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Introduction.

Since its introduction by Happel and Ringel in the early eighties [HR], the class of tilted
algebras has been extensively studied in the representation theory of artin algebras. It is now
considered to be one of the classes whose representation theory is best understood and most
useful for the general theory. It was therefore natural to consider various generalisations
of this notion. Thus, over the years, the following classes of algebras were defined and
investigated: the quasi-tilted algebras (which generalise the tilted and the canonical algebras
of [R]) [HRS], the shod algebras (which generalise the quasi-tilted) [CL1], the weakly shod
algebras (which generalise the shod and the representation-directed algebras) [CL2, CL3],
the left and the right glued algebras (which generalise the tilted and the representation-finite
algebras) [AC1] and, finally, the laura algebras (which generalise all the previous classes)
[AC2]. We recall that an artin algebra A is said to be a laura algebra if all but at most
finitely many non-isomorphic indecomposable A-modules belong to the class £4 (that is,
are such that all its predecessors have projective dimension at most one) or to the class R 4
(that is, are such that all its successors have injective dimension at most one).

It was reasonable to ask the following question: if A is an artin algebra belonging to one
of the classes above, and e is an idempotent in A, then does the endomorphism algebra eAe
of the projective module eA belong also to the same class? The answer has already been
shown to be positive for tilted algebras by Happel [H] (IIL.6.5), for quasi-tilted algebras by
Happel, Reiten and Smalg [HRS] (II.1.15) and for shod algebras by Kleiner, Skowroriski and
Zacharia [KSZ] (1.2). The objective of this note is to show that it is positive as well for
the remaining classes. Moreover, our proof yields also the quasi-tilted and the shod cases.
Thus, we prove the following theorem.

THEOREM. Let A be a connected artin algebra, and e be an idempotent in A such that
B = eAe is connected.

(a) If A is a laura algebra, then so is B.

(b) If A is a left (or right) glued algebra, then so is B.
(c) If A is a weakly shod algebra, then so is B.

(d) If A is a shod algebra, then so is B.

(e) If A is a quasi-tilted algebra, then so is B.

The paper is organized as follows. The first section is devoted to preliminary results,
including a new characterisation of weakly shod algebras. In our second we study how
properties of B-modules are related to those of A-modules. The proof of our theorem
occupies the third section, together with remarks and examples.
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1. A characterisation of weakly shod algebras.

1.1. Notation. Throughout this note, our algebras are connected artin algebras. For an
algebra A, we denote by mod A its category of finitely generated right modules, and by ind A
a full subcategory of mod A consisting of one representative from each isomorphism class of
indecomposable modules. We also denote by rk Ky(A) the rank of the Grothendick group
Ky(A) of A. For an A-module M, we denote by pd M (or id M) its projective dimension (or
injective dimension, respectively), and by add M the full subcategory of mod A consisting
of the finite direct sums of the direct summands of M.

We use freely and without further reference facts about mod A and the Auslander-Reiten
translations 74 and TXI of mod A, as can be found, for instance in [ARS, R].

We are particularly interested in paths. Given two modules M, N in ind A, a path from
M to N is a sequence

(+) M=M L5 M 2y — I M =N

where all the M; are in ind A, and all the f; are non-zero morphisms. In this case, we say
that M is a predecessor of IV, and N is a successor of M. It will sometimes be necessary
to assume that the f; are non-isomorphisms, in which case we shall explicitely say so. The
path (%) is called a path of irreducible morphisms if each of the f; is irreducible. A path
of irreducible morphisms (x) is called sectional if 74M;11 % M;_; for each i such that
1 < <t. A refinement of the path (x) is a path in mod A
M=M D o D =N

with s > ¢, together with an order-prederving function o : {1,2,... ,t—1} = {1,2,...,s—1}
such that, for each ¢ with 1 <4 < t, we have M; = M(’T(

Following [HRS], for an artin algebra A, we denote by L4 the full subcategory of ind A
consisting of the modules M such that, if L is a predecessor of M, then pd L < 1. Dually,
we denote by R 4 the full subcategory of ind A consisting of the modules M such that, if N
is a successor of M, then id N < 1. Clearly, £ 4 is closed under predecessors, while R 4 is
closed under successors.

1.2. We need the following lemma [AC2](1.4).
LEMMA. Let A be an artin algebra.

(a) Let P be an indecomposable projective A-module. Then there exist at most finitely
many modules M in R4 such that there exists a path from M to P. Moreover,
any such path can be refined to a path of irreducible morphisms, and any path of
irreducible morphisms from M to P is sectional.

(b) Let I be an indecomposable injective A-module. Then there exist at most finitely
many modules M in L4 such that there exists a path from I to M. Moreover,
any such path can be refined to a path of irreducible morphisms, and any path of
irreducible morphisms from I to M 1is sectional. [

1.3 The following corollary [AC2](1.5) will also be useful.

COROLLARY. Let A be an artin algebra.

(a) Ra consists of the modules M in ind A such that, if there exists a path from M
to an indecomposable projective module, then this path can be refined to a path of
irreducible morphisms, and the latter is sectional.

(b) La consists of the modules M in ind A such that, if there exists a path from an
indecomposable injective module to M, then this path can be refined to a path of
irreducible morphisms, and the latter is sectional. O
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1.4. We recall that an artin algebra is called weakly shod whenever the length of any
path from an indecomposable injective to an indecomposable projective is bounded [CL3].
We now give a characterisation of weakly shod algebras.

PROPOSITION. An artin algebra A is weakly shod if and only if there exists an £ > 0
such that any path from an indecomposable module not lying in L4 to an indecomposable
module not lying in R o has length at most (.

Proof. We first prove the necessity. Assume that there exists an indecomposable module M
not in £4 and an indecomposable module N not in R4 as well as a path M — --- — N of
arbitrary length. Since M is not in L4, it has a predecessor M’ such that pd M' > 2. By
[R] p.74, there exist an indecomposable injective A-module I and a path I — 74 M' — % —
M'" — --- — M. Similarly, there exists a successor N’ of N, an indecomposable projective
A-module P and a path N — --- - N’ — % — 7,' N’ — P. Combining these with the
given path from M to N yields a path from I to P of arbitrary length, a contradiction to
A being weakly shod.

We now prove the sufficiency. Suppose that A is not weakly shod. Then, for each
t > 0, there exists an indecomposable injective A-module I, an indecomposable projective
A-module P as well as a path in ind A:

_ il ft (0:) gt g1 _
I=My—>M —-+-—M —-+—N—--+— N — No=P

with the f;,g; irreducible, and (6;) a path of length greater than ¢t. We choose ¢t > 1 +
21k Ky(A) and claim that M; does not belong to £ 4.

We denote by (&) the subpath I = M, EEN M, — --- LN M; of the above path. We
have one of two cases. If () is not sectional, then there exists j such that M;_1 = 74 M1

and the path I = M, ELN M, — - i) M is sectional. By [B, IT], Homa (I, 74aMj41) #0
and therefore pd Mjy; > 2. Thus, M;;, does not belong to L4, and neither does M;. If,
on the other hand, (&) is sectional, then it contains at least 1 + rk Ky(A) indecompos-
able modules which are not injective. By [S], there exist p,q such that 1 < p,q < t and
Homyu (7, ' M,, M,) # 0. Since Hom (I, M,) # 0, we have pd 7, M, > 2, so 7, M, does
not lie in £4. Therefore, M, does not belong to L4, and neither does M;. This establishes
our claim.

Similarly, N; does not lie in R 4. Then, for each ¢t > 1 + 2rk Ko(A), we have a path (6;)
from an indecomposable not in £4 to an indecomposable not in R 4, and of length greather
than ¢, a contradiction to our hypothesis. O

2. Passing from mod A to mod B.

2.1. From now on, and until the end of this paper, we assume that A is a connected
artin algebra, that e is an idempotent in A chosen (without loss of generality) so that the
algebra B = eAe is connected, and that P = eA is the corresponding projective A-module.
We denote by pres P the full subcategory of mod A consisting of the modules M which are
P-presented, that is, which admit a presentation

Ph—F—M—0
with Py, P; in add P. We recall that the functor Hom 4 (P, —) : mod A — mod B induces an

equivalence pres P =~ mod B, under which the summands of P correspond to the projective
B-modules ([ARS] (I1.2.1) p.33 and (I1.2.5) p.35). We need the left inverse of this functor.



4 IBRAHIM ASSEM AND FLAVIO ULHOA COELHO

LEMMA. Let X be a B-module, then the A-module X ®pg P is P-presented, and we have
Homa (P, X ®p P) =2 X, functorially.

Proof. There exist m,n > 0 and an exact sequence in mod B
By — B — Xp — 0.
Applying the right exct functor — ® g P4 : mod B — mod A yields an exact sequence
Py — P} — X®pP —0.

Thus, X ®p P is P-presented. Applying now the exact functor Hom 4 (P, —) to the previous
exact sequence yields a commutative diagram with exact rows.

Hom 4 (P, P™) — Hom 4 (P, P") — Hom4 (P, X ® P) — 0
‘ :

‘z
BY B, Xp 0. O

PROPOSITION. Let M be a P-presented A-module.

(a) If pd Ma <1, then pd Homy (P, M) < 1.

(b) If M lies in La, then Hom 4 (P, M) lies in Lp.

(¢) If M lies in Ra, but Hom (P, M) does not lie in R, then there exist a projective
A-module P' in Ra and a path from M to P'.

(d) If M lies in Ra \ La, then Homy (P, M) lies in Rp.

Proof. (a) Since M lies in pres P, there exists a presentation P{ — P — M — 0 with Pj, P/
in add P. Since pd M4 < 1, there exists a minimal projective redolution

0—P, — P —M—0.

It follows from minimality that, for each ¢ € {0,1}, P; is a summand of P} and thus lies in
add P. Applying the exact functor Hom 4 (P, —) yields a projective resolution

0 — Homa (P, P1) — Homy (P, Py) — Homa(P,M) — 0.

(b) Let Xo = X; =2 Xy —» -+ —4% X, = Homu (P, M) be a path in ind B. Setting,
for each ¢, M; = X; ® g P and f; = u; ®p P, we deduce a path in ind A

Mo L5 My 2oy — o IS M= M
with all M; in pres P. Since M lies in L4, we have pd My < 1. Applying (a) yields
pd My = pd Hom 4 (P, My) < 1.

(c) Since Xp = Hom 4 (P, M) is not in R, it has a successor Y7 such that id Y; > 2. By
[R] p.74, there exists a projective B-module @) such that Homp (75'Y1, Q) # 0. This yields
a path in ind B
(*) X:X0—>X1—>X2—>"'—)Xt:Y1£)}/2£>Y3—>Q

with Y3 = Tlel and vy, ve irreducible. As before, (%) induces a path in ind A

(+%) M = My —s My —s My — -+ —s M, = Ny 25 Ny L2 Ny —s P/
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where all modules lie in pres P, N; = Y;®@g P fori =1,2,3, PP =Q®p P and f; = v; ®p P
for i = 1,2. Moreover, P’ is projective (and lies in add P). Since M lies in R 4, so does P'.
(d) We construct as in (c) the paths (x) and (*x). We note that since, by hypothesis, M
lies in R4 \ L4, then so do all the modules on the path (xx).
Now, there exists an almost split sequence in mod B

1)1:|
0—>Y1—1>Y269Y’[w]>Y3—>0.

Since mod B 2 pres P, we have a short exact sequence

7]
f1 ;
0—>N1—1>N2@NI[%]>N3—>0

(where N' =Y’ ®p P) in pres P, hence in mod A. Since the former sequence does not split,
neither does the latter. So ExtY (N3, N) # 0. However, since Hom 4 (N3, P') # 0, we have
id TAN3 > 2, so T4N3 does not lie in R4. On the other hand, R4 \ L4 is closed under
successors, hence the full subcategory add (R4 \ £4) of mod A consisting of the direct sums
of modules in R4\ L4 is a torsion class. By [AS], N3 is an Ext-projective in add (R4 \ £4).
Since N itself lie in R4 \ £, we get a contradiction to Ext!y (N3, Ny) #0. O

2.3 COROLLARY. If M is a P-presented A-module in L4 U R4, then Homy (P, M)
belongs to L URg. O

2.4 COROLLARY. There exist only finitely many non-isomorphic indecomposable P-
presented A-modules M which lie in Ra, but are such that Hom (P, M) does not lie in
RB.

Proof. This follows from (2.2)(c) and (1.2). O

2.5. We recall a few definitions. Let A be an artin algebra. An A-module T is called
a tilting module of pd T' < 1, Ext4 (T, T) = 0 and the number of isomorphism classes of
indecomposable summands of T" equals rk K(A). The algebra A is called tilted [HR] if there
exists a tilting A-module T' such that End T4 is hereditary. The algebra A is called shod
[CL1] if, for any indecomposable A-module M, we have pd M <1 or id M < 1. Finally, it
is quasi-tilted [HRS] if it is shod and of global dimension at most two. Tilted algebras are
quasi-tilted, quasi-tilted algebras are shod and shod algebras are weakly shod.

COROLLARY. Let A be a quasi-tilted algebra which is not tilted, and M be a P-presented
A-module. If M lies in Lo NR 4, then Hom4 (P, M) lies in L N Rp.

Proof. By (2.2)(b), Hom4 (P, M) lies in Lp. Assume that Hom4 (P, M) does not lie in Rp.
By (2.2)(c), there exists a projective A-module P’ in R4 which is a successor of M. By
[CS](2.5), this implies that A is tilted, a contradiction. O

3. Proof of the theorem.

3.1. We need two more definitions. An artin algebra A is called a laura algebra if the
class £4 UR 4 is cofinite in ind A, that is, if all but at most finitely many modules in ind A
lie in L4 UR 4 (see [AC2]). It is called right glued (or left glued) if the class of all modules
M in ind A such that pd M <1 (orid M < 1, respectively) is cofinite in mod A (see [AC1]).
Weakly shod algebras are laura. We need the following lemma [AC2](2.2).
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LEMMA. An artin algebra is right (or left) glued if and only if La (or Ra, respectively)
is cofinite in ind A. O

3.2. Proof of the theorem (a) Assume that A is a laura algebra, and that X is an
indecomposable B-module. If X does not lie in £ U Rp, then, by (2.3), the P-presented
A-module X ®g P does not lie in £4 UR 4. Since L4 UR 4 is cofinite in ind A, we are done.

(b) Assume that A is a right glued algebra, and that X is an indecomposable B-module.
If X does not lie in £p, then the P-presented A-module X ® g P does not lie in L4 (by
(2.2)(b)). Since, by (3.1), L4 is cofinite in ind A, this shows the statement for right glued
algebras. The one for left glued algebras follows by duality.

(d) Assume that A is a shod algebra, and that X is an indecomposable B-module. Since
A is shod, then, by [CL1], the P-presented A-module X ®p P either belongs to L4 or to
Ra\La. In the first case, (2.2)(b) implies that X lies in £Lp and, in the second case, (2.2)(c)
implies that it lies in Rp. Then, B is shod.

(e) Assume that A is a quasi-tilted algebra. Then A is shod and, therefore, so is B (by (d)
above). Assume that B is not quasi-tilted. Then there exists an indecomposable projective
B-module @ in Rp \ Lp. Since A is quasi-tilted, the projective A-module ) ®p P lies in
La. By (2.2)(b), we infer that @ lies in Lp, a contradiction.

(c) Assume that A is a weakly shod algebra. We may, by (e), assume that A is not quasi-
tilted. Let s; be the number of P-presented A-modules M in R 4 such that Hom 4 (P, M) is
not in Rp. By (2.4), s; is finite. Let also s2 be the number of modules in ind A which do
not liein £4 UR 4. Since A is weakly shod, s2 is also finite. In view of (1.4), it suffices to
show that £ = s; + s2 — 1 is a bound on the length of paths from an indecomposable not in
Lp to one not in Rp.

Assume that we have a path in ind B

X=X, 35X 55X —--5X, =Y

with X not in £ and Y not in Rp. Suppose t > s; + s2 — 1. Setting M; = X; ®p P and
fi = u; ®p P for each i, we get a path in ind A

M=My 2 vy vy — o I, =N

where all the M; are P-presented. By (2.2)(b), M does not lie in £ 4. Moreover, by definition
of s1, the module M;_;, does not lie in R4. Thus, we have a subpath

(f) M:M0£>M1£>M2—>"'f2>lMt_sl

with M not in £4 and M;_g, not in R 4. This implies that none of the modules on (£) lies in
LAUR 4. Consequently, by [CL3](2.5), (£) lies in the unique pip-bounded component of the
Auslander-Reiten quiver of A. Since this component is generalised standard and contains
no oriented cycles, the path (£) has no repetitions. Since (£) contains t — s; + 1 > so
indecomposables, none of which lies in £4 U R4, we have reached a contradiction which
completes the proof. O

3.3. REMARK In what precedes, we have not proved that, if A is tilted, then so is B
(which is shown in [H]|(II1.6.5) with the help of perpendicular categories). In one particular
case, however, we do have an immediate answer. Indeed, it follows easily from [R] that, if
an algebra has a sincere directing indecomposable module, then it is tilted. Now, it is easy
to see that, with the above notation, if A has a sincere indecomposable P-presented module
M, then Hom 4 (P, M) is a sincere directing indecomposable B-module. Indeed, it is clear
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that, if M is sincere and indecomposable in mod A then X = Homy (P, M) is sincere and
indecomposable in mod B. We now show that, if M is P-presented and directing in mod A,
then X is directing in mod B. Indeed, if this is not the case, then there exists a path in
ind B of the form

X=X 5 X 2X,— -5 X, =X

with the u; non-isomorphisms. But then
M=XopP"28" x, 05 P28 X, 05 P — . “2BP X, 0p P =M

is a path of non-isomorphisms in ind A, a contradiction. O

3.4. The following corollary shows that, for instance, a tubular algebra [R] cannot occur
as a full subcategory of a laura algebra which is not quasi-tilted.

COROLLARY. Assume that A is a laura algebra which is not quasi-tilted. If B is quasi-
tilted, then it s tilted.

Proof. If all the indecomposable summands of P lie in L4, then, by [AC2](4.10), there
exists a tilted algebra A’ such that P is a projective A'-module. By [H](IIL.6.5), we infer
that B = End P4 = End Py is tilted. If this is not the case, then P = P' & P", where
P!, is an indecomposable projective lying in R4 \ L4. By (2.2)(d), Homy (P, P’) is an
indecomposable projective B-module lying in Rp. Thus, if B is quasi-tilted, it follows from
[HRS](IL.3.4) that B is tilted. O

3.5. EXAMPLE The following example shows that any of the remaining cases may
occur. Let k be a commutative field, and A be the finite dimensional k-algebra given by the

quiver
3
i
2 \ / 5
72 o B2
4

where a;8; = 0, v;0; = 0 (for all i,j € {1,2}) and f171 = 0. Then A is a laura algebra
whose quasidirected nonsemiregular component [AC2] is of the form

NN NN NN
NN\

-

o=
1% -

where we identify the two copies of S3 along the vertical dotted lines. Here, we denote by P,
(or I, or S, or e;) the indecomposable projective (or injective, or simple, or idempotent,
respectively) corresponding to the point z of the quiver.
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(a) Let e = Z e;. Then B = eAe is the radical square zero algebra given by the quiver
r#£4

This is also a laura algebra, which is not weakly shod.
(b) Let e = Z ez Then B = eAe is given by the quiver
T#6

3
oot
01
o 0

OE
1

92 2 \ /
72 o B2
4

bound by 7;0; = 0 (for all 4,5 € {1,2}) and 171 = 0. Then B is right glued, but is not
weakly shod. Dually, if e/ = Z e, then B' = e’ Ae is left glued, but is not weakly shod.

r#£1
(c) Let e = Z ez Then B = eAe is given by the quiver
Tr#£3
b1 Y2 B2 o
[e] %é O<—O0O~<——0 %é [e]
1 0 2 4 5 az 6

bound by a;82 = 0 and »d; = 0 (for all ¢ € {1,2}). Then B is a weakly shod algebra
(of global dimension two), but it is not shod: indeed, the simple B-module Sy is such that
pd Sy =2, and id Sy = 2.
(d) Let e = Z e Then B = eAe is the radical square zero algebra given by the quiver
r#3,4

It is a shod algebra of global dimension three, hence it is not quasi-tilted.
(e) Let e = e; + e2 + e5. Then B = eAe is the radical square zero algebra given by the
quiver

It is clearly tilted.

3.6. REMARK Examples (c) and (d) above show that we may increase the global
dimension while passing from A to B. However, if e is a convex idempotent (that is, if there
exists a sequence e; = €;,, €;,,... ,€;, = e; of primitive idempotents such that e, Ae;, #0
for o < € <t and ee; = e;, ee; = ej, then ee;, = e;, for all £), then the global dimension
of B does not exceed that of A. Indeed, it is well-known, and easy to see, that, in this
case, for any two B-modules X,Y, we have Extiy(X,Y) = Ext’,(X,Y) for all i. Hence, for
any simple B-module S, we have pd Sgp < pd S4. This yields our statement. Now, if A
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(and hence B) are monomial albebras, then the global dimension can be easily computed by
looking at the overlaps between the monomial relations [GHZ,G]. In particular, the global
dimension equals two if and only if no two monomial relations share (at least) an arrow.
Thus, if A is a shod monomial algebra, and e is a convex idempotent such that no two
monomials in B share an arrow, then B is quasi-tilted.
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