ml is an

o . _ 5 . v T = . . .
injective B-module lying in (TA) P Ml & sTa IA is an injective

A-module (by the corollary (2.4) of [5]).
Since FA is simply connected, ;1 and &2 are necessarily

homotopic. But the injectivity of I then implies that the paths

wl and ;2 cannot be minimal, that is, there exists an irreducible

map I > X such that, for i = 1,2, ;i is the composition of
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I » X and of a path from X to T' . Obviocusly the minimality of

Wy and w, implies that X ¢ T(TA) .

On the other hand, I ¢ T(TA) , and I > X 1is an irreducible
map, thus an epimorphism of I onto a direct summand of I/Soc T
(since I is injective). The class T(TA) is closed under quotien

so X € T(TA) , a contradiction.

(Y3) Let Py be a projective B-module of indecomposable
radical R . Then there is at most one irreducible map of codomain

R . Dually, if IB is an injective B-module with I/Soc I

indecomposable, then there is at most one irreducible map of domain

I1/Soc I.

Indeed, let PB be projective with indecomposable radical R

such that there are two irreducible maps of domains X X into R.

1" 72
R ——> P

Since PB is projective, P ¢ V(TA) , hence R, X X all belong

1" 72
to V(TA). Apply the functor - ® BTA to return to mod A . PB

being projective, P_ & T!

- ; ; a of
B BTA A is an indecomposable summand o

T . Since the functor - 8 BTA is exact in V(TA) , R®T» 1
is a monomorphism. Hence the maps ki : Xi ®@T+>ROT>T'

(i = 1,2) are non-gzero. Now there is no non-zero map R® T » 17'.
For, either T' 1is projective, and then 1T' = 0 or else T' is

. . 1
not projective, and then we have HomA(R ® T, ©tT') = D ExtA(T',

R® T} =0 (by lemma (2.5) of [5]).
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Lemma (2.1) shows then that R & T belongs to one of the two
linear subquivers determined by T' , say to L(fl) . Thus
xl ® T, X2 ® T, by the same reason, belong to L(f}.) , and hence
there exists a non-zero map from Xl & T to X2 ® T (or from
XZ ® T to Xl ® T). But then, returning to mod B via the
functor HomA(T, -} , we obtain a non-zero map /from X1 to X2
(or from X2 to Xl) , an absurdity. This shows the first half

of (y3) , the second half is dual.

We shall now show the properties (k) for B . We first
take a closer look at the correspondence between indecomposable

summands of T and points of the quiver ¢ of B .

Let Ta be the indecomposable summand of T corresponding
under Hom (TA,—) to the projective B-module corresponding to the
point a of @ , then there are at most two irreducible maps fl'
9, of codomains Ta and at most two irreducible maps Uy vy of
domain Ta , and these determine (at most) four linear subquivers
intersecting at Ta , namely L(fl)’ L(gl), L(ul) and L(vl) .
Let Tb be the indecomposable summand of T corresponding to the
point b of @ : then if HomA(Ta, Tb) # 0, [Tb] € L(ul) or
ETb] € L(vl) , or if HomA(Tb,Ta) # 0 , and then [Tb]eL(fl) or

[Tb] € Lig))

Assume thus that b and ¢ are two neighbours of a in Q.
Then either [Tb], [Tal, [Tc] are colinear or not; we represent

these two cases by the pictures:
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L{g.) T(u)  Lig, L{u,)
AN ' PN an

L(fl) \\\\L(vl) L(fl) L(vl)

in the first case, the map Tb -> Ta - Tc is non-zero, indeed both

[Tb] and [Ta] belong to a linear subquiver determined by an

irreducible map of codomain TC. In the second case, Tb »~Ta > T

is zero, since [T,.] 1is not in the linear subquiver determined by

b
an’irreducible map of codomain TC on which [Ta} lies. After the
general remarks, we turn to the proof of (x) , we shall keep throug
the same notations.

(Kl) 45 is a tree:

If 6 is not a tree, then there is a full subquiver Q' of
which is a (non-oriented) cycle. Since the quiver Q has no orient

cycle, Q' always contains at least one source and one sink. Then

consider two cases for Q':

Case (1): There is no commutativity relation on Q': indeed

assume that Q' 1is a commutative cycle

0 <= 0 T 0 e een o < 0

o ~.

Q<

b

then HomS(P{b), P(a)) # 0 , and it follows that in fA , the module
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lies on one of the two linear subquivers determined by Ta' Now this is
a commutative cycle, hence Tb should in fact lie on both linear sub-
quivers determined by Ta' This, however, is impossible. Hence there

are ne commutativity relations in Q , that is, all relations are zero

relations.

Case (2): There is a zero-relation on at least one of the non-
oriented paths from the source a to the sink b : then there are two

irreducible maps with domain P(b) and codomains Ml and MZ’ and

rad P(a) 1is decomposable, with indecomposable summands Rl and R2

Since FA is path connected, there exists a path wi from Mi to Ri

(i = 1,2). However vy and w, are clearly non-homotopic, since they

factor over exactly one indecomposable summand of rad P(a), a contradict

(KZ) Every point of the quiver Q of B has at most four neighb

Indeed, let a be a point of Q@ ,<then, if b 1is a neighbour of

a , [Tb] has to lie on one of the four linear subquivers intersecting
at T
(1,1
(KB) All relations OQ in Q are of length two.
”” s‘\\
Indeed, let 0 ?ﬂ-~o < Q €, ., ¢ 0 be a zero relation
a a
4 ) 3 r

with r > 3, then, passing to the corresponding summands Ta (L<i<x),
i
we see that necessarily r = 3.

(KQ) 1f a point a has four neighbours ajs 8y, dq, as then

we have a full subquiver of (Q, (o)

Y} of the form
o' e 1
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Indeed, considering the corresponding summands Tai (0 <1 <

necessarily, each of [T, 1, {T. }, [T, 1, fTa }, lies on a differer

al d2 83 4

linear subquiver determined by [T, ]. We then just need to apply t
o

remarks preceding the proof of (KZ). c

. . {
o (KS) If a point a has three neighbours al’éZ’aB’ then ostrlc

Ot:::?f:fzo is a full subquiver of (Q, (pa)a eI).

For, necessarily, two of the {Tai} (0<i<3) are colinear with

while the third one is not.

(« ) 'There is no full subquiver of (Q, (p ) }  of one
6 e oeI
-0 . —30
of the forms c{é—~oz// or of;€>o//ﬁ .
“. ~_
T ~ <o

This follows from the proof of (KS).

(YZ) Let XB be indecomposable, there are at most two
irreducible maps with domain X , and two irreducible maps with

codomain X .

Observe that for any indecomposable XB and point a of

the quiver @ of B we have dim x,0< 1.

(i) Assume first that X is projective. Then, by (Kl) ’
rad XB has at most two indecomposable summands, therefore there
are at most two irreducible maps with codomain X . If X is not

injective, consider the Auslander-Reiten sequence starting with X,
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" -1

0—> X—> @& Y, —> 1 "X —> 0§
. i
=1

with the Yi indecomposables. Let X = P{a) for some point a
of @ , then (Yi}a # 0 . But now dim (t_lx}a < 1 implies that

r < 2, Similarly if XB is injective.

(ii) Finally, assume X is neither projective nor injective,

and consider an Auslander-Reiten sequence

: -1

0> X—> @ Y —> 1 X —> 0
: i
i=1
s . -1

with the Yi indecomposables. Thus dim HomB(X, T X)) = r-1

a) If rhlx € V(TA) , we have X, Yi € V(TA) and hence

. -1 _ . . .
dim HomA(X ] BTA' T X8 BTA> = r-1 . The induction hypothesis

implies that «r < 2.
b) Dually, r <2 if X e X(TA).

c) If Xe V(TA) and 7 lx e X(TA) » we can assume that Y,
is projective and another summand of ';1 Yi is injective, other-
wise we can get a contradiction to a)l;r b) (namely, if the middle
term has no projective summand, and r > 3, there are at least
three irreducible maps with codomain X e V(TA), dually, there must
be an injective summand). Assume the injective summand is not Yl'
say Yl = P(a} and Y2 = I(b). The existence of the non~zero map
X > I(b) implies that Xb # 0 , and, since X is a direct summand
of rad P{a) , we have P(a}b # 0 . But we also have I(b)b # 0.

Therefore (T-lX)b # 0 , which contradicts the fact that T-lx is

a direct summand of I{b)/Soc I(b}. Hence Yl is projective-
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injective. Now let Q' be the support of Yl {(that is, the set

of those points a of § such that (Yl)a # 0). Since Q 1is a
tree, Q' is of the form b oe—o0e— ... e o< o a and there
is no relation on Q'. Furthermore, for any point ¢ of @ not
in Q' there is no non-zero path from ¢ to Q' or from Q' to
¢. Therefore rad P(a) is indecomposable and defined on Q'.
Also I(b)/Soc I(b) is indecomposable and defined on @Q'. Thus
the given Auslander-Reiten sequence containsg only modules defined

on ©' and is in fact given as follows

where S(a) is the simple module corresponding to the point a.
Since X/g(a) is indecomposable we get an Auslander-Reiten-

sequence with two middle terms.
This completes the proof of the Proposition. []
(2.3) We shall now prove the theorem.

Theorem: The finite~dimensional algebra B 1is generalized
tilted of type An if and only if the bounden quiver (Q,(p ) I)
oo e

of B satisfies (x) .

Proof: By Proposition (2.2), we know that if B 1is general-

ized tilted of type An , its bounden quiver (Q, (p ) I) satis~
oloe

fies (x) . Conversely, let B be such that (Q, (p_ )} I)
a'ae
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satisfies (k) , we shall show that B 1is generalized tilted of

type /An , where n denotes the number of points in

We can assume that there is a simple sink io in © , that
is, a sink with only one arrow going in, otherwise we form the
opposite algebra. And it is easily seen that B is generalized
tilted of type A , for any quiver A , if and only if BOp is
generalized tilted of type A . Now let W be the minimal non-
oriented path in Q starting from io and ending at the
middle point j of a zero-relation. By applying
reflection functors [3], which are in fact given by tilting modules,

and if necessary passing to the opposite algebra, we can in fact

assume that we have the following situation

Q'
Q O € O E O e e o\<———— QN
i, jl\ -
N

where Q', Q" may be empty, and w is the linear oriented path
from j 'to io. Let r be the number of points in w , and
choose a numbering of the points of @ such that io =1,...53 = r.

We shall construct a module TB such that: .

a) TB is a tilting module,

b) The torsion theory (T(TB), F(TB)) is splitting,

¢} The bounden quiver (QA, (pa)ael‘) of A = End TB

satisfies again (x),

d) There is exactly one zero-relation less.
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This means that we can apply the prescribed process to A

and obtain finally a quiver satisfying (k) but with no zero

relations, hence of type ;@n , and the assertion will be proved.

Define T, = P(r)/P(i) for 1 < i < r-1 and T, = p{i} for

r < i < n. Then obviously the Ti for 1< i ¢ r-1 are indecompos-

n

able. Let TB = @ Ti. We shall show that TB satisfies the
i=1

required conditions. But first note that the Auslander-Reiten

quiver FR has actually the form:

P(r}

P(r-1}) P{r)/Ptl)

NS

P(2) . P(r) /P (£-2)
(1) \ / ’ / p(r) /P (r-1)
B (j,)

We also note that by construction, and by the assumption/on

(Q, (;30‘)@€ I) , we have that P(r)/P(r-1) 1is a direct summand of

rad P(jz}.

a) TB is a tilting module.
Indeed:

(Tl) pd TB < 1:

We show that for every indecomposable summand Ti of TB »

pd Ti < 1i. If r <i<n, then pd Ti = 0., If 1<i<r-l,
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T, = P(r)/P(i) has the projective resolution
0 ~—> P(i) —> P(r}) —> T, —> 0

and then pd Ti = 1
1
(T2) EXtB(T,T) = e

. 1 . .
1t clearly suffices to consider ExtB{Ti,T.) with 1 <1 <

ol b

r-1 and r < j < n. Now, since pd TB <1 Ext (Ti'Tj> =

i
o

D HomB(Tj,rTi) (by Corollary (2.5) of [5]). But HomB(Tj,rTi)

by construction, since the support of TT, is in fact w\{r} .

{T3) There exists a short exact sequence o~ BB R A

+ O with 7', T" direct sums of direct summands of T .

T+ suffices to show the existence of such a short exact
sequence for every indecomposable projective PB. If Py = P{i),
r < i < n, there is nothing to show, while if PB = P(i) with

1

| A

i < r-1, the required sequence is, as in (T1) .,
0 —> P(i) —> P{r) —> P(x)/P(i) —> O .

b) The torsion theory {T(TB), F(TB)) is splitting.

Indeed, let XB be an indecomposable not in F(ry. Then

1 r-1 1 r-1
Now ExtB(T,x) = .@ ExtB(Ti,X) = .® D HomB(X, TTi) = 0 by
i=1 i=1
ion. = T .
construction. Hence Xy € (TB)

HomB(T,X) # 0, and so there is a r < 3 < n with Xj # O.

In fact, we have

F(TB) = {XEi Xj =0 for all r < 3 < nJ
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and T(TB) = {XB‘ Xj # 0 for some r < j < n}

¢) The bounden guiver of A = End T, satisfies (x):

Indeed, QA has the following form

T

where 5£ =q', QA = Q" and all arrows of Q', Q" are reversed.

For, the points lying inside Q. or ¢

n o correspond to indecompos-—

able projectives, and thus, we must only reverse the arrows.
Obviously there are no maps from P(r)/P(i) (1 <1 <r-1) to
projectives corresponding to points in Q' and similarly no maps
from projectives corresponding to points in Q" to P(r)/P(i)

(L <i < r-1). On the other hand, all maps from projectives
corresponding to points in Q' to P{r)/P(i) (1 < i <r-1)

factor over P(r) , and all maps from P(r)/P(i) (1 <i<rx-1l) to
projectives corresponding to points in Q" must factor over P{jz).

This shows that QA has the above form.

Next, the relations which took place inside Q' and Q"
remain the same: suppose there was a zero relation ending at r

and starting in Q! at some point s , then we get obviously a

zero relation s o™—> o —=pr in Q- If the zero-relation

ending at r started in Q" at t , we get a zero relation

1 o™ 0—>"0t . We now claim there are no new relations. Such
j2
new relations can only start in §' and end at some point l<i<re-

or else start at some point 1 < i < y-1 and end in Q". Suppose
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s 1is a point in @' such that HomB(P(S},(P(r)/P(i)) = 0, but
HomB(P(s), P(r)) # 0. Thus there is a non-zero map £ : P(s) = p(y)
which maps into the kernel of P(r}/P(i) , and this is impossible.
Finally, if t 1is a point in Q" such that HomB(P(r)/P(i),P(t))
=0 for some 1 < i < r-1 but Hom (P (j,), P(t)) # 0 , we again
have that HomB(P(r), P(t)) = 0 and this gives one of the Zero-

relations we have discussed before.

d) If m is the number of relations in Q , then the number

of relations in QA is m-1 .

Indeed, c) shows that the number of relations in QA is
not greater than m , but now by construction there is no relation

between r-1 and j2, that is, we have removed exactly one relation.

This completes the proof of the theorem. []
(2.4) Proposition (2.2) and Theorem (2.3) obviously imply:

Corollary: If B is a generalized tilted algebra of type

A . then B satisfies (y) . [

(2.5) We now want to illustrate the result of Theorem (2. 3)
on a particular example. We write down the tilting series using
the method of the proof in the theorem. We start with the bounden
LT T TR
quiver o'¢— o< ¢ e— 0o <«—"0 , with corresponding Auslander-
Reiten quiver, where the indecomposable modules are denoted by‘their

dimension types. The summands of the tilting module are encircled:
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51100 000 ;L\li
e \s / A
10000 61000 00100 650010 00001
AN
N / L.,/
11000 001 10l

Then the endomorphism ring of the chosen tilting module is given by

P T e

- T ~
o ¢ 0 &0 é— 0 & O with Auslander-Reiten quiver:

01100
10000 %’Q“j;‘()‘”ﬁ“ﬁ‘ 00100 00010 00001
Nd NN
1190 Lg} 0oTiw 00011
N\
D011 ﬁ

Thus the endomorphism ring of the chosen tilting module is given by

o —

- ~
o & @ & o & 0 &— o with Auslander~Reiten quiver:

DoTITTY
N
po 110 00011
N TN
10000 01000 06100 00010 00001
NN
11000 0110570
N\
D )

Tt is then clear that we get in the next step the quiver

,@5:06—“—'0@—*0%—*—06‘”0
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Observe that the theorem immediately implies that generalized

tilted algebras can have arbitrary global dimension. Namely, let

A be the algebra k&n/(rad k An)z , where in An we choose the

orientation © &« 0 ¢ 0 ..... 0 «—— o . Then, obviously,

gl. dim A =n-1, and A is generalized tilted of type An
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