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COILS AND MULTICOIL ALGEBRAS

Ibrahim Assem and Andrzej Skowroriski

Dedicated to the memory of Maurice Auslander.

ABSTRACT. The purpose of these notes is first to explain how to construct
coils and multicoil algebras, and next, by surveying some recent results, to
show that multicoil algebras have a relatively simple representation theory.

Introduction

These notes are a faithful, though somewhat extended, account of the talk given
by the first author during the ”Tame Day” (19th August, 1994) of the Workshop
on Representation Theory and Related Topics, held at the Universidad Nacional
Auténoma de México from the 16th to the 20th of August, 1994. The aim of this
talk was to present a class of finite dimensional algebras of polynomial growth,
namely the class of multicoil algebras, which has attracted a lot of interest recently
(see, for instance, (4. 5, 6, 16, 17, 19, 23, 27, 28, 29]). The main motivation for
studying multicoil algebras comes from the following. To study the representation
theory of an algebra, one strategy consists in using covering techniques to reduce
the problem to the case where the algebra is simply connected, then in solving the
problem in this latter case. At present, little is known about representation-infinite
simply connected algebras (see however [1, 2, 11, 16, 17, 23, 24, 27]) so we are
still far from a satisfactory theory. We do however have the following result of the
second author (see [23], [27] or [22] (9.4)): a strongly simply connected algebra (in
the sense of [24]) is of polynomial growth if and only if it is a multicoil algebra.
This shows that, in order to understand the module categories of strongly simply
connected algebras of polynomial growth, one needs to understand those of multicoil
algebras.

The purpose of these notes is twofold. First, we wish to explain how to construct
multicoil algebras. Second, we wish to show that multicoil algebras have a relatively
simple representation theory. It will indeed follow at once from the definition that
one has a full control of the behaviour of the cycles of the module category, but
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2 IBRAHIM ASSEM AND ANDRZEJ SKOWRONSKI

also, we shall see that one can give a precise description of all the indecomposable
modules. Throughout, we shall focus on the computation of examples. The results
quoted are mainly joint results of the authors, or the authors and B. Tomé.

These notes are organised as follows. After a brief introductory section 1, in
which we fix the notation and recall some of the relevant definitions, we define in
section 2 the notions of admissible operations and coils. Section 3 is devoted to the
study of coil enlargements of algebras, section 4 to multicoil algebras, and section
5 to the description of the indecomposable modules over a multicoil algebra.

1. Notation and preliminary definitions

1.1. Throughout this paper, k denotes a fixed algebraically closed field. By
an algebra A is meant a basic, connected, associative finite dimensional k-algebra
with an identity. Thus, there exists a connected bound quiver (Q4,I) and an
isomorphism A = kQa/l. Equivalently, A = kQ a/I may be considered as a
k-linear category, of which the object class Ag is the set of points of Qa, and
the set of morphisms from = to y is the quotient of the k-vector space kQalz,y)
of all formal k-linear combinations of paths in Q4 from z to y by the subspace
I(z,y) = INkQa(z,y), see [10]. A full subcategory C of A is called convex (in
A) if, for any pathag —ay — - — Gt in A such that ag,a; € Cg, we have a; € Cy
for all 0 < i < t. It is called triangular if Q¢ contains no oriented cycle.

By an A-module is meant a finitely generated right A-module. We denote by
mod A the category of A-modules and by ind A a full subcategory consisting of
a complete set of representatives of the isomorphism classes of indecomposable A-
modules. For a full subcategory C of mod A, we denote by add C the additive
full subcategory of mod A consisting of the direct sums of indecomposable direct
summands of the objects in C. If C consists of a single module M, we write add C
— add M. For two full subcategories C, C’ of mod A, the notation Hom(C,C") =0
means that Homa(M,M’) = 0 for all M in C and M’ in C’. A cycle in mod
A is a sequence of non-zero non-isomorphisms Mg — M, — -+ — M, = My,
where the M; are indecomposable modules. An indecomposable module M is called
directing if it lies on no cycle in mod A. For a point 4 in Qa, we denote by S(3)
the corresponding simple A-module and by P(i) (or I(i)) the projective cover {or
injective envelope, respectively) of S(i). The dimension-vector of a module M is
the vector dimM = (dimyHoma(P(i), M })icAo- The support of an A-module M
is the full subcategory Supp M of A with object class {i € ApjHom A(P(i), M) # 0}

1.2. We use freely properties of the Auslander-Reiten translations 74 = DT
and 'r;l = TrD, and the Auslander-Reiten quiver I'(mod A) of A, for which we
refer to [9, 20]. We agree to identify points in I'(mod A) with the corresponding
indecomposable A-modules, and components with the corresponding full subcate-
gories of ind A. A component T of I'(mod A) is called standard if T is equivalent
to its mesh category k(T), see [10, 20].

Given a standard component I' of I'(mod A), and an indecomposable module
X in T, the support S(X) of the functor Homa (X, —)|r is the k-linear category
defined as follows. Let Hx denote the full subcategory of I' consisting of the
indecomposable modules M in I such that Hom4(X, M) # 0, and Jx denote the
ideal of Hx consisting of the morphisms f : M — N (with M,N in H x ) such that
Hom (X, f) = 0. We define S(X) to be the quotient category Hx/J3x. Following
the above convention, we usually identify the k-linear category S(X) with its quiver.
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COILS AND MULTICOIL ALGEBRAS 3

A translation quiver I is called a tube (12, 20] if it contains a cyclical path
and its underlying topological space is homeomorphic to §! x R+ (where S! is
the unit circle, and R* the non-negative real line). A tube has only two types of
arrows: arrows pointing to infinity and arrows pointing to the mouth. This also
applies to sectional paths, that is, paths r¢ — z; — .- — x,, in I such that
Ti-1 # TZi4 forall 4, 0 < i <m. A maximal sectional path consisting of arrows
pointing to infinity (or to the mouth) is called a ray (or a coray, respectively).
Tubes containing neither projectives nor injectives are called stable. The rank of
a stable tube I is the least positive integer r such that 7"z = z for all z in I". A
tube of rank r = 1 is called homogeneous.

1.3. The one—point extension of an algebra 4 by an A-module X is the
matrix algebra

A 0}

AlX] = [ %4

with the usual addition and multiplication of matrices. The quiver of A[X] contains

Q a as a full subquiver and there is an additional (extension) point which is a source.

The A[X]-modules are usually identified with the triples (V, M, ), where V is a

k-vector space, M an A-module and ¢ : V — Homu4(X, M) is a k-linear map.

An A[X]-linear map (V, M, p) — (V',M’,¢’) is then identified with a pair (f,g),

where f: V — V' is k-linear, g : M — M’ is A-linear and ¢'f = Homu(X, g)ep.
One defines dually the one—point coextension [X]A of 4 by X.

2. Admissible operations and coils

2.1. A coil is a translation quiver constructed inductively from a stable tube
by a sequence of operations called admissible. Our first task is thus to define
the latter. Throughout this section, let A be an algebra, and I be a standard
component of I'(mod A). For an indecomposable module X in I, called the pivot,
the admissible operation to apply to I depends on the shape of the support S(X)
of HOInA(X,—)h“. ’

(ad 1) Assume S(X) consists of an infinite sectional path starting at X:

XZXO_’XI_’XZ_’"’

Thus the component I' may look as follows:

In this case, we let £ > 1 be a positive integer,
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kE 0 0

ko k 0 :
D=Tk) = |.
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denote the full t x t - lower triangular matrix algebra and Yi,...,Y; denote the
indecomposable injective D-modules with Y = Y, the unique indecomposable
projective-injective. We define the modified algebra A’ of A to be the one-point
extension

A =(Ax D)X a&Y]
and the modified component I of I' to be

where Z;; = (k, X;®Yj, (i)) fori>0and1<j<tand X]= (k,X;,1) fori > 0.

The morphisms are defined in the obvious way. The translation 7’ of I is defined
as follows: T'Z,‘j = Zi—1,j-1 ifi>1,7>2, 72y = X1 ifi > 1,7”203' = },j—l if
j > 2,Zo = P is projective, 7'Xg = Y;, 7'X; = Zioig if 12 4,715 X)) = X]
provided X; is not an injective A-module, otherwise X/ is injective in 1”. For the
remaining points of T’ (or I'(mod D)), the translation 7' coincides with 74 (or 7p,
respectively). 1

If now t = 0, we define the modified algebra A’ to be the one-point extension

A = AX]

and the modified component I to be the component obtained from I' by inserting
only the sectional path consisting of the X.
It is important to observe that this operation does not affect standardness.

LEMMA[5](2.2). With the above notation, the component of T (mod A’) contain-
ing X. considered as an A'-module, is equal to T' and is standard. O
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Intuitively, this operation amounts to "opening” the component I' along the
arrows X; — 7';1 Xi_1, then "glueing” I' with I'(mod D) by inserting the infinite
rectangle (indicated by the dotted lines in the figure above) consisting of the points
Zij and X;. This rectangle is equal to the support S(P) in I of the functor
Hom 4/ (P, —)|r/, where P is the new projective. We say that I'" is obtained from I’
and I'(mod D) by inserting the rectangle determined by P.

‘The non-negative integer ¢ is such that the number of infinite sectional paths
parallel to Xy — X; — X, — ... in the inserted rectangle equals t + 1. We call ¢
the parameter of the operation.

In case I" is a stable tube, it is clear that any module on the mouth of I’
satisfies the condition for being a pivot for the above operation. Actually, the
above operation is, in this case, the tube insertion as considered in [12] and the
above lemma is just [12](2.3).

(ad2) Assume S(X) to consist of two sectional paths starting at X, the first
infinite and the second finite with at least one arrow

Yi— Yo YV X=X X, - Xy — ...

where ¢ > 1. In particular, X is necessarily injective. The component I may then
look as follows

We define the modified algebra A’ of A to be the one-point extension
A = AlX]

and the modified component IV of I" to be

R ™
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where Z;; = (k, X;®Y}, (]i)) fori>1,1<j<tand X] = (k,X;,1)fori > 0.

The morphisms are the obvious ones. The translation 7' of T is defined as follows:
2= X(’) is projective-injective, T,Z;'j = Zg...l,j..l ifi >2,722 T8y = X if
i2 1,72 =Y if 52 2,7X] = Zi1s ifi>2,7X] = Y,,-r'(r;‘X,-) =R
if i > 1, provided X; is not an injective A-module, otherwise X! is injective in I'.
For the remaining points of I/, the translation 7' coincides with the translation 74.
Under a reasonable condition (that will always be satisfied in the sequel), the above
operation does not affect standardness.

LEMMA[5](2.3). With the above notation, the component of I'(mod A’) con-
taining X, considered as an A’-module, is equal to T'. Further, if any walk in T
from X to some T;lY,»_l factors through one of the arrows Y; — 'r;;l}’}_‘l (where
1< j<t), thenT’ is standard. O

Intuitively, the above operation amounts to ” opening” the component I" along
the arrows X; — -r;lX;..l, »plugging” a new projective-injective P and inserting
the infinite rectangle (indicated by the dotted lines in the figure above) consisting
of the points Z;; and X{. On the other hand, those modules M such that there
is a walk from M to 'r;le,l for some j, 2 < j < t, not factoring through one
of the arrows Y; — 7,'Y;_, are "removed” from the component. The inserted
rectangle is equal to the support S(P) in I’ of the functor Hom a: (P, —)|r+, where
P is the new projective-injective. We say that I’ is obtained from I' by inserting
the rectangle determined by P. =

The integer t > 1 is such that the number of infinite sectional paths parallel
to Xg — X3 — Xz — ... in the inserted rectangle equals t + 1. We call ¢ the
parameter of the operation.

(ad3) Assume S(X) to consist of two parallel sectional paths the first infinite
and starting at X, the second finite with at least one arrow

Yl e Y'z R B G T M }/t
1 i T
X=X — Xy, — o0 = Xey — Xy — Xip1 —

where t > 2. In particular, X;1 is necessarily injective. The component I' may
then look as follows

P T e Yl T; 1}%
Y,

~

X =Xo R v,
N t-1

~. ' 75
Xu S \\‘\/\OA\*ZZE/
, X
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We define the modified algebra A’ of A to be the one-point extension
i A = A[X]

and the modified component [ of T to be 5
] e, - . |
: - if t is odd: 1 !

-if ¢ is even:

where Z;; = (k, X;®Yj, (i))fori >1,1<j<iand X! = (k X;,1)fori > 1. The

morphisms are the obvious ones. The translation 7’ is defined as follows: P = Xj
is projective, T’Z,'j = Zi—l,j—l if 1 > 2,2 < ] < ‘i,T’Z,'l = X,'_l if 1 > 1,T’X{ = Y,,
fl1<i<t,TX! =Zi1,ifi>t,7Y;=X_,if2<j<t,7(rz'X)=X[ifi >t
provided X; is not an injective A-module, otherwise X is injective in IV, For the
remaining points of I", the translation 7’ coincides with 74. We note that X{_yis
injective.

Under a reasonable assumption (that will always be statisfied in the sequel},
the above operation does not affect standardness.
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LEMMA[5](2.4). With the above notation, the component of I'(mod A’) con-
taining X, considered as an A'-module, is equal to I”. Further, if any walk in T
from X to some 75'Yi_1 factors through one of the arrows Y; — 77'Y;_y (where
2<j<t), then IV is standard. O

Intuitively, this operation amounts to "opening” the component I" along the
arrows X; — r;’X,»_l, ?plugging” a new projective P and inserting the infinite
rectangle (indicated by the dotted lines in the figure above) consisting of the points
Z;; and X]. On the other hand, those modules M in I' such that there is a walk
from M to 7';1}/,‘..1 (for some 4,2 < i < t) not factoring through one of the arrows
Y; - Tgl}’j_l, are "removed” from the component. The reason for the appearance
of two cases depending on the parity of t follows from easy combinatorial consider-
ations involving the length functions [5](4.4). The inserted rectangle is equal to the
support S(P) in I'" of the functor Homy (P, —)|r+, where P is the new projective.
We say that I is obtained from T by inserting the rectangle determined by P.

The integer ¢ > 2 is such that the number of infinite sectional paths parallel
to Xg — X; — Xy -» ... in the inserted rectangle equals t + 1. We call ¢ the
parameter of the operation.

Finally, together with each of the admissible operations (adl), (ad2) and (ad3),
we consider its dual, denoted by {ad1*)(ad2*) and (ad3*), respectively. These six
operations are called the admissible operations.

Clearly, the admissible operations can be defined as operations on translation
quivers rather than on Auslander-Reiten components. The definitions are done in
the obvious manner (see [4] or [22] for the details).

DEFINITION. A translation quiver I is called a coil if there exists a sequence
of translation quivers 'y, 'y, ..., 'y, = I' such that Ty is a stable tube and, for each
i {0 £ i < m),T';41 is obtained from I'; by an admissible operation.

Observe that this use of the term coil deviates from its use in [3]. The present
notion of coil is clearly a natural generalisation of the notion of coherent tube:
indeed, any stable tube is {trivially) a coil, and a tube can be characterised as
being a coil having the property that each admissible operation in the sequence
defining it is of the form (adl) or (ad1*). Also, & coil without injectives (or without
projectives) is a tube. A quasi—tube is a coil having the property that each
admissible operation in the sequence defining it is of the form (adl), (ad1*), (ad2)
or (ad2*).

It follows from the definition that coils share many properties with tubes. For
instance, all but at most finitely many points in a coil belong to a cyclical path.
A point 7 in a coil T is said to belong the the mouth of I' if z is the starting,
or ending, point of a mesh in [’ with a unique middle term. Also, ' contains a
(maximal) tube as a cofinite full translation subquiver. Arrows of this tube either
point to the mouth or point to infinity. An infinite sectional path in T’

ajg az g
T =1 — Ty~ == Ty > Tiyp| —— ...

is called a ray if there exists ip > 1 such that, for all i > ig, the arrow o; points to
infinity. Corays are defined dually. Thus the parameter of the operation (ad1)(ad2)
or (ad3) (or (adl*), (ad2*) or (ad3*)) is used to measure the number of rays (or
corays, respectively) inserted in the coil by the operation.
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2.2. Another approach would consist in defining coils as translation quivers
satisfying a set of axioms (see [5]). The following proposition shows that the ap-
proach we have chosen entails no loss of generality. Furthermore, its proof provides i
a method for constructing an algebra having a given coil as an Auslander-Reiten - '
component.

PROPOSITION[5](3.2). Let I" be a coil. There exists a triangular algebra A such i
that T is a standard component of T (mod A). I

; Proor. Let ['g,Ty,..., [y, =T be a sequence of translation quivers, such that }
l ['o is a stable tube and, for each ¢ (0 < i < m),[';;; is obtained from I'; by an 1

admissible operation. Clearly, there exists a tame concealed (even a hereditary) A
algebra C having the stable tube Ty as a standard component. Inductively, we 3
construct a sequence of algebras C = Ag, A),..., A, = A such that A, is ob- [
tained from A; by the admissible operation with pivot in I'; such that the modified
component is I';;,. Clearly, the conditions for standardness are satisfied at each i
step. Then I is a standard component of I'(mod A4). The triangularity of 4 follows .
from the fact that A is obtained from the triangular algebra C by a sequence of 1
one-point extensions and coextensions. O i

2.3. We illustrate the admissible operations in the following example

EXAMPLE. Consider the tame hereditary algebra Ay given by the quiver

Any simple regular Ag-module can be a pivot for one of the operations (adl)
or (adl*). We choose to apply (adl*) with pivot the simple regular Ag-module
S(3), and with parameter t = 2 (thus, using the lower triangular matrix aglebra
D = Ty(k)). The modified algebra A, is given by the quiver

bound by aX = 0,7 = 0. The Auslander-Reiten quiver ['(mod A,) has as stan-
,_.' dard component the modified component I'; of the stable tube Iy of I'{mod Ag)
containing 5(3) 4,. This modified component [} is a tube of the form
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where indecomposabl% are represented by their dimension-vectors and one iden-
tifies along the vertical dotted lines to form the tube. At this stage, besides the
admissible operations of types (ad1) or (ad1*) with pivots in ray or coray modules,
respectively, we can either 0apﬂl:)ly (ad3) with pivot the indecomposable A,-module

X with dimension-vector ! ‘l’l °,or (ad2) with pivot the indecomposable Aj-module

60 ;
i
X' with dimension-vector ' ‘: ‘l‘ . In each case, the parameter is t = 2. In the first

case, the modified algebra A2 = A1[X ] is given by the quiver
oh

/

bound by ax = 0,7A = 0,p8 =0,p6 =0 and pA = op. The Auslander-Reiten
quiver T'(mod Aj) has as standard component the modified component I'z of Ty.
This modified component I is a coil of the form

1 0,0 000 0,0

o1l10 10'00 06%00 1(1)1(1)1

00 00 10
\ 1,1 0,0 00 0,0 0,0 0,0 0,0 L1 1yl

11210 10100 ~10" 0110701 -+00 (130—,0(1; ?1—.08 81-'0}) })1‘.05 10
i 00 10. 10 ,21 s Vs
N N
! / ~ 1,1 / 0,0 / \‘olo 1,1 |
| 11210 1000 00’01 01’11 \
10 11 1

! / ~ 1.1 / \0 0 / ~ 1.1 / N \
‘ ’ 11210 ooloo o111 S i
' \
i
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In the second case, the modified algebra A} = A,[X'] is given by the quiver

bound by aX = 0,yYA =0,p’8 = 0,p’6 =0 and p'A = o’vu. The Auslander-Reiten
quiver I'(mod Aj3) has as standard component the modified component T, of Ty.
This modified component I'; is a coil (and, in this case, even a quasi-tube) of the
form

11 0,0 0,0 000 0.0 1

1 0 1 .
o1l1 10t00 00%0 00%0 oolo1 o110

000\ /00\ /l O\ /O l\ /O O\ /O|O
1,1 0,0 0,0 0.0 1,1
1(1)230 mlgo 00 oglcln oézu
/ ! RS
\121/ \olo/oo\oo/ \11/

f
t
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! 1 1

| 1110 101001001 »00'01 01411
1

I

I

1

g |
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i

10 11 11 11 01
P N \‘o SN\ Ve \\
B - - i
7N 1IN
- 1,1 4 \121
01710 01710

’/oo\\ /oo\
e \\
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As the reader observes, each operation performed influences the following ones.
We must first perform (ad1*) (or (adl)) in order to have indecomposable modules
which may serve as pivots for one of the operations (ad2), (ad3)(or (ad2*), (ad3*),
respectively). Similarly, if one applies (ad1*) with a parameter equal to 1 (rather
than 2, as we did above), then we may at the following step perform (ad2), but not
(ad3).

3. The structure of coil enlargements

3.1 As we have seen, the construction of a coil requires starting from a stable
tube. Now, stable tubes occur, for instance, among separating tubular families, as
defined by Ringel in [20](3.1). Well-known examples of classes of algebras having
separating tubular families are the tame concealed algebras, and the canonical alge-
bras. It turns out, however, that the separating property of such tubular families is
not preserved by the admissible operations. We thus need to generalise the notion
of separating tubular families as follows.

DEFINITION. Let A be an algebra. A family R = (Ry)xen of components of
F(mod A) is called is a weakly separating family in mod A if the indecomposable
A-modules not in R split into two classes P and Q such that:

(WS1) The components (Rx)xea are standard and pairwise orthogonal.
(WS2) Hom4(Q,P) = Hom(Q, R) = Hom4(R,P) = 0.
(WS3) Any morphism from P to Q must factor through add R.

Thus, a separating tubular family is a weakly separating family of tubes in
which (WS3) is strengthened to say that any morphism from P to Q factors through

e Tt

o e
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each of the components R. In particular, any separating family is weakly separat-
ing. The following example shows that the converse is not true.

ExXAMPLE. Let A be given by the quiver
3 O
e
3 A
5
i

bound by Aa = 0,ay = 0 and Ay = ub. Then A is obtained by applying to
the Kronecker algebra first (ad1*) with parameter t = 1, and pivot a simple ho-
mogeneous module, then (ad2) with pivot the unique non-simple indecomposable
injective lying in the unique non-stable tube. As we shall see below (in (3.4)),
['(mod A) contains a weakly separating family R of coils, containing the following
non-trivial quasi-tube, in which lies the projective-injective P(5) = I(1).

o' lo 1t to u“lcn Ulu]"l o‘u‘n
o ~ p g \‘ /- ; \ o -~ \ a9 |
! 12 20 Ottt oh 0?,h |
- 0 e - S X ~ 53 -
l 1% ol Yo 0¥, h1 |
2 ol ¥
' P T - i '
- ol 20 ot In
v

The other coils in R are homogeneous tubes (actually, they are the images of ho-
mogeneous tubes of the Kronecker algebra, when the latter is idencified with the
obvious full convex subcategory of A). Also, [(mod A) has a unique postprojective
component containing all projectives except P(5) and a unique preinjective compo-
nent containing all injectives except I(1). Since, in the notation of the above defi-
nition, the postprojective component lies in P and the preinjective in Q, we have in
particular P(4) € P and I(4) € Q. Now, the canonical morphism f : P(4) — I(4)
has as image the simple module S(4) which belongs to the quasi-tube above. In
particular, f factors through no other coil in R.

3.2. We note that, if P, R and Q are as in the definition, then P is closed under
predecessors and Q is closed under successors. If R is a weakly separating family
in mod A. and P, Q are as in the definition, we say that R separates (weakly) P
from Q and write ind A =PVRVQ (in the notation of [20]). This terminology is
justified by the following lemma, whose proof is the same as the proof of [20](3.1)(4)
p: 120.

LEMMA[6](2.1).Let A be an algebra, and R be a weakly separating family in
mod A. separating P from Q. Then P and Q are uniquely determined byR. O

il < & b
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3.3. Let A be an algebra, and R be a weakly separating family in mod A4,
consisting of stable tubes. We wish to consider the changes in the structure of
mod A which occur as a result of applying a sequence of admissible operations to
R. This leads us to the following definition.

DEFINITION. Let A be an algebra, and R be a weakly separating family in
mod A, consisting of stable tubes. An algebra B is called a coil enlargement of A
using modules from R if there exists a finite sequence of algebras A = Ay, 4,,...,A4,,
= B such that, for each i (0 < i < m), Ai41 is obtained from A4; by an admissible
operation with pivot either on a stable tube of R, or on a coil of I'(mod 4;), ob-

tained from a stable tube of R by means of the sequence of admissible operations
done so far.

For instance, the representation-infinite tilted algebras of euclidean type and
the tubular algebras are, by [20](4.9) and (5.2), coil enlargements of a tame con-
cealed algebra using only operations (adl) and (ad1*). In this example, the size
of the coils (which are tubes) is measured by a numerical invariant, called the ex-

tension or coextension type (see [20](4.7)) whose definition can be generalised as
follows.

DEFINITION. Let B be a coil enlargement of A using modules from the weakly
separating family R = (Ry).ea of stable tubes. The coil type cg = (cg,cg) of B
is a pair of functions cg,cz : A — N defined by induction on 7,0 < i < m, where
A= Ag, Ay,..., Ay = B is a sequence of algebras as in the definition above.

a) ca = (cg,cg) is the pair of functions g = ¢ such that, for each A € A, the

common value of ¢y (A) and ¢ (A) is the rank of the stable tube R

b) Assume ca,_, = (c;_;,ct ) is known, and let ¢t; be the parameter of the

admissible operation modifying A4;_; to Aiyy, thency, = (er, cf) is defined

by
¢;_1(A) +t; + 1 if the operation is (ad1*) (ad2*) or (ad3*) with
¢ (A) = pivot in the coil of I'(mod A, ) arising from R,
c;_1(A) otherwise
and
¢ (X) +t; + 1 if the operation is(ad1) (ad2) or (ad3) with
et (N = pivot in the coil of I'(modA,_,) arising from R,

et otherwise.

Clearly, the coil type of a coil enlargement B of A does not depend on the
sequence of admissible operations leading from A to B since, for each A € A,
the integers c}()\) and cp(A) measure the rank of R, plus, respectively, the total
number of rays and corays inserted in R by the sequence of admissible operations.

If all but at most finitely many values of each of the functions cg and cg equal
1, we replace each by a finite sequence, containing at least two terms and including
all those which exceed 1. To enable us to compare the number of rays and corays
inserted in each tube, we use the following conventions.

1. The finite sequences for ¢y and c}, contain exactly the same number of

terms, where we agree to add to either sequence as many 1 as necessary.
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2. cp is a non-decreasing sequence, that is, if cg = (cg(M),. .- (M), then
cgM) £+ < cplAs)-

3. cj, is the sequence consisting of the values of c}; corresponding to the values
of ¢, that is, if cp is as in 2, then cp = (eh(A1)s---1B(As))-

ExAMPLES. a) The algebras Az and A, of the example (2.3) are coil enlarge-
ments of the tame hereditary algebra Ao of type Dy whose coil type is ca, =
((2,2,2),(2,2,2)). We have first constructed A; whose coil type is ca, = ((2,2,5),
(2,2,2)). Actually, A, is a tilted algebra of type D7 having a complete slice in its
postprojective component and a unique non-stable tube. The algebra Ay = A X]
has coil type ca, = ((2,2,5),(2,2,5)), and the algebra A3 = A;[X’] has the same
coil type Cay = (2,2, 5), (2t2r5))'

b) The algebra A of the example (3.1) is a coil enlargement of the Kronecker
algebra. Its coil type is cx = ((1,4),(1,4)).

3.4. The following theorem describes the structure of the module category of
a coil enlargement. For the notions of branch (tubular) extension and coextension,
we refer the reader to [20].

THEOREM [6].Let A be an algebra with a weakly separating family R of stable

tubesnndeecmilenhrymﬂofAmxgmdukafmmR.mﬂv

(a) Iheuisaum’quemaﬁmdbmnchwﬂtenuMB‘ of A which is a full convez
auboategomofB,mdc;ismwe:tm:ioﬂtmofB'.

(b) IhmhauuiquzmaﬁwmlbrunchmemionB*ofAduchisaﬁdlmm
submteyoryofB,mchisﬂuedemiontypeofB“‘.

() indB=‘P’VR’VQ’,whem'R.’isaumﬂyumﬁngfmﬂyofwﬂaof
modB,obtainedﬁvmtheatabtetubcsof‘Rbythesequmoeofadmﬁsible
opemﬁonaandsepamﬁng‘P‘fme'.wfme'wmhhofindmmpombk
B--modules, while Q' consists of indecomposable B* -modules. O

We actually obtain more, namely, we obtain a complete description of the
indecomposable B-modules lying in P and Q', in the spirit of [20](4.7) (1) p. 230.
We refer the reader to [6](4.1) for the precise statement.

Ithmnhhiletooboeﬂethat.inthenotaﬁonofthethmm, since R’ is
obtained from R by a sequence of admissible operations, only finitely many of the
stable tubes of R are affected by these operations. The remaining stable tubes of R,
when considered as stable tubes in R, consist of A-modules. On the other hand, the
non-stable tubes in R’ may contain infinitely many non-isomorphic indecomposable
modules which are neither B*-modules, nor B~--modules: these correspond exactly
to the points of intersection of the inserted rays and corays. In particular, for each
d € N, all but at most finitely many non-isomorphic indecomposable modules in r'
of dimension d are either B*-modules or B~ -modules.

EXAMPLE. In the example (2.3), we first consider the algebra A;. The algebras
A; and A7 are respectively given by the quiver

ok

1
1
1
[
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bound by A = 0,y = 0 and by the quiver
10\& %04 4
o 3
/3&
2 b 7 05 09 g
//a/ |
7 08

12

bound by p = 0, pé = 0. We notice that both A7 and AJ are tilted algebras of
type D7. The first has a complete slice in its postprojective component, whereas
the second has a complete slice in its preinjective component. Similarly, if one

considers the algebra A5, then A;’ = A;, while A;r is given by the quiver

bound by p/8 = 0,p'6 = 0. Thus A,* is a tilted algebra of type D; having a 4
complete slice in its preinjective component. - :

3.5. We now wish to give a criterion for the tameness of a coil enlargement B of ; {
a tame concealed algebra A using modules from its family of stable tubes. Since, in ‘ :
this case, B~ and B™ are respectively a branch coextension and a branch extension :
of a tame concealed algebra, we know by [20] how to verify their tameness. We | .
shall need the following definitions. An algebra B is called cycle—finite if, for any -
cycle in mod B

Mo—fi*Ml‘f—z*“‘——’Mt—l‘f"‘*Mt=Mo

where the M, are indecomposable B-modules and the f; are non-zero non-isomor- .
phisms, none of the f; lies in the infinite power of the radical of mod B (see [3] or : .
[22]). For the notions of tame, domestic, linear growth, polynomial growth and the ]
Tits form of an algebra, we refer the reader to {21]. Let B be a coil enlargement of
an algebra A having a weakly separating family of stable tubes. Its coil type cp =
(cg,ch) is called tame if each of the sequences cj and ¢} equals one of the following:
(p,q), where 1 < p <q,(2,2,7), where 2 <r,(2,3,3),(2,3,4),(2,3,5) or (3,3, 3), (2,
4,4),(2,3,6),(2,2,2,2).

COROLLARY [6](4.3).Let A be a tame concealed algebra and R be its separating
tubular family. Let B be a coil enlargement of A using modules from R. The
following conditions are equivalent:

a) B is tame.

b) B~ and BT are tame.




e s
i

16 IBRAHIM ASSEM AND ANDRZEJ SKOWRONSKI

c) For every cycle Mg — My — -~ — M; = My in mod B, all the M; belong
to one standard coil of I'(mod B).

d) B is of polynomial grouth.

e) B is (domestic or) of linear growth.

f) B is cycle-finite.

g) cp is tame.

h) The Tits form of B is weakly non-negatwe.
Moreover, B is domestic if and only if each of B~ and Bt is a tilted algebra of
euclidean type. [

For instance, the algebras A, and A) of example (2.3) are domestic, as is also
the algebra A of example (3.1). By [20], any tilted algebra of euclidean type,
and any tubular algebra satisfies the conditions of our corollary. The following
example shows a non-domestic tame coil enlargement having a non-trivial coil as
an Auslander-Reiten component.

ExAMPLE. Let B be given by the quiver
50

bound by 8¢ = 0, \uf = 0, pu = o0y,wn = pp€. Then Bisa non-domestic tame coil
enlargement of a hereditary algebra of type Eq given by the full convex subcategory
of B consisting of the points 1 to 7. We apply the admissible operation (ad1*) with
parameter t = 2, taking as pivot the simple regular A-module of dimension-vector

¢ . This yields the tubular algebra C of coil type ((2, 3, 6), (2, 3, 3)) given by the

001L1t

full convex subcategory of B consisting of all the points except 11. This tubular
algebra C has as Auslander-Reiten component 2 non-stable tube I of the form
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We then apply (ad3), taking as pivot the indecomposable in I" with dimension
[}
1
vector 0?: H (and indicated by an asterisk in the above figure). This gives B, whose

0

coil type is ((2, 3, 6), (2, 3, 6)). Hence B is non-domestic of linear growth. The
modified component of I in I'(mod B) is the coil =

3.6. Recently, J.A. de la Pefia and the second author established in [17] the
following homological properties of coil enlargements of tame concealed algebras.

THEOREM [17]Let A be a coil enlargement of a tame concealed algebra. Then
gldimA < 3 and, for any indecomposable A-module M, pd M <2o0rid M <2 O

3.7 In 29], B. Tomé shows how one can iterate the procedure described above
in the spirit of [18], and calls the resulting class of algebras iterated coil enlarge-
ments. One is able to give a description of the module category of an iterated coil
enlargement and to prove a generalisation of (18] (3.4). In [19], J.A. de la Pefia and
B. Tomé prove the following partial converse of corollary (3. 5).
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THEOREM [19]. Let A be a strongly simply connected tame algebra. Assume that
mod A has a weakly separating family of coils R such that, ifind A=PVRVQ,
then any indecomposable projective (or injective) module lies in PorR (orinR
or Q, respectively). Then A isa cotl enlargement of a tame concealed algebra. O

We recall that an algebra A is called strongly simply connected [24] if every
full convex subcategory of A is simply connected or, equivalently, if every full convex
subcategory of A satisfies the separation property.

4. Multicoil algebras.

4.1. We wish to characterise a class of tame algebras satisfying the condition(c)
of corollary (3.5), that is, such that every cycle of non-zero non-isomorphisms lies in
o standard coil. We first need to define the notion of multicoil. Roughly speaking,
a multicoil consists of a finite set of coils glued together by a directed part. More

precisely, we define it as follows.

DEFINITION. A translation quiver I' is called a multicoil if it contains a full
translation subquiver IV such that:

a) I" is a disjoint union of coils, and

b) no point in I'\I'"" belongs to a cyclical path.

This implies that any cyclical path in the multicoil I lies entirely in one coil in
. While every coil is trivially a multicoil, the following example shows a multicoil
which is not a coil. ’

EXAM?LES. Let A be given by the quiver

2748 | 1 1
P
M v :
6 12 13

bound by By = 0,6 = 0,ué = 0, e = vp,Ev = 0,6x = 0,mp = 0,10 = 0. Then
['(modA) contains the following multicoil

! /\\
=

T

i
3
]
I
i
o
.
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that 4.2. We are now ready to define multicoil algebras.
z\;% DEFINITION. An algebra A is called a multicoil algebra if, for any cycle
O Mg — My — - — My = Mp in mod A, all the M, belong to one standard coil of i
a multicoil in T'(mod A). 3
very EXAMPLES. a) A representation-finite algebra is a multicoil algebra if and only
nvex if it has a directed module category.
b) It follows from corollary (3.5)(c) that a tame coil enlargement of a tame
concealed algebra is a multicoil algebra.
¢) The algebra of example (4.1) above is a multicoil algebra.
on(c) d) Let A be a tilted algebra. It follows from the results of O. Kerner {13] that
T A is a multicoil algebra if and only if A is tame.
king, e) The iterated tubular algebras of (18] and the iterated coil enlargements of
More [29] are multicoil algebras.

f) The algebras such that every indecomposable projective module is directing
were studied by the second author and M. Wenderlich in [28]. In particular, such

a full an algebra is tame if and only if it is a multicoil algebra [28](4.1).
g) Let A be a sincere, tame, strongly simply connected algebra which contains a

full convex subcategory which is either representation-infinite tilted of type ]Ep (p=
6,7,8) or a tubular algebra. The second author and J.A. de la Pefia have proved

in (16] that A is a multicoil algebra.

oil in
ticoil 4.3. PROPOSITION [4](4.6). Let A be a multicoil algebra. Then A is of poly-
nomial growth.
Proor. It follows from the definition that any multicoil algebra is cycle-finite.
By {26], this implies it is of polynomial growth. |
25 4.4. PROPOSITION [5)(3.5). Let A be a multicoil algebra. Then A is triangular
(hence of finite global dimension).
o PROOF. If A is not triangular, then mod A contains a cycle of non-zero non-
3 isomorphisms between indecomposable projective A-modules. By definition, this

cycle belongs to a standard coil T of a multicoil in T'(mod A). Thus there exists
Then 3 a cycle of projective objects in the mesh category k(I') of the standard coil I'. By

(2.2), there exists a triangular algebra B and a component IV in I'(mod B) such that
k(I') = k(I"). This implies that I'" contains a cycle of non-zero non-isomorphisms
between indecomposable projective B-modules, a contradiction to the triangularity
of B. O

g 4.5. One of the main properties of multicoil algebras is their good behaviour
' with respect to taking full convex subcategories.

THEOREM [5](5.6). Let A be a multicoil algebra, and B be a full conver sub-
category of A. Then B is a multicoil algebra. g

4.6. We deduce from the above theorem the following characterisation of min-
imal representation-infinite multicoil algebras, which generalises {3] (2.3) (compare
also with [25] (4.1)).

THEOREM [5](5.7). Let A be an algebru. The following conditions are equiva-

lent:
(a) A is a tame concealed algebra.

v
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(b) A is a representation-infinite multicoil algebra and, for every 0 £ e =e €
A, the algebra A/AeA is representation-finite.

(c) A is a representation-infinite multicoil algebra and every proper full conver
subcategory of A is representation-finite. ‘ O

4.7. COROLLARY [5](5.8). Let A be a representation-infinite multicoil algebra.

Then A contains a tame concealed full convex subcategory. 0

4.8. We restate now the following characterisation of strongly simply con-
nected algebras of polynomial growth, already stated in the introduction. It plays
a crucial réle in the study of the tame simply connected algebras.

THEOREM (27),(22](9.4). Let A be a strongly simply connected algebra. Then
A is of polynomial growth if and only if A 15 a multicoil algebra. O

4.9. The above theorem and properties of coils have been used essentially in
[17) to prove the following homological and geometric characterisations of polyno-
mial growth strongly simply connected algebras.

THEOREM [17]. Let A be a strongly simply connected algebra. The following
conditions are equivalent:
(a) A is of polynomial growth.
(b) The Tits form of A is weakly non-negative and Ext4 (M, M) = 0 for any
indecomposable A-module M. :
(c) dim; Extl(M,M) < dimi EndaM and Ext’, (M, M) = 0 for any i > 2
and any indecomposable A-module M. -

4.10. Let A be an algebra, having n points in its ordinary quiver. For a vector
z in N™, we denote by mod A(z) the scheme of A-modules having z as dimension-
vector. The set of rational points mod4(z) in mod A(z) is the corresponding variety
of modules having z as dimension-vector. The isomorphism classes of modules in
mod4(z) are the orbits of the action of the corresponding affine algebraic group
G(z). Finally, we denote by xa the Euler characteristic of A. We may now state
the following theorem.

THEOREM [17]. Let A be a strongly simply connected algebra. The following
conditions are equivalent:
(a) A is of polynomial growth.
(b) For each z € N, we have dim moda(z) < dim G(z) and every indecompos-
able A-module M is mod4(z) is a smooth point.
(c) For each z € N* and every indecomposable module M in mod4(z), we have
0 < dim G(z)— dimas mod4(z) = xa(dim M).

5. Indecomposable modules over multicoil algebras

5.1 In this last section, we discuss the structure of an indecomposable module
M over a multicoil algebra A. We first consider the case where M is directing. It
was shown in [20], Addendum to 4.2, p. 375, that the support B of M is a tilted
algebra. Since, moreover, A is tame (even, of polynomial growth) then so is B. It
was shown by J.A. de la Pefia in {14] that a tame algebra with a sincere direct-
ing indecomposable module is domestic in at most two one-parameters. Further,
he classified in [15] those tame algebras B with a sincere directing indecompos-
able module. having exactly two one-parameters and whose ordinary quiver has at
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least 20 points. We thus concentrate here on the case where M is a non-directing
indecomposable A-module.

Let C be the convex hull of the support of M. It follows from (4.5) that C is
itself a multicoil algebra. This remark implies that in order to study the indecom-
posable non-directing modules over a multicoil algebra, it suffices to consider the
case where the algebra equals the convex hull of the support of the module.

Since, by definition of a multicoil algebra, any cycle of non-zero non-isomor-
phisms lies in a standard coil, then any non-directing indecomposable module lies
in a coil. The first case to consider is the case where the coil is a stable tube. We
can assume the coil to be sincere. Indeeed, it is shown in [5](5.1) that the support
algebra of a coil (thus, in particular, of a stable tube) in the Auslander-Reiten
quiver of a multicoil algebra is a full convex subcategory of the latter, hence is,
by (4.5), itself a multicoil algebra. In this case, we have the following structure
theorem.

THEOREM [4](4.1). Let A be a multicoil algebra. The following conditions are
equivalent:
(a) A is tame concealed or tubular.
(b) There erists a sincere indecomposable A-module lying in a stable tube.
(c) There exist infinitely many non-isomorphic sincere indecomposable A-modules
of the same dimension lying in homogeneous tubes. a

Recall that the structure of the indecomposable modules over a tame concealed
or a tubular algebra is described in [20].

5.2. COROLLARY [4](4.5). Let A be a multicoil algebra, and T be a stable tube
of I'(mod A). Then the support algebra of T is a full conver subcategory of A which
is tame concealed or tubular, and has I' as a full component.

PRroOF. By the remarks in (5.1), the support algebra B of I' is a multicoil
algebra. Moreover, B has clearly the tube I' as a full component, and a sincere
indecomposable module in I'. There just remains to apply the theorem. (]

5.3. COROLLARY [4](4.7). A multicoil algebra A is domestic if and only if it
contains no tubular algebra as a full conver subcategory.

ProoF. If A contains a tubular algebra as a full convex subcategory, it is not
domestic (by [20](5.2) or [21)(3.6)). Conversely, if A contains no tubular algebra asa
full convex subcategory, then all full convex subcategories of A satisfying condition
(c) of the theorem are tame concealed and in particular domestic. Since the set
of points in the ordinary quiver of A is finite, so is the set of all such full convex
subcategories. Consequently, A is domestic. O

5.4. We also deduce from the above results the following structure theorem for
coils in a multicoil algebra.

THEOREM (5] (5.9). Let A be a multicoil algebra and I’ be a non-stable coil
of '(mod A). Then there exists a tame concealed full conver subcategory C of A
and a stable tube [y of [(mod C) such that I' is obtained from [y by a sequence
of admissible operations and the support algebra of I' 1s obtained from C by the
corresponding sequence of admissible operations. a

5.5. There thus remains to describe the structure of the indecomposable mod-
ules over a multicoil algebra which lie in a non-stable coil. The classification should
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be completed soon [7, 8]. We try here to convey its flavour through the following
example.

EXAMPLE. Let A be given by the quiver

ofijo
AT
0,0, 1,1 1,1
05080 1hod0 o190 o150 Ouool\ /"o? b0
! \‘linzn/ \lllln/ \1131311/ \U}Jltl/ UE.O:I 4
i 0% i'o =] ,
Ry P2 AT g N Ny .22 \1‘u’|
(B 1150 1318015101 — 051! og11 b
g s i N Saete” - ok 2 \1111’1/ '
1 ahd 1 & e .
p 1°0 e / oo ~ /ﬂ s o ~ / Ml :
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124 13191 oZodo oiodo i £
L B - e L N P N L~ b P®

One can see a sincere indecomposable module M of dimension-vector ' * !

1yingattheinbmuctionchsuwthemouthofthemymmngwith.mdthewny
ending with the projective-injective module P(7) = I(5). Actually, it is easily seen
t.ha.taﬂtheindeoompoeablemodulalylngattheintemctiomufthigrayandthis
coray are sincere (recall the remarks following theorem (3.4) above). The structure
of M is given by the following vector spaces and linear maps.
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