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a b s t r a c t

Let Q be a Euclidean quiver. Using friezes in the sense of Assem–Reutenauer–Smith, we
provide an algorithm for computing the (canonical) cluster character associated with any
object in the cluster category of Q . In particular, this algorithm allows us to compute all
the cluster variables in the cluster algebra associated with Q . It also allows us to compute
the sum of the Euler characteristics of the quiver Grassmannians of anymoduleM over the
path algebra of Q .

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Cluster algebras

In [16], Fomin and Zelevinsky introduced a class of commutative algebras, called cluster algebras, in order to design
a combinatorial framework for studying total positivity in algebraic groups and canonical bases in quantum groups. Since
then, cluster algebras have shownconnectionswith various areas ofmathematics like Lie theory, Teichmüller theory, Poisson
geometry and the representation theory of algebras.

Let Q = (Q0,Q1) be an acyclic quiver, that is an oriented graph which contains no oriented cycle. Let Q0 denote the set
of points in Q and Q1 the set of arrows in Q . We assume that these sets are finite and we fix a Q0-tuple u = (ui|i ∈ Q0) of
indeterminates. The cluster algebra A(Q ) with initial seed (Q ,u) is a subalgebra of Z[u±1

] = Z[u±1
i |i ∈ Q0], generated by a

distinguished set of generators, called cluster variablesdefined recursively using a combinatorial process calledmutation [16].
The number of cluster variables in a cluster algebra can be finite or infinite. If the cluster algebra has finitelymany cluster

variables, it is of finite type. This is the case if and only if Q is a Dynkin quiver, that is a quiver of type A, D or E [17]. In
this case, it is possible to compute algorithmically the cluster variables in A(Q ) by applying mutations recursively. If Q
is not a Dynkin quiver, this recursive process does not end. Nevertheless, cluster variables can be parametrised using the
representation theory of Q . In this paper, we exhibit an algorithm for constructing cluster variables with respect to this
parametrisation when Q is a quiver of Euclidean type, that is an acyclic orientation of a Euclidean diagram of type Ã,D orE
(these diagrams are also called extended Dynkin or affine in the literature).

More precisely, if CQ denotes the cluster category introduced in [3], Caldero, Chapoton and Keller introduced an explicit
map

X? : Ob(CQ )−→ Z[u±1
]

called the (canonical) cluster character (also called the Caldero-Chapoton map in the literature) such that

{cluster variables in A(Q )} =

XM |M indecomposable and rigid in CQ


.

where an object is called rigid if it has no self-extension.
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In general, in order to compute the character XM of an object M , one has to compute the Euler characteristics of certain
projective varieties called quiver Grassmannians (see Section 2 for definitions). These Euler characteristics are hard to
compute in practice. In some very simple cases, explicit computations were made [6–8,21] but in general there exists no
simple way for computing these characteristics and thus for computing XM .

1.2. Friezes

In this article, we provide a simple combinatorial method for computing these characters when Q is a Euclidean quiver.
Our methods are based on the concept of frieze on a stable translation quiver. This concept appeared in various independent
works under different names: friezes in [1], frieze patterns in [22,9,10], cluster-mesh algebras in [15].

1.2.1. Friezes on translation quivers
By definition, a stable translation quiver (Γ , τ ) is a quiver Γ = (Γ0, Γ1) without loops together with a bijection

τ : Γ0−→ Γ0, called translation such that there is a bijection from the set of arrows j−→ i in Γ1 to the set of arrows τ i−→ j
in Γ1 for any two points i, j ∈ Γ0. We always assume that a translation quiver is locally finite, that is, for any i ∈ Q0, there
exist only finitely many arrows starting or ending at i in Γ1. Note that Γ0 and Γ1 may be infinite sets.

Throughout the paper, commutative rings are supposed unitary and, given a commutative ring R, we denote by 1 its
identity.
Definition 1.1. Let (Γ , τ ) be a stable translation quiver and R be a commutative ring. An R-frieze on (Γ , τ ) is a map
f : Γ0−→ R such that, for any i, j ∈ Γ0,

f (i)f (τ (i)) =

∏
α∈Γ1

α:j−→ i

f (j) + 1.

By a frieze on (Γ , τ ), we mean an R-frieze for a certain commutative ring R.
It is clear from the definition that an R-frieze on a stable translation quiver (Γ , τ ) is entirely determined by its restriction
to each of the connected components of (Γ , τ ).

1.2.2. Friezes on Auslander–Reiten quivers
If C is a Krull–Schmidt category with an Auslander–Reiten translation, we denote by Γ (C) its Auslander–Reiten quiver.

It is naturally a translation quiver for the translation induced by the Auslander–Reiten translation in C.
If f is a frieze on Γ (C), we slightly abuse notations and view f as a function on objects in C. For any object M in C, we

define f (M) as follows. IfM is indecomposable, f (M) is the value of f on the point inΓ (C) corresponding to the isomorphism
class ofM . IfM1, . . . ,Mn are indecomposable, we define f (M1⊕· · ·⊕Mn) as the product f (M1) · · · f (Mn) and by convention,
we set f (0) = 1.

1.3. Auslander–Reiten quivers of cluster categories

We fix an algebraically closed field k and an acyclic quiver Q = (Q0,Q1) such that Q0 and Q1 are finite. We denote by kQ
the path algebra of Q and by mod-kQ the category of finitely generated right-kQ -modules. For any i ∈ Q0, we denote by
Si the simple module associated with i, by Pi its projective cover and by Ii its injective hull. We denote by τ the Auslander–
Reiten translation on mod-kQ . Note that a kQ -module M will be identified with a representation (M(i),M(α))i∈Q0,α∈Q1
of Q .

Let Db(mod−kQ) be the bounded derived category. We also denote by τ the Auslander–Reiten translation on
Db(mod−kQ) and we denote by [1] the suspension functor in Db(mod−kQ). Following [3], the cluster category of Q is the
orbit category CQ of the functor τ−1

[1] in Db(mod−kQ). It is a triangulated category satisfying the 2-Calabi–Yau property,
that is, there is a bifunctorial duality

Ext1CQ
(X, Y ) ≃ DExt1CQ

(Y , X)

for any X, Y ∈ Ob(CQ ) where D = Homk(−, k), see [18,3].
The set of indecomposable objects in CQ can be identified with the disjoint union of the set of indecomposable kQ -

modules and the set of shifts of the indecomposable projective kQ -modules [3].
Under this identification, the Auslander–Reiten quiver Γ (CQ ) of the cluster category CQ is a stable translation quiver

for the translation induced by the shift [1] on CQ which coincides with the Auslander–Reiten translation τ induced by the
Auslander–Reiten translation on Db(mod−kQ).

All the projective kQ -modules belong to the same connected component P of Γ (CQ ). The component P is called the
transjective component. If Q is a Dynkin quiver,P is the unique connected component in Γ (CQ ). Otherwise,P is isomorphic
to ZQ and Γ (CQ ) contains infinitely many other connected components, called regular. An indecomposable object in the
transjective component is called transjective, it is of the form Pi[n + 1] for some n ∈ Z and i ∈ Q0. If n < 0, then Pi[n + 1] is
identified with the kQ -module τ−nPi and is called postprojective, if n > 0, then Pi[n + 1] is identified with the kQ -module
τ n−1Ii and is called preinjective. An indecomposable object in a regular component is identified with a regular kQ -module
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and is called regular. A decomposable object is transjective (or regular) if all its direct summands are transjective (or regular,
respectively).

If Q is Euclidean, regular components are parametrised by P1(k) and for any λ ∈ P1(k) the corresponding component
Tλ is a tube of rank pλ ≥ 1. If pλ = 1, Tλ is called homogeneous, otherwise it is called exceptional. We set

PE
=


λ ∈ P1(k)|pλ > 1


the index set of exceptional tubes and

PH
=


λ ∈ P1(k)|pλ = 1


the index set of homogeneous tubes. There exist at most three exceptional tubes in Γ (CQ ), in other words |PE

| ≤ 3. A
module at the mouth of a tube is called quasi-simple.

IfQ is Euclidean, the Tits form ofQ onZQ0 has corank one and there exists a unique positive generator of its radical which
is denoted by δ. The vector δ is called the radical vector or positive minimal imaginary root of Q and it is known that, for any
orientation of Q , there exists a point e ∈ Q0 which is either a sink or a source and such that δe = 1. Throughout the paper e
denotes such a point.

1.4. Main results

Let Q be a Euclidean quiver. For any λ ∈ P1(k), there exists a unique quasi-simple module Mλ in Tλ such that
dimMλ(e) = 1 and we set

Nλ =


Mλ[1] if e is a source;
Mλ[−1] if e is a sink.

Weprove in Lemmas 3.10 and 3.11 the existence of transjective objects Bλ and B′

λ uniquely determined by the fact that there
exist non-split triangles

Nλ−→ Bλ−→ Se−→Nλ[1] and Se−→ B′

λ−→Nλ−→ Se[1]

if e is a source and non-split triangles

Nλ−→ B′

λ−→ Se−→Nλ[1] and Se−→ Bλ−→Nλ−→ Se[1]

if e is a sink.
Definition 1.2. Let Q be a Euclidean quiver. A cluster frieze on Γ (CQ ) is a frieze f on Γ (CQ ) with values in a commutative
ring R such that for any λ ∈ PE

f (Nλ[k]) =
f (Bλ[k]) + f (B′

λ[k])
f (Se[k])

for any k ∈ {0, . . . , pλ − 1} . (1)

A cluster frieze is called a strong cluster frieze if (1) holds for any λ ∈ P1(k).
Cluster friezes allow us to realise cluster variables in the following sense:

Theorem 1.3. Let CQ be the cluster category of a Euclidean quiver Q and let f be a cluster frieze on Γ (CQ ) with values in
Q(ui, i ∈ Q0) such that f (Pi[1]) = ui for any i ∈ Q0. Then f (M) = XM for any indecomposable rigid object M in CQ .

In particular, f induces a bijection between the set of indecomposable rigid objects in CQ and the set of cluster variables in
A(Q , u).

We actually prove a slightly more general result. Namely, we prove that if f is a cluster frieze on Γ (CQ ) such that
f (Pi[1]) = ui for any i ∈ Q0, then f and X? coincide on the transjective component and the exceptional tubes of Γ (CQ ).

Strong cluster friezes allow us moreover to realise cluster characters associated with modules in homogeneous tubes:
Theorem 1.4. Let CQ be the cluster category of a Euclidean quiver Q and let f be a strong cluster frieze on Γ (CQ ) with values in
Q(ui, i ∈ Q0) such that f (Pi[1]) = ui for any i ∈ Q0. Then f (M) = XM for any indecomposable object M in CQ .

Note that, if the objects Bλ, B′

λ can be explicitly constructed, Theorem 1.3 (and Theorem 1.4) provide a purely
combinatorial method for computing every cluster variable (and every cluster character, respectively) in a cluster algebra
of Euclidean type. In Section 5, we provide such explicit constructions for any Euclidean quiver.

1.5. Organisation of the paper

In Section 2,weprove that the cluster characterX? induces a frieze on theAuslander–Reiten quiver of any cluster category.
Section 3 is dedicated to the proof of Theorems 1.3 and 1.4. As an application, we use friezes of numbers in Section 4 in order
to compute the Euler characteristics of the so-called total quiver Grassmannians. Section 5 provides a case-by-case analysis
in order to construct explicitly the objects Bλ and B′

λ. As an application, we provide an algorithm for computing all cluster
variables in cluster algebras associated with Euclidean quivers in Section 6. In Section 7 we use this algorithm to compute
explicitly the regular cluster variables in typeE6. Finally, in Section 8, we use it to compute the Euler characteristics of the
total quiver Grassmannians of quasi-simple regular modules in typesE6,E7 andE8.
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2. Cluster characters and friezes

We recall the definition of the cluster character associated with an acyclic quiver Q . For any kQ -module M , we denote
by dimM ∈ ZQ0

≥0 its dimension vector. For any e ∈ ZQ0
≥0, the quiver Grassmannian of M of dimension e is

Gre(M) = {N ⊂ M|dimN = e} .

This is a projective variety and we denote by χ(Gre(M)) its Euler characteristic with respect to the simplicial (or étale)
cohomology if k = C (or if k is arbitrary, respectively).

We denote by ⟨−, −⟩ the Euler form on kQ -mod, which here coincides with the Tits form, given by

⟨M,N⟩ = dimHomkQ (M,N) − dim Ext1kQ (M,N).

It only depends on dimM and dimN (see [2]).

Definition 2.1 ([4]). Let Q be an acyclic quiver. The cluster character associated with Q is the map

X? : Ob(CQ )−→ Z[u±1
]

defined as follows:

(ι) If M is an indecomposable kQ -module

XM =

−
e∈Z

Q0
≥0

χ(Gre(M))
∏
i∈Q0

u−⟨e,Si⟩−⟨Si,dimM−e⟩
i ; (2)

(ιι) If M ≃ Pi[1], then

XM = ui;

(ιιι) For any two objectsM,N ∈ Ob(CQ ),

XM⊕N = XMXN .

Note that (2) also holds for decomposable kQ -modules [4]. Moreover XM = 1 ifM = 0.
It was proved in [5] that X? induces a 1–1 correspondence between the set of indecomposable rigid objects in CQ and

the set of cluster variables in A(Q ). Thus, a cluster variable x ∈ A(Q ) is called transjective (or regular) if x = XM for some
indecomposable rigid transjective (or indecomposable rigid regular, respectively) objectM in CQ .

Proposition 2.2. Let Q be an acyclic quiver. Then the cluster character associated with Q induces a Z[u±1
]-frieze on Γ (CQ ).

Proof. LetM be an indecomposable object in CQ . Then eitherM is regular orM is transjective. IfM is a regular kQ -module,
it follows from [4, Proposition 3.10] that XMXτM = XB + 1 where

0−→ τM−→ B−→M−→ 0

is an almost split sequence of kQ -modules. It thus follows that X? induces a frieze on the regular component T containing
M . Explicitly, the frieze is given by f (i, n) = XR(n)

i
for any i ∈ Z/pZ and n ≥ 1 where the Ri for i ∈ Z/pZ denote the quasi-

simple modules in T ordered in such a way that τRi ≃ Ri−1 for any i ∈ Z/pZ and R(n)
i is the unique indecomposable regular

kQ -module with quasi-socle Ri and quasi-length n.
If M is transjective,

Ext1CQ
(M[1],M) ≃ HomCQ (M[1],M[1]) ≃ EndCQ (M[1]) ≃ k.

It follows from [5, Theorem 2] that

XMXM[1] = XB + XB′

where B and B′ are the unique objects such that there exist non-split triangles

M[1]−→ B−→M−→M[2] and M−→ B′
−→M[1]−→M[1].

Since EndCQ (M[1]) ≃ k, B′
= 0 and thus XMXM[1] = XB + 1. Moreover, since Ext1CQ

(M[1],M) ≃ k, the non-split triangle
M[1]−→ B−→M−→M[2] is almost split. Thus, X? induces a frieze on the transjective component.

It follows that X? induces a frieze on each connected component ofΓ (CQ ) and thus onΓ (CQ ). By definition, XM ∈ Z[u±1
]

for any objectM inCQ so that the frieze induced byX? takes its values in the commutative unitary ringZ[u±1
]. This completes

the proof. �
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3. Proofs of Theorems 1.3 and 1.4

The proofs consist of several steps. First, we prove that if Q is any acyclic quiver and M is a transjective object, then XM
can be computed via a frieze on the transjective component. If Q is Euclidean, we prove in Section 3.2 that a frieze on a tube
in Γ (CQ ) is entirely determined by its values at the mouth of the tube. In Section 3.3, we give relations between cluster
characters associated with quasi-simple modules in tubes and cluster characters associated with transjective objects. All
these results are applied in Sections 3.4 and 3.5 in order to prove Theorems 1.3 and 1.4.

3.1. The transjective component

Given a locally finite quiver Q , we denote by ZQ its repetition quiver, that is, the quiver whose points are labelled by
Z × Q0 and arrows are given by (n, i)−→ (n, j) and (n− 1, j)−→ (n, i) if i−→ j ∈ Q1. It is a stable translation quiver for the
translation τ(n, i) = (n − 1, i) for any n ∈ Z, i ∈ Q0. A section in a repetition quiver ZQ is a full connected subquiver Σ in
ZQ such that ZΣ ≃ ZQ (see [2]).

Lemma 3.1. Let Q be an acyclic quiver and R be a commutative ring. Let f be an R-frieze on ZQ . Then f is entirely determined by
the image of a section in ZQ .

Proof. Let f and g be R-friezes on ZQ such that f and g coincide on a section Σ in ZQ . Since ZQ ≃ ZΣ , we can label the
points in ZQ by Z × Σ0 such that points in Σ correspond to {0} × Σ0. Since Σ is acyclic, we define a partial order on Σ0 by
taking the closure ≺ of the order i ≺e j if j−→ i in Q0.

We now prove that for any n ≥ 0 and any i ∈ Σ0, f (n, i) = g(n, i). We put on Z≥0 × Σ0 the lexicographic order ≺

induced by ≤ and ≺. We prove the claim by induction on this lexicographic order. If n = 0, the result holds by hypothesis.
Fix thus n ≥ 1 and i ∈ Σ0 and assume that f (m, j) = g(m, j) for any (j,m) ≺ (i, n). By definition of the frieze we have

f (n, i)f (n − 1, i) =

∏
(m,j)−→ (n,i)

f (m, j) + 1

and

g(n, i)g(n − 1, i) =

∏
(m,j)−→ (n,i)

g(m, j) + 1.

But if (m, j)−→ (n, i), then it follows from the definition of ZΣ that eitherm = n−1 and j−→ i orm = n and i−→ j. Hence,
in any case, (m, j) ≺ (n, i). Thus,

f (n, i) =

∏
(m,j)−→ (n,i)∈Σ1

f (m, j) + 1

f (n − 1, i)
=

∏
(m,j)−→ (n,i)∈Σ1

g(m, j) + 1

g(n − 1, i)
= g(n, i).

If n ≤ 0, we use the same argument with the dual order on Z≤0 × Σ0. �

Corollary 3.2. Let Q be an acyclic quiver. Let f be a frieze on Γ (CQ ) such that f (Pi[1]) = ui for every i ∈ Q0. Then for any
indecomposable transjective object M,

f (M) = XM .

In particular, f induces a bijection between the set of indecomposable transjective objects in CQ and the set of transjective cluster
variables in A(Q , u).

Proof. The transjective component P of Γ (C) is isomorphic to ZQ . The full subquiver Σ whose points correspond to Pi[1],
with i ∈ Q0, is a section in ZQ . By Proposition 2.2, the restrictions of X? and f to P are friezes and it follows from Lemma 3.1
that they are entirely determined by their values on Σ . Since f and X? coincide on Σ , they coincide on P .

The second statement follows from [5, Theorem 4]. �

Remark 3.3. For acyclic quivers, Corollary 3.2 provides a representation-theoretical interpretation of the combinatorial
construction of cluster variables with friezes provided in [1].

3.2. Friezes on tubes

Let A∞ be the locally finite quiver with point set Z>0 and arrows i−→ i + 1 for any i ∈ Z>0. Let ZA∞ be its repetition
quiver. We recall that a (stable) tube T is a translation quiver isomorphic to ZA∞/(τ p) for some integer p ≥ 1, called the
rank of T . Points in T can be labelled by Z/pZ × Z>0 and the translation on T induced by the translation on ZA∞ is thus
given by τ(i, n) = (i − 1, n) for any i ∈ Z/pZ, n ∈ Z>0. Themouth of a tube T is the set of points {(i, 1)|i ∈ Z/pZ}.

Definition 3.4 ([15]). Let Ti, i ∈ Z≥0 be a family of indeterminates over Z≥0. We define the nth generalised Chebyshev
polynomial Pn as follows. First, P−1 = 0, P0 = 1 and for any n ≥ 1, Pn is the polynomial in Z[T0, . . . , Tn−1] given by

Pn+1(T0, . . . , Tn) = TnPn(T0, . . . , Tn−1) − Pn−1(T0, . . . , Tn−2).



Author's personal copy

I. Assem, G. Dupont / Journal of Pure and Applied Algebra 215 (2011) 2322–2340 2327

Note that, for any n ≥ 1,

Pn(T0, . . . , Tn−1) = det



Tn−1 1 0

1
. . .

. . .

. . .
. . .

. . .

. . .
. . . 1

0 1 T0

 ∈ Z[T0, . . . , Tn−1].

If R is an arbitrary commutative unitary ring, then the ring homomorphism Z−→ R sending 1 to 1R allows us to view
each generalised Chebyshev polynomial Pn as a polynomial function in n variables with coefficients in R. It was observed
in [15] that friezes on tubes are entirely governed by generalised Chebyshev polynomials in the following sense.

Theorem 3.5 ([15]). Let T be a tube of rank p ≥ 1 and f be a frieze on T . Then for any i ∈ Z/pZ and any n ≥ 1, we have

f (i, n) = Pn(f (i, 1), . . . , f (i + n − 1, 1)). �

Corollary 3.6. A frieze on a tube is entirely determined by its values on the mouth of the tube. �

Remark 3.7. An interesting consequence is that if R is a ring and T is a tube with mouth M, every function M−→ R can
be completed into an R-frieze T −→ R. This contrasts with the situation of the repetition quivers ZQ of an acyclic quiver Q
where if Σ is a section in ZQ , there may exist functions Σ−→ R which do not extend to an R-frieze on ZQ . For example, it
is easily seen that if Q is a quiver of Dynkin type A2, there exists no Z-frieze f on ZQ such that f equals 2 on a section in ZQ .

3.3. Characters associated with quasi-simple modules

Lemma 3.8. Let Q be an acyclic quiver. Then the map σ : XM → XM[1] induces a Z-algebra automorphism of A(Q ).

Proof. It follows from [5] that A(Q ) is the Z-algebra generated by XM for M rigid in CQ with the relations

XMXM∗ = XB + X ′

B

where (M,M∗) is an exchange pair and B, B′ are the central terms of the corresponding exchange triangles (see [3] for
details). Since [1] is an auto-equivalence of CQ , (M[1],M∗

[1]) is also an exchange pair and B[1], B′
[1] are the central terms

of the corresponding exchange triangles. Thus,

XM[1]XM∗[1] = XB[1] + XB′[1]

and XM → XM[1] induces a Z-linear homomorphism A(Q )−→ A(Q ) whose inverse is induced by XM → XM[−1]. �

From now on and until the end of Section 3, if Q denotes a Euclidean quiver with radical vector δ then e ∈ Q0 denotes a
point which is either a source or a sink such that δe = 1.

Lemma 3.9. Let Q be a Euclidean quiver. Then for any λ ∈ P1(k), there exists a unique quasi-simple module Mλ in Tλ such that
Mλ(e) ≃ k.

Proof. Let R0, . . . , Rp−1 be the quasi-simple modules in T . It is well-known (see for instance [11]) that

δ =

p−1−
i=0

dim Ri

so that

1 = δe =

p−1−
i=0

dim Ri(e).

Thus, there exists a unique i ∈ {0, . . . , p − 1} such that Ri(e) ≃ k. �

Lemma 3.10. Let Q be a Euclidean quiver and λ ∈ P1(k). Assume that e is a source such that δe = 1. Set Nλ = Mλ[1]. Then the
following hold:

1. dim Ext1CQ
(Nλ, Se) = 1;

2. XNλ
XSe = XBλ

+ XB′
λ
where Bλ is the (unique) kQ-module such that there exists a short exact sequence

0−→Nλ−→ Bλ−→ Se−→ 0

and B′

λ = Ker f ⊕ Coker f [−1] for any non-zero morphism f ∈ HomCQ (Nλ, τSe);
3. Bλ and B′

λ are transjective.
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Proof. Note that Ie ≃ Se so that we have

dim Ext1CQ
(Nλ, Se) = dim Ext1CQ

(Nλ, Ie)

= dim Ext1CQ
(Nλ, Pe[2])

= dim Ext1CQ
(Nλ[−2], Pe)

= dim Ext1CQ
(Pe,Nλ[−2])

= dimHomCQ (Pe,Nλ[−1])

= dimHomkQ (Pe, τ−1Nλ)

= dimHomkQ (Pe,Mλ)

= dimMλ(e)
= 1.

Thus, according to [5],

XNλ
XSe = XBλ

+ XB′
λ

where Bλ, B′

λ are the (unique) objects such that there exist non-split triangles

Nλ−→ Bλ−→ Se−→Nλ[1] and Se−→ B′

λ−→Nλ−→ Se[1]

in CQ . Since Ext1kQ (Se,Nλ) ≃ k, there exists a unique kQ -moduleMλ such that there is a non-split short exact sequence

0−→Nλ−→ Bλ−→ Se−→ 0

inducing a non-split triangle Nλ−→ Bλ−→ Se−→Nλ[1] in CQ . Since Bλ is the middle term of a non-split exact sequence
starting at a quasi-simple regular kQ -module and ending at a preinjective (and actually injective) module, it follows that Bλ

is a preinjective kQ -module so that it is identified with a transjective object in CQ .
Also, HomCQ (Nλ, τSe) ≃ HomkQ (Nλ, τSe) ≃ k so that a non-zero morphism f ∈ HomkQ (Nλ, τSe) induces a triangle

τSe[−1]−→Ker f ⊕ Coker f [−1]−→Nλ

f
−→ τSe

in Db(mod−kQ). Since the projection functor Db(mod−kQ)−→ CQ is triangulated, this gives a non-split triangle

Se−→ B′

λ−→Nλ−→ Se[1]

in CQ . Since Nλ is quasi-simple and f is non-zero, then Ker f is a proper submodule of Nλ so that it is a postprojective kQ -
module or zero. Also, Coker f is a quotient of the injective module τSe so that it is a preinjective kQ -module or zero. Thus
Coker f [−1] is a transjective object in CQ and B′

λ is transjective. �

Lemma 3.11. Let Q be a Euclidean quiver and λ ∈ P1(k). Assume that e is a sink such that δe = 1. Set Nλ = Mλ[−1]. Then the
following hold:

1. dim Ext1CQ
(Nλ, Se) = 1;

2. XNλ
XPe = XBλ

+ XB′
λ
where Bλ is the (unique) kQ-module such that there exists a short exact sequence

0−→ Se−→ Bλ−→Nλ−→ 0

and B′

λ = Ker f ⊕ Coker f [−1] for any non-zero morphism f ∈ HomCQ (Se, τNλ);
3. Bλ and B′

λ are transjective.

Proof. Since e is a sink, we have Se ≃ Pe so that

dim Ext1CQ
(Nλ, Se) = dim Ext1CQ

(Nλ, Pe)

= dim Ext1kQ (Nλ, Pe)
= dimHomkQ (Pe, τNλ)

= dimHomkQ (Pe,Mλ)

= dimMλ(e)
= 1

The rest follows as for Lemma 3.10. �
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3.4. Proof of Theorem 1.3

If order to prove Theorem 1.3, we need to prove that if f is a cluster frieze onΓ (CQ ) such that f (Pi[1]) = ui for any i ∈ Q0,
then f (M) = XM for any indecomposable rigid object M in CQ . It is known that an indecomposable rigid object M is either
transjective or belongs to an exceptional tube.

If M is transjective, the result follows from Corollary 3.2. We thus assume that M belongs to a tube Tλ for some λ ∈ PE .
According to Corollary 3.6, since X? and f induce friezes on Tλ, it is enough to prove that X? and f coincide on the quasi-
simple modules at the mouth of Tλ. In other words, it is enough to prove that XNλ[k] = f (Nλ[k]) for any k ∈ {0, . . . , pλ − 1}.
According to Lemmas 3.10 and 3.11, we have

XNλ
=

XBλ
+ XB′

λ

XSe

so that applying Lemma 3.8, we get

XNλ[k] =
XBλ[k] + XB′

λ[k]

XSe[k]

for any k ∈ {0, . . . , pλ − 1}.
Since Se[k], Bλ[k] and B′

λ[k] are transjective, we have XSe[k] = f (Se[k]), XBλ[k] = f (Bλ[k]) and XB′
λ[k] = f (B′

λ[k]) for any
k ∈ {0, . . . , pλ − 1}. Thus, since f is a cluster frieze, then for any k ∈ {0, . . . , pλ − 1}, we get

f (Nλ[k]) =
f (Bλ[k]) + f (B′

λ[k])
f (Se[k])

=
XBλ[k] + XB′

λ[k]

XSe[k]

= XNλ[k]

and Theorem 1.3 is proved. �

3.5. Proof of Theorem 1.4

In order to prove Theorem 1.4, we need to prove that if f is a strong cluster frieze on Γ (CQ ) such that f (Pi[1]) = ui for
any i ∈ Q0, then f (M) = XM for any indecomposable object M in CQ . Recall that strong cluster friezes have been defined
above (see Definition 1.2).

Since f is a strong cluster frieze, it is in particular a cluster frieze and it thus follows that f (M) = XM for any object M
in the transjective component or in an exceptional tube of Γ (CQ ). It is thus sufficient to prove that f and X? coincide on
homogeneous tubes. According to Corollary 3.6, since X? and f induce friezes on tubes, it is enough to prove that X? and f
coincide on the mouths of homogeneous tubes. Fix thus λ ∈ PH . It follows from Lemmas 3.10 and 3.11 that

XNλ
=

XBλ
+ XB′

λ

XSe
.

As before, since Se, Bλ and B′

λ are transjective, we have XSe = f (Se), XBλ
= f (Bλ) and XB′

λ
= f (B′

λ). Moreover, since f is a
strong cluster frieze, we have

f (Nλ) =
f (Bλ) + f (B′

λ)

f (Se)

=
XBλ

+ XB′
λ

XSe

= XNλ

which proves Theorem 1.4. �

4. Euler characteristics of total quiver Grassmannians

Given an acyclic quiver Q , we construct Z-friezes on Γ (CQ ) and see that they allow us to compute algorithmically the
Euler characteristics of the following projective varieties.

Definition 4.1. Let Q be an acyclic quiver andM be a kQ -module. The total quiver Grassmannian is

Gr(M) =


e∈Z

Q0
≥0

Gre(M).
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Since Gre(M) is empty for all but finitely many e ∈ ZQ0
≥0, then Gr(M) is a finite union of projective varieties and is thus a

projective variety. We denote by χ(Gr(M)) its Euler characteristic.
Let ev be the ring homomorphism

ev :


Z[u±1

] −→ Z,
ui → 1 for any i ∈ Q0.

Lemma 4.2. Let Q be an acyclic quiver, then for any kQ-module M,

ev(XM) = χ(Gr(M)).

Proof. LetM be a kQ -module. Then

ev(XM) =

−
e∈Z

Q0
≥0

χ(Gre(M))ev(u−⟨e,Si⟩−⟨Si,dimM−e⟩
i )

=

−
e∈Z

Q0
≥0

χ(Gre(M))

= χ

 
e∈Z

Q0
≥0

Gre(M)


= χ(Gr(M)). �

Corollary 4.3. Let Q be an acyclic quiver and f be a Z-frieze on Γ (CQ ) such that f (Pi[1]) = 1 for any i ∈ Q0. Then
f (M) = χ(Gr(M)) for any transjective object M.

In particular, χ(Gr(M)) > 0 for any postprojective or preinjective kQ-module M.

Proof. It follows from Proposition 2.2 that X? induces a frieze on Γ (CQ ). Since ev : Z[u±1
]−→ Z is a ring homomorphism,

it follows that ev ◦ X? is a Z-frieze on Γ (CQ ) such that (ev ◦ X?)(Pi[1]) = 1 for any i ∈ Q0. Thus, f and ev ◦ X? coincide on
a section in the transjective component P . By Lemma 3.1 the friezes coincide on P . It thus follows from Lemma 4.2 that
f (M) = χ(Gr(M)) for any transjective objectM . An easy induction on the transjective component proves that f (M) > 0 for
any transjective objectM . �

Corollary 4.4. Let CQ be the cluster category of a Euclidean quiver Q and let f be a cluster Z-frieze on Γ (CQ ) such that
f (Pi[1]) = 1 for any i ∈ Q0. Then f (M) = χ(Gr(M)) for any rigid kQ-module M.

Proof. As above, f andM → χ(Gr(M)) coincide on the transjective component. Now, as for Theorem 1.3, it is easy to check
that if f is a Z-frieze on Γ (CQ ) such that f (Pi[1]) = 1 for any i ∈ Q0, then f coincides with ev ◦ X? on every object contained
either in the transjective component or in an exceptional tube. In particular, f (M) = ev(XM) = χ(Gr(M)) for any rigid
kQ -moduleM . �

Similarly, we obtain:

Corollary 4.5. Let CQ be the cluster category of a Euclidean quiver Q . Let f be a strong cluster Z-frieze on Γ (CQ ) such that
f (Pi[1]) = 1 for any i ∈ Q0. Then f (M) = χ(Gr(M)) for any kQ-module M. �

5. Explicit determination of Bλ and B′
λ

Let Q be a Euclidean quiver. Once defined, the cluster frieze provides an efficient tool for computations in the cluster
algebra A(Q ). Nevertheless, the definition of a cluster frieze on Γ (CQ ) requires the determination of the pair (Bλ, B′

λ) of
objects arising as middle terms of triangles with extreme terms Nλ and Se. This determination is the only obstruction for
getting a complete algorithm for computing cluster variables. The aim of this section is to give an explicit description of
these objects for arbitrary Euclidean quivers. This is based on a case-by-case analysis.

5.1. Homogeneous tubes

We first prove that for any Euclidean quiverQ and any parameterλ ∈ PH of a homogeneous tube, the transjective objects
Bλ and B′

λ do not depend on the choice of λ.

Lemma 5.1. Let Q be a Euclidean quiver. Assume that e is a sink. Then, for any λ ∈ PH , the following hold:

1. Bλ is the unique (up to isomorphism) indecomposable module of dimension vector δ + dim Se;
2. B′

λ ≃ C[−1] where C is the unique (up to isomorphism) indecomposable module of dimension vector δ − dim Se.
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Proof. According to Lemma 3.11, Bλ is the only module such that there exists a non-split exact sequence

0−→ Se−→ Bλ−→Nλ−→ 0

and Bλ is postprojective.
We denote by ∂X = ⟨δ, dim X⟩ the defect of a representation X of Q (see e.g. [12] for details). Since δe = 1, we have

∂Se = ∂Pe = −1. Applying this linear form to the short exact sequence above, we get ∂Bλ
= ∂Se = −1 so that Bλ

is an indecomposable postprojective module. Up to isomorphism, it is thus determined by its dimension vector which is
δ + dim Se.

Now, according to Lemma 3.11, B′

λ is isomorphic to Ker f ⊕Coker f [−1] for any non-zeromorphism f ∈ HomkQ (Se, τNλ).
Since Se is simple, then Ker f is zero and thus B′

λ ≃ C[−1] where C = Coker f . Taking defects in the short exact sequence

0−→ Se
f

−→ τNλ−→ C−→ 0

we get ∂C = −∂Se = 1. Since C is preinjective, it is indecomposable and thus entirely determined by its dimension vector
which is δ − dim Se. �

We define a partial order ≤ on ZQ0 by setting (ei)i∈Q0 ≤ (fi)i∈Q0 if ei ≤ fi for every i ∈ Q0.
Lemma 5.2. Let Q be a Euclidean quiver. Assume that e is a source. Then, for any λ ∈ PH , the following hold:
1. Bλ is the unique (up to isomorphism) indecomposable module of dimension vector δ + dim Se;
2. if dim (τSe) ≤ δ, then B′

λ is the unique (up to isomorphism) indecomposable module of dimension vector δ − dim (τSe);
3. if δ ≤ dim (τSe), then B′

λ ≃ C[−1] where C is the unique (up to isomorphism) indecomposable module of dimension vector
dim (τSe) − δ.

Proof. According to Lemma 3.10, Bλ is the only module such that there exists a non-split exact sequence

0−→Nλ−→ Bλ−→ Se−→ 0.

Since Nλ is quasi-simple and Se is injective, then Bλ is preinjective. Applying the defect form, we get ∂Bλ
= ∂Se = 1 so that

Bλ is indecomposable preinjective. Up to isomorphism, it is thus determined by its dimension vector which is δ + dim Se.
Now, according to Lemma 3.10, B′

λ is isomorphic to Ker f ⊕Coker f [−1] for any non-zeromorphism f ∈ HomkQ (Nλ, τSe).
We set K = Ker f and C = Coker f . Since Nλ is quasi-simple, then K is necessarily postprojective and C is necessarily
preinjective. Taking defects in the exact sequence

0−→ K−→Nλ

f
−→ τSe−→ C−→ 0

we get ∂K = 1 + ∂C . Since ∂K ≤ 0 and ∂C ≥ 0, we get that either K = 0 and C is indecomposable or C = 0 and K is
indecomposable.

If C = 0, then f is an epimorphism and thus dim (τSe) ≤ δ. In this case, B′

λ = K is entirely determined by its dimension
vector which is δ − dim (τSe).

If K = 0, then f is a monomorphism so that δ ≤ dim (τSe). In this case C is entirely determined by its dimension vector
which is dim (τSe) − δ and B′

λ = C[−1]. �
Corollary 5.3. Let Q be a Euclidean quiver. Then for any λ, µ ∈ PH , we have

Bλ ≃ Bµ and B′

λ ≃ B′

µ. �

5.2. Exceptional tubes in type Ã

Let Q be a Euclidean quiver of type Ãr,s, that is, with r arrows going clockwise and s arrows going counter-clockwise. The
Auslander–Reiten quiver Γ (CQ ) contains two exceptional tubes T0 and T1 of respective ranks r and s.

Since Q is acyclic it contains at least one sink and at least one source. Moreover, since δi = 1, for any i ∈ Q0, in this case,
the point e can be any of these sinks or sources. In order to fix notations, we consider the case where e is a sink.

There exists thus a unique clockwise (or counter-clockwise, respectively) arrow in Q1 with target e. We denote by i+ (or
i−, respectively) the source of this unique clockwise (or counter-clockwise, respectively) arrow. Locally, Q can be depicted
as follows:

· · · oo // · · · // i+

��@
@@

@@
@@

e.

· · · oo // · · · // i−

??~~~~~~~

We denote byM0 (orM1) the quasi-simple module in T0 (or T1, respectively) given by Lemma 3.9.
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It is not hard to prove (see for instance [13, Section 9.6]) thatM0 andM1 are given by:

· · · 0oo // · · · // 0

��=
==

==
==

=

M0 : k

· · · 0 k
0

oo
1

// · · ·
1

// k
1

@@�������

· · · 0 k
0oo 1 // · · · 1 // k

1

��>
>>

>>
>>

>

M1 : k.

· · · 0oo // · · · // 0

??��������

The set

τ kM0|0 ≤ k ≤ r − 1


is a complete list of pairwise non-isomorphic quasi-simple modules in T0 and the set

τ kM1|0 ≤ k ≤ s − 1

is a complete list of pairwise non-isomorphic quasi-simple modules in T1. Since we considered a

sink e, we set N0 = M0[−1] and N1 = M1[−1]. We easily check that N0 ≃ Pi+/Se. We have a non-split extension of
kQ -modules

0−→ Se−→ Pi+−→N0−→ 0.

Moreover, if f is a non-zero morphism Se−→ τN0 ≃ M0, then Ker f = 0 since Se is simple and Coker f ≃ M0/Se = Ii− . Thus,
we get

B0 ≃ Pi+ and B′

0 ≃ Ii− [−1] ≃ Pi− [1].

Similarly,

B1 ≃ Pi− and B′

1 ≃ Ii+ [−1] ≃ Pi+ [1].

For λ ∈ PH , it follows from Lemma 5.1 that Bλ is the unique indecomposable postprojective module E with dimension
vector δ + dim Se and B′

λ ≃ C[−1] where C is the unique indecomposable preinjective module with dimension vector
δ − dim Se.

Summing up in a table, we get Table 1:

Table 1
Bλ and B′

λ in type Ãr,s .

λ ∈ P1(k) pλ Bλ B′

λ

0 r Pi+ Pi− [1]
1 s Pi− Pi+ [1]
λ ∈ PH 1 E C[−1]

5.3. Exceptional tubes in typeD
We now assume that Q is a Euclidean quiver of typeDn+3 with n ≥ 1. We moreover assume that Q is equipped with the

orientation in the tables of [12]. That is

a1

��?
??

??
??

? b1

Q : c1 // · · · // cn

��?
??

??
??

?

??��������

a2

??��������
b2

We set e = b1 which is a sink.
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There are three exceptional tubes T1, T∞ and T0 of respective ranks n + 1, 2 and 2. We denote by M1, M∞ and M0 the
quasi-simple modules given by Lemma 3.9.

5.3.1. The tube of rank n + 1
The quasi-simple modules in T1 are the Sci , i = 1, . . . , n and the sincere moduleM1 such thatM1(i) ≃ k for every i ∈ Q0

and M1(α) = 1k for every α ∈ Q1. We have τSci ≃ Sci+1 if i ≠ n and τScn ≃ M1.
We set N1 = M1[−1] ≃ Scn . With the notations of Lemma 3.11, we get

B1 ≃ Pcn/Pb2

and B′

1 = Ker f ⊕ Coker f [−1] for 0 ≠ f ∈ HomkQ (Sb1 ,M1). But Ker f = 0 since Pb1 ≃ is simple to that

B′

1 = Coker f [−1] ≃ Ib2 [−1] ≃ Pb2 [1].

5.3.2. Tubes of rank 2
Let T0 be the tube whose quasi-simples are

0

��=
==

==
==

= k

M0 = k // · · · // k

��=
==

==
==

=

@@�������

k

@@�������
0

k

��=
==

==
==

0

N0 = k // · · · // k

��=
==

==
==

@@��������

0

@@��������
k

With the notations of Lemma 3.11, we get

B0 ≃ Pa1

and B′

0 = Ker f ⊕ Coker f [−1] for 0 ≠ f ∈ HomkQ (Sb1 ,M0). Since Sb1 is simple, Ker f = 0 and thus Coker f is the
representation

0

��>
>>

>>
>>

0

k // · · · // k

��?
??

??
??

??��������

k

@@�������
0.

In particular, Coker f is indecomposable preinjective so that it is determined by its dimension vector. An easy induction on
n shows that dim Coker f = dim τ nIa2 so that Coker f ≃ τ nIa2 ≃ Ia2 [n] and thus

B′

0 ≃ Ia2 [n − 1].

ForT∞, wenotice that the groupZ/2Z acts by automorphismsonCQ by exchanging points a1 and a2. This action preserves
the point e = b1 so that

B∞ ≃ Pa2 and B′

∞
≃ Ia1 [n − 1].

For λ ∈ PH , it follows from Lemma 5.1 that Bλ is the unique indecomposable postprojective module E with dimension
vector δ + dim Se and B′

λ ≃ C[−1] where C is the unique indecomposable preinjective module with dimension vector
δ − dim Se.
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Summing up in a table, we get Table 2:

Table 2
Bλ and B′

λ in typeDn+3, n ≥ 1.

λ ∈ P1(k) pλ Bλ B′

λ e

1 n + 1 Pcn/Pb2 Ib2 [−1] e = b1
0 2 Pa1 Ia2 [n − 1] e = b1
∞ 2 Pa2 Ia1 [n − 1] e = b1
λ ∈ PH 1 E C[−1] e = b1

5.4. Exceptional tubes in typeE6

Let Q be the quiver of Euclidean typeE6 with the orientation considered in the tables of [12].

5

��
4

��
Q : 3 // 2 // 1 6oo 7oo

There are three exceptional tubes T∞, T0, T1 of respective ranks 2, 3 and 3. We set e = 7 which is a source. Note that
Ie ≃ Se = S7 and that τSe ≃ S6.

For any λ ∈ PE , we denote by Mλ the quasi-simple module given in Lemma 3.9 and set Nλ ≃ Mλ[1]. We denote by Bλ

and B′

λ the unique objects in CQ , given by Lemma 3.10 such that there is a non-split short exact sequence

0−→Nλ−→ Bλ−→ Se−→ 0

and B′

λ = Ker f ⊕ Coker f [−1] for some non-zero morphism f ∈ HomkQ (Nλ, τSe). Since τSe is simple, B′

λ = Ker f . As in the
proof of Lemma 5.2, it is easy to see that Bλ and B′

λ are determined by their dimension vectors.
The following table sums up the dimension vectors for T0 and T∞:

λ ∈ P1(k) dimNλ dim Bλ dim B′

λ

∞ [1101010] [1101011] [1101000]
0 [1110010] [1101011] [1110000]

Now it is possible, using for example the algorithms provided in Section 6.1, to compute explicitly the indecomposable
modules having these dimension vectors. We get

B∞ ≃ τ 3I7 and B′

∞
≃ τ−1P7

and

B0 ≃ τ 2I5 and B′

0 ≃ P3.

For T1, we deduce it from T0 using the fact that the action of the product of transpositions (2, 6)(3, 7) on Q0 induces an
action on CQ by automorphisms. Since this action exchanges 7 and 3, in this case, we have to take e = 3 and we get

B1 ≃ τ 2I5 and B′

1 ≃ P7.

For λ ∈ PH and e = 7, we can apply Lemma 5.2 and see that Bλ is the unique indecomposable (preinjective) module
with dimension vector [3212122] and B′

λ is the unique indecomposable (postprojective) module with dimension vector
[3212111]. Applying the recognition algorithm given in Section 6.1, we get

Bλ ≃ τ 6I7 and B′

λ ≃ τ−4P7.

Summing up in a table, we get Table 3. Note that an explicit computation of the corresponding variables is given in
Section 7.
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Table 3
Bλ and B′

λ in typeE6 .

λ ∈ P1(k) pλ Bλ B′

λ e

0 2 τ 3I7 τ−1P7 e = 7
1 3 τ 2I5 P3 e = 7
∞ 3 τ 2I5 P7 e = 3
λ ∈ PH 1 τ 7I7 τ−4P7 e = 7

5.5. Exceptional tubes in typeE7

Let Q be the quiver of Euclidean typeE7 with the orientation considered in [12].

5

��
Q : 4 // 3 // 2 // 1 6oo 7oo 8oo

There are three exceptional tubes T∞, T0, T1 of respective ranks 2, 3 and 4. We consider e = 8 which is a source. We have
Ie ≃ Se = S8 and τSe ≃ S7. As for typeE6, we get Table 4:

Table 4
Bλ and B′

λ in typeE7 .

λ ∈ P1(k) pλ Bλ B′

λ e

∞ 2 τ 6I4 τ−4P4 e = 8
0 3 τ 4I8 τ−2P8 e = 8
1 4 τ 3I4 τ−1P4 e = 8
λ ∈ PH 1 τ 12I8 τ−10P8 e = 8

5.6. Exceptional tubes in typeE8

Let Q be the quiver of Euclidean typeE8 with the orientation in [12]

4

��
Q : 3 // 2 // 1 5oo 6oo 7oo 8oo 9oo

There are three exceptional tubes T∞, T0, T1 of respective ranks 2, 3 and 5. We take e = 9 which is a source. We have
Ie ≃ Se = S9 and τSe ≃ S8. As before, we get Table 5:

Table 5
Bλ and B′

λ in typeE8 .

λ ∈ P1(k) pλ Bλ B′

λ

∞ 2 τ 15I9 τ−13P9
0 3 τ 10I9 τ−8P9
1 5 τ 6I9 τ−4P9
λ ∈ PH 1 τ 30I9 τ−28P9

5.7. Changing orientations

For simplicity, we worked with prescribed orientations, except for Ã. Nevertheless, our techniques can actually be
adapted to any orientation.

A first method consists of doing again the computations made earlier. Indeed, we worked with a fixed orientation in
order to use the tables provided in [12] but there is no theoretical obstruction to doing all the computations with a different
orientation.

A second method consists in observing that the strong isomorphism of cluster algebras (in the sense of [17])
corresponding to the orientation change can be realised combinatorially. We detail this method here.
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Let Q ′ be a Euclidean quiver equipped with an arbitrary orientation. The cluster algebra A(Q ′, x) contains a seed (Q ,u)
such that Q is a Euclidean quiver of the same Euclidean type as Q ′ equipped with one of the orientations considered above.
The cluster categories CQ and CQ ′ are equivalent and in particular, have the same Auslander–Reiten quiver Γ .

We denote by P ′

i , with i ∈ Q ′

0, the indecomposable projective kQ ′-modules and by Pi, with i ∈ Q0, the indecomposable
projective kQ -modules. We denote by X? : Ob(CQ )−→ Z[u±1

] (or X ′

? : Ob(CQ ′)−→ Z[x±1
] the cluster character associated

with Q (or Q ′, respectively) and we let f : Γ −→ Z[u±1
] be the cluster frieze on Γ sending Pi[1] to ui for every i ∈ Q0.

Let φ : A(Q ,u)−→ A(Q ′, x) be the strong isomorphism of cluster algebras. According to Theorem 1.3, the cluster
variables in A(Q ,u) are the f (M) where M runs over the points of Γ corresponding to indecomposable rigid objects in
CQ . Let v be such a point in Γ . Then v corresponds to some indecomposable object M in CQ and to Φ(M) in CQ ′ . It follows
from [20, Section 5] that

X ′

M = φ(XΦ(M)) = φ(f (Φ(M))).

Now, in order to compute cluster variables in A(Q ′, x), it is enough to compute first the cluster frieze f on Γ and then
to replace each ui by its Laurent expansion in the cluster x. The first part can be done algorithmically using Theorem 1.3 and
in order to find the expansion of ui in x, one simply constructs the frieze f ′ on P such that f ′(P ′

i [1]) = xi for any i ∈ Q0 and
then replaces ui by f ′(Pi[1]) in the values of the frieze f .

6. Algorithms

6.1. Recognising indecomposable transjective modules

We now detail the algorithms used in Section 5 in order to recognise indecomposable modules in the transjective
component from their dimension vectors. The algorithm is elementary and actually works for any acyclic quiver.

Let Q be an acyclic quiver. We assume that we know explicitly the dimension vectors of the indecomposable projective
kQ -modules and of the indecomposable injective kQ -modules (this can be achieved with an elementary computer
program).

Let C be the Cartan matrix of kQ , that is the matrix whose ith column is dim Pi or, equivalently, whose ith line is dim Ii
(see for instance [2, §III]). Let Φ = −C tC−1 be the Coxeter matrix of kQ . Note that if Q is a Euclidean quiver equipped with
one of the orientations provided in Section 5, the explicit Coxeter matrix can be found in [24].

Then for any i ∈ Q0, n ≥ 0, we have

dim τ−nPi = Φ−ndim Pi;
dim τ nIi = Φndim Pi.

Thus, if M is an indecomposable postprojective module whose dimension vector is known, one can apply the following
procedure.

Algorithm 1 An algorithm for recognising indecomposable postprojective modules
Require: M is indecomposable postprojective
1: n = 0
2: while f = 0 do
3: for i ∈ Q0 do
4: if dimM = Φ−ndim Pi then
5: R := τ−nPi
6: f := 1
7: end if
8: end for
9: n := n + 1

10: end while
11: return R // The moduleM is thus isomorphic to R.

The algorithm is dual for indecomposable preinjective modules.

6.2. Computing cluster characters in the Euclidean case

LetQ be a Euclidean quiver. In this section, we give algorithms for computing cluster characters associatedwith arbitrary
indecomposable kQ -modules. As usual, for any λ ∈ P1(k),Mλ is the quasi-simplemodule in the tube Tλ given by Lemma 3.9
and pλ is the rank of Tλ.

First, we see that cluster characters associated with indecomposable postprojective modules can be computed
recursively:
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Algorithm 2 Recursive computation for postprojective modules
Require: n ≥ 0, i ∈ Q0
1: for j ∈ Q0 do
2: XPj[1] := uj
3: end for
4:

XPi[−n] :=

∏
(j,m)−→ (i,−n)

XPj[m]

XPi[−n+1]

5: return XPi[−n]

The algorithm is dual for indecomposable preinjective modules.
Nowwe are able to compute algorithmically characters associatedwith postprojective and preinjectivemodules, andwe

give an algorithm to compute characters associated with indecomposable regular modules.

Algorithm 3 Computation of XMλ[k](l) for l ≥ 1, k ∈ [0, pλ − 1] and λ ∈ P1(k)

Require: λ ∈ P1(k), M ≃ Mλ[k](l) with l ≥ 1 and k ∈ [0, pλ − 1]
1: for k ∈ [0, pλ − 1] do
2:

XMλ[k] :=
XBλ[k] + XB′

λ[k]

XSe[k]

// Characters arising in the right-hand side can be computed using Algorithm 2 and its dual version for preinjective
modules

3: end for
4: XM := Pl(XMλ[(k mod pλ)], . . . , XMλ[((k+l−1) mod pλ)])
5: return XM

7. An example: regular cluster variables in type E6

Let Q be the Euclidean quiver of typeE6 considered in Section 5.4. For any λ ∈ P1(k), we provide an explicit expansion
formula of the cluster variable corresponding to regular modules at the mouths of the exceptional tubes.

In the tube T0 of rank two, we have:

XN0 =
1

u1u2u4u6
(u2u3u4u5u6u7 + u3

1 + u2
1u3 + u2

1u5 + u1u3u5 + u2
1u7 + u1u3u7 + u1u5u7 + u3u5u7)

and

XN0[1] =
1

u2
1u2u3u4u5u6u7

(u2
2u3u2

4u5u2
6u7 + u1u2u3u4u5u2

6 + u1u2u3u2
4u6u7 + u1u2

2u4u5u6u7

+ u3
1u2u4u6 + u1u2u3u4u5u6 + u1u2u3u4u6u7 + u1u2u4u5u6u7

+ 2u2u3u4u5u6u7 + u3
1u2u4 + u3

1u2u6 + u3
1u4u6 + u2

1u3u4u6

+ u2
1u2u5u6 + u2

1u2u4u7 + u3
1u2 + u3

1u4 + u2
1u3u4 + u2

1u2u5

+ u3
1u6 + u2

1u3u6 + u2
1u5u6 + u1u3u5u6 + u2

1u2u7 + u2
1u4u7

+ u1u3u4u7 + u1u2u5u7 + u3
1 + u2

1u3 + u2
1u5 + u1u3u5 + u2

1u7 + u1u3u7 + u1u5u7 + u3u5u7).

In the tube T1 of rank three, we obtain:

XN1 =
u2u3u4u6u7 + u2

1u2 + u1u2u7 + u2
1 + u1u3 + u1u7 + u3u7

u1u2u3u6

XN1[1] =
u2u3u4u5u6 + u2

1u4 + u1u3u4 + u2
1 + u1u3 + u1u5 + u3u5

u1u2u4u5

XN1[2] =
u2u4u5u6u7 + u2

1u6 + u1u5u6 + u2
1 + u1u5 + u1u7 + u5u7

u1u4u6u7
.
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In the tube T∞ of rank three, we get:

XN∞
=

u2u3u4u6u7 + u2
1u6 + u1u3u6 + u2

1 + u1u3 + u1u7 + u3u7

u1u2u6u7

XN∞[1] =
u2u4u5u6u7 + u2

1u4 + u1u4u7 + u2
1 + u1u5 + u1u7 + u5u7

u1u4u5u6

XN∞[2] =
u2u3u4u5u6 + u2

1u2 + u1u2u5 + u2
1 + u1u3 + u1u5 + u3u5

u1u2u3u4
.

This provides an interesting result in view of Fomin–Zelevinsky’s positivity conjecture.

Proposition 7.1. Let Q be a Euclidean quiver of type E6 with the orientation considered in Section 5. Then the regular cluster
variables of A(Q ) belong to Z≥0[u±1

].

Proof. A regular cluster variable in A(Q ) is by definition of the form XM for some indecomposable rigid regular kQ -module
M . Such an indecomposable regular rigid module is of the form R(l) where R is quasi-simple in an exceptional tube Tλ and
0 < l < pλ. IfM is quasi-simple, the result holds according to the above expressions. Thus, the only case to consider is when
λ ∈ {1, ∞} and l = 2. In this case, the proof is inspired by [14]. According to the previous expressions, for any quasi-simple
module R in T0 or T∞, the character XR can be written as

XR =

nR−
i=1

LR,i

where LR,i is a (monic) Laurent monomial in the cluster u. Now, we observe that for any R, there exist integers 1 ≤ iR0 ≤ nR

and 1 ≤ jR0 ≤ nR[−1] such that

XR[−1] =
1

LR,i0
+

nR[−1]−
i≠jR0; i=1

LR[−1],i.

These monomials are explicitly listed in the following table.

R LR,iR0
N1

u4u7
u1

N1[1]
u2u5
u1

N1[2]
u3u6
u1

N∞
u3u4
u1

N∞[1] u2u7
u1

N∞[2] u5u6
u1

Thus, we get

XR(2) = P2(XR, XR[−1])

= XRXR[−1] − 1

=

LR,iR0 +

nR−
i=1
i≠iR0

LR,i


 1

LR,iR0
+

nR[−1]−
i=1
i≠jR0

LR[−1],i

 − 1 ∈ Z≥0[u±1
]. �

Remark 7.2. After the submission of this article, we have learnt that this result was proved in a more general context
in [23,19].

We can similarly compute the character XMλ
associatedwith a quasi-simplemodule at themouth of a homogeneous tube

but the result is far too long to be presented here. It is a sum of 322 Laurent monomials so that it is in particular an element
of Z≥0[u±1

]. Written as an irreducible Laurent polynomial, its denominator is
∏

i u
δi
i , accordingly to [5, Theorem 3].
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Table 6
Characteristics of total quiver Grass-
mannians in typeE6 .

λ 0 1 ∞ λ ∈ PH

pλ 2 3 3 1
Nλ 9 7 7 322
τNλ 36 7 7
τ 2Nλ 7 7

Table 7
Characteristics of total quiver Grass-
mannians in typeE7 .

λ 0 1 ∞ λ ∈ PH

pλ 3 4 2 1
Nλ 10 7 61 3719
τNλ 9 9 61
τ 2Nλ 42 7
τ 3Nλ 9

Table 8
Characteristics of total quiver Grassman-
nians in typeE8 .

λ 0 1 ∞ λ ∈ PH

pλ 3 5 2 1
Nλ 88 47 779 403520
τNλ 74 11 518
τ 2Nλ 62 9
τ 3Nλ 10
τ 4Nλ 9

8. Euler characteristics of total Grassmannians in type E
In type En with n = 6, 7, 8, our algorithm allows us to compute cluster characters associated with any object in the

cluster category. The explicit Laurent expansions of these characters are so long that it would neither be reasonable nor
useful to present them here. Nevertheless, our algorithms may be used to compute Euler characteristics of total quiver
Grassmannians. In order to do so, it is enough to replace the lines ‘‘XPj[1] := uj’’ by XPj[1] := 1 in Algorithm 2 and its dual.

In this section, we give the complete list of these Euler characteristics for quasi-simple modules in tubes of Γ (CQ ) when
Q is a Euclidean quiver of typeEn with n = 6, 7, 8 equipped with one of the orientations considered in Section 5.

In the Tables 6–8, we use the notations of Section 5. The omitted values correspond to τ -periodic modules for which the
value of the Euler characteristic of the total quiver Grassmannian can already be found in the table.

Note that the Euler characteristic of the total quiver Grassmannian of a kQ -module M is also equal to the number of
Laurent monomials occurring in the Laurent expansion of XM in the initial cluster u so that these numbers give an idea of
the complexity of the associated variables.
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