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Abstract. Given finite dimensional algebras A,B over an algebraically closed
field and a morphism between them, we study when exhaustive Galois cover-
ings of A define exhaustive Galois coverings of B. We focus on the particular
cases where B is a quotient or a subalgebra of A. We apply our results to
trivial extension algebras.

Introduction

Covering techniques, introduced in the eighties by Gabriel and his school, see
[Rie80, BG82, Gab81], are among the best known ones in the representation the-
ory of finite dimensional algebras. They consist, if one is given an algebra whose
representation theory is hard to study, in constructing another one, called its cov-
ering and much easier to handle, such that the study of the module category of the
original algebra can be reduced to that of the covering. This, of course, requires a
functor from the module category of the covering to that of the original algebra.
Clearly, this method is especially efficient when the latter functor is dense, that is,
every indecomposable module over the original algebra can be described using one
over the covering. Often, coverings are constructed using the action of a group on
a locally bounded category, they are then called Galois coverings. Covering tech-
niques were especially useful in the study of the representation-finite algebras, see
[BG82] or [Gab81], but also of tame algebras, see, for instance [DS87].

The origin of this paper lies in the observation that several quotients of algebras
with exhaustive Galois coverings also have exhaustive Galois coverings. More gen-
erally, we consider the situation where we have two finite dimensional algebras A,
B over an algebraically closed field k with a morphism between them, and a Galois
covering Ã of A, and try to construct a Galois covering of B which is compatible
with that of A. We look specifically at two cases, the one where B is a quotient
of A and the one where it is a subalgebra of A. In the first case, we identify a
compatibility condition between the covering Ã and the morphism A → B, which
we call liftability, see 2.1 below. Our main theorem is the following.

Theorem. Let A be a finite dimensional algebra over an algebraically closed field,
F : Ã→ A a Galois covering with group G and I a liftable ideal. If B = A/I, then
there exists an induced Galois covering F ′ : B̃ → B with the same group G such
that we have a commutative square of locally bounded categories and functors

Ã //

F

��

B̃

F ′

��
A // B
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where the horizontal arrows are projection functors. Moreover, if Ã is exhaustive,
then so if B̃.

In case B is a subalgebra of A, we have to make an additional hypothsesis on
B, which we express by saying that B is well-behaved, see 3.1 below. Under this
hypothesis and assuming that the class of morphisms of B is liftable in the sense
seen before, we are also able to construct an induced covering of B, compatible
with that of A, this is the proposition in 3.2 below.

We then proceed to apply our results to the case of trivial extension algebras.
Indeed, a trivial extension algebra has a well-known Galois covering with group
Z, called its repetitive covering, see [HW83]. We prove the following: let C be a
finite dimensional algebra and E a C−C-bimodule, then any ideal I of A = CnE
contained in E is liftable and the induced covering of B = A/I coincides with the
repetitive covering of B. Similarly, B = C n I is a well-behaved subalgebra of A
whose class of morphisms is liftable, and its induced covering again coincides with
the repetitive covering. As was to be expected, the situation gets especially nice
when I is a direct summand of E, leading us to an application to partial relation
extensions, see [ABD+19].

We describe the contents of the paper. After a brief section 1 devoted to recalling
the basic notions and results needed later on, we consider in section 2 the case where
B is a quotient of A by a liftable ideal and in section 3 the case where B is a well-
behaved subalgebra of A with liftable morphisms. Sections 4 and 5 are devoted to
the application to trivial extensions.

1. Preliminaries

1.1. Categories and modules. Throughout, k denotes an algebraically closed
field. We recall that a k-category A is a category whose morphism sets A(x, y) are
k-vector spaces such that the composition is bilinear, see [BG82, (2.1)]. We denote
by Ao the object class of A. A k-category A is locally bounded if
(a) For any x ∈ Ao, the algebra A(x, x) is local.
(b) Distinct objects are not isomorphic.
(c) For any x ∈ Ao, we have

∑
y∈Ao dimkA(x, y) <∞ and

∑
y∈Ao dimkA(y, x) <

∞.
A functor between locally bounded categories is k-linear if it induces a k-linear

map between the morphism sets.
As shown in [BG82, (2.1)], every locally bounded catgory A is of the form A ∼=

kQ/I, where kQ is the path category of a locally finite quiver Q, and I is an
admissible ideal of kQ. A basic finite dimensional k-algebra A can be considered as
a locally bounded category: fix a complete set {e1, . . . , en} of primitive orthogonal
idempotents, take as object set Ao = {1, 2, . . . , n} and for i, j ∈ Ao, let A(i, j) =
eiAej , the compositions being induced by the multiplication of A.

Let A be a locally bounded category, a (finite dimensional) right A-module M
is a k-linear functor from A to the category of finite dimensional vector spaces.
We denote their category by modA, and let indA be a full subcategory of modA
consisting of a complete set of representatives of the isomorphism classes of inde-
composable A-modules. The Auslander-Reiten quiver of A is denoted by Γ(modA).
For further notions of representation theory, we refer the reader to [ASS06, ARS95].

1.2. Galois coverings. Let Ã, A be locally bounded categories. A k-linear functor
F : Ã→ A is covering functor [BG82, (3.1)] if, for any a, b ∈ Ao, the maps⊕

z∈F−1(a)

Ã(x, z)→ A(Fx, a) and
⊕

z∈F−1(b)

Ã(y, x)→ A(b, Fx)
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induced by F are bijective for any x ∈ Ã0.
Let F : Ã → A be a covering functor and G a group of automorphisms of Ã.

Then F is called a Galois covering [Gab81, (3.1)] if:
(a) G acts freely on Ã.
(b) F is G-invariant: Fg = F for every g ∈ G.
(c) F is surjective on objects and G acts transitively of the fibre F−1a for each

a ∈ Ao.
The following notation is used for the action of G on Ã: if g ∈ G and x ∈ Ã then
gx denotes the action of g on x, and if u is a morphism in Ã then gu denotes the
action of g on u.

To a covering functor F : Ã → A, we associate its pushdown functor [BG82,
(3.2)] Fλ : mod Ã→ modA as follows: to an Ã-module M , we assign the A-module
FλM defined by

(FλM)(a) =
⊕

x∈F−1a

M(x)

for every a ∈ Ao and, if α : a → b is a morphism on A and, for each x ∈
F−1a, y ∈ F−1b, αyx denotes the morphism in Ã(x, y) such that α =

∑
y F (αyx),

then FλM(α) : FλM(a) → FλM(b) sends (mx)x, which lies in ⊕x∈F−1aM(x) to
(
∑
xM(αyx)(mx))

y
, which lies in ⊕y∈F−1bM(y).

For properties of Fλ, we refer to [BG82, (3.2)]. A Galois covering F : Ã → A is
called exhaustive when the pushdown functor Fλ is dense [DS87].

1.3. Trivial extensions. Let C be a finite dimensional algebra and CEC a finite
dimensional C − C-bimodule equipped with an associative and bilinear product
E ⊗C E → E denoted as e ⊗ e′ 7→ ee′ (for e, e′ ∈ E). The split extension of C
by E is the k-algebra with underlying vector space A = C ⊕ E and multiplication
defined for (c, e), (c′, e′) ∈ A by

(c, e) (c′, e′) = (cc′, ce′ + ec′ + ee′) .

If E is nilpotent for its product, then A is called a split-by-nilpotent extension and,
if E2 = 0, it is called a trivial extension and denoted by A = C n E, see [ACT08].

Assume that A is the trivial extension of C by the C − C-bimodule E. The
repetitive category Â of A = C n E is the locally bounded category with objects
set Ão = Ao × Z and, for any (a, i), (b, j) ∈ Âo, we have

Â((a, i), (b, j)) =

 C(a, b) if j = i
E(a, b) if j = i+ 1
0 otherwise.

Thus Â can be represented as an algebra of matrices as

Â =



. . . . . . 0

. . . Ci−1 0

. . . Ei Ci 0

0 Ei+1 Ci+1

. . .

0
. . . . . . . . .


where matrices have only finitely many nonzero elements, Ci = C and Ei = E for
all i ∈ Z, all remaining coefficients are zero, addition is the usual matrix addition
and multiplication is induced from that of C, the C − C-bimodule structure of E
and the zero maps E ⊗C E → 0. The identity maps Ci → Ci+1, Ei → Ei+1 induce
an automorphism ϕ of Â. The orbit category Â/〈ϕ〉 inherits from Â a k-algebra
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structure, easily seen to be isomorphic to A. The projection functor F : Â→ A is a
Galois covering with infinite cyclic group generated by ϕ, see [HW83]. It is called
the repetitive Galois covering. For simplicity, Â is called exhaustive whenever so is
the repetitive covering. Notice that we depart from standard notation due a more
general context. Two cases have been studied extensively, those where E = CDCC ,
where D = Homk(−,k) is the standard duality, see for instance [HW83, AS93] and
those where E = Ext2C(DC,C), with C a tilted algebra, see [ABS08].

2. Quotients

2.1. Liftable sets. Let A, B be finite dimensional algebras and f : A → B a
surjective algebra morphism. Assume that there exist two complete sets of pairwise
orthogonal primitive idempotents of A and B, respectively, such that f maps the
ones in A onto the ones in B. Looking at A and B as locally bounded categories
by means of these sets, then f can be considered as a functor.

Note that the image under f of any complete set of pairwise orthogonal idem-
potents of A is a complete set of pairwise orthogonal idemptents of B. More-
over if the former consists of primitive idempotents, then the latter consists of
idempotents which are zero or primitive. Indeed, for any primitive idempotent
e ∈ A, the surjective algebra morphism f induces a surjective algebra morphism
eAe/rad(eAe) → f(e)Bf(e)/rad(f(e)Bf(e)) whose domain is a skew field, hence
f(e) is zero or is a primitive idempotent.

The objective of this section is the following. Let F : Ã→ A be a Galois covering
with group G. We wish to construct a Galois covering F ′ : B̃ → B with the same
group G such that B̃ is a quotient of the locally bounded category Ã and the
projection functor f̃ : Ã → B̃ is compatible with f , in the sense that we have a
commutative diagram of locally bounded categories and functors

Ã
f̃ //

F

��

B̃

F ′

��
A

f // B

We need a compatibility condition between F and f , which we call liftability. A
morphism setM in A is defined by the data, for each pair a, b ∈ Ao, of a k-subspace
M(a, b) of A(a, b). For instance, any ideal in A is a morphism set.

Definition. Let F : Ã→ A be a Galois covering with group G. A morphism setM
in A is called F -liftable if, for any x, y ∈ Ão and u ∈M(Fx, Fy), then, if (ug)g∈G ∈
⊕g∈GÃ(x, gy) is such that u =

∑
g∈G F (ug), we have F (ug) ∈M(Fx, Fy).

In the sequel, the Galois covering F with respect to which liftability is defined
will always be clear from the context. Therefore we simply say “liftable” instead of
“F -liftable”.

Because of the G-invariance of G, liftability is equivalent to the condition ob-
tained by replacing “for any” by “there exists” in its definition.

Example. Let A be given by the quiver

◦
1 α

// ◦
2 β

// ◦
3

γ

xx

bound by rad2A = 0 and F : Ã → A be the Galois covering with group Z given by
the infinite quiver

· · · → ◦
1

α−→ ◦
2

β−→ ◦
3

γ−→ ◦
1

α−→ ◦
2

β−→ ◦
3

γ−→ ◦
1

α−→ · · ·
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also bound by rad2 Ã = 0. The two-sided ideal AγA generated by the arrow γ is
clearly liftable.

In this example, it suffices, in order to check the liftability of AγA, to look only
at its generator γ. This is a general fact.

Lemma. Let F : Ã → A be a Galois covering. A two-sided ideal I in A is liftable
if and only if there exists a generating set R of I such that

R ⊆
⋃

x,y∈Ão

F (Ã(x, y)) .

Proof. Necessity is easy. Indeed, let I be liftable and set

R =
⋃

g∈G, x,y∈Ão

{F (ug) | u ∈ I(Fx, Fy)}

where, as before, (ug)g∈G ∈ ⊕g∈GÃ(x, gy) is such that u =
∑
g∈G F (ug). Then

R ⊆ ∪x,y∈ÃoF (Ã(x, y)). Because I is liftable, R ⊆ I and moreover, every element
of I is a sum of compositions of elements of R.

We prove sufficiency. Assume I satisfies the stated condition, choose x, y ∈ Ão
and u ∈ I(Fx, Fy). Then there exists a finite family of pairs of morphisms of A,
denoted as ((αr, βr))r∈R such that, for every r ∈ R, there exist

• an object ar ∈ Ao such that αr ∈ A(Fx, ar) and
• an object br ∈ Ao such that βr ∈ A(br, Fy)

so that we have u =
∑
r∈R βrrαr.

For r ∈ R, take xr ∈ F−1ar and let (αr,g)g∈G ∈ ⊕g∈GÃ(x, gxr) be such that
αr =

∑
g∈G F (αr,g). Because of the hypothesis on R, r is the image under F

of a morphism in Ã. Because the fibre F−1ar equals the G-orbit of xr and F is
G-invariant, there exist yr ∈ F−1br and r̃ ∈ Ã(xr, yr) such that r = F (r̃). Let
also (βr,g)g∈G ∈ ⊕g∈GÃ(yr, gy) be defined by βr =

∑
g∈G F (βr,g). Then, for each

r ∈ R,
βrrαr = (

∑
g∈G

F (βr,g))F (r̃)(
∑
g∈G

F (αr,g))

=
∑

g,h∈G
F (βr,h)F (r̃)F (αr,g)

=
∑

g,h∈G
F ( gβr,h

g r̃ αr,g) .

Setting g = kh−1, or equivalently k = gh, we get

βrrαr =
∑
k∈G

F (
∑
h∈G

kh−1

βr,h
kh−1

r̃ αr,kh−1)

where the sum in parenthesis lies in Ã(x, ky). Thus we have

u =
∑
r∈R

βrrαr

=
∑
r∈R

∑
k∈G

F (
∑
h∈G

kh−1

βr,h
kh−1

r̃ αr,kh−1)

=
∑
k∈G

F (
∑

h∈G, r∈R

kh−1

βr,h
kh−1

r̃ αr,kh−1) .

Now, u can be written as u =
∑
k∈G F (uk), with (uk)k∈G ∈ ⊕k∈GÃ(x, ky). Because

F is a Galois covering, this implies

uk =
∑

h∈G, r∈R

kh−1

βr,h
kh−1

r̃ αr,kh−1 .
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Then
F (uk) =

∑
h∈G,r∈R

F (βr,h)F (r̃)F (α,kh1)

belongs to I(Fx, Fy) because F (r̃) = r ∈ I(Far, F br). �

2.2. Lifted ideal. We proceed to lift a liftable ideal to the covering.

Lemma. Let I be a liftable ideal and, for each x, y ∈ Ão, let

Ĩ(x, y) = {u ∈ Ã(x, y) | Fu ∈ I(Fx, Fy)} .

Then Ĩ = ∪x,y∈Ão Ĩ(x, y) is an ideal in Ã such that F (Ĩ) = I and, for each x, y ∈ Ão,
the map ⊕g∈GĨ(x, gy)→ I(Fx, Fy) induced by F is bijective.

Proof. The definition of Ĩ says that it is the preimage of I under the functor F .
Because I is an ideal in A, so is Ĩ in Ã. Moreover, F (Ĩ) ⊆ I. Because I is liftable,
the map ⊕g∈GĨ(x, gy) → I(Fx, Fy) induced by F is surjective. It is bijective
because F is a Galois covering. �

The ideal Ĩ will be called the lifting of I.

2.3. The induced covering. We prove that a Galois covering F : Ã → A and a
liftable ideal I of A induce together a Galois covering F ′ : Ã/Ĩ → A/I compatible
with F .

Proposition. Let F : Ã → A be a Galois covering with group G and I a liftable
ideal of A. Then there exists an ideal Ĩ of Ã and a Galois covering F ′ : Ã/Ĩ → A/I
with group G such that the square

Ã //

F

��

Ã/Ĩ

F ′

��
A // A/I

where the horizontal arrows are the projections, commutes.

Proof. Let C denote the full subcategory of A whose object set is Co = {a ∈
Ao | ea 6∈ I(a, a)}. We identify A/I with the quotient category C/I, that is, the
quotient of C whose morphism sets are (C/I)(a, b) = C(a, b)/I(a, b) for a, b ∈ Co.
Let Ĩ be the lifting of I, as constructed in 2.2, and C̃ the full subcategory of Ã with
object set C̃o = {x ∈ Ão | ex 6∈ Ĩ(x, x)}. Then we can identify similarly Ã/Ĩ with
the quotient category C̃/Ĩ.

Let x ∈ C̃o, then, because of the definition of Ĩ as the preimage of I under F ,
the morphism eFx (= Fex) does not belong to I(Fx, Fx). and so Fx ∈ Co. This
shows that the functor F : Ã→ A induces a functor F1 : C̃ → C. Moreover, because
F Ĩ = I, see the lemma in 2.2, the functor F1 induces a functor F ′ : Ã/Ĩ → A/I.
We now prove that F ′ is a Galois covering with group G.

Because of the definition of Ĩ and because F is G-invariant, the ideal Ĩ is G-
stable. In particular, C̃o is G-stable. Therefore the free action of G on Ã induces
a free action of G on C̃. Because Ĩ is G-stable, this action induces in turn a free
action of G on Ã/Ĩ.

Because F is G-invariant and F1, F ′ are induced by F , we get that F1 and F ′
are G-invariant.

Let a ∈ (A/I)o. Then a ∈ Ao and ea 6∈ I(a, a). Because F is a Galois covering,
there exists x ∈ Ão such that Fx = a and the fibre F−1a is actually the G-orbit of
x. Let g ∈ G. Then egx = gex 6∈ Ĩ(gx, gx) because Ĩ is G-stable and gx 6∈ C̃o so
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that gx ∈ (Ã/Ĩ)o. Finally, F ′(gx) = F (gx) = a. That is, the fibre (F ′)−1a equals
the G-orbit of x.

There remains to prove that F ′ is a covering functor. Let x, y ∈ (Ã/Ĩ)o, then
we have a commutative diagram with exact rows.⊕

g∈G
Ĩ(x, gy) //

��

⊕
g∈G

Ã(x, gy) //

��

⊕
g∈G

Ã/Ĩ(x, gy) //

��

0

I(Fx, Fy) // A(Fx, Fy) // A/I(Fx, Fy) // 0

where the vertical arrows are induced by F . Now the vertical arrow in the middle
is bijective, because F is a covering functor, and the one on the left is also bijective,
because of the lemma in 2.2. Therefore, the dotted arrow on the right is bijective.

We have established that F ′ is a Galois covering with group G. The commuta-
tivity of the square in the statement follows from the very construction of F ′. �

2.4. Pushdowns and changes of rings. The module category over a locally
bounded k-category admits tensor products. This indeed follows from general re-
sults, see, for instance, [Fre64, p. 84]. The exactness of the pushdown functor
implies the following easy “locally bounded version” of Watts theorem.

Lemma. Let A be a finite dimensional algebra and F : Ã → A a Galois covering.
Then the associated pushdown functor Fλ is isomorphic to the functor −⊗Ã A.

Proof. We first give a left Ã-module structure to the algebra A. The functor Fλ
induces an algebra morphism

ϕ : Ã ' End ÃÃ → EndFλ(ÃÃ) ' EndAA ' A .

We may then define, for ã ∈ Ã and a ∈ A

ã · a = ϕ(ã)a .

Let now M be an arbitrary Ã-module and

P1 → P0 →M → 0

a projective resolution in mod Ã. Applying the right exact functor Fλ and −⊗ÃA,
we obtain a commutative diagram with exact rows

Fλ(P1) //

'
��

Fλ(P0) //

'
��

Fλ(M) //

��

0

P1 ⊗Ã A // P0 ⊗Ã A // M ⊗Ã A // 0

because, if ex is an idempotent in Ã, then Fλ(exÃ) = eFxA, see [BG82, (3.2)]. This
implies the statement. �

2.5. Proof of our theorem. We are now able to state and prove our theorem.

Theorem. Let A be a finite dimensional algebra, F : Ã→ A a Galois covering with
group G and I a liftable ideal of A. If B = A/I, then there exists a Galois covering
F ′ : B̃ → B with group G and a commutative square of locally bounded categories
and functors

Ã

F

��

// B̃

F ′

��
A // B
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where the horizontal arrows are the projections. Moreover, if F is exhaustive, then
so is F ′.

Proof. Let Ĩ be constructed as in the lemma in 2.2, and B̃ = Ã/A as in the
proposition in 2.3. Then the first statement follows directly from that proposition,
so we just have to prove the second one. Because B̃ = Ã/Ĩ, we have a change of
rings functor −⊗Ã B̃ : mod Ã→ mod B̃, hence a diagram of module categories and
functors

mod Ã
−⊗ÃB̃ //

Fλ
��

mod B̃

F ′λ
��

modA
−⊗AB // modB

This diagram commutes because Fλ ' − ⊗Ã A and F ′λ ' − ⊗B̃ B, see the lemma
in 2.4, so both compositions in the diagram equal −⊗Ã B. If F is exhaustive then
Fλ is dense. Because B = A/I, the functor −⊗A B is also dense so (−⊗A B)Fλ is
dense. Hence so is F ′λ and we are done. �

2.6. Consequences. We list some consequences of the theorem.

Corollary. Under the assumptions of the theorem, if we assume moreover that G
acts freely on ind Ã, then:
(a) G acts freely on ind B̃.
(b) F ′λ sends any almost split sequence in mod B̃ to an almost split sequence in

modB.
(c) F ′λ induces an isomorphism between Γ(mod B̃)/G and a subquiver of Γ(modB)

consisting of connected components. If F is exhaustive, then Γ(mod B̃)/G '
Γ(modB).

(d) If moreover Ã is locally support-finite, then B̃ is tame if and only if so is B.

Proof. (a) Indeed, because B̃ = Ã/Ĩ and Ĩ is G-stable, mod B̃ is canonically iso-
morphic of a G-stable full subcategory of mod Ã, closed under direct sums and
summands.

(b) This follows from [Gab81, (3.6)] and (a).
(c) This follows from [Gab81, (3.6)] and (a), and also the theorem in 2.5.
(d) Because mod B̃ is a full subcategory of mod Ã closed under direct sums and

summands, Ã being locally support-finite implies B̃ being locally support-finite.
Hence, because of (a) and [DLS86], we have that B̃ is tame if and only if so is
B. �

3. Subalgebras

3.1. Well-behaved subalgebras. We now consider a situation in some sense dual
to that of section 2. We let A, B be finite dimensional algebras and f : B → A an
injective algebra morphism, that is, B is isomorphic to a subalgebra of A. We let
F : Ã→ A be a Galois covering with group G and wish to construct another Galois
covering F ′′ : B̃ → B with the same group G which is compatible with F , that is,
there exists a functor f̃ : B̃ → Ã and a commutative diagram of locally bounded
categories and functors

B̃
f̃ //

F ′′

��

Ã

F

��
B

f // A
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Because subalgebras are harder to handle than quotients, we need additional as-
sumptions.

Definition. A subalgebra B of a finite dimensional algebra A is called well-behaved
if:
(a) For every a ∈ Ao, we have ea ∈ Bo, and
(b) For every a, b ∈ Ao, the inclusion B → A induces an injective k-linear map

radB(a, b)

rad2B(a, b)
→ radA(a, b)

rad2A(a, b)
.

For instance, if A is a split extension of B by some bimodule, then it follows
from [ACT08, (1.5)] that B is a well-behaved subalgebra of A.

We fix some notation. Let F : Ã → A be a Galois covering with group G.
Because of [LM07, (4.4)], see also [BG82, (2.1)], there exist a bound quiver (Q, I),
a presentation η : kQ/I → A, inducing a bijection Q0 → Ao, a Galois covering
π : (Q̃, Ĩ)→ (Q, I) of bound quivers with group G, and a presentation η̃ : kQ̃/Ĩ → Ã

inducing a bijection Q̃0 → Ão, such that F equals the composition

Ã
η̃−1

∼−−→ kQ̃/Ĩ
π∗−→ kQ/I

η∼−→ A

where π∗ : kQ̃/Ĩ → kQ/I is induced by π.

Lemma. Assume B is a well-behaved subalgebra of A. If there exists a subquiver
Q′ of Q such that B ' kQ′/(I ∩ kQ′), then the morphism set B =

⋃
a,b∈Bo B(a, b)

is liftable.

Proof. Let I ′ = I ∩ kQ′ and identify kQ′/I ′ with {u+ I | u ∈ kQ′}. For each pair
of objects a, b ∈ Bo and morphism u ∈ B(a, b), there exist paths u1, . . . , um in Q′
and scalars λ1, . . . , λm such that

u =

m∑
i=1

λi (ui + I) .

Assume x ∈ F−1a, y ∈ F−1b then there exist, for each i with 1 6 i 6 m, a unique
gi ∈ G and a unique path ũi in Q̃ from x to giy such that π(ũi) = ui. Then

u =

m∑
i=1

λiF (ũi + Ĩ) .

Because F is a Galois covering, letting (vg)g∈G ∈ ⊕g∈GÃ(x, gy) be such that u =∑
g∈G F (vg), we have, for every g ∈ G

vg =
∑
gi=g

λi (ũi + Ĩ) ,

where the sum is taken over all i such that gi = g. Therefore

F (vg) =
∑
gi=g

λi (ui + I) .

Because ui is a path in Q′, we have ui + I ∈ B. Hence F (vg) ∈ B(a, b). �

3.2. Lifting of well-behaved subalgebras. Let B be a well-behaved subalgebra
of A and F : Ã → A a Galois covering with group G such that the morphism set
B =

⋃
a,b∈Bo B(a, b) is liftable. We define the lifting B̃ of B to be the (non-full)

subcategory of Ã such that B̃o = Ão and, for x, y ∈ Ão,

B̃(x, y) = {u ∈ Ã(x, y) | Fu ∈ B(Fx, Fy)} .
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Because B̃ is a subcategory of Ã, the functor F induces a functor F ′′ : B̃ → B by
restriction and corestriction.

Proposition. With the above notation, F ′′ : B̃ → B is a Galois covering with
group G such that the square

B̃ �
� //

F ′′

��

Ã

F

��
B �
� // A

where the horizontal functors are inclusions, commute.

Proof. By definition, B̃ is a G-stable subcategory of Ã. In particular, the free
action of G on Ã induces a free action of G on B̃. Moreover, for this action, F ′′

is G-invariant. Because Ão = B̃o, Ao = Bo and F ′′ is restricted from F , the fibres
of objects in B coincide with the G-orbits in B̃o. Let x, y ∈ Ão. Because F ′′ is
restricted from F , the following square, where the vertical arrows are induced from
F and the horizontal ones are inclusions, commutes⊕

g∈G
B̃(x, gy) �

� //

��

⊕
g∈G

Ã(x, gy)

��
B(Fx, Fy) �

� // A(Fx, Fy)

Because the vertical right arrow is bijective, the left one is injective. Let u ∈
B(Fx, Fy). We have assumed that u is liftable. That is, if (ug)g ∈ ⊕g∈GÃ(x, gy)
is such that u =

∑
g∈G F (ug) then we have F (ug) ∈ B(Fx, Fy). But this implies

ug ∈ B̃(x, y) due to the definition of B̃. This shows that the vertical left arrow
is surjective and hence bijective. Therefore F ′′ is a covering functor, and thus a
Galois covering.

The commutativity of the square in the statement follows directly from the
definitions of B̃ and F ′′. �

4. Trivial extensions and quotients

4.1. The setting. Let C be a finite dimensional algebra, E a C−C-bimodule and
A = C n E. If I is a C − C-subbimodule of E, then I is an ideal of A. Indeed, if
(0, x) ∈ I and (c, e) ∈ A then (c, e)(0, x) = (0, cx) ∈ I and similarly (0, x)(c, e) ∈ I.
Because the converse is obvious, the C − C-subbimodules of E coincide with the
two-sided ideals of A contained in E. Such subbimodules determine new trivial
extensions.

Lemma. Let A = C n E and I a C − C-subbimodule of E, then A/I ' C n E/I.

Proof. We have a short exact sequence

0→ E/I → A/I → C → 0 .

Moreover, the direct sum decomposition A = C ⊕ E as C − C-bimodules and the
fact that I ⊆ E imply that A/I ' C ⊕ E/I as C − C-bimodules. �

From now on, let I be an ideal of A contained in E. We set B = A/I. Each of
A, B has a repetitive covering. We wish to compare the repetitive covering B̂ → B
with the covering constructed in the proposition of 2.3 starting from the repetitive
covering Â→ A and the injective algebra morphism A→ B.
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4.2. Liftability. We prove that any subbimodule of E is liftable with respect to
the repetitive covering Â→ A.

Lemma. Let A = C nE and I a C −C-subbimodule of E. Then I is liftable with
respect to the repetitive covering of A.

Proof. Let F : Â→ A denote the repetitive covering, and a, b ∈ Ao. Because of the
definition of Â, we have E(a, b) = Â((a, 0), (b, 1)) and the map Â((a, 0), (b, 1)) →
A(a, b) induced from F is the inclusion morphism E(a, b) ↪→ A(a, b). Let u ∈ I(a, b).
Because I ⊆ E, the element u of I(a, b) defines a morphism v ∈ Â((a, 0), (b, 1)) such
that u = F (v). �

4.3. Lifting the quotient. With the above notation, let Î denote the lifting of I
as defined in 2.2. As shown in the proposition in 2.3, we have a Galois covering
F ′ : Â/Î → A/I with the same group Z as F : Â→ A.

Proposition. With the above notation, the induced Galois covering F ′ : Â/Î →
A/I = B coincides with the repetitive covering B̂ → B.

Proof. We first show that B̂ = Â/Î. Let (a, i), (b, j) ∈ Âo and u ∈ Â((a, i), (b, j)).
In order for u to be nonzero, we must have j ∈ {i, i + 1}. If j = i, then
Â((a, i), (b, i)) = C(a, b) and the image Fu of u is u itself viewed as element of
C(a, b). If, on the other hand, j = i+ 1, then Â((a, i), (b, i+ 1)) = E(a, b) and Fu
is again u viewed as element of E(a, b). It follows from the construction of Î in
2.2 that u ∈ Î((a, i), (b, i + 1)) if and only if Fu = u ∈ I(a, b). Using the matrix
representation of Â, the ideal I can be written as

Î =



. . . 0

. . . 0
I 0

I 0

0
. . . . . .


so that, clearly

Â/Î ∼=



. . . 0

. . . C
E/I C

E/I C

0
. . . . . .


∼= B̂

as algebras and therefore as categories. This establishes our statement. That the
functor F ′ : Â/Î → B coincides with the repetitive covering B̂ → B follows from
its construction, see the proposition in 2.3. �

4.4. Exhaustivity. Combining the proposition in 4.3 with the theorem in 2.5, we
get the following corollary.

Corollary. With the above notation, if the repetitive covering Â→ A is exhaustive,
then so is the repetitive covering B̂ → B.

4.5. Auslander-Reiten quivers. Using the corollaries in 4.4 and 2.6 yields the
next statement.

Corollary. With the above notation, if Z acts freely on ind Â, then:
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(a) Z acts freely on ind B̂.
(b) The pushdown functor F ′λ sends every almost split sequence in mod B̂ to an

almost split sequence in modB.
(c) F ′λ induces an isomorphism between Γ(mod B̂)/Z and a subquiver of Γ(modB)

consisting of connected components. If Â is exhaustive, then this subquiver
equals Γ(modB).

4.6. Selfinjective trivial extensions. If E equals the minimal injective cogener-
ator CDCC , then the trivial extension A = C nDC is selfinjective.

Corollary. Let C be derived equivalent to a tame hereditary or to a tubular algebra,
A = C nDC, I a C − C-subbimodule of E and B = A/I. Then

(a) B̂ is tame and the repetitive covering B̂ → B is exhaustive.
(b) The pushdown functor induces a quiver isomorphism Γ(mod B̂)/Z ' Γ(modB).

Proof. Because of [AS93, Theorem B], the hypothesis implies that Â is tame and
exhaustive. Therefore B̂ is tame because Â is tame and B̂ = Â/Î. It is exhaustive
because of the corollary in 4.4. Moreover, in this case, G = Z acts freely on
ind Â. Therefore, because of the corollary in 4.5, it acts freely on ind B̂ and the
pushdown functor associated to the repetitive covering induces the required quiver
isomorphism. �

Example. Let C be the path algebra of the quiver

◦
1

◦
2

αoo β // ◦
3

Then the trivial extension A = C nDC is given by the quiver

◦
1

α′

%%
◦
2α

oo
β
// ◦
3

β′

yy

bound by αα′ = ββ′ and rad3A = 0. Let I = Cα′C be generated by the arrow α′,
then I is a subbimodule of DC and B = A/I is given by the quiver

◦
1

◦
2α

oo
β
// ◦
3

β′

yy

bound by ββ′ = 0. The repetitive category Â is given by the quiver

1◦
α′

++

1◦
α′

++

1◦
α′

++

1◦
α′

++· · · ◦
3

α

bb

β
||

◦
3

α

bb

β
||

◦
3

α

bb

β
||

◦
3

α

bb

β
||

· · ·

◦
2

β′

33

◦
2

β′

33

◦
2

β′

33

◦
2

β′

33

bound by αα′ = ββ′ and rad3 Â = 0. Similarly, B̂ is given by the quiver

1◦ 1◦ 1◦ 1◦

· · · ◦
3

α

bb

β
||

◦
3

α

bb

β
||

◦
3

α

bb

β
||

◦
3

α

bb

β
||

· · ·

◦
2

β′

33

◦
2

β′

33

◦
2

β′

33

◦
2

β′

33
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bound by ββ′ = 0. Here, C is hereditary of Dynkin type therefore Â is exhaustive,
hence so is B̂.

5. Trivial extensions and subalgebras

5.1. The setting. We now apply he construction of Section 3. Let, as before,
A = C nE and E′ a C −C-subbimodule of E. Then B = C nE′ can be identified
to a subalgebra of A such that the diagram

0 // E′ //

��

B //

��

C // 0

0 // E // A // C // 0

where the exact rows are trivial extensions and the vertical arrows are inclusions,
commutes.

Lemma. Let A = C nE and E′ a C −C-subbimodule of E. Then B = C nE′ is
a well-behaved subalgebra of A such that the morphism set B =

⋃
a,b∈Bo B(a, b) is

liftable with respect to the repetitive covering.

Proof. Indeed, B as well as A have the same primitive idempotents as C. The
second condition of well-behavedness is satisfied because of [ACT08, (2.5)]. Thus,
B is well-behaved.

Let a, b ∈ Bo, then B(a, b) = C(a, b)⊕ E′(a, b). If u ∈ C(a, b), then it is clearly
liftable. If u ∈ E′(a, b), then it is liftable because E′ is an ideal of A contained in
E and because of the lemma in 4.2. �

5.2. Repetitive covering. The lemma in 5.1 shows that the proposition in 3.2
can be applied to construct a Galois covering F ′′ : B̃ → B with group Z.

Proposition. Let A = C n E. Consider a C − C-subbimodule E′ of E and let
B = C n E′. Then the repetitive covering B̂ → B coincides with the induced
covering constructed in the proposition in 3.2.

Proof. In order to show that B̃ = B̂, because the two categories have the same
objects, we just need to check that they have the same morphisms.

Let a, b ∈ Co and i, j ∈ Z. If i = j, then Â((a, i), (b, j)) = C(a, b), that is, the
map Â((a, i), (b, i)) → A(a, b) induced by F takes values in C(a, b). Because C is
a subalgebra of B, we get B̃((a, i), (b, i)) = C(a, b) for all a, b ∈ Co and i ∈ Z. If
j = i + 1, then Â((a, i), (b, i + 1)) = E(a, b) and the map Â((a, i), (b, i + 1)) →
A(a, b) is the inclusion E(a, b) → A(a, b). Because of the definition of B̃, we have
B̃((a, i), (b, i + 1)) = E′(a, b) for all a, b ∈ Co and i ∈ Z. Finally, if j 6∈ {i, i + 1},
then Â((a, i), (b, j)) = 0 and hence B̃((a, i), (b, j)) = 0 for all a, b ∈ Co and i, j ∈ Z
such that j 6∈ {i, i+ 1}. This proves that B̃ = B̂.

Because the functor F ′′ : B̃ → B of the proposition in 3.2 is obtained by restric-
tion and corestriction from the repetitive covering Â → A, it equals the repetitive
covering B̂ → B. �

5.3. Direct summands. We now consider the intersection of the situations of 4.3
and 5.2, namely, we assume that A = CnE and E = E′⊕E′′ as C−C-bimodules.
We set B = C n E′. Then we have a trivial extension

0 // E′′
ι // A

π // B
σ
oo // 0

where ι is the inclusion, π is the projection and σ is such that πσ = idB . For a proof
of this statement, we refer to [ABD+19, (2.1.1)]. This situation actually happens
when we deal with partial relation extensions, see later in [ABD+19].
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As shown in the proof of the lemma in 4.3, the C − C-subbimodule E′′ of E
determines an ideal Ê′′ of Â defined by:

Ê′′ =



. . . 0

. . . 0
E′′ 0

E′′ 0

0
. . . . . .


so that Â/Ê′′ ' B̂. We show that the trivial extension A = BnE′′ lifts to a trivial
extension Â = B̂ n Ê′′ and this lifting is compatible with the repetitive coverings
F ′ : B̂ → B and F : Â→ A.

Corollary. Let A = C n E. Consider a decomposition E = E′ ⊕ E′′ of C − C-
bimodules and let B = C n E′. Then we have a trivial extension Â = B̂ n Ê′′

together with functors π̂ : Â→ B̂, σ̂ : B̂ → Â such that σF ′ = Fσ̂ and πF = F ′π̂.

Proof. Applying the proposition in 4.3 to π : A→ B yields a commutative square

Â
σ̂ //

F

��

B̂

F ′

��
A

π // B

and applying the proposition in 5.2 to σ : B → A yields another commutative square

B̂
σ̂ //

F ′

��

Â

F

��
B

σ // A

Moreover, the constructions of π̂, σ̂ in these lemmata give immediately that π̂σ̂ =
idB̂ . Because it is clear that Ê′′ is the kernel of π̂, this gives the required trivial
extension. �

As an immediate consequence, the exhaustiveness of F implies that of F ′.

5.4. The selfinjective case. In this case, E = DC. It seems to be well-known
that DC is indecomposable as a C −C-bimodule, and even a brick, whenever C is
triangular. However, we were not able to find it in the literature and therefore we
give here a proof.

Lemma. Let C be a connected and triangular algebra, then the endomorphism
algebra of the C − C-bimodule DC is k. In particular, CDCC is indecomposable.

Proof. Since dimk(C) is finite then so is dimk(C ⊗k Cop). Therefore, the algebras
EndC⊗kCop(DC) and EndC⊗kCop(C) are isomorphic. Note that EndC⊗kCop(C) ∼=
{c0 ∈ C | cc0 = c0c for all c ∈ C} = Z(C). Now, because C is triangular, a given
c ∈ Z(C) must satisfy

c =
∑
i∈Co

eic =
∑
i∈Co

cei =
∑
i∈Co

eicei ∈
∏
i∈Co

k · ei ,

and the family of scalars (λi)i∈Co such that c =
∑
i∈Co λiei must be constant

because C is connected and, for i, j ∈ Co and x ∈ eiCej\{0} one has λix = cx =
xc = λjx. Accordingly, Z(C) = k · 1C . �



15

5.5. Partial relation extensions. Let C be a triangular algebra of global dimen-
sion at most two and E = Ext2C(DC,C) with its natural C−C-bimodule structure.
Then A = C n E is called a relation extension. This class of algebras was much
investigated, see, for instance [ABS08, ABS09, AGST16, ABD+19], because of its
connection with cluster algebras: indeed, if C is a tilted algebra, then its rela-
tion extension is cluster tilted, and every cluster tilted algebra is of this form. If
A = C n E is a relation extension and E = E′ ⊕ E′′ as C − C−-bimodules, then
B = C nE′ is called a partial relation extension, see [ABD+19]. We obtain in this
case the following result due to Sanchez Mc Millan.

Corollary ([SMM17]). Let C be a tilted algebra and assume E = Ext2C(DC,C)
decomposes as E = E′ ⊕ E′′ as C − C-bimodule. Then the repetitive covering of
B = C n E′ is exhaustive.

Proof. Indeed, A = C nE is cluster tilted. Because of the main result of [ABS09],
the repetitive covering of A is exhaustive. Applying the corollary in 5.3 yields our
statement. �

Example. Let C be the tilted algebra of type A5 given by the quiver

1◦ ◦4
αyy◦

3

β

ee

δ

yy
2◦ ◦5

γ
ee

bound by αβ = 0, γδ = 0. Its relation extension A = C n E is the cluster tilted
algebra

1◦ λ // ◦4
αyy◦

3

β

ee

δ

yy
2◦

µ
// ◦5

γ
ee

bound by αβ = 0, βλ = 0, λα = 0, γδ = 0, δµ = 0, µγ = 0. In this case,
E = CλC ⊕ CµC. Letting E′ = CµC, we get B = C n E′ given by the quiver

1◦ ◦4
αyy◦

3

β

ee

δ

yy
2◦

µ
// ◦5

γ
ee

with the inherited relations. Its repetitive covering is given by the quiver

1◦ 4◦
α

~~

1◦ 4◦
α

~~

1◦ 4◦
α

~~

· · ·

· · · ◦
3

β
``

δ~~

◦
3

β
``

δ~~

◦
3

β
``

δ~~
◦
2

◦
5

γ

``

◦
2µ

oo ◦
5

γ

``

◦
2µ

oo ◦
5

γ

``

· · ·

with the lifted relations. According to the corollary, it is exhaustive.
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