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Abstract. In this paper, we define and study a special type of trisections in
a module category, namely the compact trisections which characterise quasi-
directed components. We apply this notion to the study of laura algebras
and we use it to define a class of algebras with predictable Auslander-Reiten
components.

Let Λ be an artin algebra, modΛ be the category of finitely generated right
Λ-modules and indΛ be a full subcategory of modΛ consisting of exactly one
representative from each isomorphism class of indecomposable Λ-modules. In
this paper, we are interested in the study of a particular type of components of
the Auslander-Reiten quiver Γ(modΛ) of Λ, namely the so-called quasi-directed
components which appeared naturally in the study of laura algebras [3, 19]. They
are components containing at most finitely many modules lying on oriented cy-
cles and which moreover are generalised standard (in the sense of [23]). These
components and their connection to laura algebras have been studied in [27, 14].
Our objective in this paper is to give simple new categorical characterisations of
quasi-directed components.

For this purpose, our main tool is the notion of trisection, introduced in [13]:
a trisection (A,B, C) of indΛ is a triple of full disjoint subcategories of indΛ such
that indΛ = A∪B∪C and HomΛ(B,A) = HomΛ(C,B) = HomΛ(C,A) = 0. Here,
we define and study a special type of trisections, namely the compact trisections
which characterise quasi-directed components. A second approach is motivated
by the observation that a trisection (A,B, C) in indΛ is really determined by the
central subcategory B. Along this line, and in the spirit of [19], we define the core
of a component Γ to be a full subcategory of indΛ which is the convex envelope in
indΛ of a left and of a right section of Γ (in the sense of [1]). We prove here that
the presence of a core characterises quasi-directed components. Moreover, these
conditions yield a description of the module category of Λ which then resembles
closely that of laura algebra. Namely, our main result is as follows.

Theorem. The following conditions are equivalent for an artin algebra Λ:

(a) Γ(modΛ) admits a separating quasi-directed component Γ.
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(b) indΛ admits a compact trisection (A,B, C).
(c) Γ(modΛ) admits a separating convex component Γ having a left section Σl

and a right section Σr whose convex envelope ∆ is a core in Γ.

If these conditions are satisfied, then Γ has only finitely many τΛ-orbits and is
convex in Γ(modΛ). Moreover, if Γ′ 6= Γ is a component of Γ(modΛ), then either
Γ′ ⊂ A or Γ′ ⊂ C. Moreover,

(a) HomΛ(Γ′, Γ) 6= 0 implies Γ′ ⊂ A;
(b) HomΛ(Γ, Γ′) 6= 0 implies Γ′ ⊂ C.

In particular, if Γ is non-semiregular, then Λ/Ann(Γ) is a laura algebra having
Γ as a unique quasi-directed faithful component while, if Γ is semiregular, then
Λ/Ann(Γ) is a tilted algebra having Γ as a connecting component.

Since quasi-directed components are intimately connected to laura algebras,
we get, as corollaries, several new characterisations of classes of laura algebras
by means of trisections and cores. We end this paper with the construction of a
generalisation of the class of laura algebras, which we call quasi-laura, and the
nth iterates of this construction, which we call n-quasi-laura.

1. Preliminaries

1.1. Notation. Throughout this paper, all our algebras are basic and connected
artin algebras. For an algebra Λ, we denote by modΛ its category of finitely
generated right Λ-modules and by indΛ a full subcategory of modΛ consisting
of exactly one representative from each isomorphism class of indecomposable
modules. When we speak about a Λ-module (or an indecomposable Λ-module),
we always mean implicitly that it belongs to modΛ (or to indΛ, respectively).
Also, all subcategories of modΛ are full and so are identified with their object
classes.

A subcategory C of indΛ is called finite if it has only finitely many objects, and
it is cofinite if its complement Cc = indΛ\C is finite. We sometimes write M ∈ C
to express that M is an object in C. We denote by addC the subcategory of modΛ
with objects the finite direct sums of summands of modules in C and, if M is
a module, we abbreviate add{M} as addM . Similarly, we denote by indM the
subcategory of indΛ having as objects the indecomposable summands of M . We
denote the projective (or injective) dimension of a module M as pdM (or idM ,
respectively). The global dimension of Λ is denoted by gl.dimΛ. For a point x in
the quiver of Λ, we denote by Px (or Ix, or Sx) the indecomposable projective (or
injective, or simple, respectively) module corresponding to this point. Finally, if
C,D are two full subcategories of modΛ, we write HomΛ(C,D) = 0 to express
that HomΛ(X,Y ) = 0 for any X ∈ C and Y ∈ D.

For an algebra Λ, we denote by Γ(modΛ) its Auslander-Reiten quiver and by
τΛ= DTr, τ−1

Λ = TrD its Auslander-Reiten translations. For further definitions or
facts needed on modΛ or Γ(modΛ), we refer the reader to [7, 8].
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1.2. Paths. Let Λ be an algebra. Given M,N ∈ indΛ, a path from M to N in
indΛ (denoted by M ; N) is a sequence of non-zero morphisms

(∗) M = X0

f1

→ X1 → · · · → Xt−1

ft

→ Xt = N

(t ≥ 1), where Xi ∈ indΛ for all i. We then say that M is a predecessor of N
and N is a successor of M . A path from M to M involving at least one non-
isomorphism is a cycle. A module M ∈ indΛ which lies on no cycle is directed. If
each fi in (∗) is irreducible, we say that (∗) is a path of irreducible morphisms.
A path (∗) of irreducible morphisms is sectional if τΛXi+1 6= Xi−1 for all i with
0 < i < t. A refinement of (∗) is a path in indΛ

M = X ′
0 −→ X ′

1 −→ · · · −→ X ′
s−1 −→ X ′

s = N

such that there is an order-preserving injection σ : {1, · · · , t−1} → {1, · · · , s−1}
satisfying Xi = X ′

σi for all i with 0 < i < t.
Let C be a subcategory of indΛ. Then, C is called directed (or almost directed)

if all (or all but finitely many, respectively) objects of C are directed. Also, C is
closed under predecessors if, whenever M ; N is a path in indC, with N ∈ C,
then M ∈ C. An example is the left part LΛ of modΛ, defined in [13], which is
the full subcategory of indΛ with object class

LΛ = {M ∈ indΛ : pdL ≤ 1 whenever there is a path L ; M}

Another example is, for a given module M , the full subcategory PredM of the
predecessors of M : this is the full subcategory of indΛ consisting of the modules
X such that there exist an indecomposable summand Y of M and a path X ; Y .

We define dually subcategories closed under successors, examples of which are
the right part RΛ of modΛ, and the subcategory SuccM of indΛ consisting of the
successors of M .

Given X,Y ∈ indΛ, we denote by radΛ(X,Y ) the group of the morphisms
f : X −→ Y which are not isomorphisms and by rad∞

Λ (X,Y ) the intersection of
all powers radi

Λ(X,Y ), i ≥ 1, of radΛ(X,Y ). The following result has been proven
in different versions (see, for instance, [21](2.1) or [22](2.1)). The one below is
[27](1.1).

Lemma. Let Λ be an algebra and X,Y ∈ indΛ be such that rad∞Λ (X,Y ) 6= 0.
Then, for each t ≥ 0, there exists a path in indΛ

X = X0

f1

→ X1 → · · ·
ft

→ Xt
gt

→ Y

with the Xi pairwise non-isomorphic, gtft · · · f1 6= 0, each fi is a composite of
irreducible morphisms and gt ∈ rad∞

Λ (Xt, Y ).

1.3. Covariant and contravariant finiteness. Let X be an additive subcate-
gory of modΛ. For a Λ-module M , a right X -approximation of M is a morphism
fM : XM −→ M with XM ∈ X such that any morphism f : X −→ M with
X ∈ X factors through fM . The subcategory X is contravariantly finite if any



4 ALVARES, ASSEM, COELHO, PEÑA, AND TREPODE

Λ-module has a right X -approximation. We define dually left X -approximations
and covariantly finite subcategories. Finally, X is functorially finite if it is both
contravariantly and covariantly finite. Observe that finite and cofinite subcate-
gories are functorially finite (see [9]).

1.4. If X is an additive subcategory of modΛ, closed under extensions, then a
module M ∈ X is called Ext-projective (or Ext-injective) in X if Ext1

Λ(M,−)|X =
0 (or Ext1

Λ(−,M)|X = 0, respectively), see [10]. It is shown in [10](3.3)(3.7) that,
if X is a torsion (or torsion-free) class, then an indecomposable module M ∈ X is
Ext-projective in X if and only if τΛM is torsion-free (or, M ∈ X is Ext-injective
in X if and only if τ−1

Λ M is torsion).

1.5. We recall from [13] that an algebra Λ is called quasi-tilted if gl.dimΛ ≤
2 and indA = LΛ ∪ RΛ. The module category of a quasi-tilted algebra has
been described in [11, 15, 16]. Several generalisations of this notion have been
introduced over the years (see [4] for a survey). We recall the definition of laura
algebras [3]: an algebra Λ is laura if LΛ ∪RΛ is cofinite in indΛ.

Quasi-tilted algebras are clearly laura, and a laura algebra which is not quasi-
tilted is called strict. The module category of a strict laura algebra has been
described in [3, 19]. In particular, a strict laura algebra has a unique faithful,
non-semiregular Auslander-Reiten component which is quasi-directed (that is, it
is generalised standard and almost directed). This component is called its con-
necting component, in analogy with the connecting components of tilted algebras.

2. Trisections

2.1. Following [13], we define a trisection of indΛ.

Definition. Let Λ be an artin algebra. A trisection of indΛ is a triple of disjoint
full subcategories (A,B, C) of indΛ such that:

(a) indΛ = A ∪ B ∪ C, and
(b) HomΛ(C,B) = HomΛ(C,A) = HomΛ(B,A) = 0.

Notice that this definition of trisection is different from the one given in [18].
If any of A,B, C is empty, then the definition above reduces to that of a split

torsion pair.
If (A,B, C) is a trisection of indΛ, then the subcategory A is closed under

predecessors and, dually, C is closed under successors. Also, B is convex in indΛ,
that is, whenever there exists a path

X = X0 → X1 → · · · → Xt = Y

in indΛ, with X,Y ∈ B, then Xi ∈ B for each i.
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2.2. We need another definition due to Ringel [20](p. 120). Let A,B, C be three
disjoint full subcategories of indΛ, then we say that B separates A from C if B 6= ∅
and any morphism X → Y with X ∈ A and Y ∈ C factors through addB. If
(A,B, C) is a trisection and B separates A from C, then we say that (A,B, C) is
a separated trisection.

Lemma. Let (A,B, C) be a separated trisection of indΛ and f : M → N be an
irreducible morphism with M,N indecomposable.

(a) If M ∈ A, N 6∈ A then N ∈ B.
(b) If M 6∈ C, N ∈ C then M ∈ B.

Proof. We prove only (a) since the proof of (b) is dual.
(a) Assume M ∈ A and N ∈ C, then f : M → N must factor through addB. But
then M ∈ B or else N ∈ B, a contradiction in either case. �

2.3. Examples. (a) Let Λ be a representation-infinite hereditary algebra, then
indΛ admits a separated trisection (A,B, C), where A consists of the postprojec-
tive modules, C of the preinjective, and B of the regular.

(b) The motivating example is from the study of quasi-tilted algebras: it is shown
in [13] (II,1.6) and (II, 1.7) that any quasi-tilted algebra Λ admits a trisection
(LΛ \ RΛ,LΛ ∩ RΛ,RΛ \ LΛ). Moreover, by [11] and [15](4.3), this trisection is
separated.

(c) Let Λ be the radical square zero algebra given by the quiver
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Figure 1.

Then the Auslander-Reiten quiver Γ(mod Λ) of Λ is of the form
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Figure 2.

Then indΛ admits a trisection (A,B, C) where A consists of all predecessors
of S2, C of all successors of S3 and B consists of the remaining indecomposables.
Trivially, B separates A from C.
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2.4. Lemma. The following statements are equivalent for a trisection (A,B, C)
of indΛ.

(a) pdM ≤ 1 for all M ∈ A.
(b) A ⊂ LΛ.
(c) Each indecomposable injective I ∈ A satisfies the following: any path

I ; X with X ∈ A is refinable to a path of irreducible morphisms and
any such path is sectional.

Proof. Since A is closed under predecessors and pdM ≤ 1 for each M ∈ LΛ, the
equivalence of (a) and (b) is trivial. The equivalence between (b) and (c) follows
easily from [3](1.6). �

2.5. We need the following lemma, essentially due to Smalø [26].

Lemma. Let A be a full subcategory of indΛ closed under predecessors. Then
addA is contravariantly finite if and only if addAc is covariantly finite.

2.6. The main result of this section is the following theorem.

Theorem. Let A,B, C be three disjoint full subcategories of indΛ such that
indΛ = A ∪ B ∪ C and assume that B separates A from C. Then (A,B, C) is
a separated trisection with addB functorially finite if and only if the following
two conditions hold:

(a) addA is contravariantly finite and closed under predecessors, and
(b) addC is covariantly finite and closed under successors.

Proof. Necessity. We claim that add(A ∪ B) is contravariantly finite. Let X ∈
indΛ. If X ∈ A ∪ B, then the identity 1X : X → X is a right add(A ∪ B)-
approximation. If X 6∈ A ∪ B, then X ∈ C. Since addB is contravariantly finite,
then X has a right addB-approximation fB : XB → X with XB ∈ addB ⊂
add(A ∪ B). Let g : Y → X be a morphism, with Y ∈ add(A ∪ B). We may
assume that Y is indecomposable. If Y ∈ B, then g factors through fB. Suppose
that Y ∈ A. Since B separates A from C, there exists Z ∈ addB and morphisms
g2 : Y → Z and g1 : Z → X such that g = g1g2. Since g1 factors through fB, we
have established our claim. Applying now (2.5) yields that addC is covariantly
finite. Dually, add A is contravariantly finite. The other statements in (a),(b)
are evident.
Sufficiency. Since A is closed under predecessors, C is closed under successors
and the subcategories A,B, C are disjoint, we easily infer that

HomΛ(C,B) = HomΛ(C,A) = HomΛ(B,A) = 0

and so (A,B, C) is a trisection of ind Λ. It remains to show that addB is functo-
rially finite.
It follows from the hypothesis that A∪B is closed under predecessors. Since addC
is covariantly finite, then add(A∪B) is contravariantly finite by Lemma (2.5). Let
X ∈ indΛ, then there exists a right add(A∪B)-approximation fA∪B : XA∪B → X
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with XA∪B ∈ add(A ∪ B). Write XA∪B = XA ⊕XB with XA ∈ addA and XB ∈
addB. Let ι : XB → XA∪B be the natural inclusion and define fB : XB → X to be
the composition fA∪B ◦ ι. Let g : Y → X be a morphism with Y ∈ addB. Since
Y ∈ add(A∪B), then g factors through fA∪B that is, there exists h : Y → XA∪B

such that g = fA∪B ◦ h.
Since Y ∈ addB, then HomΛ(Y,XA) = 0. Therefore Imh ⊂ XB and we have
the required factorisation by fB. This shows that addB is contravariantly finite.
Dually, addB is covariantly finite. Hence it is functorially finite. �

Note that the conditions of the theorem are satisfied by the algebra Λ of Ex-
ample (2.3)(c), or by any tilted algebra with a non-semiregular connecting com-
ponent.

3. Compact Trisections

3.1. Let Λ be an artin algebra. We recall that a subcategory B of indΛ is called
connected if, for any X,Y ∈ B, there exists a walk X = X0−X1−· · ·−Xt = Y in
indΛ with all Xi ∈ B. Here, M −N indicates that there exists either a morphism
M → N or a morphism N →M .

Lemma. Let Λ be an artin algebra, and B be a non-empty finite, connected and
convex subcategory of indΛ. Then there is a unique component ΓB of Γ(modA)
such that ΓB intersects B.

Proof. If Λ is representation-finite, there is nothing to prove. Assume Λ to be
representation-infinite and suppose there are two modules M,N ∈ B and a com-
ponent Γ ⊂ Γ(modA) such that M /∈ Γ and N ∈ Γ. Since B is connected,
then we can suppose, without loss of generality, that there exists a morphism
f : M −→ N or f : N −→ M in modΛ. Assume the former. Since M /∈ Γ and
N ∈ Γ, then f ∈ rad∞

Λ (M,N). By (1.2), for each t ≥ 1, there exists a path

M = M0

f1

−→M1 −→ · · ·
ft

−→Mt
gt

−→ N

in indΛ such that the Mi are pairwise non-isomorphic, gtft · · · f1 6= 0, each fi is
a composite of irreducible morphisms and gt ∈ rad∞(Mt, N). Now, by convexity,
we infer that Mi ∈ B, for each i = 1, · · · , t, thus getting a contradiction to the
finiteness of B. A similar proof holds for a morphism f : N −→M . �

3.2. Lemma. Let Λ be an artin algebra, and (A,B, C) be a separated trisection
of indΛ, with B finite and connected. Let Γ be a component of Γ(modΛ).

(a) If Γ 6= ΓB, then either Γ ⊂ A or Γ ⊂ C.
(b) If Γ ∩ A 6= ∅ and Γ ∩ C 6= ∅, then Γ = ΓB.

Proof. (a) Since Γ 6= ΓB, clearly any indecomposable module in Γ lies either in
A or in C. There remains to show that, if M,N ∈ Γ, then both lie in A or both
lie in C. If this is not the case, then we can assume that we have an irreducible
morphism M → N or N →M . By definition of trisection, we can supppose that
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we have an irreducible morphism M → N with M ∈ A and N ∈ C. But this
contradicts (2.2).

(b) Let M be a module in A, and N be a module in C, both lying in Γ. Then
there exists a walk M = M0 −M1 − · · · −Mt = N (with t ≥ 1) in Γ. Let j
be the least integer such that Mj ∈ A but Mj+1 6∈ A. Since A is closed under
predecessors, then we have an irreducible morphism Mj →Mj+1. But then (2.2)
yields Mj+1 ∈ B. Therefore Γ = ΓB because of (3.1). �

3.3. Definition. A trisection (A,B, C) is called compact if it is separated and
B is finite, connected and contains all the projectives and all the injectives in ΓB.

Remark. Let (A,B, C) be a compact trisection. Since B is finite, then it is
functorially finite and so the results of Section 2 apply trivially. The converse is
however not true since the trisection shown in Example 2.3(c) is not compact,
but it is functorially finite.

Examples. (a) Let Λ be an artin algebra. Then, Λ is representation-finite if
and only if (∅,indΛ, ∅) is the unique compact trisection of indΛ.

(b) In [21](2.7)p.215, Ringel considered the gluing of two tame hereditary algebras
to form a tame one-relation algebra (see also [17]). Since these are tilted algebras,
one may define a compact trisection by letting B be the separating subclass
consisting of modules lying on a given complete slice.

(c) Let Λ be the radical square zero algebra given by the quiver
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where we identify the two copies of the simple module S1 and the two copies
of the simple S4. Here, we let A consist of all predecessors of τS3 and C of all
successors of τ−S5.

3.4. Let Λ be an artin algebra, and let Γ be a component of Γ(modΛ). We recall
from [1] that a full subquiver Σ of Γ is called a right (or left) section provided:

(1) Σ is acyclic,
(2) Σ is convex in Γ, and
(3) for each Y ∈ Γ such that there exists a path from Σ to Y (or from Y to

Σ, respectively), there exists a unique s ≥ 0 (or s ≤ 0, respectively) such
that τ s

ΛY ∈ Σ.

Lemma. Let (A,B, C) be a compact trisection in indΛ. Then

(a) The class Σr of the indecomposable Ext-projectives in ΓB∩C forms a right
section in ΓB, and

(b) The class Σl of the indecomposable Ext-injectives in ΓB ∩ A forms a left
section in ΓB.

Proof. We prove only (a), since the proof of (b) is dual.
(a) The acyclicity of Σr follows from the dual of [1](5.3), and its convexity in ΓB

follows from [6](2.2), because ΓB ∩ C contains no projective modules. Let now
X ∈ ΓB be a successor of Σr and consider a walk Y = Y0 − Y1 − · · · − Yt = X,
with Y /∈ C and Yi ∈ C for all i such that 1 ≤ i ≤ t. Since all the projective
modules of ΓB are in B, and applying τΛ if necessary, the above walk gives rise to
a path from τ r

ΛX, for some r ≥ 0, to a module not in C. In particular, τ r
ΛX /∈ C.

Hence there exists s ≥ 0 such that τ s
ΛX ∈ C but τ s+1

Λ X /∈ C, implying that τ s
ΛX

is an Ext-projective of ΓB ∩ C. Hence τ s
ΛX ∈ Σr, as required. �

3.5. Corollary. Let (A,B, C) be a compact trisection in indΛ. Then all mod-
ules in ΓB \ B are directed in ΓB.

Proof. If X ∈ ΓB \ B is not directed in ΓB, then there exists a cycle X = X0 −→
X1 −→ · · · −→ Xt = X between indecomposable Λ-modules on ΓB. Assume first
that X ∈ C. The same argument as in (3.4) yields an r ≥ 0 such that the path

τ rX = τ rX0 −→ τ rX1 −→ · · · −→ τ rXt = τ rX

intersects Σr, contradicting its acyclicity and its convexity. Similarly if X ∈
A. �

3.6. Corollary. Let (A,B, C) be a compact trisection in indΛ and let X ∈ ΓB.

(a) If X ∈ C, then X has only finitely many predecessors in C.
(b) If X ∈ A, then X has only finitely many successors in A.

Proof. We only prove (a) since the proof of (b) is dual.
(a) It follows from 2.6 that the subcategory add C is covariantly finite in modΛ.
Because of [1](8.1) every indecomposable module X ∈ ΓB ∩ C is generated by
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modules in Σr and hence is a successor of Σr in ind Λ and from (3.4) we know
that Σr is a right section in ΓB∩C, then if M ∈ ΓB∩C we have that Σr intersects
the τΛ-orbit of M .

The first consequence of this fact is that Σr intersects each τΛ-orbit of ΓB ∩ C
at least once. Since it intersects it at most once [1](5.3)(c), it intersects it exactly
once and then the number of τΛ-orbit of ΓB ∩ C equals |(Σr)0| ≤ rk K0(Λ) (this
inequality is from [1](5.3)(b)).

The second consequence is that if M ∈ ΓB∩C, then there exists a path from Σr

to M in ΓB, and thus ΓB∩C ⊆ Γ≥Σr
. Now, because of [1](2.2), Γ≥Σr

is isomorphic
to a full tranlation subquiver of NΣr, hence each X ∈ ΓB ∩ C has only finitely
many predecessors in ΓB ∩ C.

We now observe that the predecessors of X in C are exactly those lying in
ΓB. Indeed, if f : Y −→ X is a non-zero morphism with Y ∈ C \ ΓB, then f ∈
rad∞

Λ (Y,X). But then (1.2) yields infinitely many predecessors of X lying in
ΓB ∩ C, a contradiction.

�

3.7. Lemma. Let (A,B, C) be a compact trisection in indΛ and let M /∈ ΓB be
an indecomposable module.

(a) If HomΛ(M, ΓB) 6= 0, then M ∈ A.
(b) If HomΛ(ΓB,M) 6= 0, then M ∈ C.
(c) Either HomΛ(ΓB,M) = 0 or HomΛ(M, ΓB) = 0.

Proof. (a) Suppose there is a non-zero morphism f : M → N with N ∈ ΓB.
Clearly, f ∈ rad∞

Λ (M,N). So, by the dual of (1.2), there exists, for each t ≥ 1, a
path in indΛ

M
gt

→Mt
ft

→Mt−1 → · · · →M1

f1

→M0 = N

where the Mi are pairwise non-isomorphic, f1 · · · ftgt 6= 0, each fi is a composition
of irreducible morphisms and gt ∈ rad∞

Λ (M,Mt). If N ∈ A, then M ∈ A because
A is closed under predecessors. If N ∈ B, then the finiteness of B yields an i0 ≥ 0
such that i ≥ i0 implies Mi ∈ A. Again, M ∈ A. If N ∈ C then, by (3.6), N
has only a finite number of predecessors in C. Also, B is finite. Therefore, there
exists i0 ≥ 0 such that i ≥ i0 implies Mi ∈ A, and thus M ∈ A.

(b) The proof is dual.

(c) It follows from (a) and (b). �

3.8. Corollary. Let (A,B, C) be a compact trisection in indΛ, then ΓB is
convex in indΛ, and quasi-directed.

Proof. Let M = M0 −→ M1 −→ · · · −→ Mt−1 −→ Mt = N be a path in indΛ,
with t ≥ 2, M,N ∈ ΓB and Mi /∈ ΓB for all i such that 1 ≤ i < t. If both M,N
are in B, we are done. Thus we may assume that M or N do not lie in B. By
(3.7), M1 ∈ C and Mt−1 ∈ A. But A is closed under predecessors, and C is closed
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under successors. Hence a contradiction. This proves the convexity.
Because of (3.5), any module in ΓB ∩ A or in ΓB ∩ C is directed in ΓB, hence in
indΛ (because of convexity). So, if a module of ΓB is not directed, then it must lie
in B. Since B is finite, ΓB is almost directed. By [14](4.2.3), ΓB is quasi-directed
(and, in particular, generalised standard). �

4. Cores

4.1. The following definition is inspired by the notion of multisection of [19].

Definition. Let Λ be an artin algebra and Γ be a component of Γ(modΛ). A
full subcategory ∆ of Γ is a core of Γ (and Γ is said to have a core) if:

(a) ∆ is convex in indΛ.
(b) ∆ intersects each τΛ-orbit in Γ, and only finitely many times.
(c) ∆ is almost directed.

Examples. (a) A complete slice in the connecting component of a tilted algebra
is a core in this component.

(b) Let Λ be a representation-infinite strict laura algebra, and Γ be a connecting
component of Γ(modΛ). Let Σl be a left section, and Σr be a right section of Γ.
Then the convex hull ∆ = C(Σl ∪ Σr) of Σl and Σr (that is, the full subcategory
consisting of all the modules M ∈ Γ such that there is a path M ′

; M ; M ′′,
with M ′,M ′′ ∈ Σl∪Σr) is a core in Γ, which contains all the non-directed modules
of Γ. Indeed, by [1](2.2), all modules which are either proper predecessors of Σl

(or proper successors of Σr) in Γ are directed. Hence all non-directed modules in
Γ lie in ∆. Since there are only finitely many of them (because Λ is laura), ∆ is
almost directed. It follows from the definition of ∆ that it is convex in indΛ. Let
X ∈ Γ be a proper predecessor of Σl (or a proper successor of Σr), then clearly
its τΛ-orbit intersects Σl (or Σr, respectively) exactly once. If X ∈ Γ is neither,
then X ∈ ∆ so its τΛ-orbit intersects ∆. It can only intersect it finitely many
times because, by the description of the connecting component of a laura algebra
[3], ∆ is finite.

4.2. Before stating, and proving, the main result of this section, we need one last
definition.

Definition. Let Λ be an artin algebra, a component Γ of Γ(modΛ) is separating

if the components distinct from Γ belong to one of two classes
←−
Γ and

−→
Γ such

that, if Γ′ ∈
←−
Γ and Γ′′ ∈

−→
Γ , then

(i) HomΛ(Γ, Γ′) = 0, HomΛ(Γ′′, Γ) = 0, HomΛ(Γ′′, Γ′) = 0.
(ii) Any morphism M ′ → M ′′ with M ′ ∈ Γ′ and M ′′ ∈ Γ′′ factors through

addΓ.

As an easy example, a connecting component of a tilted algebra is separating.
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Theorem. The following conditions are equivalent for an artin algebra Λ:

(a) Γ(modΛ) admits a separating quasi-directed component Γ.
(b) indΛ admits a compact trisection (A,B, C).
(c) Γ(modΛ) admits a separating convex component Γ having a left section Σl

and a right section Σr whose convex envelope ∆ is a core in Γ.

If these conditions are satisfied, and Γ′ 6= Γ is a component of Γ(modΛ), then
either Γ′ ⊂ A or Γ′ ⊂ C. Moreover,

(i) HomΛ(Γ′, Γ) 6= 0 implies Γ′ ⊂ A;
(ii) HomΛ(Γ, Γ′) 6= 0 implies Γ′ ⊂ C.

Proof. (a)⇒ (b). Assume that Λ is an algebra having a separating quasi-directed
component Γ. We may assume that Λ is representation-infinite. In particular,
the left stable or the right stable part of Γ is infinite or both are. Let {iΣ} be
a family of sections in the connected components of the left stable part lΓ and
let {Σ′

j} be a family of sections in the connected components of the right stable
part Γr. Next, we define B to consist of all the indecomposable modules which
are neither proper predecessors of the iΣ, nor proper successors of the Σ′

j (that
is, lying between the iΣ and the Σ′

j). We define Γ ∩ A (or Γ ∩ C) to consist of
all the indecomposables in Γ which are proper predecessors of the iΣ (or proper
successors of the Σ′

j, respectively). Also, if Γ′ 6= Γ is a component of Γ(modΛ),

we let Γ′ ⊂ A if Γ′ ∈
←−
Γ and Γ′ ⊂ C if Γ′ ∈

−→
Γ . By [27](2.4.1 and 2.4.2) we have

that B is finite. It is then easily seen that (A,B, C) is a compact trisection of
indΛ.

(b) ⇒ (c). By (3.8), the component Γ = ΓB is convex (and even quasi-directed).

Let
←−
Γ B and

−→
Γ B consist of the components of Γ(modΛ) distinct from ΓB, and

lying in A and C, respectively (this definition makes sense because of (3.2)). It
is then evident that ΓB is separating.
By (3.4), the class Σl (or Σr) of the Ext-injectives in Γ ∩ A (or of the Ext-
projectives in Γ ∩ C) is a left section (or a right section, respectively). Replacing
each of Σl and Σr, if necessary, by their Auslander-Reiten translates, we may
assume that no projective and no injective module in ΓB is a predecessor of Σl,
or a successor of Σr. Since the convex hull ∆ of Σl and Σr is clearly connected
and convex in indΛ (because it is convex in the convex component ΓB), we have
to show that ∆ intersects each τΛ-orbit in ΓB finitely many times, and that it
is almost directed. Note first that, since B is a finite subcategory of the quasi-
directed component ΓB, then B has finitely many τΛ-orbits.
We claim that ∆ = Σl ∪ B ∪ Σr. This yields the result because: (i) each of Σl,B
and Σr is finite; (ii) Σl crosses each τΛ-orbit of Γ∩A; (iii) Σr crosses each τΛ-orbit
of Γ ∩ C; (iv) all the non-directing modules of Γ lie in B by (3.5). Observe first
that B ⊂ ∆. Indeed, if X ∈ B \ ∆, then X precedes Σl or succedes Σr. In the
first case, X precedes an Ext-injective in Γ ∩ A. Therefore X ∈ A. Similarly, in
the second case, X ∈ C and we are done. So Σl ∪ B ∪ Σr ⊂ ∆.
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Now, if X ∈ ∆ \ (Σl ∪ Σr), then there exists a path E ′
; X ; U ′ of irreducible

morphisms, with E ′ ∈ Σl and U ′ ∈ Σr . We may assume that the immediate
successor of E ′ on this path in not is Σl. By (2.2), it lies in B. Similarly for
the immediate predecessor of U ′. But this implies that X ∈ B and the claim is
proven.

(c)⇒ (a) Let A consist of the predecessors of Σl, B = ∆\ (Σl∪Σr) and C consist
of the successors of Σr. Clearly, ΓB = Γ. By hypothesis, Γ is convex and almost
directed. By [14](4.2.3), it is quasi-directed. This proves (a)
The last statement follows from (3.2). �

As a consequence, we have a description of the Auslander-Reiten components
of Γ(modΛ) where Λ admits a compact trisection (A,B, C). There is, first, the
separating quasi-directed convex component ΓB, and the other components be-
long either to A or to C (according as to whether they precede, or succede, ΓB).
Let A = End(

⊕
Px∈A

Px) be the support algebra of A (see [1]), then any component

of Γ(modΛ) which lies in A is also a component of Γ(modA). Dually, a compo-
nent of Γ(modΛ) which lies in C is also an Auslander-Reiten component of the
support algebra of C.

4.3. Corollary. Let Λ be an algebra admitting a compact trisection (A,B, C).
Let ΛB = End P , where P is the direct sum of all indecomposable projective
Λ-modules Px such that Px and Ix both lie in B. Then

(a) indΛB ⊂ B and so ΛB is representation-finite.
(b) ΛB is a full convex subcategory of Λ.

Proof. (a) Let M be an indecomposable ΛB-module and ex ∈ ΛB be a primitive
idempotent such that Mex 6= 0. Then there exist non-zero morphisms Px →
M → Ix. Since Px, Ix ∈ B, the convexity of B gives M ∈ B. Hence indΛB ⊂ B.

(b) Let x = x0 → x1 → · · · → xt = y be a path in the quiver of Λ, with x, y in
the quiver of ΛB. Then we have a path of projectives

Py = Pxt
→ · · · → Px1

→ Px0
= Px.

Since Py, Px ∈ B, then Pxi
∈ B for every i. Similarly, Ixi

∈ B for every i.
Therefore xi belongs to the quiver of ΛB. �

4.4. Let Λ admit a compact trisection (A,B, C), the component ΓB is not in
general non-semiregular, in contrast with the case of the strict laura algebras.
Let indeed Λ be the endomorphism algebra of a regular tilting module over the
path algebra of a (wild) quiver Q, and B consist of a complete slice, then ΓB is
of the form ZQ.

Proposition. Let Λ be an algebra admitting a compact trisection (A,B, C), then
we have one of two cases:
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(a) either ΓB is non-semiregular, in which case the algebra Λ/Ann ΓB is a
laura algebra;

(b) or ΓB is the connecting component of the algebra Λ/Ann ΓB which is tilted.

Proof. Let Λ′ = Λ/AnnΓB. Then ΓB is a component of Γ(modΛ′). It is faith-
ful, because of the definition of Λ′, and generalised standard, by [23](Lemma
2). Therefore, it is quasi-directed as a component of Γ(modΛ′). If it is not
non-semiregular, then either it is regular, or it is semiregular. In the first case,
it follows from [24] that it is of the form ZQ (for some wild quiver Q), and
is the connecting component of Γ(modΛ′). In the second case, it follows from
[27](Theorem 1), that it is also the connecting component of Γ(modΛ′) (in par-
ticular, it can be embedded in a quiver of the form ZQ, for some quiver Q). The
conclusion then follows from the observation that, if ΓB is non-semiregular, then,
by [27](Theorem 2), Λ′ is a laura algebra. �

Again in contrast with the case of laura algebras, the component ΓB is generally
not faithful. For an example, we refer to Section 7.

5. Laura Algebras and Trisections

5.1. In this section, we are interested in a particular trisection of the module
category. Let Λ be an artin algebra, we let E be the direct sum of a complet set
of representatives of the Ext-injectives in add(LΛ \RΛ), and U be the direct sum
of a complete set of representatives of the Ext-projectives in add (RΛ \ LΛ). We
set

L′
Λ = (LΛ \ RΛ) \ ind E,

R′
Λ = (RΛ \ LΛ) \ ind U,

B = indΛ \ (L′
Λ ∪R

′
Λ).

Lemma. The triple (L′
Λ,B,R′

Λ) is a trisection in indΛ.

Proof. Clearly, LΛ \ RΛ is closed under predecessors. Let Y ∈ L′
Λ and X ; Y

be a path in indΛ. Since Y ∈ LΛ \ RΛ, then X ∈ LΛ \ RΛ. Assume thus that
X ∈ indE. Since Y belongs to LΛ \ RΛ, we have Y ∈ indE as well, because of
[1](6.3). This contradiction shows that X /∈ indE, that is, X ∈ L′

Λ. Similarly,
R′

Λ is closed under successors. The statement now follows easily. �

5.2. Lemma. Let Λ be a laura algebra, then the trisection (L′
Λ,B,R′

Λ) is sepa-
rated. If moreover Λ is strict, then B is finite.

Proof. If Λ is quasi-tilted, then the trisection (L′
Λ,B,R′

Λ) is clearly separated. We
may thus assume that Λ is strict laura. In this case, it follows from [3](4.6) that
B is finite and that addL′

Λ is contravariantly finite while addR′
Λ is covariantly

finite. Let f : X → Y be a non-zero morphism with X ∈ L′
Λ and Y ∈ R′

Λ. By
[1](8.4), there exists E1 ∈ addE such that f factors through E1. Since E1 ∈
addB, then the trisection is separated. �
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5.3. We say that a path in indΛ is finite provided every morphism in this path
belongs to a finite power of the radical of modΛ.

Lemma. Let Λ be an artin algebra, and B be an almost directed full convex
subcategory of indΛ. Then any path in B is finite.

Proof. Let X = X0

f1

→ X1 → · · ·
ft

→ Xt = Y be a path in B. If it is not
finite, then there exists i with 1 ≤ i ≤ t such that fi ∈ rad∞

Λ (Xi−1, Xi). Then,
by [14](4.2.2), there exist infinitely many non-isomorphic non-directed modules
lying on a path from Xi−1 to Xi. Since B is convex in indΛ, all these modules lie
in B, contradicting the hypothesis that B is almost directed. �

5.4. Before stating, and proving, our main result of this section, we recall from
[3](2.4) that an algebra Λ is laura if and only if any path in indΛ from an inde-
composable projective to an indecomposable injective is finite.

Theorem. Let Λ be a representation-infinite artin algebra. The following con-
ditions are equivalent.

(a) Λ is a strict laura algebra, or a tilted algebra with a non-semiregular con-
necting component.

(b) (L′
Λ,B,R′

Λ) is a compact trisection.
(c) (L′

Λ,B,R′
Λ) is a separated trisection with addB functorially finite and B

almost directed.

Proof. (a) ⇒ (b). Assume that Λ is strict laura. By (5.2), (L′
Λ,B,R′

Λ) is a
separated trisection with B finite. Since Λ is representation-infinite, then the
trisection is compact. The proof is similar if Λ is tilted with a non-semiregular
connecting component.

(b) ⇒ (c) This is trivial.

(c)⇒ (a). Assume that (L′
Λ,B,R′

Λ) satisfies the stated conditions. If all indecom-
posable injective modules lie in RΛ, or if all indecomposable projective modules
lie in LΛ, then Λ is quasi-tilted, by [13](II-1.14). Since B is almost directed,
it is actually tilted and we are done. By [27](3.8), its connecting component is
non-semiregular.
We may thus assume that Λ is not quasi-tilted. Let (∗) : I ; P be a path in
ind Λ from an injective I to a projective P . We prove now that (∗) is finite. If
I, P ∈ B, then this follows from (5.3). We may thus suppose that I or P does
not lie in B.
We claim that, if I ∈ L′

Λ, then any path in indΛ from I to an indecomposable
not in R′

Λ is finite. Indeed, let

I = X0

f1

−→ X1 −→ · · ·
ft

−→ Xt = Y

be a path in indΛ with Y 6∈ R′
Λ. Using that L′

Λ ⊂ LΛ and it is closed under
predecessors, it follows from [1](6.1) that I has only finitely many successors
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in L′
Λ, all of which are Ext-injectives in L′

Λ. So the claim is proven if Y ∈
L′

Λ. Suppose Y ∈ B. Then there exists i with 0 ≤ i < t such that Xi ∈ L
′
Λ

and Xi+1 6∈ L
′
Λ. By [1](8.4), the morphism fi : Xi → Xi+1 factors through

an indecomposable Ext-injective in L′
Λ. We may thus suppose that Xi is Ext-

injective in L′
Λ. The morphism fi factors through the left minimal almost split

morphism h : Xi →
⊕
j

Zj. Clearly, we may assume that there exists j0 such that

Zj0 6∈ L
′
Λ and HomΛ(Zj0 , Xi+1) 6= 0. So we get a path

I = X0 ; Xi
g
−→ Zj0 −→ Xi+1 ; Xt = Y

in ind Λ, with g irreducible. The subpaths X0 ; Xi and Zj0 ; Y are finite, by
[1] (6.1) and (5.3), respectively (using that Zj0 ∈ B by (2.2)). So the above path
is finite. Since it is obtained by factoring fi through h, then the original path is
finite. This establishes our claim.
Dually, if P ∈ R′

Λ, then any path from an indecomposable module not in L′
Λ to

P is finite.
If I ∈ L′

Λ and P 6∈ R′
Λ or if I 6∈ L′

Λ and P ∈ R′
Λ, then the required result follows

from the claim and its dual. It remains to consider the case where I ∈ L′
Λ and

P ∈ R′
Λ. Since B is separating, we can assume the path (∗) to be of the form

I = X0 → · · · → Xi−1 → Xi → · · · → Xj → Xj+1 → · · · → Xt = P

with Xi−1 ∈ L
′
Λ, Xi ∈ B, Xj ∈ B and Xj+1 ∈ R

′
Λ. Applying (5.3) together with

the claim and its dual, we get that (∗) is finite. Hence Λ is a laura algebra. It is
strict because we assumed it is not quasi-tilted. �

5.5. We recall that an algebra Λ is called strict weakly shod [12] if it is strict
laura and its connecting component is directed.

Corollary. Let Λ be a representation-infinite artin algebra. The following
statements are equivalent:

(a) Λ is strict weakly shod or tilted with a non-semiregular connecting com-
ponent.

(b) (L′
Λ,B,R′

Λ) is a compact trisection with B directed.
(c) (L′

Λ,B,R′
Λ) is a separated trisection with addB functorially finite and B

directed.

6. Laura Algebras and Cores

6.1. Lemma. Let Λ be an artin algebra, and Γ be a component of Γ(modΛ).

(a) If Γ contains an injective, then every module of Γ ∩ LΛ is directed.
(b) If Γ contains a projective, then every module of Γ ∩RΛ is directed.

Proof. This follows from [1](6.5). �
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6.2. Let Λ be an artin algebra. As before, we denote by E (or by U) the di-
rect sum of all indecomposable Ext-injectives in LΛ (or Ext-projectives in RΛ,
respectively). Also, we let F stand for the direct sum of all indecomposable pro-
jectives not in LΛ and Q stand for the direct sum of all indecomposable injectives
not in RΛ. Finally, ∆ will denote the convex hull in indΛ of the modules in
ind(E ⊕ F ⊕ U ⊕Q).

Lemma. Let Λ be a connected artin algebra such that

ind Λ = ( PredE \ ind E) ∪∆ ∪ ( Succ U \ ind U).

(a) If LΛ 6= ∅, then E 6= 0 or U 6= 0.
(b) If RΛ 6= ∅, then E 6= 0 or U 6= 0.

Proof. We only prove (a), since the proof of (b) is dual.
(a) Assume LΛ 6= ∅, but E = 0 and U = 0. By hypothesis, indΛ = ∆, and ∆
is the convex hull of ind(F ⊕ Q). Assume X ∈ LΛ. Since LΛ ⊂ ∆, there exist
X ′, X ′′ ∈ ind(F ⊕ Q) such that we have paths X ′

; X ; X ′′. Suppose X ′ ∈
indF . Then X ′ is a projective not in LΛ. However X ∈ LΛ which is closed under
predecessors, hence a contradiction. Therefore, X ′ ∈ indQ, that is, X ′ is an
injective not in RΛ. However, X ∈ LΛ implies X ′ ∈ LΛ and since X ′ is injective,
we get X ′ ∈ indE, by [1](6.1), a contradiction. �

6.3. The main result of this section is the following theorem. Recall that an
Ext-injective M is of the first kind if there is an injective module I and a path
I ; M . Otherwise it is called an Ext-injective of second kind (see [1] or [5]).

Theorem. Let Λ be a representation-infinite artin algebra which is not quasi-
tilted. Then Λ is strict laura if and only if

(a) LΛ 6= ∅ or RΛ 6= ∅.
(b) There is a component Γ of Γ(modΛ) which contains a core ∆ of Γ and

indΛ = (PredE\ indE) ∪∆∪ (Succ U\ ind U).

Proof. Necessity. Since Λ is laura and representation infinite, then (a) is satisfied.
Let Γ be the connecting component of Γ(modΛ). Then, since Λ is strict, Q 6= 0
and indQ ⊂ Γ. Because Γ is a convex component (see [27]), the convex hull
∆ of ind(E ⊕ F ⊕ U ⊕ Q) is contained in Γ. By [2], we have LΛ = PredE
and RΛ = Succ U . Moreover, we can decompose E in the form E = E1 ⊕ E2,
where E1 (or E2) is the direct sum of the indecomposable Ext-injectives of the
first kind (or of the second kind, respectively) and every indecomposable module
not in LΛ is generated by the tilting module V = τ−1

Λ E2 ⊕ E1 ⊕ F . Dually,
every indecomposable module not in RΛ is cogenerated by the cotilting module
W = τΛU2 ⊕ U1 ⊕ Q, where U1 (or U2) is the direct sum of the indecomposable
Ext-projectives of the first kind (or of the second kind, respectively).
Let X /∈ LΛ ∪ RΛ. Since X /∈ LΛ, there exists an epimorphism V m −→ X (for
some m > 0), and so X ∈ Succ(E⊕F ). Similarly, X /∈ RΛ gives a monomorphism
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X −→ W n (for some n > 0), implying X ∈ Pred(U ⊕ Q). This shows that X
lies in the convex hull ∆ of ind(E ⊕ F ⊕ U ⊕Q).
We now want to show that ∆ is a core. Since ∆ ⊂ Γ, and Γ is quasi-directed, then
∆ is almost directed. By definition, it is convex in indΛ. Thus, there remains
to show that ∆ crosses each τΛ-orbit of Γ and only finitely many times. By
[2], E 6= 0. Clearly, Γ∩ indE 6= ∅ and so, by [1](6.6), each τΛ-orbit of Γ ∩ LΛ

crosses indE exactly once. Dually, U 6= 0 and each τΛ-orbit of Γ ∩ RΛ crosses
indU exactly once. Suppose X /∈ LΛ ∪ RΛ. By the previous argument, X ∈ ∆
and so the τΛ-orbit O(X) of X intersects ∆. Therefore, X ∈ Γ implies that
|O(X) ∩ ∆| ≥ 1. We have to show that |O(X) ∩ ∆| < ∞. Since Λ is strict
laura, then |LΛ ∩ RΛ| < ∞ and |(LΛ ∪ RΛ)c| < ∞. If there exists X ∈ Γ such
that |O(X) ∩ ∆| = ∞, then there exists in O(X) an infinity of non-isomorphic
indecomposable modules Mi in (LΛ \RΛ)∩∆ or in (RΛ \ LΛ)∩∆ (here, we use
the fact that

[(LΛ \ RΛ) ∪ (RΛ \ LΛ)]c = (LΛ ∪RΛ)c ∪ (LΛ ∩RΛ)

which is finite). Suppose the former case holds. Then an infinity of such modules
belongs neither to indU , nor to indQ, nor to indF nor to indE (since the latter
are finite). For each such Mi ∈ ∆, we have a path Y ; Mi ; Z, with Y, Z ∈
ind(E ⊕ F ⊕ U ⊕Q). Since Mi ∈ LΛ \ RΛ, we have Y ∈ ind(F ⊕ U). Moreover,
if Y ∈ indE, then infinitely many of the Mi lie in indE, an absurdity. Hence
Y ∈ indQ, that is, Y is injective. Since Y ∈ LΛ (because Mi ∈ LΛ), then it
is Ext-injective in LΛ so Y ∈ indE which is impossible as we just saw. This
contradiction proves that |O(X) ∩ ∆| < ∞ for X ∈ Γ. Therefore, ∆ is a core.
Finally, observe that indΛ = (PredE\ indE) ∪∆∪ (SuccU\ indU).

Sufficiency. In order to show that Λ is laura, we show that the core ∆ is finite.
This suffices since PredE ⊂ LΛ and SuccU ⊂ RΛ (so that (LΛ ∪RΛ)c ⊂ ∆).
Since Λ is not quasi-tilted, there exists an indecomposable injective module I
which is not in RΛ. Since SuccU ⊂ RΛ then I ∈ LΛ or I ∈ ∆. In both cases,
I ∈ ∆. Hence, Γ contains an injective. By (6.1), LΛ ∩ Γ is directed. Similarly,
RΛ∩Γ is directed. Since ∆ is almost directed, we infer that Γ is almost directed.
We claim that Γ is convex in indΛ. Let

X0

f1

−→ X1 −→ · · · −→ Xt−1

ft

−→ Xt

be a path in indΛ with X0, Xt ∈ Γ, and X1, · · · , Xt−1 /∈ Γ (hence t ≥ 2). Since
X0 ∈ Γ, X1 /∈ Γ, then f1 ∈ rad∞

Λ (X0, X1). Since, by [1](6.7), Γ∩ indE is a left
section of Γ, then there exist E1 ∈ indE and a path

X0 = X ′
0

h1−→ X ′
1 −→ · · · −→ X ′

s−1

hs−→ X ′
s = E1

gs

−→ X1

with the hi irreducible, gs ∈ rad∞
Λ (E1, X1) and gshs · · ·h1 6= 0. Dually, there exist

U1 ∈ indU and a path

Xt−1

lr−→ U1 = X ′′
0

k1−→ X ′′
1 −→ · · · −→ X ′

r−1

kr−→ X ′′
r = Xt
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with the ki irreducible, lr ∈ rad∞
Λ (Xt−1, U1) and kr · · · k1lr 6= 0. Since E1, U1 ∈ ∆,

the convexity of ∆ and the path

E1 −→ X1 −→ X2 −→ · · · −→ Xt−1 −→ U1

yield X1, · · · , Xt−1 ∈ ∆, hence X1, · · · , Xt−1 ∈ Γ, a contradiction which estab-
lishes our claim.
Applying [14](4.2.3), we get that Γ is quasi-directed. In particular, Γ has only
finitely many τΛ-orbits. Hence, so does ∆. Since ∆ is a core, then it intersects
each τΛ-orbit in Γ finitely many times. Since ∆ is almost directed, then it is
finite. This finishes the proof of the theorem. �

6.4. Corollary. Let Λ be a representation-infinite artin algebra which is not
quasi-tilted. Then Λ is strict weakly shod if and only if

(a) LΛ 6= ∅ or RΛ 6= ∅.
(b) There exists a component Γ of Γ(modΛ) which contains a directed core ∆

such that indΛ = (PredE\ indE) ∪∆∪ (SuccU\ indU).

6.5. Remark. If Λ is representation-infinite and strict weakly hod, then the
convex hull ∆ of ind(E⊕F ⊕U⊕Q) is equal to the convex hull ∆′ of ind(E⊕U).
Indeed, since Λ is strict weakly shod, then LΛ = PredE and RΛ = SuccU by [2].
Let us show that (LΛ ∪ RΛ)c ⊂ ∆′. Let X /∈ LΛ ∪ RΛ be indecomposable. By
[21](p.74), there exist an indecomposable P1, an indecomposable injective I1 and
two non-sectional paths I1 ; X and X ; P1. Note first that, if I1 ∈ LΛ, then
I1 ∈ indE. Under this assumption, suppose that P1 /∈ RΛ (otherwise, X would
belong to ∆′). Then there exist an indecomposable projective P2 and a non-
sectional path P1 ; P2. If P2 /∈ RΛ, we get a longer path from I1 to P2. Since
there are only finitely many projectives, and the lengths of paths from injectives
to projectives are bounded (because Λ is weakly shod), we get some Ps ∈ RΛ

hence X ∈ ∆̃.
This shows that indΛ = (PredE\ indE) ∪ ∆′∪ (SuccU\ indU). Since ∆′ ⊂ ∆
and indΛ = (PredE\ indE) ∪∆∪ (SuccU\ indU), we get ∆′ = ∆.

7. Quasi-laura Algebras and Further Generalisations

7.1. We define a class of algebras which contains the laura algebras.

Definition. An algebra Λ is quasi-laura if it admits a compact trisection
(A,B, C) such that the support algebras A and C of A, C, respectively, are quasi-
tilted.

Observe that, by [15, 11], the only generalised standard component with sec-
tions of A, or C, are the postprojective, the preinjective and (eventually) the
connecting component. The following is an example of a quasi-laura algebra
which is not laura.

Example. Let Λ be given by the quiver
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Figure 5.

bound by αβ = 0, γδ = 0, δǫ = 0, ǫω = 0, ωǫ′ = 0, ǫ′δ′ = 0, δ′γ′ = 0 and β′α′ = 0.

7.2. The results of the previous sections allow us to describe the Auslander-
Reiten components of a quasi-laura algebra Λ.

Corollary. Let Λ be a quasi-laura algebra and Γ be a component of Γ(modΛ).
Then Γ has one of the following shapes:

(a) It is the unique separating quasi-directed component, which is either non-
semiregular or has a section.

(b) It is a directed component, namely postprojective, preinjective or connect-
ing component.

(c) It is a stable tube or a component of type ZA∞.
(d) It is a component obtained from a stable tube or a component of type ZA∞

by finitely many ray insertions and co-insertions.

Proof. This is a direct consequence of (4.2) and (4.4) using the well-known de-
scription of the Auslander-Reiten components of quasi-tilted algebras [16, 15,
11]. �

As can be easily seen in the above example, not only do we know the Auslander-
Reiten components of a quasi-laura algebra Λ, but also the existence of a trisection
(A,B, C) as in the definition yields the global structure of Γ(modΛ). Namely,
inside each of the subcategories A or C, morphisms behave as in their support
algebras, which are quasi-tilted. Inside B, which is a finite subcategory of indΛ,
morphisms behave as in a representation finite algebra. Also, morphims are from
A to B and from B to C (and any morphism from A to C factors through addB).

7.3. Definition. Let m ≥ 0. An algebra Λ is called m-quasi-laura provided

(a) If m = 0, then Λ is a quasi-tilted algebra.
(b) If m ≥ 1, then Λ admits a compact trisection (A,B, C) such that the

support algebra A of A is a direct product of n-quasi-laura algebras,
with n < m, at least one connected component of which is an (m − 1)-
quasi-laura algebra, and the support algebra C of C is a direct product of
quasi-tilted algebras.

7.4. Examples. (a) It follows directly from the definition that the 1-quasi-laura
algebras are simply the quasi-laura algebras.

(b) The following is easily seen to be an example of a 2-quasi-laura algebra. Let
Λ be given by the quiver
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bound by αβ = 0, γδ = 0, δǫ = 0, ǫω = 0, ǫ′δ′ = 0, δ′γ′ = 0, β′α′ = 0, α′λ =
0, λω′ = 0, ω′ǫ′′ = 0, ǫ′′δ′′ = 0, δ′′β′′ = 0, β′′α′′ = 0.

7.5. Corollary. Let Λ be an m-quasi-laura algebra and Γ be a component of
Γ(modΛ). Then Γ has one of the following shapes:

(a) It is a separating quasi-directed convex component, which is either non-
semiregular or has a section.

(b) It is a directed component, namely postprojective, preinjective or connect-
ing component.

(c) It is a stable tube or a component of type ZA∞.
(d) It is a component obtained from a stable tube or a component of type ZA∞

by finitely many ray insertions and co-insertions.

Proof. This follows from (7.2) and an obvious induction. �

7.6. Proposition. Let Λ be an m-quasi-laura algebra. Then:

(a) there exists a separating quasi-directed convex component Γ of Γ(modΛ)
such that, if HomΛ(Γ′, Γ) 6= 0 and Γ′ 6= Γ, then Γ′ is semiregular or
regular.

(b) Let (A,B, C) be a compact trisection of Λ and Γ = ΓB. Then the support
algebra A of A is quasi-tilted, and the support algebra C of C is n-quasi-
laura, with n ≤ m.

Proof. We prove the statement by induction on m. If m = 0, the statement is
clear, because we can take Γ to be a connecting component if Λ is tilted or the
preinjective component otherwise. Let m ≥ 1 and assume that the result holds for
all n < m. Because of (4.2), Λ admits a compact trisection (A1,B1, C1) such that
Γ(modΛ) has a separating quasi-directed convex component ΓB1 , and all other
components are components of Γ(mod A1) or Γ(modC1), where A1 (or C1) is the
support algebra of A1 (or C1, respectively). Now A1 has a connected component
A′

1 which is (m − 1)-quasi-laura. By the induction hypothesis, A′
1 admits a

component Γ verifying the required conditions in (a). Now Γ considered as a
component of Γ(modΛ) also satisfies these conditions, because of the induction
hypothesis and because for ΓB1 , and for any component Γ′′ of Γ(modC1), we have
HomΛ(ΓB1 , Γ) = 0, HomΛ(Γ′′, Γ) = 0. Moreover, let (A,B, C) be a trisection such
that Γ = ΓB, then the support algebra A of A is quasi-tilted. �

It seems reasonable that, if Λ is m-quasi-laura, then so is Λop. However, we do
not know a proof of this fact.
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Département de mathématiques, Université de Sherbrooke, Sherbrooke, Québec,
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