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Abstract. Let A be an artin algebra, modA the category of
finitely generated right A-modules, and indA a full subcategory
with objects exactly one representative of each isomorphism class
of indecomposable modules. In this paper, we derive criteria for the
contravariant finiteness of full subcategories of indA closed under
predecessors.

Let A be an artin algebra. We are interested in studying the repre-
sentation theory of A, thus the category modA of the finitely generated
A-modules. For this purpose, we fix a full subcategory indA of modA
having as objects exactly one representative of each isomorphism class
of indecomposable modules. In [20], Happel, Reiten and Smalø have
defined the left part LA of modA to be the full subcategory of indA
with objects those modules whose predecessors have projective dimen-
sion at most one. The right part RA is defined dually. These classes,
whose definitions suggest the interplay between homological properties
of an algebra and representation theoretic ones, were heavily investi-
gated and applied (see, for instance [4, 6, 9] and the survey [8]). In
particular, it was shown that the left part of an arbitrary artin algebra
closely resembles that of a tilted algebra.

In the present paper, following a line of ideas already implicit in
[4], we consider, instead of LA, a full subcategory C of indA which
is closed under predecessors and we try to obtain criteria allowing to
decide whether or not the additive subcategory addC of modA gener-
ated by C is contravariantly finite (in the sense of [15]). In this more
general setting, the techniques employed for the class LA fail. Instead,
our main tool will be the fundamental result of Auslander and Re-
iten linking cotilting modules (of arbitrary finite injective dimension)
with contravariantly finite resolving subcategories [13]. As other tools,
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already considered in [4, 9], we use firstly the properties of the Ext-
injective modules in C (whose direct sum is denoted by E) and sec-
ondly, the support algebra CA of the subcategory C. In order to state
our main result, we need more notation: following [13], we denote by
C⊥ the full subcategory of modA consisting of all the modules M such
that Exti

A(−, M)|C = 0 for all i > 0, and, following [6], we denote by
Supp(−, E) the full subcategory consisting of all the modules M such
that HomA(M, E) 6= 0. Our first theorem is the following.

Theorem A. Let C be a full subcategory of indA, closed under prede-
cessors. The following conditions are equivalent:

(a) add C is contravariantly finite.
(b) C⊥ is covariantly finite.
(c) E is a cotilting CA-module.
(d) add C = Supp(−, E).
(e) Any morphism f : L −→ M with L ∈ C and M indecomposable

not in C factors through addE.

Clearly, in general, the cotilting CA-module E is not tilting, because
it may have infinite projective dimension. Surprisingly, however, a
simple finiteness assumption allows to generalise the main results of
[4, 6, 9]. Let pgdC denote the supremum of the projective dimensions
of the modules in C, and F denote the direct sum of all the indecom-
posable projective A-modules not lying in C. Our second theorem is
the following.

Theorem B. Let C be a full subcategory of indA closed under predeces-
sors and such that pgdC < ∞. The following statements are equivalent:

(a) addC is contravariantly finite.
(b) E is a tilting CA-module.
(c) T = E ⊕ F is a tilting A-module.

Moreover, in this case, C⊥ = T⊥ = E⊥, and C consists of all the
predecessors of E in indA.

As an application of these theorems, we generalise [10](2.1) which
characterises tilted algebras as being those algebras having a convex
tilting module of projective dimension at most one. Here, we prove that
an algebra is tilted if and only if it has a convex tilting (or cotilting)
module of arbitrary finite projective dimension (or injective dimension,
respectively).

In a forthcoming work with E. R. Alvares, we further apply our
theorems to the study of trisections (see [1]).
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The paper is organised as follows. The first section contains the
needed notation and preliminaries on tilting and cotilting modules.
In the second section, we consider the particular case when we are
dealing with a resolving subcategory. We consider the existence of
tilting modules in section 3 and prove our main theorems in section 4.
Finally, section 5 contains the application to tilted algebras.

Clearly, the dual results, for the covariant finiteness of full subcat-
egories of indA closed under successors, hold as well. For the sake of
brevity, we refrain from stating them, leaving the primal-dual transla-
tion to the reader.

1. Preliminaries on Tilting modules

1.1. Notation. Throughout this paper, all our algebras are basic and
connected artin algebras. For an algebra A, we denote by modA the
category of finitely generated right A-modules and by indA a full sub-
category of modA consisting of exactly one representative from each
isomorphism class of indecomposable modules. When we speak about
a module (or an indecomposable module), we always mean implicitly
that it belongs to modA (or to indA, respectively). Also, all subcate-
gories of modA are full and so are identified with their object classes.

A subcategory C of indA is called finite if it has only finitely many
objects. We sometimes write M ∈ C to express that M is an object in
C. We denote by addC the subcategory of modA with objects the finite
direct sums of summands of modules in C and, if M is a module, we
abbreviate add{M} as addM . We denote the projective (or injective)
dimension of a module M as pdM (or idM , respectively). The global
dimension of A is denoted by gl.dimA. If C is a subcategory of indA, we
define its projective global dimension pgd(C) (or its injective global di-
mension igd(C)) to be the supremum of the projective (or the injective,
respectively) dimensions of the modules lying in C. For a module M ,
the support Supp (M,−) (or Supp(−, M)) of the functor HomA(M,−)
(or HomA(−, M)) is the subcategory of indA consisting of all modules
X such that HomA(M, X) 6= 0 (or HomA(X, M) 6= 0, respectively).
We denote by GenM (or CogenM) the subcategory of modA having
as objects all modules generated (or cogenerated, respectively) by M .

For an algebra A, we denote by Γ(modA) its Auslander-Reiten quiver
and by τA= DTr, τ−1

A = TrD its Auslander-Reiten translations. For
further definitions and facts needed on modA or Γ(modA), we refer
the reader to [12, 14].

1.2. Tilting modules. An A-module T is called auto-orthogonal if
Exti

A(T, T ) = 0 for all i > 0. An A-module T is called a tilting module
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if it is auto-orthogonal, of finite projective dimension and there is an
exact sequence

0 −→ AA −→ T0 −→ T1 −→ · · · −→ Tr −→ 0

with Ti ∈ addT for all i. The dual notion is that of cotilting module.
Given a module T , we define its right orthogonal T⊥ to be the full

subcategory of modA with object class

T⊥ = {X ∈ modA : Exti
A(T, X) = 0, for all i > 0}.

We define similarly its left orthogonal ⊥T by
⊥T = {X ∈ modA : Exti

A(X,T ) = 0, for all i > 0}.
We need the following result of D. Happel [18](section 3).

Theorem. Let T be an auto-orthogonal module of finite projective
dimension. Then T is a tilting module if and only if T⊥ ⊂ GenT .

1.3. Covariant and contravariant finiteness. Let X be an additive
subcategory of modA. For an A-module M , a right X -approximation
of M is a morphism fM : XM −→ M with XM ∈ X such that any mor-
phism f : X −→ M with X ∈ X factors through fM . The morphism
fM is also called right minimal if fM ◦h = fM for a morphism h implies
that h is an automorphism. The subcategory X is called contravari-
antly finite if any A-module has a right X -approximation. We define
dually left X -approximations, left minimal X -approximations and co-
variantly finite subcategories. Finally, X is called functorially finite
if it is both contravariantly and covariantly finite. Observe that any
subcategory having only finitely many isomorphism classes of indecom-
posables is functorially finite (see [15]).

The subcategory X is called coresolving if it is closed under exten-
sions, under cokernels of monomorphisms and contains all the injective
A-modules. The dual notion is that of a resolving subcategory.

We define X̌ to be the full subcategory of modA whose objects are
all the M ∈ modA for which there is an exact sequence

0 −→ M −→ X0 −→ X1 −→ · · · −→ Xm −→ 0

with Xi ∈ X for all i. Dually, X̂ is the full subcategory whose objects
are all the M ∈ modA for which there is an exact sequence

0 −→ X ′
n −→ · · · −→ X ′

1 −→ X ′
0 −→ M −→ 0

with X ′
j ∈ X for all j. Finally, a module T is called multiplicity-free if

T = ⊕s
k=1Tk with all Tk indecomposable implies Tk not isomorphic to

Tl, for k 6= l. We need the following fundamental result of Auslander
and Reiten [13](5.5).
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Theorem. Let T be an auto-orthogonal module. Then T 7→ T⊥ gives
a bijection between the isomorphism classes of multiplicity-free tilting
modules and covariantly finite coresolving subcategories X such that
X̌ = modA.

If gl.dimA < ∞, then X̌ = modA for any coresolving subcategory
X , so the statement holds without this condition.

1.4. We need the following statement, whose proof follows the same
line as [2], where infinitely generated modules over a ring are consid-
ered.

Lemma. Let T be an auto-orthogonal module of finite projective di-
mension. Then T is tilting if and only if, for each M ∈ T⊥, there

exists a short exact sequence 0 −→ K0 −→ T0
f0−→ M −→ 0, where

f0 : T0 −→ M is a right minimal addT -approximation and K0 ∈ T⊥.

Proof. The sufficiency follows at once from (1.2) since the stated con-
dition says that any M ∈ T⊥ belongs to GenT . We thus prove the
necessity. Assume T is tilting and let f0 : T0 −→ M be a right minimal
addT -approximation. Because M ∈ T⊥ and T⊥ ⊂ GenT , there exist
d > 0 and an epimorphism p : T d −→ M . Since p factors through f0,
the latter is also an epimorphism, so we have a short exact sequence

0 −→ K0 −→ T0
f0−→ M −→ 0.

We claim that K0 ∈ T⊥. Applying HomA(T,−) yields an exact se-
quence

0 −→ HomA(T,K0) −→ HomA(T, T0) −→ HomA(T, M) −→

−→ Ext1
A(T, K0) −→ Ext1

A(T, T0) −→ Ext1
A(T,M) −→ · · ·

· · · −→ Exti−1
A (T,M) −→ Exti

A(T,K0) −→ Exti
A(T, T0) −→ · · ·

Since f0 is an addT -approximation and T is auto-orthogonal, we have
Ext1

A(T, K0) = 0. The same auto-orthogonality and the hypothesis
that M ∈ T⊥ imply Exti

A(T, K0) = 0, for all i ≥ 2. Thus K0 ∈ T⊥. �

1.5. We recall that, if X is an additive subcategory of modA, closed
under extensions, then a module M ∈ X is called Ext-projective (or
Ext-injective) in X if Ext1

A(M,−)|X = 0 (or Ext1
A(−, M)|X = 0, re-

spectively), see [16]. It is shown in [16](3.3)(3.7) that, if X is a torsion
(or torsion-free) class, then an indecomposable module M ∈ X is Ext-
projective if and only if τAM is torsion-free (or, M ∈ X is Ext-injective
if and only if τ−1

A M is torsion).
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Corollary. Let T be a tilting module. Then X ∈ add T if and only
if X is Ext-projective in T⊥.

Proof. Clearly, if X ∈ addT , then X is Ext-projective in T⊥. Con-
versely, assume X is Ext-projective in T⊥. Consider the exact sequence

0 −→ K0 −→ T0
f0−→ X −→ 0

as in (1.4). Since K0 ∈ T⊥, the Ext-projectivity of X implies that it
splits. Hence X ∈ addT . �

1.6. Lemma. Let A be an algebra such that pdDA< ∞ and T be
a tilting module of finite injective dimension. Then T is a cotilting
module of finite projective dimension.

Proof. Since T is a tilting module, then T is auto-orthogonal and
pdT < ∞. Because, clearly, DA ∈ T⊥, we have a short exact sequence
as in (1.4)

0 −→ K0 −→ T0
f0−→ DA −→ 0

with f0 : T0 −→DA a right minimal addT -approximation and
K0 ∈ T⊥. Inductively, we construct an exact sequence

· · · −→ T2
f2−→ T1

f1−→ T0
f0−→ DA −→ 0

with Ti ∈ addT for all i, and Ki = Ker fi ∈ T⊥.
In order to show that T is a cotilting A-module, it suffices to prove
that the above sequence terminates. Since d = pd DA < ∞, then
Extd+1

A (DA, Kd) = 0. The short exact sequences

0 −→ Kj −→ Tj −→ Kj−1 −→ 0

yield, for each i > 0, an isomorphism

Exti
A(Kj, Kd) ∼= Exti+1

A (Kj−1, Kd).

Applying repeatedly this formula yields

Ext1
A(Kd−1, Kd) ∼= · · · ∼= Extd+1

A (DA, Kd) = 0.

This completes the proof. �

1.7. We recall from [13, 19], that an algebra A is Gorenstein if
pdDA < ∞ and idA < ∞. Clearly, if gl.dimA < ∞, then A is Goren-
stein.

Corollary. Let A be a Gorenstein algebra. Then T is a tilting mod-
ule of finite injective dimension if and only if T is a cotilting module
of finite projective dimension.
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2. The resolving case

2.1. Paths. Given M, N ∈ indA, a path from M to N , denoted by
M ; N , is a sequence of non-zero morphisms

(∗) M = X0
f1−→ X1

f2−→ · · · −→ Xt−1
ft−→ Xt = N

(t ≥ 1) where Xi ∈ indA for all i. We then say that M is a predecessor
of N and N is a successor of M . A path from M to M involving at
least one non-isomorphism is a cycle. A module M ∈ indA which lies
on no cycle is called directed. If each fi in (∗) is irreducible, we say
that (∗) is a path of irreducible morphisms, or a path in Γ(modA). A
path (∗) of irreducible morphisms is called sectional if τAXi+1 6= Xi−1

for all i with 0 < i < t. A refinement of (∗) is a path

M = X ′
0 −→ X ′

1 −→ · · · −→ X ′
s−1 −→ X ′

s = N

in indA such that there is an order-preserving injection

σ : {1, 2, · · · , t− 1} −→ {1, 2, · · · , s− 1}
satisfying Xi = X ′

σ(i) for all i with 0 < i < t.

Lemma. Let X, Y ∈ indA. If, for some i ≥ 1, we have ExtiA(X, Y ) 6= 0,
then there exists a path in indA from Y to X of length i + 1.

Proof. By induction on i. This is clear if i = 1. Assume i > 1 and
consider the short exact sequence

0 −→ K −→ P
p−→ X −→ 0

where p is a projective cover. Then

Exti−1
A (K, Y ) ∼= Exti

A(X,Y ) 6= 0.

Hence there exists an indecomposable summand Z of K such that
Exti−1

A (Z, Y ) 6= 0. By the induction hypothesis, there exists a path
Y ; Z. Since the short exact sequence above does not split, there
exists a summand P0 of P such that HomA(Z, P0) 6= 0. By the con-
struction of a projective cover, we also have HomA(P0, X) 6= 0. This
yields the required path Y ; Z −→ P0 −→ X. �

2.2. A full subcategory C of indA is called closed under prececessors
if, whenever M ; N is a path in indA with N ∈ C, then M ∈ C.
Equivalently, addC is the torsion-free class of a split torsion pair. We
define dually subcategories closed under successors which generate tor-
sion classes of split torsion pairs.

Clearly, a full subcategory C of indA is closed under predecessors if
and only if its complement Cc = indA \ C is closed under successors.
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Important examples are the left and the right parts of modA intro-
duced in [20]. The left part of modA is the full subcategory of indA
defined by

LA = {M ∈ indA : pdL ≤ 1 for any predecessor L of M}.
Clearly, LA is closed under predecessors. We refer to [8, 4] for charac-
terisations of this class. The dual concept is that of the right part RA

of modA.
Let C be a full subcategory of indA, closed under predecessors. Then,

by [4](5.3), the full subcategory E of indA consisting of the indecompos-
able Ext-injectives in C is finite (that is, it contains only finitely many
isomorphism classes of indecomposable objects). We set E = ⊕X∈EX
and denote by F the direct sum of a complete set of representatives of
the isomorphism classes of the indecomposable projective A-modules
which do not belong to C. We refer to [4](section 5) for properties of
the module E. In particular, we recall that the indecomposable sum-
mands of E do not generally form sections (or even left sections) in the
Auslander-Reiten components containing them. The following lemma
shows however that they form subquivers with similar (though weaker)
properties.

Lemma. Let E0, E1 ∈ addE be indecomposables. Then:

(a) If we have an irreducible morphism E0 −→ X with X indecom-
posable and E0 non-injective, then X ∈ addE or τX ∈ addE.

(b) If we have an irreducible morphism X −→ E0, with X inde-
composable and E0 non-injective, then X ∈ addE or τ−1X ∈
addE.

(c) Let s, t ≥ 0 and τ sE0 −→ τ−tE1 be an irreducible morphism. If
E0 and E1 are non-injective, then s, t ∈ {0, 1} and at least one
of them is zero.

(d) If we have a path of irreducible morphisms between indecompos-
ables of the form

τ−sE1 = X0 −→ X1 −→ · · · −→ Xt = E0

with s, t ≥ 0 and Xi /∈ addE for all i with 0 < i < t, then s = 0
and moreover, if t ≥ 1, then E1 is injective.

Proof. (a) By hypothesis, τ−1E0 /∈ C. Assume X ∈ C. If X /∈ addE,
then in particular, X is non-injective and τ−1X ∈ C, contradicting the
fact that there exists an irreducible morphism τ−1E0 −→ τ−1X. Thus
X ∈ C implies X ∈ addE. If X /∈ C, then τX −→ E0 yields τX ∈ C
hence τ−1(τX) = X /∈ C gives τX ∈ addE.
(b) If X is injective, then X ∈ addE. Otherwise, apply (a) to the
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irreducible morphism E0 −→ τ−1X.
(c) If t ≥ 1 and s ≥ 1, we have first τ−1E1 /∈ C (because it is a successor
of τ−1E1) and also an irreducible morphism τ−tE1 −→ τ s−1E0. Hence
τ s−1E0 /∈ C which contradicts the fact that τ s−1E0 ∈ C because it
precedes E0. Therefore, t = 0 or s = 0. Suppose t = 0, we have an
arrow τ sE0 −→ E1. Applying (b), we have either τ sE0 ∈ add E (hence
s = 0) or τ s−1E0 ∈ addE (hence s = 1). Suppose now s = 0, we have
an arrow E0 −→ τ−tE1. Applying (a), we have either τ−tE1 ∈ addE
(hence t = 0) or τ−t+1E1 ∈ addE (hence t = 1).
(d) Assume s ≥ 1, then E1 is not injective and τ−1E1 /∈ C. But then
τ−sE1 /∈ C so Xi /∈ C for all i and this contradicts E0 ∈ C. Therefore
s = 0. Assume now that t ≥ 1 and that E1 is non-injective. Applying
(a), X1 /∈ addE implies τX1 ∈ addE, hence X1 = τ−1(τX1) /∈ C.
Therefore E0 /∈ C, a contradiction. �

2.3. Notice that, by [16](3.3)(3.7) (or (1.5) above), τ−1
A E⊕F is the di-

rect sum of a complete set of representatives of the isomorphism classes
of indecomposable Ext-projectives in addCc. The following lemma is
simply an adaptation to our situation of Smalø’s theorem [22].

Lemma. Let C be a full subcategory of indA closed under predecessors.
The following conditions are equivalent:

(a) addC is contravariantly finite.
(b) addC = CogenE0, with E0 ∈ addE.
(c) addC = CogenE.
(d) addCc is covariantly finite.
(e) addCc = Gen(τ−1

A E0 ⊕ F0), where E0 ∈ addE and F0 ∈ addF .
(f) addCc = Gen(τ−1

A E ⊕ F ).

Proof. The equivalence of (a), (b) and (d) follows directly from [22].
Also, (c) implies (b) trivially. Assume (b). Since E0 ∈ addE, then
addC = CogenE0 ⊂ CogenE. On the other hand, E ∈ addC, and C is
closed under predecessors. Hence, CogenE ⊂ addC. This shows (c).
The equivalence with the remaining conditions follows by duality. �

2.4. We recall from [13](section 5) that an Ext-injective E0 in a full
additive subcategory X of modA is a strong Ext-injective provided
Exti

A(−, E0)|X = 0 for all i > 0 (or, equivalently, if X ⊂ ⊥E0).

Lemma. Let C be a full subcategory of indA closed under predeces-
sors and E0 be an indecomposable Ext-injective in addC. Then E0 is a
strong Ext-injective.
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Proof. We prove by induction on i that Exti
A(X, E0) = 0 for all i > 0

and all X ∈ C. If i = 1, there is nothing to prove. Assume the result
for i− 1 and let X ∈ C. Consider the short exact sequence

0 −→ K −→ P
p−→ X −→ 0

where p is a projective cover. Since C is closed under predecessors, then
K ∈ addC. The induction hypothesis then implies that Exti

A(X, E0) ∼=
Exti−1

A (K, E0) = 0. �

2.5. Lemma. Let C be a full subcategory of indA closed under prede-
cessors. Then:

(a) add(C ∩ C⊥) = add E.
(b) add(Cc ∪ E) = C⊥.

Proof. (a) Let X ∈ C ∩ C⊥. If X /∈ addE, then τ−1
A X ∈ C. Since

Ext1
A(τ−1

A X, X) 6= 0, then X /∈ C⊥, a contradiction. Therefore,
add(C ∩ C⊥) ⊂ addE. On the other hand, E ∈ addC implies
addE ⊂ addC. Also, because of (2.4), E ∈ C⊥ and therefore addE ⊂
add(C ∩ C⊥).
(b) Let X ∈ Cc. If X /∈ C⊥, there exist i > 0 and M ∈ C such
that Exti

A(M, X) 6= 0. By (2.1), there exists a path X ; M . Since
C is closed under predecessors, we infer that X ∈ C, a contradic-
tion. This shows that Cc ⊂ C⊥. Since E ∈ C⊥, by (2.4), we deduce
that add(Cc ∪ E) ⊂ C⊥. Applying (a), we get add(Cc ∪ E) = add
(Cc ∪ (C ∩ C⊥)) = add(Cc ∪ C⊥) = C⊥. �

2.6. While C closed under predecessors implies that Cc is closed un-
der successors, the right orthogonal C⊥ is usually not closed under
successors. Indeed, we show that this is the case if and only if
pgdC ≤ 1 (that is, C ⊂ LA).

Corollary. Assume that C is a full subcategory of indA closed un-
der predecessors. Then C⊥ is closed under successors if and only if
pgdC ≤ 1.

Proof. Assume first that pgdC ≤ 1. Let M ∈ C⊥ be indecomposable
and assume that we have a path M ; N in indA. By (2.5), either
M ∈ Cc, and then N ∈ Cc, or else M ∈ E and then, applying [4](6.3),
we get either N ∈ E or else N ∈ Cc.
Conversely, assume that pgdC > 1. Then there exists X ∈ C such
that pdX > 1. In particular, X is non-projective, and there exists
an injective module I and a non-zero morphism I −→ τAX. Clearly,
τAX ∈ C because X ∈ C. Also, τAX /∈ E because τ−1

A (τAX) = X ∈ C.
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Therefore, τAX /∈ C⊥. But I ∈ E ⊂ C⊥ shows that C⊥ is not closed
under successors. �

2.7. Corollary. Assume that C is a full subcategory of indA closed
under predecessors. Then addC is contravariantly finite if and only if
C⊥ is covariantly finite.

Proof. By (2.3), addC is contravariantly finite if and only if addCc is
covariantly finite. In view of (2.5) and [6](5.7), this is the case if and
only if C⊥ is covariantly finite. �

2.8. Lemma. Assume that C is a full subcategory of indA closed under
predecessors. Then addC is contravariantly finite if and only if addC =
Supp(−, E).

Proof. Necessity. Since addC is contravariantly finite, we have addC =
CogenE (by (2.3)). The statement follows from the inclusions

CogenE ⊂ Supp(−, E) ⊂ addC.

Sufficiency. The hypothesis says that Supp(−, E) is closed under pre-
decessors. Therefore, by [6](2.1), Supp(−, E) = CogenE. The result
follows from Supp (−, E) = CogenE ⊂ addC = Supp(−, E). �

Remark. The previous lemma could be formulated otherwise. By
[6](2.2), if C is closed under predecessors, then the above lemma says
that the following conditions are equivalent:

(a) addC is contravariantly finite.
(b) addC = Supp(−, E).
(c) There exists an A-module L such that addC = Supp(−, L) and

HomA(τ−1
A L, L) = 0.

(d) There exists an A-module L such that addC = Supp(−, L) and
there is no path of the form τ−1Li ; Lj with Li and Lj inde-
composable summands of L.

2.9. We are now able to prove our first theorem, which characterises
the case where our subcategory C is resolving. Here it is important to
note that, since C is closed under predecessors, then it is resolving if
and only if it contains all the projectives in modA.

Theorem. Assume that C is a full subcategory of indA which is closed
under predecessors. The following conditions are equivalent:

(a) addC is contravariantly finite and resolving.
(b) C⊥ is covariantly finite and add C =⊥ (C⊥).
(c) E is a cotilting module.
(d) addC = Supp (−, E) and E is sincere.
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Moreover, if this is the case, then addC =⊥ E.

Proof. (a) implies (b). This follows from (2.7) and [13](3.3).
(b) implies (a). This follows again from (2.7) and the obvious obser-

vation that ⊥(C⊥) is resolving.
(a) implies (c). We claim that, for every A-module M , there exists

an exact sequence

0 −→ X1 −→ X0 −→ M −→ 0

with X0, X1 ∈ addC. We may, of course, suppose that M is indecom-
posable and not in C. Let p : P −→ M be a projective cover. Since
addC is resolving, then P ∈ addC. Since C is closed under predecessors,
then Kerp ∈ addC. The sequence

0 −→ Ker p −→ P
p−→ M −→ 0

is the required one.
Applying Auslander-Reiten’s theorem (1.3), there exists a cotilting
module T such that addC =⊥ T . By the dual of (1.5), addT is the
subcategory of Ext-injectives in addC, that is, addT = addE. Thus, E
is a cotilting module. Also, addC =⊥ E.

(c) implies (a). By the dual of Happel’s theorem (1.2), ⊥E ⊂
CogenE. Clearly, CogenE ⊂ addC. By (2.4), we also have addC ⊂⊥ E.
Therefore, addC =⊥ E. In particular, addC is contravariantly finite.

(a) is equivalent to (d). This follows from (2.8), using that E is sin-
cere if and only if every indecomposable projective lies in Supp(−, E),
which is the case if and only if addC is resolving. �

2.10. Example. We end this section with the following example
which originates from the theory of m-clusters (see [5]). Let A be any

artin algebra. For any m > 0, we define L(m)
A to be the full subcategory

of indA consisting of all indecomposable A-modules M such that L ;

M , then pdL ≤ m (thus L(1)
A = LA). Clearly, L(m)

A is closed under
predecessors.

Let now H be a hereditary algebra over an algebraically closed field,
and A be the m-replicated algebra of H, that is,

A =


H0 0 0 · · · 0 0
Q1 H1 0 · · · 0 0
0 Q2 H2 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · Qm Hm


where Hi = H and Qi = DH for all i, and all the remaining coeffi-
cients are zero. The addition is the usual addition of matrices and the
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multiplication is induced from the canonical isomorphisms

H ⊗H DH ∼=H DHH
∼= DH ⊗H H

and the zero morphism DH⊗H DH −→ 0.

We claim that addL(m)
A is contravariantly finite and resolving. In-

deed, let, for any k ≥ 0, Σk consist of the indecomposable summands of

the kth-cosyzygy Ω−k
A H of the indecomposable projective A-modules

corresponding to the idempotents of H0, then it is shown in [5], Corol-

lary 18, that, if M ∈ indA is not projective-injective, then M ∈ L(k)
A if

ang only if M precedes a module in Σk. Now, using the description of

modA in [5](3.1), it follows that L(m)
A consists of the predecessors of Σm

together with all the projective-injectives A-modules. Therefore, L(m)
A

is resolving. Let now M ∈ L(m)
A then it follows from the same descrip-

tion that an injective envelope M ↪→ I factors through Σm. Therefore,

L(m)
A is also contravariantly finite.
This implies that E (which, in this case, is the direct sum of the

modules on Σm with all the projective-injective A-modules) is a cotilt-
ing module. Since gl.dimA < ∞, it is also tilting (by (1.7)). Hence, by
the main result of [5], it corresponds to an m-cluster. Notice that, if
m = 1, an m-cluster is simply a cluster.

3. Tilting modules

3.1. Lemma. Assume that C is a full subcategory of indA, closed
under predecessors. Then the Ext-projectives of C⊥ are the objects of
add(E ⊕ F ).

Proof. We claim that, if X is an indecomposable Ext-projective in C⊥,
then X ∈ addE or X ∈ addF . Suppose X /∈ addE. By (2.5), X /∈ C.
Suppose X is not projective. Since X ∈ Cc and is Ext-projective in
C⊥, then it is also Ext-projective in Cc. Hence τAX ∈ C. But then
τ−1
A (τAX) = X ∈ Cc gives τAX ∈ addE. Now, Ext1

A(X, τAX) 6= 0 gives
a contradiction to the Ext-projectivity of X in C⊥. This shows that X
is projective. Since X /∈ C, we have X ∈ addF . This establishes our
claim.
On the other hand, E ∈ addC implies that, for any i > 0 and every
Y ∈ C⊥, we have Exti

A(E, Y ) = 0. In particular, E is Ext-projective in
C⊥. This completes the proof. �

3.2. Following [6], we denote by PredE the full subcategory of indA
consisting of all the predecessors of the indecomposable summands of
E (that is, of the objects in E).
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Lemma. Assume that C is a full subcategory of indA, closed under
predecessors. Then C⊥ = E⊥ implies C = PredE.

Proof. Since E ∈ addC, then PredE ⊂ addC. We claim that, if X ∈
C, then X ∈ PredE. We may assume that X /∈ addE. Since, by
our hypothesis, C⊥ = E⊥, then it follows from (2.5) that X /∈ E⊥.
Therefore there exists an i > 0 such that Exti

A(E, X) 6= 0, thus, by
(2.1), there exist an indecomposable E0 ∈ addE and a path X ; E0.
In particular, X ∈ PredE. �

Remark. It is shown in [6] and [4], respectively, that, if C = LA or,
more generally, if pgdC ≤ 1, then the condition C = PredE is equiv-
alent to having addC contravariantly finite. While we show in (3.5)
below that the latter condition implies the former, the following exam-
ple shows that the converse is not true in general.
Let A be given by the quiver

r r r r� ��
�

1 2 3 4

δ

γ

β α

bound by αβ = 0, βδ = 0. Then Γ(modA) contains a tube in which
lies the unique projective-injective indecomposable P4 = I1 (here, and
in the sequel, when dealing with a bound quiver algebra, we denote
by Px, Ix and Sx respectively, the indecomposable projective, the in-
decomposable injective and the simple modules corresponding to the
point x of the quiver). Let C consist of the indecomposables lying in
this tube or in the postprojective component. Clearly, C is closed under
predecessors. Also, addC = PredP4 but it is not contravariantly finite.

3.3. Lemma. Assume that C is a full subcategory of indA, closed
under predecessors and let T = E⊕F . Then addC ⊂⊥ T . In particular,
T = E ⊕ F is an auto-orthogonal module.

Proof. Let M ∈ C. By (2.4), we have M ∈⊥ E. Hence, if M /∈⊥ T , then
there exist i > 0 and an indecomposable summand F0 of F such that
Exti

A(M, F0) 6= 0. But then, by (2.1), there exists a path F0 ; M .
Since M ∈ C, this gives F0 ∈ C, a contradiction. This shows that
M ∈⊥ T , and thus addC ⊂⊥ T . In particular, E ∈ addC yields E ∈⊥ T .
Hence T is auto-orthogonal. �

3.4. Lemma. Assume that C is a full subcategory of indA closed under
predecessors and such that pgdC < ∞. If T = E ⊕ F is a tilting A-
module, then
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(a) C⊥ = T⊥; and
(b) addC is contravariantly finite.

Proof. (a) Since E ∈ addC, then C⊥ ⊂ E⊥. Since F is projective, we
have E⊥ = T⊥, so that C⊥ = T⊥. Conversely, assume that X ∈ T⊥

is indecomposable. By Happel’s theorem (1.2), T⊥ ⊂ GenT , so X ∈
GenT . By (1.4), there exists an exact sequence

0 −→ K0 −→ T0
f0−→ X −→ 0

with K0 ∈ T⊥ ⊂ GenT and T0 ∈ addT . Inductively, we get an exact
sequence

0 −→ Kd−1 −→ Td−1
fd−1−→ · · · −→ T1

f1−→ T0
f0−→ X −→ 0

where d = pgdC < ∞, and such that Ti ∈addT , for all i, and Ki =
Kerfi lies in T⊥ ⊂ GenT for all i.
Let now M ∈ C. By (3.3), we have M ∈⊥ T . Therefore, applying the
functor HomA(M,−) to each of the sequences

0 −→ Ki −→ Ti −→ Ki−1 −→ 0

where 0 ≤ i < d, and K−1 = X yields, for each j > 0, an isomorphism

Extj
A(M, Ki−1) ∼= Extj+1

A (M, Ki).

Therefore

Extj
A(M, X) ∼= Extj+1

A (M, K0) ∼= · · · ∼= Extj+d
A (M, Kd−1) = 0

for all j > 0, because pdM ≤ d. Therefore, X ∈ C⊥.
(b) By Auslander-Reiten’s theorem (1.3), T tilting implies T⊥ co-

variantly finite. By (a), C⊥ is covariantly finite. By (2.7), addC is
contravariantly finite. �

3.5. We are now able to prove the main result of this section.

Theorem. Assume that C is a full subcategory of indA closed under
predecessors and such that pgdC < ∞. Then addC is contravariantly
finite and resolving if and only if E is a tilting module. Moreover, if
this is the case, then C⊥ = E⊥, C = PredE and addC =⊥ (E⊥).

Proof. Assume first that addC is contravariantly finite and resolving
and let d = pgd C < ∞. By (2.9), E is a cotilting module. We claim
that it is tilting. Observe first that E is an auto-orthogonal module,
and pdE ≤ d. Since addC is resolving, we have AA ∈ addC = CogenE.
By (1.4), we have a short exact sequence

0 −→ AA
f0

−→ E0 −→ K0 −→ 0
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with K0 ∈⊥ E ⊂ Cogen E, and E0 ∈ addE. Inductively, we get an
exact sequence

0 −→ AA
f0

−→ E0 f1

−→ E1 −→ · · ·Ed−2 fd−1

−→ Ed−1 −→ Kd−1 −→ 0

such that Ei ∈ addE for all i, and Ki = Cokerf i lies in ⊥E ⊂ CogenE
for all i.
Applying the functor HomA(M,−) with M ∈⊥ E to each of the se-
quences

0 −→ Ki−1 −→ Ei −→ Ki −→ 0

where 0 ≤ i < d, and K−1 = AA yields, for each j > 0, an isomorphism

Extj
A(M, Ki) ∼= Extj+1

A (M, Ki−1).

Hence
Extj

A(E, Kd−1) ∼= Extj+d
A (E, AA) = 0

because pdE ≤ d. Similarly, Extj
A(Kd−1, Kd−1) = 0, for all j > 0.

This shows that E ⊕Kd−1 is auto-orthogonal. Since Kd−1 ∈⊥ E and
we have ⊥E ⊂ CogenE ⊂ addC, then pdKd−1 < ∞. This proves that
E⊕Kd−1 is a tilting A-module. Looking at the number of isomorphism
classes of indecomposable summands, we deduce that Kd−1 ∈ addE.
Consequently, E is a tilting A-module.
Assume conversely that E is a tilting A-module. In particular, for every
indecomposable projective A-module P , there exists a monomorphism
P ↪→ E0, with E0 ∈ addE. Therefore, P ∈ addC. This shows that
addC is resolving. Thus, we have F = 0. By (3.4) above, we get that
addC is contravariantly finite and that C⊥ = T⊥ = E⊥.
Finally, by (3.2), we have C = PredE and, by (2.9), we have
addC =⊥ (C⊥) =⊥ (E⊥). �

3.6. Example. The statement of the theorem is not true if we drop
the condition that pdgC < ∞. Let indeed A be given by the quiver

r r r r r�
�

�
�� �

1 2 3 4 5
��
��

)

bound by rad2A = 0. The Auslander-Reiten quiver Γ(modA) of A has
a component Γ of the following shape
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r r r rr r r r r r rr rr r rr r

��� ������ ���@@R @@R
@@R @@R ��� ������ ���@@R @@R

@@R @@R

@@R @@R��� ���

��� ���@@R @@R

@@R @@R��� ���

p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p pp p pp p p p p pp p pS3 S3

S2

P3 I3

M

P4

N S4

I2

where we identify the two copies of S3, along the vertical dotted lines
(note that A is a laura algebra, having Γ as its unique faithful quasi-
directed component, see [7]). Let C = PredP5 consist of all the prede-
cessors of the projective indecomposable P5. Observe that C contains
the components of Γ(modA) which are identified with the components
of the Kronecker algebra given by vertices 1 and 2. By definition, C is
closed under predecessors. Moreover, pgdC = ∞ because S3 ∈ C and
pdS3 = ∞. Here, E = I1⊕ I2⊕ I3⊕S4⊕P5. By (2.7), E is a cotilting
module. However, it is not a tilting module, because pdS4 = ∞.

4. The general case

4.1. Let C be a full subcategory of indA, closed under predecessors.
Following [4], we define its support algebra CA to be the endomorphism
algebra of the direct sum of a full set of representatives of the isomor-
phims classes of the indecomposable projectives lying in C.

We need some notations. We sometimes consider an algebra A as
a category in which the class of objects is a complete set {e1, · · · , en}
of primitive orthogonal idempotents and the set of morphisms from
ei to ej is eiAej. An algebra B is a full subcategory of A if there is
an idempotent e ∈ A which is the sum of some of the distinguished
idempotents ei, such that B = eAe. It is convex in A if, for any
sequence ei = ei0 , ei1 , · · · , eit = ej of objects of A such that eilAeil+1

6= 0
(with 0 ≤ l < t) and ei, ej objects in B, then all eil lie in B. We now
collect some properties of the support algebra.

Lemma. Let C be a full subcategory of indA, closed under predecessors.

(a) CA is a full convex subcategory of A, closed under successors.
(b) Any indecomposable A-module lying in C has a canonical struc-

ture of indecomposable CA-module.
(c) addC is resolving in modCA.
(d) For any indecomposable CA-module X, we have pdCAX = pdAX

and idCAX ≤ idAX. In particular, gl.dim.CA ≤ gl.dim.A.
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Proof. (a) and (b) are straightforward, (c) follows from the facts that
C is closed under predecessors and that any indecomposable projective

CA-module lies in C. Finally, (d) follows from the facts that, because

CA is convex in A then, for any two CA-modules L and M , we have
Exti

CA(L, M) ∼= Exti
A(L, M) for all i ≥ 0 and the observation that any

module in a projective resolution of L in modA is also a projective

CA-module. �

4.2. We are now able to state, and to prove, the first main result of
this paper.

Theorem. Let C be a full subcategory of indA, closed under predeces-
sors. The following conditions are equivalent:

(a) add C is contravariantly finite.
(b) C⊥ is covariantly finite.
(c) E is a cotilting CA-module.
(d) add C = Supp(−, E).
(e) Any morphism f : L −→ M with L ∈ C and M indecomposable

not in C factors through addE.

Proof. By (2.7), (a) is equivalent to (b) and, by (2.8), (a) is equivalent
to (d). We now show the equivalence of (a) and (c). Observe that
addC is contravariantly finite in modA if and only if addC = CogenE
by (2.3), and this is the case if and only if addC is contravariantly finite
in modCA, which, because of (4.1)(c) and (2.9), happens if and only if
E is a cotilting CA-module.

We now prove that (a) implies (e). By (1.4), there exists a short
exact sequence

0 −→ L
f0−→ E0 −→ K −→ 0

in modCA, where f0 is a right minimal addE-approximation of L and
K belongs to the left orthogonal ⊥

C E of E in modCA. Since E is a
cotilting CA-module, then, by Happel’s theorem (1.2), we have

⊥
C E ⊂ CogenE = addC.

In particular, K ∈ addC. Applying now HomA(−, M) to the above
sequence (considered as an exact sequence in modA), we get an exact
sequence

0 −→ HomA(K, M) −→ HomA(E0, M) −→
−→ HomA(L, M) −→ Ext1

A(K, M) −→ · · ·
We claim that Ext1

A(K, M) = 0. Indeed, if this is not the case,
then there exists an indecomposable summand K ′ of K such that
Ext1

A(K ′, M) 6= 0, and this implies the existence of a path M ; K ′.
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Since K ′ ∈ C, we infer that M ∈ C, a contradiction which establishes
our claim. This implies that

HomA(f0, M) : HomA(E0, M) −→ HomA(L, M)

is surjective. Hence there exists g : E0 −→ M such that f = g ◦ f0.
This completes the proof of (e).

Conversely, assume that (e) holds. In order to prove that addC is
contravariantly finite, it suffices to show that addC = CogenE, and, for
this, we just have to prove that any L ∈ C is cogenerated by E. Let
j : L ↪→ I be an injective envelope. We can decompose I in the form
I = I1 ⊕ I2, where I1 ∈ addC while I2 collects those indecomposable
summands of I which do not belong to C. We may then write j as

j =

[
j1

j2

]
: L −→ I1 ⊕ I2.

By hypothesis, j2 : L −→ I2 factors through addE, therefore there exist
f2 : L −→ E2, g2 : E2 −→ I2, with E2 ∈ addE such that j2 = g2f2. This
shows that j factors through I1 ⊕ E2 which belongs to addE (because

any injective in C lies in addE). Furthermore, the morphism

[
j1

f2

]
from L to I1 ⊕ E2 is a monomorphism, because so is j. The proof is
now finished. �

4.3. Example. We recall from [11] that the additive subcategory
addC is called abelian exact if it is abelian and the inclusion functor
addC ↪→ modA is exact. If C is closed under predecessors and addC is
abelian exact then, by the main result of [11],

A ∼=
[

CA 0
M B

]
where M is a hereditary injective CA-module and addC ∼= modCA.

As a direct consequence, addC is contravariantly finite: indeed,
addC ∼= modCA is cogenerated by the minimal injective congenerator
of modCA (which, when considered as an A-module, is equal to E).

4.4. In the case where the projective global dimension of C is finite,
we obtain our second main theorem.

Theorem. Let C be a full subcategory of indA, closed under pre-
decessors and such that pgd(C) < ∞. The following conditions are
equivalent:

(a) addC is contravariantly finite.
(b) E is a tilting CA-module.
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(c) T = E ⊕ F is a tilting A-module.

Moreover, in this case, C⊥ = T⊥ = E⊥ and C = PredE.

Proof. It follows from (4.1)(c) and (3.5) that (a) implies (b). Now
assume (b). By (3.3), the module T = E ⊕ F is auto-orthogonal in
modA. Also, pdT = pdE < ∞. If P is an indecomposable projective
A-module, and P lies in C, then there is an exact sequence

0 −→ P −→ E0 −→ E1 −→ · · · −→ Es −→ 0

with Ei ∈ addE ⊂ addT . If P /∈ C, then P ∈ addF ⊂ addT . Thus, T
is a tilting module and we have shown (c). Finally, assume (c). Then
(a) follows from (3.4) which also gives C⊥ = T⊥ = E⊥. By (3.2), we
deduce that C = PredE. �

Remarks. Applying our theorems to the case where C = LA, we get
Theorem (A) of [9] and parts of Theorem (A) of [6]. Applying them to
the case where pdg(C) ≤ 1, we get parts of Theorem (8.2) and Corollary
(8.4) of [4]. Our theorem may thus be considered as a generalisation
of these results.

4.5. Corollary. Let C be a full subcategory of indA, closed under
predecessors and assume that gl.dim.A< ∞. Then addC is contravari-
antly finite if and only if T = E ⊕ F is a cotilting A-module.

Proof. This follows at once from (4.1) and (1.7). �

4.6. Example. Let A be given by the quiver

r r r r r� � � �
�

1 2 3 4 5

bound by rad2A = 0. Then Γ(modA) has a postprojective component
of the form

r r rr r r r r rr r
��� ������ ���@@R @@R

@@R @@R

@@R @@R��� ���

��� @@R
p p p p pp p p p p p p p p p p p p p p p p p

P3 P5

P4

S2

P2

S1 = P1
S4S3

Taking C to be the full subcategory consisting of the predecessors of
P4, we see that pgd(C)=2. Here, E = P2 ⊕ P3 ⊕ S3 ⊕ P4 and F = P5.
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Clearly, the conditions of the theorem are satisfied, and T = E ⊕ F is
a tilting A-module. Notice that E is not convex.

5. Convex tilting modules

5.1. In this section, we apply our main result to generalise [10](2.1)
which characterises tilted algebras as being those algebras having a
convex tilting module of projective dimension at most one.

Theorem. Let T be a tilting (or a cotilting) A-module. The following
conditions are equivalent:

(a) T is convex.
(b) T⊥ is closed under successors.
(c) ⊥T is closed under predecessors.
(d) T is a slice module and A is a tilted algebra.

Proof. Assume that T is a tilting module. The proof in the case of T
being cotilting is dual.
(a) implies (b). Let X ∈ T⊥ be indecomposable and let X ; Y be a
path in indA. We need to show that Y ∈ T⊥. If this is not the case,
then there exist i > 0 and an indecomposable summand T0 of T such
that Exti(T0, Y ) 6= 0. By (2.1), there is then a path Y ; T0. On
the other hand, since T⊥ ⊂ GenT by (1.2), we infer that X ∈ GenT ,
and so, there exists an indecomposable module T1 ∈ addT such that
HomA(T1, X) 6= 0. This gives a path

T1 −→ X ; Y ; T0

Hence, by convexity, Y ∈ addT ⊂ T⊥. This proves (b).
(b) implies (d). Assume that T⊥ is closed under successors. Since

T is a tilting module then, by (1.3), T⊥ is covariantly finite and core-
solving. By (2.3), T⊥ = GenL, where L is the direct sum of all inde-
composable Ext-projective modules in T⊥. By (1.5), this implies that
addL = addT , and hence T⊥ = GenT . By [3], there exists a tilting
module U such that pdU ≤ 1 and GenT = GenU . Moreover, U is
Ext-projective in GenT , so addU ⊂ addT . Looking at the number of
isomorphism classes of indecomposable summands gives addU = addT .
By [10](2.1), T is a slice module and A is a tilted algebra.

Since, clearly, (d) implies (a), we have established the equivalence of
(a), (b) and (d). Assume now that these equivalent conditions hold.
By (d), T is also a cotilting module. By the proof dual to the proof
of (a) implies (b) above, we get that ⊥T is closed under predecessors.
Conversely, if ⊥T is closed under predecessors, then the dual of the
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proof that (b) implies (d) shows that T is a slice module and (hence)
that A is a tilted algebra. �

5.2. Corollary. An algebra is tilted if and only if it has a convex
tilting (or cotilting) module.

5.3. Corollary. Let C be a full subcategory of indA, closed under
predecessors. Assume that addC is contravariantly finite. Then:

(a) E is convex if and only if pgd(C) ≤ 1.
(b) If, moreover, addC is resolving, then pgdC ≤ 1 if and only if A

is tilted having E as a slice module.

Proof. (a) Since the necessity follows from [4](5.3)(a) and [4](6.3), we
prove the sufficiency. Assume that E is convex. By (4.2), E is a
cotilting CA-module. Also, being convex in modA, it is also convex
in modCA. By (5.1), E is a slice module and CA is a tilted algebra.
Moreover, because of [9](2.1), we have

C ⊂ Pred E ⊂ LCA ⊂ LA

and the result is proven.
(b) This follows from (a). �
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Departamento de Matemática-IME, Universidade de São Paulo, CP
66281, São Paulo, SP, 05315-970, Brazil

E-mail address: fucoelho@ime.usp.br
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