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Abstract

Let 4 be a hereditary category with tilting object and DP(#) denote the cate-
gory of bounded complexes over H. This paper is devoted to a study of suspended
subcategories of DP(?) by means of their Ext-projectives.

Introduction. The concept of a t-structure in a triangulated category 7T was
introduced in the early eighties in [BBD]. It was meant as a technique to con-
struct various abelian subcategories of 7 (the "hearts" of the t-structures) and
is helpful for the understanding of the structure of 7. Our own motivation for
their study comes from the representation theory of artin algebras, which now
involves the derived category as an essential tool. In this context, t-structures
have been especially useful, in particular due to their relationship with tilting
theory (see, for instance, [H2|,[KV], [P]). In [KV] Keller and Vossieck exhib-
ited a bijection between the t-structures in a given triangulated category 7T
and the contravariantly finite suspended subcategories of 7, which they called
aisles.

Our objective in this paper is to study the t-structures and the aisles, from
the point of view of the Ext-projectives. The concept of Ext-projective in a
subcategory of a module category was introduced by Auslander and Smalg in
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their study of relative almost split sequences [AS]. Since then, they turned out
to be very useful in various contexts (see, for instance [A], [AK], [BR], [K]]). In
our situation it follows from [KV|, [BR]) that the Ext-projectives in an aisle U
are the projectives in the heart of the t-structure determined by /. Moreover
if U is generated by the Ext-projectives, then the heart of the t-structure is a
module category. This explains our interest in studying them.

We now describe the context of the paper. We start by studying some of the
more immediate properties of Ext-projectives. These results lay the ground
for the main result of our paper, which we now state. We refer the reader to
section (2.3) for the definition of exceptional sequence.

Theorem (A): Let H be a hereditary category with tilting object and U be a
suspended subcategory in the bounded derived category DP(H). Then

(a) The indecomposable Ext-projectives in U can be ordered to form an excep-
tional sequence.

(b) The number of isomorphism classes of indecomposable Ext-projectives in U
does not exceed the rank of Ko(H).

We then observe that an Ext-projective in an aisle is necessarily a silting com-
plex, in the sense of [KV], and that the suspended subcategories in DP(mod A)
(when A has finite global dimension) having a given silting complex as Ext-
projective form a partially ordered set having a unique maximal and a unique
minimal element (compare with [AK]| (1.3)). Returning to the case of the
bounded derived category of a hereditary category H with tilting object, we
deduce a procedure which we call "deconstruction of aisles". For the definition
of the operation *, we refer the reader to [KV] or section 3 below.

Theorem (B): Let U be a suspended subcategory, and M be an object in
DP(H), then:

(a) M is a silting complez if and only if M is Ext-projective in Ups * (U N Byy).
(b) The following conditions are equivalent

(i) M is Ext-projective in U .

(ii) U = Upr * (U N Byy) and M is a silting complez.
(iii) U = Uy % (UN Byy) and U+ = (U N Byy) * uld.

As a consequence, we obtain that the aisles in DP(#) which have rkKq(H)
isomorphism classes of indecomposable Ext-projective objects are in bijection
with the silting complexes having the same number of isomorphism classes of
indecomposable summands.

Our final section contains applications to the class of supported algebras. In
|HRS], Happel, Reiten and Smalg have introduced the class £4 which consists
of the indecomposable A-modules all of whose predeccesors have projective
dimension less than or equal than 1. While this definition was meant for the
study of quasi-tilted algebras, it leds to generalizations of the latter class. In
particular, left supported algebras were introduced in [ACT]| as being those
algebras A such that the additive closure of £, is contravariantly finite in



mod A (see also [ALR|, [ACPT]). Here we give several characterizations of
left supported algebras using aisles.

In a forthcoming paper, we shall apply our techniques to classify classes of
aisles.

1 Basic definitions and results

Throughout this paper, we assume that k is a commutative field, and that 7 is
a triangulated Krull-Schmidt k-category. Given a full subcategory U of T, we
write X € U to express that X is an object in . For i € Z, the i —translate
of X € T is denoted by X[i]. The right and the left orthogonal of U are
respectively defined by

Ut ={Y € 7, Homs(X,Y) = 0 for every X € U}

U ={Y € T, Homy(Y, X) = 0 for every X € U}.

A full, additive subcategory U of T, closed under direct summands, is called
suspended if it is closed under positive translations and under extensions, that
is, if

(1) if X € U, then X[i] € U, for every i > 0, and

(2) if X Y - Z — X|[1] is a triangle in 7 with X, Z € U then Y € U.

The dual notion is that of a cosuspended subcategory.

We recall the following definition from [AS]. Let U be a full additive subcate-
gory of 7 closed under extensions, and X be a non-zero object in U

(1) X is called Fzt-projective in U if and only if Hom+(X, Y[1]) = 0 for all
Y el.

(2) X is called Ext-injective in Y if and only if Hom (Y, X[1]) = 0, for all
Y el.

Remark 1.1 (a) Let U be a full additive subcategory of T. A non-zero objet
X in T is Ext-projective in U if and only if X € U N U[1]. Dually,
X € T is Ext-injective in U if and only if X € U NU[-1].

(b) If X is Ext-projective in a suspended subcategory U of T, then clearly
Hom7(X,Y[i]) = 0, for all Y € U and all i > 0. Dually, if X is Ext-
injective in a cosuspended subcategory U of T then Homy(Y[i], X[1]) = 0,
for allY € U and all i < 0.

(¢c) If U is a suspended subcategory, then it has no Ext-injectives. Indeed, if
X € U were Ert-injective, then X[1] € U implies Homy(X[1], X[1]) =0
and so X = 0. Dually, a cosuspended subcategory has no Ext-projectives.

The following lemma will be used essentially in the proof of our theorem (2.3).

Lemma 1.2 Let U be a suspended subcategory in T and X be Ext-projective
in U then, for every j # 0, X[j] is not Ext-projective in U.



Proof. Suppose that j > 0 is such that X[j] is Ext-projective. Then, for every
Y € U, Hom7(X[j],Y[1]) = 0. Taking Y = X[j — 1] (and observing that
Y € U) yields the contradiction X = 0. Thus, let j < 0 be such that X[j]
is Ext-projective in Y. However, X[j] € U implies X[—1] € U because U is
suspended, and then the Ext-projectivity of X yields X[—1] € U n+U = {0}.
This contradiction shows that X[j] is not in /. Hence X[j] cannot be Ext-
projective in U. O

A suspended subcategory U (or a triangulated subcategory B) of T is called
an aisle (or a Bousfield localization) in T if the inclusion functor U — T (or
B — T, respectively) admits a right adjoint 7<o : 7 — U.

The notion dual to that of aisle is that of coaisle (where 7>¢ : T — U is the
corresponding adjoint functor).

A pair of subcategories (U, V) of T is called a t-structure if U is a suspended
subcategory and, for every X € T, there exists a triangle

Xu%X—}Xv—)Xu[l]

in 7 with Xy, € Y and Xy € V[—1] where Xjy = 7<¢X and Xy = 750X.

It is shown in [KV], (1.1) that a suspended subcategory U is an aisle if and
only if (U, U*[1]) is a t-structure. Since 7 is a Krull-Schmidt category, U is
an aisle if and only if it is contravariantly finite in 7 (see [KV](1.3)).

The proof of the following lemma is implicit in [KV](5.1) and [BR|(3.1). We
recall that the heart Cy of a t-structure, (U, U[1]), is the subcategory Cyy =
U N U1]. Tt is shown in [BBD]|(1.3.6) that Cy is an abelian category. We
denote by H® = T<oT>0 : T — Cy the cohomological functor associated to the
t-structure (see [BBD](1.3.6)).

Lemma 1.3 Let U be an aisle in T. Then

(a) If X is Ext-projective in U then H°(X) is projective in Cy.
(b) The functor H° [ynrypy: U N UL — Cy is full and faithful.

Proof. (a) By |BR] Ch.III (3.2), H%(X) is projective in Cy if and only if
Homy (750X [-1],C) =0

for all C € Cy, where the truncation 750X [—1] is computed with respect to
the coaisle U*[1]. Consider the triangle

T<1 X =+ X = HY(X) = 7«1 X[1].
Applying Homy(—, C), with C € Cy, yields an exact sequence

Hom7(7<_1 X, C) — Hom7(H’(X), C[1]) = Hom (X, C[1]).



Since X is Ext-projective in U4 and C € C(y then Homy(X,C[1]) =
0.Sincer<_1 X = 7<o(X[—1])[1] we get Homy(7<_1X,C) = 0 because C €
U*[1]. Therefore Homy(H®(X),C[1]) = 0 and our statement follows.

(b) follows from [KV]|Lemma(5.1)(a). O

We deduce the following easy corollary.

Corollary 1.4 Let A be a finite dimensional k-algebra, and DP(mod A) be the
derived category of bounded complexes of finitely generated A-modules. Then
the Ezt-projectives in the so-called canonical aisle

D=%"(mod A) = {X € D”(mod A) such that H’X =0, for all j > 0}

are just the projective A—modules. .

We recall that a triangulated Krull-Schmidt k-category 7 is said to have a
Serre duality if there exists a triangulated equivalence 7 : 7 — 7T and, for all
X, Y there exists an isomorphism

DHom (X, Y[1]) - Hom (Y, 7X),

functorial in both variables, and called the Auslander-Reiten formula (see
[RV1]). Here D =Homy(—, k) denotes the usual vector space duality.

An example of a triangulated Krull-Schmidt category with Serre duality is the
derived category DP(mod A), where A is a finite dimensional k-algebra with
finite global dimension (see [H2|).

Lemma 1.5 [AS](3.4) (3.7) Let U be a full additive subcategory of a trian-
gulated category T with Serre duality closed under extensions and let X € U
be an indecomposable object. Then

(a) X is Ext-projective in U if and only if TX € U+,
(b) X is Ext-injective in U if and only if 71X € 1U.
Proof: (a) By the Auslander-Reiten formula, X is Ext-projective in ¢ if and

only if DHom(Y,7X) ~ Hom(X,Y[1]) = 0 for all Y € U,that is, if and
only if 7X € U~+. O

We deduce the following.

Corollary 1.6 Let U be a full additive subcategory of a triangulated category
with Serre duality T and let X € T be indecomposable. Then:

(a) If X is Ext-projective in U, then 7X is Ext-injective in U™
(b) If, moreover, U is an aisle, then the converse also holds true (thus T

defines a bijection between the isomorphism classes of indecomposable
Ext-projectives in U, and Ext-injectives in U™ ).



Proof (a) By (1.5)(a) we have 7X € U*. By the Auslander-Reiten formula,
X is Ext-projective in U if and only if Hom7 (Y, 7X[1]) ~ DHom(X,Y) =0
for all Y € U+. Our statement follows.

(b) By [BBD], -(U*) = U. Hence, by (1.5)(b), 7X is Ext-injective in U+ and
this implies X = 77!(7X) € U. Also, Hom7(X,Y[1]) ~ DHom¢ (Y, 7X) for
allY e U. U

Let A be a finite dimensional k-algebra. A complex X € DP(mod A) is called
a partial tilting complez if X belongs to the homotopy category KP(proj A) of

bounded complexes of projectives, and moreover Hompp yoq 4)(X, X [j]) = 0
for all 5 # 0.

Let X be a partial tilting complex and B = Endpb(meq 4)(X). The functor
F=-®%X : DP(mod B) — DP(mod A) is well-known to be a full embedding
[K].

Corollary 1.7 Let X = &; X, be a partial tilting compler with the X;
indecomposable and non-isomorphic, and let U denote the essential image
under — ®% X in DP(mod A) of the canonical aisle D<%P(modB) (where
B = EndDb(modA) (X)) Then

(a) The objects Xy, - -+, Xs are a full set of representatives of the isomorphism
classes of indecomposable Ext-projectives in U.
(b) The functor RHompe (moq ) (X, —) induces an equivalence between the

Exzxt-projectives in U and the projective B—modules.
(c) s < rkKyDP(mod A).

Proof: Since F(Bp) = X, the functor F' induces an equivalence between
D<%P(modB) and Y, whose quasi-inverse is the functor RHompp moq 4)(X, —).
Under this equivalence, the isomorphism classes of indecomposables Ext-
projectives in U correspond to the isomorphism classes of indecomposable
Ext-projectives in D<%P(modB), which, by (1.4) coincide with the isomor-
phism classes of indecomposable projectives B-modules. Hence s equals the
number of isomorphism classes of indecomposable Ext-projectives in ¢, and
also of projective B-modules. Thus s = rkKy(B) = rkKy(DP(mod B)) <
rkKo(DP(mod A)) = rkKy(A). 0.

2 Aisles in derived hereditary categories

From now on, we let H be a hereditary category with a tilting object. A
connected abelian k—category # is hereditary if the bifunctor Ext},(—,?)
vanishes, and moreover the sets Homy (X,Y) and Ext; (X,Y) are finite di-
mensional £— vector spaces for all X,Y € H. An object M € H is called a
partial tilting object if Exty, (M, M) = 0. It is a generator if Homy (M, X) = 0



and Exty, (M, X) = 0 imply X = 0, and a tilting object if it is both a par-
tial tilting object and a generator. Hereditary categories with tilting object
were classified in [H2|. It is shown there that there exists a finite dimensional

k—algebra A which is hereditary or canonical, such that DP(H) ~ DP(mod A).

We start with an easy and well-known observation. We recall that an object
M in a triangulated category T is called a generator if Homy(M[j], X) = 0
for all j € Z implies X = 0. The dual notion is that of cogenerator. Clearly,
this notion of generator generalizes the above one.

Lemma 2.1 Let T be a triangulated category with Serre duality. An object
M in T s a generator if and only if it is a cogenerator.

Proof. Let M be a generator, and X be such that Hom (X, M[j]) = 0 for
all j € Z. We claim that X = 0. Since the Serre duality holds in 7, we have
Homy(M[j], 7X) = 0, for all j € Z. Since M is a generator, 7X = 0. Hence
X =0 and so M is a cogenerator. The converse is shown in the same way. [.

Before stating and proving the next lemma, we recall that, by [HR1| (3.5),
we may assume that H satisfies the additional condition that there is no non-
zero morphism from an object of finite length to one of infinite length. For
quasi-tilted algebras, we refer the reader to [HRS|.

Lemma 2.2 Let M be a partial tilting object in H then Endy (M) is a quasi-
tilted algebra.

Proof. We may assume that H is not a module category (for, otherwise, the
result follows from [H2] p. 145). If M is a tilting object in H there is nothing
to show. So assume it is not. In particular, the number of isomorphism classes
of indecomposable summands of M is strictly smaller than the rank of Kq(#)
(see [HR2| (1.2)). We then proceed by lowering this rank.

Since M is not tilting, then by [HR2|(1.4), it is not a tilting complex in DP(#H).
Hence by (2.1) it is not a cogenerator of D?(#) and there exists an indecom-
posable non-zero object X € H such that Exty, (X, X) = 0, Exty, (X, M) =0
and Homy, (X, M) = 0. By [HR1](2.1)(2.8), we have Endy(X) = k£ and more-
over
X+ ={Y € H,Ext},/(X,Y) = 0,Homy(X,Y) = 0}

is a hereditary abelian category with tilting object. We claim that rkKy(X*) <
rkKo(#H). Since Exty(X,X) = 0, and Endy(X) = k, it follows from
[RV2](3.5)(3.4) that the smallest triangulated subcategory By of DP(#) con-
taining X is a Bousfield localization and , moreover Ko(H) ~ Ko(Bx) @
Ko(Bx). Since Endy(X) = k, we have Ko(H) ~ Z & Ky(Bx). By |BL|, proof
of Theorem 1, By ~ DP(X*). Therefore,

rkKo(X ') = rkKo(DP(X1)) = rkKo(BY) = rkKo(H) — 1.

Since M is clearly a partial tilting object in X, the statement follows by
induction. O



We recall that a sequence (M;);>1 of indecomposable objects in DP(H) is
called an exceptional sequence if

(1) Hompp g (M;, M;[j]) = 0 for all s > 1 and all j > 0, and

(2) Hompp g (M;, M;[j]) = 0 for all i < and all j € Z.

If A is a triangular algebra, then the indecomposable Ext-projectives in the
canonical aisle, which are the indecomposable projective A—modules (see

(1.4)) can be ordered to form an exceptional sequence. This is clearly not
the case if A is not triangular.

We are now able to prove our first theorem.
Theorem 2.3 Let U be a suspended subcategory in DP(H). Then

(a) The indecomposable Ext-projectives in U can be ordered to form an ex-
ceptional sequence.
(b) The number of isomorphism classes of indecomposable Ext-projectives in
U does not exceed the rank of Ko(H).
Proof. (a) If M; and M; are indecomposable Ext-projectives in U, we know
that there exist indecomposable objects X;, X; in H, and integers k;, k; € Z
Let us fix k£ € Z, and consider the set (X;[k]);er of all Ext-projectives which
are concentrated in degree k. We note that, for all 7, j we have Ext%{(Xi, X;) =
Homppe (5 (X;[k], X[k +1]) = 0 by definition of Ext-projectives. Consequently,
for each finite subset F' C I the direct sum @&rX; € H is a partial tilting com-
plex. By [HR2](1.2), we know that |F| < rkK¢(#) and hence |I| < rkKy(H).
By (2.2), the algebra B = Endy(®;c;X;) is quasi-tilted, and hence triangular.
This allows us to order the projective B—modules P; (which are in one-to-
one correspondence with the X;) so that Homp(P;, P;) = 0 for all j > i.
Consequently, the objects X; can be ordered in H so that Homy (X;, X;) =0,
for all 7 > 1.

This shows that, for each k € Z, the set (X;[k])icr can be ordered to form an
exceptional sequence.

We now consider two Ext-projectives in ¢ of the form X;[k;] and Xj[k;] with
k; > k;. The definition of Ext-projectives yields

HOHlDb(H) (Xz[kz], Xj[kj + l]) =0

for all [ > 0. Setting [ = k; — k; + 1, this yields Ext;;(X;, X;) = 0. On the
other hand, since H is hereditary, we have

Homppe 3y (X;[k:i, X;[k;]) = 0.

We proceed to order all the Ext-projectives in I/ in such a way as to form an
exceptional sequence. Let

X" = (Xilki])r>0, and X~ = (X;[ki])k,<o-



We order each of the sets Xt and X~ in the following way. For each fixed
k > 0, the above argument shows that the Ext-projectives concentrated in £
can be ordered so as to form an exceptional sequence

Sk = {Xkl [k]7 Tt stk [k]}
Given 0 < k < I, we set S, < S;. Then, clearly,
Sk U Sy = { X, [k], - -+, X, [K], X, 1], - - X, 1]}

is an exceptional sequence. This induces an order on X' so that the Ext-
projectives in X form an exceptional sequence. Finally, we order the elements
of XT U X~ as an exceptional sequence by setting X~ < X'*. This completes
the proof of (a).

(b) By [HR1](2.1), for each indecomposable Ext-projective M; in U, the algebra
Endps (3 (M;) is a field. It follows then from (a) and [RV2](3.5) that, if M =
®;_;M; is the direct sum of all indecomposable Ext-projectives in ¢/ then
Ko(DP(H)) ~ Z° ® Ko(M*). Consequently s < rkKo(DP(H)) = rkKo(H). O

Example 2.4 We end this section with an example of a suspended sub-
category without Ext-projectives in DP(H), when H = mod H and H is
a representation-infinite hereditary algebra. It follows from [H2] that the
Auslander-Reiten quiver of DP(H) is of the form

C, 1 R, 1 C() R() Cl

where the C; (i € 7) are transjective components, while the R; (i € Z) are
families of reqular components (each being a family of stable tubes, or of com-
ponents of the form ZAy, according as H is tame or wild, respectively). We
use the following notation from [R]: let C,C' denote classes of objects in DP (H)
such that Hompe(meq 4)(C',C) = 0 for all C" € ' and C € C. We let CUCL'
stand for the class of objects whose indecomposables belong to C or C'. Let now
U be the full additive subcategory of DP(H) generated by RoUC; UR{UCoU- - -
Then U has no Ext-projective: in fact, if X is an indecomposable Ext-projective
object in U then 7X € U+ (by (1.5)) and thus U and Ut intersect the same
component of DP(H) and this is impossible, because Ut is the full additive
subcategory generated by ---R_oUC 1 UR _1UC,. O



3 Ext-projectives and silting complexes

The concept of a silting complex was introduced in |[KV] in order to study
t-structures in the derived category of a hereditary algebra. The same idea
was used by other authors in more general contexts, see, for instance [BR,S]

Let 7 be a triangulated category. A complex M € T is called a silting complex
if Hom(M, M[l]) = 0 for all [ > 0.

Thus for instance, any partial tilting complex is a silting complex.

We recall that, if ¢,V are suspended subcategories, then W = U * V denotes
the full additive subcategory consisting of all the objects Y’ such that there
exists an object Y =Y’ @ Y"” and a triangle

X—->Y—Z- X[1]
with X €e Y and Z € V.

We also need to recall a well-known construction for the smallest suspended
subcategory Uy, containing a given object M. Denote by

& = add(®;>0M [5])

the full subcategory of 7 having as objects the direct summands of finite direct
sums of copies of non-negative translates of M. If j > 0 and &, £ | are known
we set & = &« £ . Tt is then seen that Uy is equal to Upr = U;j5eE;

The dual construction is also useful. Let & = add(®;<oM [j]) be the full
subcategory of 7 having as objects the direct summands of finite direct sums
of copies of non-positive translates of M. If j < 0 and that &, £, are known
we set £ = &y x £; 1. The smallest cosuspended subcategory U containing
M is equal to pld = Uj<of;

The smallest triangulated subcategory generated by M, Bj;, can be con-
structed in a similar way that U, considering all possible translations of M
instead of the positive ones. The dual construction gives the smallest triangu-
lated subcategory cogenerated by M, »,B.

Note that the orthogonal have the following easy characterizations:

e X € Uj; (respectively X € Bi;) if and if Homy(M[j], X) = 0 for all j > 0
(respectively for all j € 7Z).

o X € LU (respectively X € +y,B) if and only if Homs (X, M[j]) = 0 for
all j <0 (respectively for all j € Z).

Lemma 3.1 Let M € DP(mod A) be a silting complex. Then:

(a) M is Ext-projective in Uy.
(b) M is Ext-projective in 1,U.
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Proof.(a) It follows from the construction above that, for every X € &;, we
have Hompp (meq 4)(M, X[1]) = 0. Suppose that Hompp eq 4)(M, X[1]) = 0
for all X € & with 7 < j and let Y’ € 5]-+. Then there exist Y = Y' @ Y”
and a triangle X — Y — Z — X[1] where X € & and Y € £ ,. Applying
Hompp (meq 4)(M, —) to this triangle yields Hompp(meq 4)(M,Y[1]) = 0 and
hence Hompp (moq 4)(M, Y'[1]) = 0. This completes the proof.

(b) By an induction similar to the one used in (a), we get V € 4, U if and
only if Homps(meq 4)(V,7M[—i]) = 0 for all i > 0. That is, if and only if
DHompb (moa 4) (M, V[i + 1]) =~ Hompsmea 4)(V[z],7M) = 0 for all 7 > 0, or
equivalently, if and only if Hompsmeq 4)(M, V[j]) = 0 for all j > 0. Setting
V = M yields M € },U. Moreover, M is Ext-projective in ;U since the
same equivalence shows that Hompb(meq 4)(M, V[1]) = 0 for all V € 1,¢4. O

In the situation of (3.1) the Ext-projectives in Uy, correspond to the projectives
in the heart Cy,, = Uy NU;;[1], which is a module category by [BR](3.3)(3.4).
Another consequence is the following corollary:

Corollary 3.2 Let ‘H be a hereditary category. Let M = @&;_, M; be a silting

complex in DP(H) with the M; indecomposable and pairwise non isomorphic.
Then

(a) The M; can be ordered to form an exceptional sequence.
(b) The smallest suspended subcategory Uy (or triangulated subcategory By )
containing M is an aisle (or a Bousfield localization, respectively) in DP(H).

Proof. (a) By (3.1) the M, are indecomposable Ext-projectives in the sus-
pended subcategory Uy,. We then apply Theorem (2.3).

(b) this follows from (a) and |[RV2], |B|. O

The following statement should be compared with [AK](1.3).

Proposition 1 Let M be a silting complex in DP(mod A), where A is a finite
dimension k-algebra of finite global dimension. The suspended subcategories
having M as Ext-projective form a partially ordered set under inclusion. This
set has Uy as unique minimal element and 5,U as unique mazimal element.
Moreover, Uys = 1,U if and only if M is a generator of DP(mod A).

Proof. By (3.1), since M is a silting complex, then M is Ext-projective in Uy,
and in 1,,U. Now, let U be a suspended subcategory of DP(mod A) in which
M is Ext-projective. Then Uy; C U. On the other hand, by (1.5), 7M € U™,
hence ;U C U+. Therefore,

Uy CUCHUY) CHU.

This shows the first statement.

Now, suppose that Uy, = L. In order to show that M is a generator,
assume that Hompsmeq 4)(M[j], X) = 0, for all j € Z. In particular, X €
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U;;. On the other hand, Hompp (meq 4)(M[j], X) = 0 for all j < 0 implies
Hompp (o4 4) (X, TM[j + 1]) =~ DHompp (yeq 4)(M[j], X) = 0 for all j < 0,
and then X € LU = Uy,. Therefore, X € Ui; NUy = 0 and we are done.

Conversely, suppose that M is a generator in DP(mod A). By the proof
of (3.1) above, X € Uy if and only if Hompp(yeqa)(Mj], X) =
0 for all j < 0. Using the Auslander-Reiten formula, X € U, if and only
if Hompp (moq 4)X, 7M[j]) = 0 for all j < 0, that is, if and only if, X € 7, U.
O

Corollary 3.3 Let M be a partial tilting complex in DP(mod A). Then M is
a tilting complez if and only if Unr = 5,U.

Proof. This follows from prop.1 and the definition. L.

Corollary 3.4 If M = ®3_, M; is a silting complex in DP(mod A) then

(1) Unt € O3y magU.
(2) If, moreover, M is a generator, then Unr = Ni_; 13, U.

Proof. (a) Since M 1is a silting complex then, for each i, we have
Homppb (moq 4) (Ms, M[j]) = 0 for all j > 0. Hence by the proof of (3.1)
M € 5, U for each i, so M € N_, 5, U. The statement follows.

(b) Assume now that M is a generator. By (3.3), Uy = 4,U. Now, X € 5,U
if and only if, for each 7 < 0, we have

Hompp moq 4) (X, (TM)[j]) = &;_1 Homppe (moq 4) (X, TM;)[j]) = 0
that is, if and only if, for all 2 with 0 <7 < s and all j < 0, we have
HomDh(modA) (Xa (TMZ)[j]) =0

This is equivalent to saying that X € 5, U for all i. g

Example 3.5 Let A be the path algebra of the Dynkin quiver

| SO S DU |

and let M = P(3) @ P(4) be the direct sum of the indecomposable projective
modules corresponding to the points 3 and 4. We draw the Auslander-Reiten
quiver of DP(mod A) in which we show the subcategories Uns and 1, U.

Here, Uy consist of P(3), P(4) and all the complexes inside the small triangles.
We notice that the heart Uy N UG[1] of the corresponding t-structure is the
module category of the path algebra of the Dynkin quiver Ay. Also, while P(3)
and P(4) are the only Ext-projectives in Uy, the aisle 5, U (which coincides
with the canonical aisle) has two more Ext-projectives, namely P(1) and P(2).

12
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4 Deconstructing aisles

We first see a procedure for restricting aisles.

Lemma 4.1 Let U be a suspended subcategory in DP(H) and let (M;)™, be
a set of indecomposable, pairwise non-isomorphic, Ext-projectives in U. Let
s <m and M = @®;_, M;.

(a) If j > s, then M; is Ext-projective in U N By;.
(b) If U is an aisle in DP(H) then U N Bi; is an aisle in Byy.

Proof. (a) By (2.3), the M; can be ordered to form an exceptional sequence.
Then, by definition, Hompp 5 (M;[l], M;) = 0 for all i < s and all | € Z.
Consequently, Hompe 5y (M[l], M;) = 0 for all [ € Z. This implies M; € By,
so M; € U N By;. Since M; is Ext-projective in U, it is clearly so in U N By;.

(b) Let Y € Bi;. Since U is an aisle in DP(#) there exists a triangle X — Y —
Z — X[1] with X € Y and Z € U*. Applying the functor Hompp 3 (M, —)
to this triangle yields, since Y € By;, an isomorphism

Homppe 3 (M[j], X) ~ Hompe ) (M[j + 1], Z)

for each j € Z. Since M is Ext-projective in U, we have Hompp 3, (M[j], X) =
0 for all j < 0, hence Hompp (5 (M[j + 1], Z) = 0 for all j < 0. Since, on the
other hand, Z € U+ we have Hompp 5y (M[j + 1], Z) = 0 for all j > —1. This
shows that Hompp ) (M[j], Z) = 0 for all j € Z and thus Z € U+ N By;.
Now, this is equivalent to saying that Z € By; and Homps ) (U, Z) = 0 for all
U € U. In particular, Hompe 5 (U, Z) = 0 for all U € U N Bi; and therefore
Z belongs to the right orthogonal, inside Bj; (!) of U N Bi;. This completes
the proof. Il

We are able now to prove our second theorem inspired from [AK]|, Theorem
(A)-

Theorem 4.2 Let U be a suspended subcategory and M be an object in
DP(H). Then

(a) M is a silting complex if and only if M is Ext-projective in Ups* (UNBq;).
(b) The following conditions are equivalent:

(i) M is Ezt-projective in U .

(1) U = Uy * (U N Byy) and M is a silting complex.
(iii) U = Uy % (UN By) and U+ = UL N Byy) * uld.
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Proof. (a) We first assume that M is a silting complex in DP(#H) and prove
that M is Ext-projective in Uy * (U N Byy). Let Y' € Ups * (U N Byy). Then
there exist Y = Y’ @ Y" and a triangle

X =Y —>Z7Z-— X[1]

with X € Uy, and Z € By; NU. Applying the functor Hompp 3 (M, —) yields
an exact sequence

Since, by (3.1) M is Ext-projective in Uy we have Hompp (M, X[1]) =
0. Since Z € By we also have Hompsgy(M, Z[1]) = 0. Therefore,
Hompe 3 (M, Y[1]) = 0 and so Homppy,)(M,Y'[1]) = 0. This shows that
M is Ext-projective in Uy * (U N Byy).

Conversely, if M is Ext-projective in Uy * (U N By;) , it is clear that M is a
silting complex.

(b) (i) implies (i7). Assume M is Ext-projective in Y. Since M € U, then
Uy C U and also U N Bi; C U so that Uy * (U N By;) C U. The Ext-
projectivity of M shows that it is a silting complex, then Uy, is an aisle (by
(3.2)). Now, let Y € U, there is a triangle X — Y — Z — X][1] such that
X € Uy and Z € U3;. Tt suffices to show that, actually, Z € U N Bq;. Since
X,Y € U, then Z € U because U is closed under extensions. In order to prove
that Z € By, we must prove that Homps ) (M[j], Z) = 0 for all j € Z. This
equality certainly holds for j > 0, because Z € U;;. On the other hand, the
Ext-projectivity of M in U shows that it holds as well as for j < 0. This
establishes that Uy * (U N Byy) = U.
(i1) implies (ii7) By (a) and (1.5) we have 7M € U+, hence .U C U*. Since
Ut N B+ cUt, we have U N Biy) * ruld C UL
Conversely, let Y € U~*. Since ;U is a coaisle (by the dual of (3.2)) there
exists a triangle

X =Y —>Z—- X[1]
such that X € ;U and Z € ,;U. We claim that, actually, X € Y+ N ij,[.
Since Z,Y € U+, then X € U*. In order to prove that X € Bi;, we must
prove that Hompp 5 (M[j], X) = 0 for all j € Z. Since X € L mU, we have

Hompp () (M[j — 1], X') ~ DHompp 3 (X, 7M[j]) = 0,
for all j < 0. On the other hand, for all j > 0 we have M[j] € U while X € U*,

so that Hompp ;) (M[j], X) = 0. This shows that U™ = (U N By;) * -ul.

(737) implies (7). From the existence of the triangle M — M — 0 — M][1]
follows that M € Uy * (U N By;) = U, and from the existence of the triangle
0 = 7M — M — 0 follows that TM € (U* N By;) * U = UL, Invoking
(1.5) concludes the proof. O
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Corollary 4.3 Let U be a suspended subcategory in DP(H) and let M =
71 M; be Ext-projective in U, with the M; indecomposable and pairwise non-
1somorphic. Then
U=Upy, *--xUp, * (UNByy).

Proof. By induction on s. If s = 1, this is Theorem 4.2. Assume that the
statement holds for s — 1, then U = Uyy, * - - * Upy,_, * (U N By), with N =
iz M.

By definition of an exceptional sequence, we have M, € By. Thus applying
(4.2) yields U N By = Upy, * (UN By NBy;,) = Upy, * (U N Byy). The statement
follows at once. O

Corollary 4.4 Let U be an aisle in DP(H) and let M = @®_,M; be Ext-
projective in U, with the M; indecomposable and pairwise non-isomorphic.
Then s = rkKo(H) if and only if M is a generator of DP(H). Moreover, if
this is the case, then U = Upr = Upg, * -+ - x Uy, .

Proof. By (2.3) the objects (M;)?_; can be assumed to form an exceptional
sequence. Hence from [RV2](3.4), (3.5),

Ko(H) ~ Ko(DP(H)) ~ Ko(Bar) @ Ko(Biy) ~ Z° & Ko(Bip).

On the other hand, by [BL], proof of Theorem 1, there exists a hereditary
category H' such that Bi; ~ DP(#'). Hence

Ko(Bir) =~ Ko(DP(H')) ~ Ko(H')

Thus by [HRS], K¢(B3;) = 0 if and only if By, = 0. Now, s = rkKo(#) if and
only if Ko(By;) = 0, thus, if and only if Bi; = 0 or equivalently, if and only if,
By = DP(H), that is, if and only if M is a generator of DP(#). The second
statement follows form (4.3) and the fact that B;; = 0.

Corollary 4.5 The aisles in DP(H) which have exactly rkKo(H) isomor-
phism classes of indecomposable Ext-projectives are in bijective correspondance
with the silting complezes having rkKo(H) isomorphism classes of indecom-
posable summands in DP(H).

Proof. Let U be an aisle in DP(#) which has exactly 7kKo(#) isomorphism
classes of Ext-projective objects My, -, M;. Then, setting M = &;_, M, we
have U = Uy by (4.4). Conversely, if M = &5_, M; is a silting complex with s =
rkKo(H) then by (3.2) Uy, is an aisle and, by (3.1) the M; are indecomposable
Ext-projectives in Uys. Moreover, it follows from (2.3)(b) that the number of
isomorphism classes of indecomposable Ext-projectives in Uy, is bounded by
rkKo(H) = s O

Example 4.6 Let A be as in the example (3.5) and let X,Y,Z, W be the
indicated objects in DP(mod A)
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Then, it is easily seen that M = X @Y & Z®W 1is a silting complex, which is
not tilting, because Hompb(meq 4) (X, W[—1]) # 0. Observe that EndaM is the
product of two connected components one equal to k, and the other the path
algebra of the quiver

| S S

In particular, EndaM and A are not derived equivalent.

5 Applications to left supported algebras

We illustrate our techniques by giving several characterizations of left sup-
ported algebras, introduced in [ACT]| and studied in [ACPT|. Let A be a
finite dimensional k—algebra, and indA denote a full subcategory of modA
consisting of exactly one representative from each isomorphism class of inde-
composable A—modules. Given L, M € indA we say that L is a predecessor
of M, or that M is a successor of L, if there exists a sequence of non-zero
morphisms

L=Ly—>Ly—Li—>---—>L;i=M

with L; € indA for all i. Following |[HRS|, we let £4 (or R4) be the class of
all M € indA all of whose predecessors have projective dimension at most one
(or all of whose successors have injective dimension at most one, respectively).

An algebra A is left supported if addL 4 is contravariantly finite in mod A. Let F
denote the direct sum of all indecomposable projective A—modules not lying in
L4, E; denote the direct sum of all L € £, such that Hom4 (DA, L) # 0, and
FE denote the direct sum of all L’ € indA—addE; such that Hom (F, 7" L') #
0. Then £ = {X € A, X € add(FE; & Es)} is the class of all indecomposable
Ext-injectives in addL 4 (see [ACT](3.1), [ALR](3.2)). The module T'= E; &
E; & F is always a partial tilting module (see [ACT](3.3)) and it is a tilting
module if and only if A is left supported (JACT|, Theorem A). If this is the
case, then the torsion-free class corresponding to the module T is F(T) =
add(L4 — &), see |ACT|(4.1).

Further, following [ACPT]|, we let Ry be the class of all M € indA which are
successors of injectives. Then the module R = E;®7, ' E,@F is the direct sum
of all indecomposable Ext-projectives in Rg, by [ACPT|(5.3). It is always a
partial tilting module [ACPT|(5.4) and it is a tilting module if and only if A is
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left supported, or equivalently, if and only if Ry = {X € indA, Hom, (R, X) #
0}, see [ACPT], Theorem (B).

Lemma 5.1 With the above notation, we have

U N mod A = F(T).

Proof: By the definition of right orthogonal, X € U3 N mod A if and only if, for
all j > 0, Hompp(meq 4)(T[j], M) = 0. That is, if and only if Homumeaa (T, M) =
0, if and only if, X € F(T). O

We are now able to prove the main result of this section.
Theorem 5.2 The following conditions are equivalent for an artin algebra A,

(a) A is left supported
(b) Ut N mod A = add(L 4 — &).
(c) Ur N mod A = addR,.

Proof: (a) implies (b) follows from the above lemma and [ACT](4.1).

(a) implies (b). We wish to prove that T = E; @ Fy & F is a tilting module.
Since T is a partial tilting module, and by hypothesis (and the above lemma)
F(T) = add(L4 — &), then the corresponding torsion class (which consists
of all modules generated by T') is then 7 (7T) = indA—(L4 — &). Let I be
an indecomposable injective A—module. If I € L4, then I € £. Therefore
I € T(T). Since T (T) contains all indecomposable injectives, and is generated
by a module, then it is induced by a multiplicity-free tilting module X (see|A]).
To complete the proof, it suffices to show that X = T. It is known that X
is Ext-projective in 7 (T)(= T(X)). Let now Y be an indecomposable Ext-
projective in T (7). We have two cases:

(1) If Y is not projective, then 74Y € L4 —& (by [AS|(3.7)) and Y ¢ L4 —E.
Assume Y ¢ L4 then 7,Y € L4 and YV = 7, (74Y) ¢ L4 implies
TAY € & (because £ consists of the Ext-injectives in addL,4), and this is
a contradiction. Hence Y € L4. Since Y ¢ L4 — &, then Y € £.

(2) If Y is projective, there are again two cases. If Y ¢ £, then Y € addF.
IfY € L4 then Y € € because Y € T(T).

This shows that Y € add7. Then addX <C addT. Since T itself is Ext-
projective in 7 (T), see [A], then add7 C addX. Hence X = T, and T is
a tilting module.

(a) implies (c) We first claim that Ur NmodA = {M € modA, Exty (R, M) =
0}. Let X € Ur NmodA, then Hompp (meq 4)(R[j], X) = 0 for all j < 0. In
particular, Homppmeq 4y (R[—1], X) = Ext'(R, X) = 0. Conversely, let X be
such that Ext! (R, X) = 0. Since the projective dimension of R is at most
1, we have Hompp(meq 4)(R[j], X) = 0 for all j < 0. Since R is a tilting
module (because A is left supported), it is a generator of DP(mod A) and
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hence U = {X € D"(mod A)|Hompb (meq 4)(R, X[j]) = 0 for all j > 0}, see
[ASZ] (2.2). Thus X € Ur Nmod A and we have established our claim.

By [ACPT], A is left supported if and only if addRy, = {M €
modA, Ext! (R, M) = 0}. Hence Uy N modA = addR,.

(c) implies (a) We prove that Ry = {X € indA, Hom,(R, X) # 0}. Let
X € R, then, by hypothesis, X € Ug. In particular, X ¢ Uz . Then there exists
j < 0 such that Hompp(meq 4)(R, X[j]) # 0. Conversely, if Hom4 (R, X) # 0
then, since R € Ry, and Ry is closed under successors, then X € R,. This
completes the proof. O

Another way to characterize left supported algebras is via their left supports.
The left support Ay of A is the endomorphism algebra of the direct sum of all
indecomposable projective A—modules which are not in £4.

We denote by B, the smallest triangulated subcategory of DP(mod A4,) con-
taining L4 Furthermore, we denote by gBB and Bg, respectively, the small-
est triangulated subcategories of DP(mod A)) cogenerated and generated by
FE = E; ® F,. It was shown in [T] that B;, = DP?(mod A,).

Proposition 2 The following conditions are equivalent for an artin algebra
A

(a) A is left supported.
(C) B/;A = EB

Proof. (a) is equivalent to (b) Indeed, it is known that A is left supported if
and only if F is a tilting Ay—module (see [ACT](3.3)) and this is the case if
and only if E is a generator, and also a cogenerator of DP(mod A,) that is, if
and only if DP(mod A,) = gB = Bg.

(b) implies (c). It follows from [T] since B,, = DP(mod A,).

(c) implies (a) Assume pB = B;, = DP(mod A,) . In particular, E is a
cogenerator of DP(mod A,). By (2.1) it follows that E is also a generator of
DP(mod A,) and hence DP(mod A,) = Bg. Since E is a partial tilting module,
then FE is a tilting Ay-module and A is a left supported algebra. O
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