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1. INTRODUCTION

Let k be a commutative field, and A be a finite dimensional k-algebra.
We denote by mod A the category of finitely generated left A-modules.
Throughout this paper, we say that an object T in mod A is a tilting
A-module if

(a) The projective dimension of T is finite,
(b) Ext i

A(T, T ) = 0 for all i > 0, and
(c) There exists an exact sequence 0 −→ AA −→ T 0 −→ T 1 −→

· · · −→ T r −→ 0, where all T i are direct sums of direct sum-
mands of T .

We say that a tilting module is multiplicity-free if, in an indecom-
posable direct sum decomposition of T , all the summands are pairwise
non-isomorphic. The right orthogonal T⊥ (see [1]) of a multiplicity-free
tilting module T is the full subcategory of modA defined by:

T⊥ = {X ∈ modA | Exti
A(T, X) = 0 for all i > 0}

A partial order on a full set TA of representatives of the isomorphism
classes of multiplicity-free tilting A-modules is defined as follows: for
T, T ′ ∈ TA, we set T ≤ T ′ provided that T⊥ ⊆ T ′⊥ (see, [10]). The

Hasse quiver
−→
KA of this poset (partially ordered set) has been charac-

terised in [9].
Our objective in this paper is to compare the posets corresponding to

two algebras in the following situation: Let B be any finite dimensional
k-algebra, and A be the one-point extension of B by a projective B-
module. Denoting by eB the identity of B, the B-A-bimodule U = eBA
induces two adjoint functors R = U ⊗A − : modA −→ modB and
E = Hom B(U,−) : modB −→ modA which are easily seen to satisfy
RE ∼= idmodB. We can now state our main theorem.

Theorem. Let B be a finite dimensional k-algebra, P0 be a projective
B-module, and A = B[P0]. Then the functors R : modA −→ modB
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and E : modB −→ modA induce respectively morphisms of posets r :
TA −→ TB and e : TB −→ TA such that re = idTB

.

Moreover, e induces a full embedding of the quiver
−→
KB into the quiver

−→
KA, whose image is closed under successors and such that distinct

connected components of
−→
KB map to distinct connected components of

−→
KA.

We point out that, under the maps r and e, the tilting modules of
projective dimension (at most) one are mapped to tilting modules of
projective dimension (at most) one.

Further, in the hereditary case, if T is a tilting A-module, then
End rT is representation-finite whenever End T is and, if M is a tilting
B-module, then End e(M) is a one-point extension of End M .

As we shall see, most statements in the theorem fail if we drop the
assumption that the module P0 is projective.

We now describe the contents of the paper. Sections 1 and 2 are
devoted to studying properties of the functors R and E . Section 3
contains the construction of the maps r and e. In section 4, we prove
our theorem, and deduce some of its consequences. Finally, in section
5, we consider statements relevant to endomorphism algebras.

2. Extensions and restriction functors

2.1. Notation. Throughout this paper, all algebras are connected fi-
nite dimensional algebras over a fixed commutative field k (and, unless
otherwise specified, basic). We sometimes consider an algebra A as a
k-category, of which the object class is a complete set {e1, . . . , en} of
primitive orthogonal idempotents, and the set of morphisms from ei

to ej is eiAej. An algebra B is a full subcategory of A if there exists
an idempotent e ∈ A, sum of (some of) the distinguished idempotents
{ei} such thatB = eAe. It is convex in A, if whenever there is a subset
{ei0, ei1 , · · · , eit} of {ei} such that eil+1Aeil 6= 0 for 0 ≤ l < t and ei0 , eit

belong to B, then all the eil belong to B.
For an algebra A we only consider its finitely generated left A-

modules, and we denote by modA their category. For a full subcat-
egory C of modA, we write X ∈ C to express that X is an object in C.
We denote by add X the full subcategory having as objects the direct
sums of direct summands of X, and by Gen X the full subcategory
of mod A having as objects the modules Y which are generated by X
(that is, such that there exist d > 0 and an epimorphism Xd −→ Y ).
Given an algebra A, we denote by K0(A) the Grothendieck group of A.
The projective (or injective) dimension of AX is denoted as pdAX (or
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idAX, respectively). The standard duality D : modA −→ modAop is
D = Hom k(−, k)

For further definitions or facts needed on the module category, we
refer to [3], [11],[4].

2.2. The context. Let B be a finite dimensional k-algebra, and P0 be
a fixed projective B-module. We denote by A = B[P0] the one-point
extension of B by P0, that is, the matrix algebra

A =

[

B P0

0 k

]

with the ordinary matrix addition and the multiplication induced from
the module structure of P0.

Thus, B is a full convex subcategory of A, and there is a unique
projective A-module P which is not a projective B-module. Also, the
simple top S of P is an injective A-module and pdAS ≤ 1.

Since we consider at the same time A-modules and B-modules, and
in order to avoid confusion, we denote the A-modules by the letters
X, Y, Z · · · and the B-modules by the letters L, M, N · · · .

Let eB denote the identity of B, so that B = eBAeB. Consider the
B −A−bimodule U = eBA. It is clearly projective as right A-module,
but also as a left B-module, since BU ∼=B B ⊕B P0.

We consider the following two functors, respectively called the re-
striction and the extension functor

R =B UA ⊗− : modA −→ modB

and

E = Hom (BUA,−) : modB −→ modA.

Clearly, (R, E) is an adjoint pair of functors, and the left-right projec-
tivity of U implies that both are exact.

The functor R may be expressed otherwise:

UA ⊗− ∼= Hom A(B,−)

indeed, this is the usual "restriction by zeros" functor: it associates to
an A-module X the B-module U ⊗A X ∼= eBX (in particular, R does
not preserve indecomposability). If we consider modB as embedded
in modA under the usual embedding functor (as we shall always do),
we see that RX is a submodule of X. Thus R is a subfunctor of the
identity on modA. We now prove that it is a torsion radical.

Lemma. (a) The functor R is the torsion radical of the torsion
pair (modB, addS) in modA.
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(b) The canonical sequence of an A-module X in this torsion pair

0 −→ RX −→ X −→ Srx −→ 0

satisfies rx = dimkHom A(X, S).

Proof. (a) Clearly, an A-module X is a B-module if and only if X ∼=
RX. Also RS = 0. Letting ek denote the primitive idempotent of
A corresponding to the new projective P , we see that, as k-vector
space, X admits a decomposition X ∼= eBX ⊕ ekX and moreover,
as A-modules, ekX ∼= Sm for some m ≥ 0. In particular, RX ∼=
R(eBX) ⊕ R(Sm) ∼= R(eBX). This implies that RX = R2X and
moreover RX = 0 if and only if X ∈ addS. Applying the exact
functor R to the short exact sequence of A-modules

0 −→ RX −→ X −→ X/RX −→ 0

yields R(X/RX) = 0. This establishes the statement.
(b) Applying Hom A(−, S) to the canonical sequence yields an exact

sequence

0 −→ Hom A(SrX , S) −→ Hom A(X, S) −→ HomA(RX, S) = 0

so that rX = dimkHom A(X, S), as required. �

The canonical sequence of (b) will be called the restriction sequence
for X. We note that the pair (mod B, addS) is a hereditary torsion
pair (but we shall not use this fact).

2.3. As a first consequence of the existence of restriction sequences,
we obtain the following corollary.

Corollary. For any A-module X the B-module RX is projective (in
which case, pdAX ≤ 1) or else pdBRX = pdAX.

Proof. We consider the restriction sequence

0 −→ RX −→ X −→ Srx −→ 0

and recall that projective B-modules are projective in mod A. If

BRX is projective, then pdAS ≤ 1 implies pdAX ≤ 1. If not, as-
sume pdBRX = d Then pdARX = d and the above sequence gives
pdAX = d. �
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2.4. We shall need the following lemma.

Lemma. For any B-module M , we have an isomorphism of k-vector
spaces

Ext A(S, M) ∼= Hom B(P0, M)

.

Proof. Applying Hom A(−, M) to the minimal projective resolution

0 −→ P0 −→ P −→ S −→ 0

yields an exact sequence

0 −→ Hom A(S, M) −→ Hom A(P, M) −→ Hom A(P0, M) −→

−→ Ext 1
A(S, M) −→ Ext 1

A(P, M) = 0.

Since M is a B-module, Hom A(P, M) = 0. Hence

Ext 1
A(S, M) ∼= Hom A(P0, M).

Finally, since B is a full convex subcategory of A, then Hom A(P0, M) ∼=
Hom B(P0, M). �

2.5. Since (R, E) is an adjoint pair of functors, there are, associated
with it, a co-unit ε : RE −→ id mod B and a unit δ : id mod A −→ ER
defined as follows. Let M be a B-module, then

εM : U ⊗A Hom B(U, M) −→ M

is given by
u ⊗ f 7→ f(u)

(for u ∈ U and f ∈ Hom B(U, M) Let X be an A-module, then

δX : X −→ Hom B(U, U ⊗A X)

is given by
x 7→ (u 7→ u ⊗ x)

(for x ∈ X and u ∈ U). The next proposition lists relevant properties
of these functorial morphisms.

Proposition. The adjoint pair of functors (R, E) satisfies the following
properties:

(a) The co-unit ε is a functorial isomorphism.
(b) For every A-module X, the kernel and the cokernel of δX belong

to addS.
(c) Let X be an A-module. The following conditions are equivalent:

i) δX is a monomorphism.
ii) S is not a direct summand of X
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iii) Hom A(S, X) = 0

Proof. (a) Let M be a B-module. Since BM is generated by BU ∼=B

B ⊕B P0, the morphism εM is surjective. On the other hand, we have
isomorphisms of k-vector spaces

REM ∼= Hom A(B, Hom B(U, M)) ∼= Hom B(U ⊗A B, M)

∼= Hom B(B, M) ∼= M

because U ⊗A B ∼= eBB = B. Hence εM is an isomorphism.
(b)By (a), δX restricts to an isomorphism δRX : RX −→ RX ∼=

RERX. So, the restriction sequences for X and ERX yield a commu-
tative diagram with exact rows

0 RX

δRX
∼=

X

δX

SrX

δ′

0

0 RX ERX SrERX 0

where δ′ is induced by passing to cokernels. By the Snake lemma, Ker
δX

∼= Ker δ′ and Coker δX
∼= Coker δ′. The statement follows.

(c) i) implies ii). If S is a direct summand of X, there exist m ≥ 1
and a decomposition X ∼= X ′ ⊕ Sm with S /∈ add X ′. Since RS = 0,
this yields ERX ∼= ERX ′. Hence Ker δX ⊇ Sm so that δX is not a
monomorphism.

ii) implies iii) If δ is not a direct summand of X, then Hom A(S, X) =
0 because S is simple injective.

iii) implies i). This follows from the fact that, by (b), Ker δX ∈ add
S. �

2.6. One important consequence is the following corollary.

Corollary. The functor E is full and faithful. In particular, it preserves
indecomposability.

Proof. Let M , N be B-modules and g : EM −→ EN be a morphism
in mod A. Since RE ∼= id mod B, the morphism Rg : M −→ N satisfies
ERg = g. Thus, E is full. Faithfulness is proven similarly. The last
statement follows since, for each B-module M , we have EndAEM ∼=
EndBM . �
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3. Homological properties of the extension and

restriction functors

3.1. The right perpendicular category of S is the full subcategory of
mod A defined by

Sperp = {X ∈mod A | Hom A(S, X) = 0, Ext 1
A(S, X) = 0}.

Lemma . Let X ∈ Sperp. Then δX : X −→ ERX is a functorial
isomorphism.

Proof. Since Hom A(S, X) = 0, it follows from (1.5) (c) that δX is a
monomorphism, so there exist m ≥ 0 and a short exact sequence

0 −→ X
δX−→ ERX −→ Sm −→ 0

Since Ext 1
A(S, X) = 0, this sequence splits. On the other hand, by

adjunction,

Hom A(S, ERX) = Hom B(RS,RX) = 0.

So δX is an isomorphism. �

3.2. We now construct a short exact sequence relating a B-module M
to the extended module EM . We first note that, by (1.5), the unit δM

is a monomorphism and CokerδM ∈ addS, so that there exist eM ≥ 0
and a short exact sequence

0 −→ M
δM−→ ERM −→ SeM −→ 0

which clearly coincides with the restriction sequence for ERM ∼= EM .
In particular, eM = rERM . We call this sequence the extension sequence
for M .

Proposition. Let M be a B-module. The extension sequence

0 −→ M
δM−→ ERM −→ SeM −→ 0

satisfies the following properties:

(a) eM = dimkExt 1
A(S, M).

(b) The connecting morphism Hom A(S, SeM ) −→ Ext 1
A(S, M) is

an isomorphism.
(c) EM ∈ Sperp.

Proof. (a) We have isomorphisms of k-vector spaces

EM = Hom B(U, M) ∼= Hom B(B ⊕ P0, M) ∼= M ⊕ Hom B(P0, M)

so that, by (1.4),

eM = dimkEM − dimkM = dimkHom B(P0, M) = dimkExt 1
A(S, M).
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(b) Since S is simple injective, applying Hom A(S,−) to the extension
sequence yields a long exact sequence

0 −→ Hom A(S, M) −→ Hom A(S, EM) −→ Hom A(S, SeM ) −→

−→ Ext 1
A(S, M) −→ Ext 1

A(S, EM) −→ Ext 1
A(S, SeM ) = 0.

Moreover, Hom A(S, EM) ∼= Hom B(RS, M) = 0 so that the connecting
morphism is injective. It follows from (a) that it is an isomorphism. �

3.3. We deduce that mod B and Sperp are equivalent categories.

Corollary. The functors E and R induce an equivalence between
mod B and Sperp.

Proof. This follows from (2.2)(c) and (1.5) (a). �

3.4. The next corollary follows immediately from the equivalence.

Corollary . Let M be a B-module and X ∈ Sperp. Then, for each
j ≥ 0, we have Ext j

A(EM, X) ∼= Ext j
B(M,RX).

Proof. Since REM ∼= M , this follows from (2.3). �

3.5. The following corollary generalises the adjunction property.

Corollary. Let X be an A-module, and M be a B-module, then, for
all j ≥ 0, we have Ext j

A(X, EM) ∼= Ext j
B(RX, M).

Proof. Applying Hom A(RX,−) to the extension sequence

0 −→ M −→ EM −→ SeM −→ 0

corresponding to M yields isomorphisms Ext j
A(RX, M) ∼= Ext j

A(RX, EM)
for each j ≥ 0. On the other hand, since EM ∈ Sperp applying
Hom A(−, EM) to the restriction sequence

0 −→ RX −→ X −→ SrX −→ 0

yields isomorphisms Ext j
A(X, EM) ∼= Ext j

A(RX, EM) for each j ≥ 0
(because pdAS ≤ 1). The statement now follows from the convexity of
B in A. �
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3.6. We now compare the extension groups of two modules and their
respective restrictions.

Proposition. Let X, Y be A-modules Then:

(a) There is an epimorphism Ext 1
A(X, Y ) −→ Ext 1

B(RX,RY ).

(b) There is an isomorphism Ext j
A(X, Y ) ∼= Ext j

B(RX,RY ), for
each j ≥ 2.

(c) If Y ∈ Sperp, then the epimorphism of (a) is an isomorphism.

Proof. Applying Hom A(RX,−) to the restriction sequence

0 −→ RY −→ Y −→ SrY −→ 0

yields (because S is injective and because Hom A(RX, S) = 0) an iso-
morphism

Ext j
A(RX,RY ) ∼= Ext j

A(RX, Y )

for each j ≥ 1. Applying now Hom A(−, Y ) to the restriction sequence

0 −→ RX −→ X −→ SrX −→ 0

yields, because pdAS ≤ 1, a right exact sequence

Ext 1
A(SrX , Y ) −→ Ext 1

A(X, Y ) −→ Ext 1
A(RX, Y ) −→ 0

and an isomorphism Ext j
A(X, Y ) ∼= Ext j

A(RX, Y ) for each j ≥ 2. This,
together with the convexity of B in A, gives (a) and (b). Finally, (c)
follows from the above right exact sequence because Ext 1

A(S, Y ) = 0. �

3.7. We call an A-module X self-orthogonal if Ext j
A(X, X) = 0 for all

j ≥ 1 and exceptional if, in addition, pdAX < ∞.

Corollary. The functors R and E preserve self-orthogonality and ex-
ceptionality.

Proof. Let M be a self-orthogonal B-module. By (2.2)(c), EM ∈ Sperp

so that, by (2.3),

Ext j
A(EM, EM) ∼= Ext j

B(REM,REM) ∼= Ext j
B(X, X) = 0

for each j ≥ 1. Thus EM is self-orthogonal.
Let X be a self-orthogonal A-module, then (2.6)(b) yields, for each

j ≥ 2,

Ext j
B(RX,RX) ∼= Ext j

A(X, X) = 0

and, by (2.6)(a), Ext 1
A(X, X) = 0 implies Ext 1

B(RX,RX) = 0. Thus
RX is self-orthogonal. This shows that R and E preserve self-orthogonality.
The statement about exceptionality follows from (1.3). �
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4. Extension and restriction maps

4.1. We recall a few definitions. Let X be an A-module. The right
orthogonal X⊥ of X is a full subcategory of mod A defined by

X⊥ = {Y ∈mod A | Ext j
A(X, Y ) = 0 for each j ≥ 1}

An exceptional A-module T is a tilting module if there exists an exact
sequence

0 −→A A −→ T 0 −→ T 1 −→ · · · −→ T r −→ 0

with T i ∈ addT for all i. It is shown in [6] that an exceptional module T
is tilting if and only if T⊥ j GenT . A tilting module T is multiplicity-
free if, for an indecomposable direct sum decomposition T = ⊕iTi of
T , we have Ti � Tj for i 6= j.

Proposition. (a) Let T be a multiplicity-free tilting A-module, then
T ′ = RT is a tilting B-module.

(b) Let M be a multiplicity-free tilting B-module, then S ⊕ EM is
a tilting A-module.

Proof. (a) By (2.7), T ′ is exceptional. Let M ∈ T ′⊥. By (2.4),
EM ∈ T⊥. Since T is tilting, T⊥ j Gen T so that EM ∈ Gen T ,
that is, there exist T ∈ addT and an epimorphism p : T −→ EM . We
deduce a commutative diagram with exact rows

0 RT

p′

T

p

Sr
T

p′′

0

0 M EM SeM 0

where p′ = Rp : RT −→ REM ∼= M and p′′ is induced by passing
to cokernels. The Snake lemma yields an epimorphism f : Ker p′′ −→
Coker p′. Since Ker p′′ ∈ addS and Coker p′ ∈ mod B, we have
f = 0 so Coker p′ = 0. Therefore, M ∈ Gen RT j Gen T ′ (because
RT ∈ add T ′).

(b) By (2.7), S ⊕ EM is exceptional. Since E preserves indecompos-
ability (by (1.6)),S ⊕ EM has exactly 1 + rkK0(B) = rkK0(A) isomor-
phism classes of indecomposable summands.Therefore, by [1](5.12), it
suffices to prove that (S ⊕ EM)⊥ is covariantly finite.

Consider the restriction sequence

0 −→ X ′ f
−→ X

g
−→ SrX −→ 0
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(where X ′ = RX) and an approximation u : X ′ −→ FX′ with respect
to M⊥ (which exists because of [1] (5.5)). Next consider the extension
sequence

0 −→ FX′

f ′

−→ F̃X
g′

−→ Se
FX′ −→ 0

(where F̃X′ = EFX′). Since, by (2.2), F̃X′ ∈ Sperp, then Ext 1
A(S, F̃X′) =

0 so that, applying (2.4) and using the fact that pdAS ≤ 1 yield

Ext j
A(S ⊕ EM, F̃X′) ∼= Ext j

A(EM, F̃X′) ∼= Ext j
B(M,RF̃X′) ∼=

∼= Ext j
B(M, FX′) = 0

for each j ≥ 1, because FX′ ∈ M⊥. This shows that F̃X′ ∈ (S⊕EM)⊥.

Now, applying Hom A(−, F̃X′) to the restriction sequence for X yields
an exact sequence

Hom A(X, F̃X′) −→ Hom A(X ′, F̃X′) −→ Ext 1
A(S, F̃X′) = 0

therefore there exists v : X −→ F̃X′ such that vf = f ′u. We claim

that v′ =

[

v
g

]

: X −→ F̃X′ ⊕ SrX is the required (S ⊕ EM)⊥-

approximation. Let thus h : X −→ Y with Y ∈ (S ⊕ EM)⊥. We can
assume without loss of generality that Y is indecomposable.

Assume first Y ∼= S, then hf = 0 and there exists h′ : SrX −→ Y

such that h = h′g =
[

0 h′
]

[

v
g

]

.

We may thus suppose Y � S. In particular, Hom A(S, Y ) = 0.
We claim that h factors through v. Indeed, consider the restriction
sequence for Y

0 −→ Y ′ f
−→ Y

g
−→ SrY −→ 0

(Y ′ = RY ). Then h′ = Rh satisfies hf = f ′′h′. Since Y ∈ (EM)⊥,

we have, for each j ≥ 0, Ext j
A(M, Y ′) ∼= Ext j

A(EM, Y ) = 0 by (2.4).
Therefore, Y ′ ∈ M⊥ and, since u is an approximation, there exists
l : FX′ −→ Y ′ such that lu = h′. Applying Hom A(−, Y ) to the
extension sequence for FX′ yields an exact sequence

Hom A(F̃X′ , Y ) −→ Hom A(FX′ , Y ) −→ Ext 1
A(Se

FX′ , Y ) = 0

so there exists l′ : F̃X′ −→ Y such that l′f ′ = f ′′l
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X ′
u

f

h′
FX′

l

f ′Y ′

f ′′ X
v

g

h
F̃X′

l′

g′Y

g′′ SrX SeF
X′

SrY

We claim that h = l′v. Now

(h−l′v)f = hf−l′vf = f ′h′−l′f ′u = f ′′h′−f ′′lu = f ′′(h′−lu) = f ′′0 = 0

Therefore h−l′v factors through g, that is, there exists w : SrX −→ Y
such that wg = h − l′v. However, Hom A(S, Y ) = 0. Therefore w = 0
and so h = l′v, as required. �

4.2. Let C be a finite dimensional algebra and T be a tilting C-module.
For each i ≥ 0, denote by X

i
C(T ) the full subcategory of mod C defined

by

X
i
C(T ) = {X ∈mod C | Ext j

C(T, X) = 0 for all j 6= i}

(see [6] p.114).

Proposition . Let M be a tilting B-module. The functors E and R
induce, for each i ≥ 0, quasi-inverse equivalences between X

i
B(M) and

X
i
A(S ⊕ EM) ∩ Sperp.

Proof. Let N ∈ X
i
B(M). By (2.2)(i), EN ∈ Sperp. By (2.4), for each

j ≥ 0,

Ext j
A(M, N) ∼= Ext j

A(EM, EN).

This, and the fact that pdAS ≤ 1, imply that EN ∈ X
i
A(S ⊕ EM).

Hence EN ∈ X
i
A(S ⊕ EM) ∩ Sperp.

Conversely, let X ∈ X
i
A(S ⊕ EM) ∩ Sperp. Since X ∈ Sperp then by

(2.1), the B-module N = RX satisfies X ∼= EN . Hence, by (2.4)

Ext j
A(M, N) ∼= Ext j

A(EM, X)

for each j ≥ 0. Therefore N ∈ X
i
B(M). �
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Remark. By (1.3), tilting B-modules of projective dimension (at
most) one correspond under the maps defined in (3.1), to tilting A-
modules of projective dimension (at most) one. In this case, (X0

A, X1
A)

and (X0
B, X1

B) and torsion pairs in mod A and mod B respectively (see
[6]). Clearly, for i ≥ 2 we have X

i
A = 0 and X

i
B = 0.

4.3. It follows from the proof of (3.1), that, if M is a multiplicity-
free tilting B-module, then the tilting A-module S ⊕ EM is always
multiplicity-free. On the other hand, it is generally not true that, if T
is a multiplicity-free tilting A-module, then the tilting B-module RT
is multiplicity-free.

Lemma. Let T be a multiplicity-free tilting A-module. The following
conditions are equivalent:

(a) RT is multiplicity-free.
(b) S is a direct summand of T .
(c) There exists a B-module M such that T = S ⊕ EM .

Proof. (a) implies (b). Assume S is not a summand of T , and let
T = ⊕r

i=1Ti be an indecomposable decomposition. Then r = rkK0(A)
(see, for instance, [5](1.1)). Since RT = ⊕r

i=1RTi and RTi 6= 0 for
each i, then RT has at least r isomorphism classes of indecomposables
summands. Since r = 1 + rkK0(B) > rkK0(B), then RT cannot be
multiplicity-free.

(b) implies (c). Assume that T = S ⊕ X is a multiplicity-free
tilting A-module. In particular S is not a summand of X, so that
Hom A(S, X) = 0. Since also Ext 1

A(S, X) = 0, we have X ∈ Sperp and
the B-module M = RX satisfies T = S ⊕ X ∼= S ⊕ EM .

(c)implies (a). Since T is multiplicity-free, so is EM , hence so is
M ∼= REM ∼= RT . �

4.4. Let C be a finite dimensional algebra and TC be a complete set
of representatives of the isomorphism classes of multiplicity-free tilting
C-modules. For T, T ′ ∈ TC , we define T ≤ T ′ to mean that T⊥ j T ′⊥.
Clearly, this defines a partial order on TC .

Corollary. The functors R and E induce two maps

r : TA −→ TB

e : TB −→ TA

such that re = idTB
. These maps are defined as follows: if M ∈ TB,

then eM = S ⊕ EM and, if T ∈ TA, then rT = T ∗, where T ∗ is
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a (unique up to isomorphism) multiplicity-free tilting B-module such
that T ∗ = addRT .

Proof. By (3.1), r and e are maps, and the relation re = idTB
follows

from RE ∼= idmodB . �

The maps r and e are respectively called restriction and extension
maps.

Example. If one extends (even a hereditary algebra) by a non-
projective module, then neither the restriction nor the extension define
maps between the corresponding posets of tilting modules.

Let indeed B be the path algebra of the quiver

1◦ ◦2

and let A = B[S2]. then A is given by the quiver

1◦ ◦2
β

◦3
α

bound by βα = 0. Here, and in the sequel, we denote by Px, Sx re-
spectively the indecomposable projective and the simple module cor-
responding to the point x of the quiver.

(a) Extending the tilting B-module M = P1 ⊕ P2 yields the A-
module eM = P1 ⊕ P2 ⊕ S3 which is not tilting, because
Ext 2

A(S3, P1) 6= 0.
(b) Restricting the tilting A-module T = P1 ⊕ P2 ⊕ P3 yields the

B-module RT = P1 ⊕ P2 ⊕ S2 which is not tilting, because
Ext 1

B(S2, P1) 6= 0.

4.5. If C is an additive full subcategory of mod A, closed under ex-
tensions, then a non-zero module X ∈ C is called Ext-projective in C if
Ext 1

A(X,−)|C = 0 , see [2].

Lemma. (a) Let P1 be a non-zero projective B-module, then EP1

is an Ext-projective in Sperp.
(b) Let I1 be a non-zero injective B-module, then EI1 is an injective

A-module.

Proof. (a) By (2.2), EP1 ∈ Sperp. Let X ∈ Sperp, then, by (2.1)
X ∼= ERX hence

Ext 1
A(EP1, X) ∼= Ext 1

A(EP1, ERX) ∼= Ext 1
B(P1,RX) = 0

(b)Let S ′ be a simple A-module. Suppose first S ′ � S. Applying
Hom A(S ′,−) to the extension sequence

0 −→ I1 −→ EI1 −→ SeI1 −→ 0
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yields an isomorphism Ext 1
A(S ′, EI1) ∼= Ext 1

A(S ′, I1). Since S ′ � S,
then S ′ is a B-module and the injectivity of I1 in mod B yields Ext 1

A(S ′, EI1)
∼= Ext 1

B(S ′, I1) = 0. On the other hand, Ext 1
A(S, EI1) = 0 because

EI1 ∈ Sperp by (2.2). Therefore EI1 is an injective A-module. �

4.6. An algebra C is called a Gorenstein algebra if pdDC < ∞ and
idC < ∞ (see [1]).

Corollary. If B is a Gorenstein algebra, then e(DB) = DA.

Proof. Since B is Gorenstein, then DB is a tilting B-module. More-
over, DA = S ⊕ DB. �

5. Comparing the quivers of tilting modules

5.1. We now prove our key lemma.

Lemma. (a) The maps e : TB −→ TA and r : TA −→ TB are
morphisms of posets.

(b) An arrow α : M1 −→ M2 in
−→
KB induces an arrow e(M1) −→

e(M2) in
−→
KA (which we denote by e(α)).

(c) If β : T1 −→ T2 is an arrow in
−→
KA. then either r(T1) = r(T2),

or else there exists an arrow r(T1) −→ r(T2) (which we denote
by r(β)).

Proof. (a) Assume first that M1, M2 ∈ TB are such that M1 ≤ M2. We
claim that S ⊕EM1 ≤ S ⊕EM2 in TA, that is, S ⊕EM1 ∈ (S ⊕EM2)

⊥

or, equivalently, Ext j
A(S⊕EM2, S⊕EM1) = 0 for each j ≥ 1. Now, by

(2.3), we have Ext j
A(EM2, EM1) ∼= Ext j

B(M2, M1) = 0 for each j ≥ 1
because M2 ∈ M⊥

1 . The required statement follows.
Assume next that T1, T2 ∈ TA are such that T1 ≤ T2. We claim that

Ext j
B(RT2,RT1) = 0 for each j ≥ 1. Now, by (2.6)(b), we have

Ext j
B(RT2,RT1) ∼= Ext j

A(T2, T1) = 0

for each j ≥ 2 while, for j = 1, the epimorphism

Ext 1
A(T2, T1) −→ Ext 1

B(RT2,RT1)

of (2.6)(a) gives Ext 1
B(RT2,RT1) = 0. Therefore RT1 ∈ (RT2)

⊥.

(b) Let α : M1 −→ M2 be an arrow in
−→
KB. There exist indecompos-

able B-modules N1, N2 such that M1 = L ⊕ N1, M2 = L ⊕ N2 and a
non-split short exact sequence

0 −→ N1 −→ L −→ N2 −→ 0
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with L ∈ addL. The exact functor E yields a non-split short exact
sequence

0 −→ EN1 −→ EL −→ EN2 −→ 0

Since eMi = S ⊕ EMi = S ⊕ EL ⊕ ENi for i = 1, 2, there exists an
arrow eM1 −→ eM2.

(c) Let β : T1 −→ T2 be an arrow in
−→
KA. There exist indecomposable

A-modules V1, V2 such that T1 = W ⊕ V1, T2 = W ⊕ V2 and a non split
exact sequence

0 −→ V1 −→ W −→ V2 −→ 0

with W ∈ addW . The exact functor R yields an exact sequence

0 −→ RV1 −→ RW −→ RV2 −→ 0

If it splits, then addRT1 = addRT2 so that r(T1) = r(T2). If it does
not, then there exists an arrow rT1 −→ rT2. �

5.2. We now complete the proof of our main result. In view of (3.4)
and (4.1), it suffices to prove the following theorem.

Theorem. (a) The map e : TB −→ TA induces a full embedding of

quivers e :
−→
KB −→

−→
KA.

(b) The image of e in
−→
KA is closed under successors.

(c) If a point of
−→
KA lies in the image of e, then all but exactly one

of it immediate predecessors lies in the image.

(d) Distinct connected components of
−→
KB map to distinct connected

components of
−→
KA.

Proof. (a) and (b). Since, by (4.1), e is an embedding of quivers, we

only have to show that, for any arrow e(M) −→ T in
−→
KA, there exists

a point M ′ in
−→
KB such that T = e(M ′) and moreover, there exists an

arrow M −→ M ′ in
−→
KB.

We have eM = S ⊕ EM ∼= X ⊕ W , T = Y ⊕ W (with X, Y inde-
composable) and a non-split short exact sequence

0 −→ X −→ W −→ Y −→ 0

with W ∈ addW .
Notice first that S is necessarily a summand of W . Indeed, if not,

then S ∼= X and the injectivity of S would force the above sequence to
split.

On the other hand, S is not a summand of W . Indeed, if it is, then
S would map non-trivially to Y and, since S is simple injective, we
would get Y ∼= S and the sequence would again split.
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Since S is a summand of W , we can write T = S ⊕ V for some A-
module V . Since T is a tilting module and S is simple injective, then
V ∈ Sperp so that V ∼= ER(V ) by (2.4). Therefore T = e(RV ). There
remains to show the existence of an arrow M −→ RV . Consider the
exact sequence

0 −→ RX −→ RW −→ RY −→ 0.

If it splits, RX is a summand of RW , so ERX is a summand of
ERW . Now X ∈ Sperp, hence ERX ∼= X. On the other hand, S is not
a summand of W hence W ∈ Sperp and thus ERW ∼= W . This implies
that X is a summand of W , a contradiction. So the sequence does not
split and the required arrow exists.

(c) Let T1, T2, · · · , Tr be the immediate predecessors of e(M) = S ⊕

EM in
−→
KA. Assume S is a summand of Ti. By (3.3), Ti lies in the image

of e. We claim that there is exactly one i0 such that Ti0 is not in the
image of e or, equivalently, S is not a summand of Ti0 . By construction

of
−→
KA, there is at most one such Ti0 . We prove that there is at least

one such Ti0 . The extension sequence for M gives S ∈ GenEM . Now
by [5](1.3) (see also [8]) there exists an exact sequence

0 −→ X −→ EW −→ S −→ 0

such that EW ∈ addEW and X ⊕ EM is a tilting A-module (of which
S is not a summand). This implies the claim.

Since the image of e only contains modules having S as a summand,
we are done.

(d) Assume that two points M, M ′ in
−→
KB lie in distinct connected

components, but are such that their images eM , eM ′ lie in the same

component of
−→
KA. Then there exists a walk in the latter component.

eM1 − T2 − · · · − Tr − eM2

Applying the restriction maps, we get, by (4.1), a walk from M =
re(M) to M ′ = re(M ′), a contradiction. �

5.3. To any poset E, one can associate a simplicial complex |E|, called
its chain complex as follows: an i-simplex is a set of i + 1 distinct
elements {x0, x1, · · · , xi} of E such that x0 ≤ x1 ≤ · · · ≤ xi.

Corollary. The simplicial complex |TB| is (homeomorphic to) a retract
of |TA|.

Proof. Since re = idTB
, it suffices to observe that, by (4.1)(b)(c), the

maps e and r induce simplicial maps between |TA| and |TB|. �
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5.4. For an algebra C, we denote by P<∞(C) the full subcategory of
mod C consisting of all modules of finite projective dimension.

Corollary. P<∞(A) is contravariantly finite in mod A if and only if
P<∞(B) is contravariantly finite in mod B.

Proof. By [9] (3.3), it suffices to prove that TA has a minimal element
if and only if so does B. If TB has a minimal element then, since the
image of e is closed under successors, so does TA. By [9](3.2), a minimal
element T in TA must admit S as a summand. By (3.3), there exists a
tilting B-module M such that T = S ⊕ EM = eM . By (4.2)(b), M is

a minimal element in
−→
KB. �

5.5. Let C be an algebra. A point in
−→
KC is called saturated if the

number of its neighbours equals rkK0(C).

Corollary. Assume B is hereditary, and a point M in
−→
KB is saturated.

Then its image eM in
−→
KA is saturated.

Proof. Since M is saturated, it has rkK0(B) neighbours in
−→
KB. By

(4.2)(b) and (c), eM has exactly 1+rkK0(B) = rkK0(A) neighbours. �

5.6. We deduce a sufficient condition to
−→
KA to have infinitely many

components.

Corollary. If A is hereditary, and contains a wild full convex subcate-

gory B with 3 simple modules, then
−→
KA has infinitely many connected

components.

Proof. By [12],
−→
KB has infinitely many connected components. Our

statement follows from (4.2)(d), its dual and an obvious induction. �

5.7. Examples. (a) Let A be the path algebra of the quiver

1◦ ◦2 ◦3 ◦4
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and B be the full convex subcategory generated by all points except 4.

The quiver
−→
KA is:

◦

◦ ◦ ◦

◦ ◦

◦x ◦

◦ ◦ ◦

◦ ◦

◦

Then
−→
KB is the subquiver indicated by dotted lines, consisting of all

succesors of the point x.
(b) Let A be the path algebra of the quiver Q

◦

◦ ◦

◦

In this case, we have three possible embeddings of the quiver Q′

◦ ◦ ◦

inside Q. Letting B be the path algebra of Q′, we see that there are

3 different embeddings of
−→
KB inside

−→
KA, obtained by identifying

−→
KB

with the subquivers of
−→
KA consisting of the successors of x1, x2 and x3

respectively.
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◦

◦

◦ ◦ ◦

◦ ◦ ◦

x1◦ x2◦ ◦ x3◦

◦

◦ ◦ ◦

◦ ◦ ◦

◦

6. Comparing endomorphism algebras

6.1. In this section, we assume that B (or, equivalently, A = B[P0])
is hereditary. For an algebra C, we denote by νC = DC ⊗C − the
Nakayama functor, and by τC = DTr the Auslander-Reiten translation
in mod C (for details, we refer to [3], Chapters (IV) and (V), [4],
Chapter (IV)).

Proposition . Let M be a tilting B-module. Then EndAeM is the
one-point extension of End BM by the module Hom B(M, νBP0).

Proof. Consider the almost split sequence

0 −→ τAS −→ E −→ S −→ 0

in mod A. Then E is injective and in fact, is the direct sum of all
indecomposable injectives Ix such that S is a summand of Ix such that
S is a summand of Ix/Sx (see [3] p.154). Hence RE = νBP0. Applying
Hom A(EM,−) to the sequence above yields an exact sequence

0 −→ Hom A(EM, τAS) −→ Hom A(EM, E) −→
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−→ Hom A(EM, S) −→ Ext 1
A(EM, τAS).

Since pdS ≤ 1, idτAS ≤ 1, the Auslander-Reiten formulae (see [11],
p.75) yield Hom A(EM, S) = DExt 1

A(S, EM) = 0 and Ext 1
A(EM, τAS) ∼=

DHom A(S, EM) = 0 because ∈ Sperp (by (2.2). Thus, Hom A(EM, E) ∼=
Hom A(EM, S). We infer that Hom A(EM, S) ∼= Hom B(M,RE) ∼=
Hom B(M, νBP0). The statement follows. �

6.2. We deduce that End BrT is representation finite whenever End AT
is.

Proposition. Let T be a tilting A-module such that End AT is repre-
sentation finite. Then End BrT is representation finite.

Proof. By tilting theory (see, for instance, [6] p.144) there is a one-to-
one correspondence between the isomorphism classes of the indecom-
posable End BrT -modules and of the indecomposable A-modules lying
in one of the classes X

0
A(T ) and X

1
A(T ) of mod A. The statement then

follows from (3.2). �

6.3. If S is a summand of a tilting A-module then by (3.3), there
exists a tilting B-module M such that T = S ⊕ EM . In particular
End AT is a one-point extension of End BRT ∼= End BM , so End BM
is a quotient algebra of End AT . We now consider the case where S is
not a summand of T .

Proposition. If X is an A-module such that S is not a direct summand
of X, then End AX is (isomorphic to) a subalgebra of End BRX.

Proof. Applying the functor Hom A(RX,−) to the restriction se-
quence

0 −→ RX
f

−→ X
g

−→ SrX −→ 0

yields an isomorphism

Hom A(RX,RX) ∼= Hom A(RX, X)

given as follows: if u ∈ Hom A(RX, X) then gu = 0 implies the exis-
tence of a unique v ∈ Hom A(RX,RX) such that u = fv.

On the other hand, since S is not a summand of X, the map

Hom A(X, X) −→ Hom A(RX, X)

given by w 7→ wf (and obtained by applying Hom A(−, X) to the above
sequence) is a monomorphism.

Composing yields an injection Hom A(X, X) −→ Hom B(RX,RX)
defined as follows: w 7→ w′ where w′ : RX −→ RX satisfies wf = fw′.
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But this implies w′ = Rw (since the latter is the unique morphism veri-
fying this equality). In particular, w 7→ w′ is a morphism of algebras. �

6.4. The above proposition applies in particular to tilting modules.
Considering the trivial one yields the following (surprising) corollary.

Corollary . The algebra A is (isomorphic to) a subalgebra of B ′ =
End BU and B′ is Morita-equivalent to B.

Proof. By (4.3), A is isomorphic to a subalgebra of EndRA. Now
RA ∼= RB ⊕ RP ∼=B B ⊕B P0 =B U . Thus, End BRA ∼= End BU is
Morita equivalent to B. �
Example. Let A be the path algebra of the quiver

1◦ 2◦ ◦3

then RA = P1 ⊕ P 2
2 and End BRA is the 3 × 3-matrix algebra

End BRA = {





a b c
0 d d′

0 e e′



 |a, b, c, d, d′, e, e′ ∈ k}

Clearly, A is a subalgebra of the latter.
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