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Abstract. In this paper, we introduce a notion of unistructural cluster alge-

bras, for which the set of cluster variables uniquely determines the clusters.
We prove that cluster algebras of Dynkin type and cluster algebras of rank 2

are unistructural, then prove that if A is unistructural or of Euclidean type,

then f : A → A is a cluster automorphism if and only if f is an automorphism
of the ambient field which restricts to a permutation of the cluster variables. In

order to prove this result, we also investigate the Fomin-Zelevinsky conjecture
that two cluster variables are compatible if and only if one does not appear in

the denominator of the Laurent expansions of the other.

1. Introduction

Cluster algebras have been introduced in 2002 by Fomin and Zelevinsky [FZ1]
and since then have been proved to be related to various areas of mathematics
like Combinatorics, Representation Theory of Algebras, Mathematical Physics, Te-
ichmüller Theory and many others.

In [ASS1] the authors have introduced the notion of cluster automorphism. Let
A be a cluster algebra. A cluster automorphism of A is a Z-automorphism of the
algebra A mapping a cluster to a cluster and commuting with mutations. In [S],
I. Saleh defines another notion of automorphism of a cluster algebra: this is an
automorphism of the ambient field which restricts to a permutation of the set of
cluster variables.

In the present paper, we investigate the following conjecture.

Conjecture 1.1. Let A be a cluster algebra. Then f : A → A is a cluster auto-
morphism if and only if f is an automorphism of the ambient field which restricts
to a permutation of the set of cluster variables.

One implication of this conjecture follows from the fact that cluster automor-
phisms map each cluster to a cluster [ASS, Corollary 2.7], so in particular cluster
automorphisms permute the cluster variables.

The other implication led us to consider the following more general question. We
say that a cluster algebra is unistructural if the set of cluster variables determines
the cluster algebra structure, that is, there exists a unique decomposition of the set
of cluster variables into clusters. We show that if a cluster algebra is unistructural,
then Conjecture 1.1 holds true for this cluster algebra. The following conjecture is
natural.

Conjecture 1.2. Any cluster algebra is unistructural.
1
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In the present paper, we prove that cluster algebras of Dynkin type are unistruc-
tural and so are cluster algebras of rank 2.

Our first result asserts the validity of conjecture 1.1 in several cases:

Theorem 1.3. Let A be a cluster algebra of Dynkin or Euclidean type or of rank
2 or unistructural. Then f : A → A is a cluster automorphism if and only if f is
an automorphism of the ambient field which restricts to a permutation of the set of
cluster variables.

In the course of the proof, we have found that these conjectures are related to
Conjecture 7.4(2) [FZ4] of Fomin-Zelevinsky which we restate as follows. Recall
that cluster variables are called compatible if there exists a cluster containing both
of them.

Conjecture 1.4. Let A be a cluster algebra and x, x′ be two cluster variables. Then
x and x′ are compatible if and only if, for any cluster x containing x, the expansion

L(x′,x) of x′ as Laurent polynomial in x (in reduced form) is of the form P (x)
m(x\{x}) ,

where P is a polynomial in the variables of x and m is a monomial in the variables
of x excluding x.

In the sequel, we shall simply say that L(x′,x) has no x in the denominator to
express that L(x′,x) is of the previous form.

This conjecture 1.4 is proved for the case of cluster algebras arising from surfaces,
see [FST, Theorem 8.6].

We prove the following theorem.

Theorem 1.5. Let AQ be an acyclic cluster algebra and x, x′ two cluster variables.

(a) If x is transjective, then x and x′ are compatible if and only if for any cluster
x containing x, the Laurent expansion L(x′,x) has no x in its denominator.

(b) If x is regular and Q is Euclidean, then x and x′ are compatible if and only
if, for any cluster x′ containing x′, the Laurent expansion L(x,x′) has no
x′ in its denominator.

Theorem 1.5 is applied to prove Theorem 1.3. Observe that the statement of
Theorem 1.5 is not symmetric in x and x′. This led us to the following conjecture
which is weaker than Conjecture 1.4.

Conjecture 1.6. Let A be a cluster algebra and x, x′ be two cluster variables.
Assume that for any cluster x containing x, the Laurent expansion L(x′,x) has no
x in its denominator. Then for any cluster x′ containing x′, the Laurent expansion
L(x,x′) has no x′ in its denominator.

The paper is organized as follows. In Section 2, we recall some preliminary
notions and facts that will be useful for the proof of our results. Section 3 is devoted
to part (a) of Theorem 1.5, while part (b) is proven in Section 4. Finally, we discuss
unistructurality and automorphisms, then we prove Theorem 1.3 in Section 5.

2. Preliminaries

2.1. Cluster algebras. Let Q be a finite connected quiver without loops or two-
cycles. We denote by n = |Q0| the number of points of Q, the points are denoted by
1, 2, . . . , n. Let x = {x1, . . . , xn} be a set of n variables, called a cluster, where we
agree that the variable xi corresponds to the point i of the quiver. The pair (x, Q)
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is called a seed. The field F = Q(x1, . . . , xn) of rational functions in x1, . . . , nn is
called the ambient field.

Let k be such that 1 ≤ k ≤ n. The seed mutation µk in direction k transforms
(x, Q) into µk(x, Q) = (x′, Q′) defined as follows:

First, Q′ is obtained from Q by applying the following operations

• for any path i→ k → j, a new arrow i→ j is inserted;
• all arrows incident to k are reversed;
• all ensuing two-cycles are deleted.

Next, x′ = (x \ {xk})
⋃
{x′k} where x′k ∈ F is defined by the so-called exchange

relation

x′k =

∏
i→k

xi +
∏
k→i

xi

xk
,

where products are taken over arrows entering and leaving k, respectively.
Iterating this procedure, we obtain a set {(xα, Qα)}α of seeds, where the xα are

the clusters and the Qα are the exchange quivers. The cluster algebra A = A(x, Q),
with initial seed (x, Q) is the Z-subalgebra of F generated by the union X =

⋃
α xα

of all possible clusters obtained from x by successive mutations. Elements of X are
called cluster variables. Two cluster variables are called compatible if there exists
a cluster containing both.

One of the most remarkable results of the theory is the Laurent phenomenon
[FZ1] which asserts that for any cluster algebra A and any seed (x, Q) of A, each
cluster variable x of A is a Laurent polynomial over Z in the cluster variables from
x = (x1, . . . , xn), that is x can be written as

x = L(x,x) =
p(x)

xd11 , . . . , x
dn
n

as a reduced fraction, that is, p is not divisible by any of the xi. The vector
d = (d1, . . . , dn) is called the denominator vector of x and denoted by den(x).

A famous conjecture is the so-called positivity conjecture. It says that, for any
cluster algebra A, any cluster variable x and any seed (x, Q) of A, the numera-
tor p(x) of L(x,x) has coefficients which are nonnegative integers. The positivity
conjecture has been proved in several important cases, most notably for cluster
algebras arising from surfaces [MSW] and for acyclic cluster algebras [KQ], that
is, cluster algebras arising from a quiver which can be transformed to an acyclic
quiver using a sequence of mutations, and finally in [LS] for all cluster algebras
arising from quivers.

2.2. The cluster category. Let Q be an acyclic quiver, and k be an algebraically
closed field. We denote by kQ the path algebra of Q, by mod kQ the category
of finitely generated kQ-modules and by D = Db(mod kQ) the bounded derived
category over mod kQ. The cluster category C = CQ is the orbit category of D under
the action of the automorphism τ−1[1], where τ is the Auslander-Reiten translation
and [1] is the shift in D, see [BMRRT]. Then C is a triangulated 2-Calabi-Yau
category having almost split triangles. The Auslander-Reiten quiver Γ(C) of C
is the quotient of Γ(D) under the action of the quiver automorphism induced by
the functor τ−1[1]. Note that the indecomposable objects of C may be identified
with indecomposable kQ-modules or with indecomposable summands of kQ[1] =
{Pi[1] | i ∈ Q0}, the shifts of the indecomposable projective kQ-modules. Then Γ(C)
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always has a unique component containing all objects of kQ[1]. This component is
called transjective. If Q is Dynkin, then Γ(C) reduces to the transjective component
(and is finite). Otherwise the transjective component is of the form ZQ (see [ASS],
VIII 1.1) and there are infinitely many other components called regular, which are
either stable tubes (if Q is Euclidean) or of type ZA∞ (if Q is wild).

Let n = |Q0|. A (basic) tilting object T in CQ is an object of the form T =
⊕ni=1Ti where the Ti are indecomposable nonisomorphic objects of C such that
HomC(Ti, Tj [1]) = 0 for all i, j. In particular, we have HomC(Ti, Ti[1]) = 0 for all
i, that is, each Ti is a rigid object of C. With each tilting object T is associated a
map

XT
? : C0 → Z[x±1

1 , . . . , x±1
n ]

called the cluster character. This map induces a bijection between the indecompos-
able rigid objects of C and the cluster variables in the cluster algebra A(x, Q). This
bijection also induces a bijection between the tilting objects in C and the clusters
of A(x, Q), see [CK2, P]

An algebra B is called cluster-tilted of type Q if there exists a tilting object T in CQ
such that B = EndCQT . Let (add(τT )) be the ideal of C = CQ consisting of those
morphisms factoring through objects of add(τT ). Then the functor HomC(T,−)
induces an equivalence C/(add(τT )) ' modB (see [BMR1]). For any i ∈ Q0, we
denote by Si the simple B-module corresponding to i. We denote by 〈−,−〉 the
bilinear form on modB defined by

〈M,N〉 = dim HomB(M,N)− dim Ext1
B(M,N)

for any B-modules M and N . Further, we write

〈M,N〉a = 〈M,N〉 − 〈N,M〉,

that is, 〈−,−〉a is the antisymmetrised form of 〈−,−〉. Let e ∈ NQ0 and GreM
denote the set of submodules of M having dimension-vector equal to e. This set
is a projective variety, called the Grassmannian of submodules of M of dimension
vector e. We denote by χ(GreM) its Euler-Poincaré characteristic (with respect
to the singular cohomology if k is the field of complex numbers, and to the étale
cohomology if k is arbitrary). Then the cluster character XT

? is the unique map
such that:

a) XT
Ti[1] = xi for any i ∈ Q0;

b) if M is indecomposable and not isomorphic to any Ti[1] then

XT
M =

∑
e∈NQ0

χ(Gre(HomC(T,M)))
∏
i∈Q0

x
〈Si,e〉a−〈Si,HomC(T,M)〉
i ;

c) for any two objects M , N in C

χTM⊕N = χTMχ
T
N .

A cluster variable x in A(x, Q) is called transjective (or regular) if x = XT
M with

M an indecomposable rigid transjective (or regular, respectively) object of C.
It is shown in [BMR] that if T has only transjective direct summands and x =

XT
M is any cluster variable, then

den(x) = dimHomC(T,M).
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Moreover, if Q is Euclidean, and no indecomposable regular direct summand of T
is of quasilength r − 1 lying in a tube of rank r, then this equality holds for all
cluster variables.

3. The transjective case

3.1. The motivating example and Conjecture 1.4. In [AD], it was asked when
indecomposable rigid modules over cluster-tilted algebras are uniquely determined
by their composition factors. This is related to problem 7.6 of [FZ4]. The main
result of [AD] says that if B is a cluster-tilted algebra and M,N are indecomposable
transjective modules (in particular, are rigid) then M ∼= N if and only if dimM =
dimN . This is not true if M,N are not transjective. Indeed, let B be the cluster-
tilted algebra of type Ã1,2 given by the quiver

2

α

zz
1

β //
δ

// 3

γ

dd

bound by αβ = βγ = γα = 0. Then Γ(modB) contains a tube of rank 2 containing
the projective-injective module P2 = I2 corresponding to the point 2 of the quiver:

2
1
3
2

��

2
1
3
2

2
1
3

  

1
3
2

@@

��
1
3

@@

2
1 1
3 3

2

>>

1
3

where we identify along the dotted lines and

2
1
3
2

lies on the mouth. Then
2
1
3

and

1
3
2

are non-isomorphic indecomposable rigid B-modules with the same dimension

vector. Let T2 be the object in the cluster category corresponding to the projective
B-module P2, then the corresponding cluster variable is

2x1x3 + x2
3 + x2 + x2

1

x1x2x3
.

In particular, its denominator vector is (1, 1, 1) while its dimension vector is (1, 2, 1).
Note however that in this example the i-th component of the denominator vector is
nonzero and also the i-th component of the dimension vector is nonzero. This led
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us to consider conjecture 7.4(2) of [FZ4] which we have restated as Conjecture 1.4,
see the introduction.

One implication of the conjecture is easy.

Lemma 3.1. Let A be a cluster algebra and x, x′ be two cluster variables. If
x, x′ are compatible then, for any cluster x containing x, L(x′,x) has no x in the
denominator.

Proof. Let x be a cluster containing x. Because x and x′ are compatible, there
exists a sequence of mutations (not involving µx) such that x is mutated to a new
cluster x′ containing x and x′ simultaneously. Expanding x′ in terms of the original
cluster x, we get L(x′,x) of the required form. �

3.2. Proof of Theorem 1.5 (a). We start with an easy technical lemma. Through-
out, we assume that A = A(x, Q) is an acyclic cluster algebra and denote by C = CQ
the associated cluster category.

Lemma 3.2. Let x, x′ be two cluster variables in A and T be a tilting object in C
such that XT

Ti[1] = x. If M ′ ∈ C is such that XT
M ′ = x′, then x and x′ are compatible

if and only if HomC(Ti,M
′) = 0.

Proof. Indeed, x and x′ are compatible if and only if the corresponding objects Ti[1]
and M ′ are compatible, that is, HomC(Ti[1],M ′[1]) = 0. But this is equivalent to
HomC(Ti,M

′) = 0. �

We are now able to state and prove the following theorem.

Theorem 3.3. Let A be a cluster algebra, and x, x′ be two cluster variables with
x transjective. Then x and x′ are compatible if and only if, for any cluster x
containing x, the Laurent expansion L(x′,x) has no x in the denominator.

Proof. Because of Lemma 3.1, we only need to prove the sufficiency. Assume to the
contrary that x, x′ are not compatible and let x be a transjective cluster containing
x. Such a cluster always exists, take for instance a slice in the cluster category
containing the object corresponding to x, see [ABS2]. Let T ∈ C be the tilting
object corresponding to x. Then T is transjective and there exists an indecom-
posable summand Ti of T such that XT

Ti[1] = x. Let also M ′ be the object in

C such that XT
M ′ = x′. Then, because of [BMR] (see section 2 above), we have

den(x′) = dimHomC(T,M
′). On the other hand, because of the previous lemma,

the incompatibility of x and x′ implies that HomC(Ti,M
′) 6= 0. This shows that

L(x′,x) =
P (x)

xdm(x \ {x})
,

with d > 0. The proof is now complete. �

The main application of this theorem is to cluster automorphisms (see section 5
below). For the time being, we obtain an obvious corollary asserting the truth of
the previous conjecture in two particular cases.

Corollary 3.4. Let A be a cluster algebra of Dynkin type, or of rank 2, then two
cluster variables x and x′ are compatible if and only if, for any cluster x containing
x, the Laurent expansion L(x′,x) has no x in the denominator.

Proof. Indeed, in these cases, all cluster variables are transjective. �
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3.3. Remark. The statement of the theorem above is clearly not symmetric: it
says that if one of the variables is transjective, then compatibility means that the
Laurent expansion of the other does not have the first in the denominator.

4. The tame case

4.1. Preliminaries on the cluster category. As in section 3, we let A be a
cluster algebra of type Q, and we denote by C the associated cluster category.
Throughout this section, we assume that Q is a Euclidean quiver.

Assume that T1 is an indecomposable rigid object of quasilength r − 1 lying in

a tube T of Γ(C) of rank r. We denote by T1
// T2

// · · · // Tr−1 the

sectional path from T1 to the mouth of T and assume that T is a tilting object
having all the Ti (with 1 ≤ i ≤ r− 1) as summands. Such an object exists, because
the Ti are clearly compatible in C.

Consider the set ∆ of all indecomposables in T lying on a path of irreducible
morphisms from T1 to τ2T1 of length equal to 2r − 4. Observe that, for any
M ∈ ∆, we have HomC(M, τ2T1) 6= 0. Actually, if M is a rigid object in T such
that HomC(T1,M) 6= 0, then M belongs to ∆ (and even to the “upper half” of ∆).
Note that in [BM], the authors define the notion of a wing WτT1

attached to T1.
This is related to ∆ as follows: if X is a rigid object in T , then X ∈ ∆ if and only
if X /∈ WτT1

.

Lemma 4.1. ∆ contains no direct summand of τT .

Proof. Indeed, if τTi ∈ ∆ for some i such that 1 ≤ i < r, then there is a morphism
from T1 to τTi and thus Ext1

C(T1, Ti) 6= 0, a contradiction. �

Let U1 denote the unique direct predecessor of T1 of quasilength r. Then we
have the following picture.

Tr−1

��
·

??

·

· ·
��

τT1

��

T1

??

��

∆ τ2T1

��

τT1

U1

??

· ·

??

τU1

??

·

��

·

·

??

where we identify along the vertical dashed lines and Tr−1 lies on the mouth of T .

Lemma 4.2. With the notation above, we have

(a) dim HomC(T1,M) = 2 for every M ∈ ∆.
(b) dim HomC(U1,M) = 2 if M ∈ ∆ does not lie on the sectional path from the

mouth to τU1.
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(c) dim HomC(U1,M) = 1 if M ∈ ∆ lies on the sectional path from the mouth
to τU1.

Proof. Recall that, for all X,Y ∈ T ,

HomC(X,Y ) = HomD(X,Y )⊕HomD(τX[−1], Y )
= HomkQ(X,Y )⊕ Ext1

kQ(τX, Y ).

Now, because T is standard in mod kQ, for M ∈ ∆, we have

dim HomkQ(T1,M) = 1,

while dim Ext1
kQ(τT1,M) = dim HomkQ(M, τ2T1) = 1, where we have applied the

Auslander-Reiten formula. Similarly, for M ∈ ∆, we have

dim HomkQ(U1,M) = 1,

while dim Ext1
kQ(τU1,M) = dim HomkQ(M, τ2U1) is equal to 1 or 0 according to

the cases considered in (b) or (c) respectively. Here, we use essentially that T1 and
U1 are of quasi-length r − 1 and r, respectively. �

4.2. Passing to cluster-tilted algebras. Let now B = EndC T be the cluster-
tilted algebra corresponding to the tilting object T in C considered in subsection 4.1.
Then P1 = HomC(T, T1) is projective, and there is a sectional path of projective
modules of length r − 1 from P1 to the mouth of the tube. On the other hand,
I1 = HomC(T, τ

2T1) is the injective module corresponding to P1 (see Lemma 5 of
[ABS4]).

Let Ω = {HomC(T,M) |M ∈ ∆}. Observe that, because of Lemma 4.1, for every
M ∈ ∆, the B-module HomC(T,M) is indecomposable. Let R1 = HomC(T,U1).
Then R1 is equal to the radical of the indecomposable projective B-module P1,
because the unique direct successor P2 = HomC(T, T2) of P1 of smaller quasi-length
is projective.

Lemma 4.3. With the above notation, for every N ∈ Ω, we have

(a) dim HomB(P1, N) = 2.
(b) dim HomB(R1, N) = 1.

Proof. We recall from section 2 that modB ∼= C/addτT . Let M ∈ C be such that
HomC(T,M) = N . We first observe that, because T is a tilting object in C, then
no morphism from T1 to M factors through addτT . Therefore Lemma 4.1 implies
(a).

In order to prove (b), we recall that, according to Lemma 4.1, a basis of the
vector space HomC(U1,M) consists of at most two morphisms, one of them con-
stituting a basis of HomkQ(U1,M) and the other (if nonzero) constituting a basis

of Ext1
kQ(τU1,M). Now, note that, if g is a basis vector in HomkQ(U1,M) then it

clearly does not factor through add τT and so HomC(T, g) : R1 → N is nonzero.
Thus, in order to prove (b), it suffices to show that, if Ext1

kQ(τU1,M) 6= 0, then a
basis vector ξ of this vector space factors through τT .

We construct a morphism f from τT to M . Indeed the sectional path in T
from the mouth to M and the sectional path from τT1 to the mouth intersect
in an indecomposable summand τTi of τT . Let f denote the composition of the
morphisms lying on the sectional path from τTi to M . Then f 6= 0 (see [ASS,
Corollary IX 2.2]).
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Now, observe that we have a nonsplit short exact sequence in mod kQ

ζ : 0 // τTi // E // τU1
// 0 ,

with E indecomposable. Because Ext1
kQ(τU1,M) is one dimensional, there exists

a scalar λ ∈ k such that ξ = ζ(λf), that is, we have a commutative diagram with
exact rows

ζ : 0 // τTi //

λf

��

E //

��

τU1
//

=

��

0

ξ : 0 // M // E ⊕ F // τU1
// 0.

Indeed, the middle term of ξ is of this form, as seen in the picture below.

τTi

��

·

��
·

??

· ·

·
��

F

τT1

??

��

T1 M τ2T1

��

τT1

��
U1

??

· τU1

??

U1

· E

The fact that ξ = ζ(λf) shows that ξ factors through τT in C. This completes the
proof. �

Corollary 4.4. With the above notation, letting S1 = topP1, we have 〈S1, N〉 = 1,
for all N ∈ Ω.

Proof. Recall that 〈S1, N〉 = dim HomB(S1, N)− dim Ext1
B(S1, N). Now, applying

the functor HomB(−, N) to the short exact sequence

0 // R1
// P1

// S1
// 0

in modB yields an exact sequence

0 // HomB(S1, N) // HomB(P1, N) // HomB(R1, N) // Ext1
B(S1, N) // 0

from which we deduce 〈S1, N〉 = dim HomB(P1, N) − dim HomB(R1, N), and the
latter equals 1 because of the lemma. �

4.3. Proof of Theorem 1.5 (b). We are now in a position to prove the second
part of our Theorem 1.5.

Theorem 4.5. Let A be a cluster algebra of Euclidean type and x, x′ be two cluster
variables with x′ regular. Then x and x′ are compatible if and only if, for any
cluster x containing x, the Laurent expansion L(x′,x) has no x in its denominator.

Proof. Because of Lemma 3.1, we only need to prove the sufficiency. Assume that
x, x′ are not compatible, with x′ regular. Because of Theorem 3.3, we may assume
that x is regular as well. Since there are no extensions between different tubes, we



10 IBRAHIM ASSEM, RALF SCHIFFLER AND VASILISA SHRAMCHENKO

may assume that they correspond to objects in the cluster category lying in the
same tube T . We denote by r the rank of T . Let T1 and M be such that XT

T1[1] = x

and XT
M = x′. If the quasilength of T1 is at most r− 2 then, because of [BMR], we

have denx′ = dimHomC(T,M). Applying the same argument as in the proof of
Theorem 3.3 yields the conclusion.

Assume thus that the quasilength of T1 is r−1. We may assume that the objects
lying on the sectional path from T1 to the mouth are summands of the tilting object
T . Lemma 3.2 implies that HomC(T1,M) 6= 0, and since M is an exceptional object
in T , we have M ∈ ∆. We now recall that

XT
M =

∑
e∈NQ0

χ(Gre(HomC(T,M))
∏
i∈Q0

x
〈Si,e〉a−〈Si,HomC(T,M)〉
i .

The summand corresponding to the vector e = 0 is∏
i∈Q0

x
−〈Si,HomC(T,M)〉
i .

Because of Corollary 4.4, we have

〈S1,HomC(T,M)〉 = 1.

In other words, the Laurent monomial∏
i∈Q0

x
−〈Si,HomC(T,M)〉
i

contains the variable x(= x1) in its denominator. Because of the positivity theorem
(see [LS]), this Laurent monomial is not cancelled by other summands. Therefore
we have

XT
M =

p(x)

xdm(x \ {x})
with d > 0. This completes the proof. �

5. Unistructurality and automorphisms

5.1. We now define the notion of unistructurality.
Let A = A(x, Q) be a cluster algebra with initial seed (x, Q). This initial seed

and the mutation process yield a family (xα)α∈Γ0 of clusters, where Γ0 is the set
of vertices of the corresponding exchange graph Γ. Let X = ∪α∈Γ0xα be the set of
cluster variables.

We say that A is unistructural if, for any subset x′ of X and quiver Q′ such
that the pair (x′, Q′) generates by mutation the same set X of cluster variables,
then the exchange graphs and the set of clusters of A and A(x′, Q′) are the same.
More precisely, if (x′, Q′) generates by mutation a family of clusters (x′β)β∈Γ′

0
where

Γ′0 is the set of vertices of the corresponding exchange graph Γ′, then the equality
X = ∪β∈Γ′

0
x′β of the set of cluster variables implies that Γ = Γ′ and there exists a

permutation σ of Γ0 such that xα = x′σ(α) for any α.

Notice that under the hypothesis that X = ∪β∈Γ′
0
x′β the ranks of A and A(x′, Q)

are necessarily the same: indeed, this rank is the cardinality of a transcendence basis
of the (common) ambient field.

As stated in the introduction, we conjecture that every cluster algebra is unistruc-
tural. In this section, we prove the conjecture for cluster algebras of Dynkin type
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and for those of rank two. For this proof we use Theorem 1.3 which we prove first
in the two following lemmata.

Lemma 5.1. Let Q be a Dynkin quiver, or a Euclidean quiver or a quiver with
two points. Then f : A → A is a cluster automorphism if and only if f is an
automorphism of the ambient field which restricts to a permutation of the set of
cluster variables.

Proof. According to the remark following Conjecture 1.1, it suffices to show suffi-
ciency. Let f be an automorphism of the ambient field which restricts to a permu-
tation of the set of cluster variables. Because of Corollary 2.7 of [ASS1], it suffices
to prove that f maps every cluster of A onto another cluster. Let u be a cluster in
A such that f(u) is not a cluster. Then u contains two compatible cluster variables
u and v whose images y = f(u) and x = f(v) are not compatible.

Assume first that x is transjective. Then, due to Theorem 3.3 , for any cluster
x containing x, the expansion L(y,x) has x in its denominator, that is

y = L(y,x) =
p(x)

xdm(x \ {x})
with d > 0 and x not dividing p(x). Because f is a field automorphism, so is f−1

and we have

u =
p(f−1(x))

vdm(f−1(x) \ {v})
with d > 0 and v not dividing p(f−1(x)). But because of Lemma 3.1, this implies
that u and v are not compatible, a contradiction.

We are thus reduced to the case where x and y are both regular cluster variables.
In this case, because of Theorem 4.5, for any cluster x containing x, the expansion
L(y,x) has x in its denominator and the above reasoning finishes the proof. �

Lemma 5.2. Let A be a unistructural cluster algebra. Then f : A → A is a
cluster automorphism if and only if f is an automorphism of the ambient field
which restricts to a permutation of the set of cluster variables.

Proof. Again because of the remark following Conjecture 1.1, it suffices to show
sufficiency. Let f : A → A be an automorphism of the ambient field permuting the
set of cluster variables. Let x = (x1, . . . , xn) and (x, Q) be a seed of the cluster
algebra A. Consider a cluster algebra A1 generated by the initial seed (f(x), Q)
where the variable f(xi) is associated with the same point i ∈ Q0 as the variable
xi in the seed (x, Q).

Since the two seeds have the same quiverQ, and f is a homomorphism of the field,
the variables obtained by successive mutations of the seed (f(x), Q) are exactly the
images under f of the cluster variables obtained by the corresponding mutations of
the seed (x, Q).

Therefore, since f is an automorphism permuting cluster variables of A, the sets
of cluster variables of A and of A1 coincide and A = A1 as Z-algebras. Because
A is unistructural, the decomposition of the set of cluster variables into clusters
is unique. Thus f(x) is a cluster of A. By Corollary 2.7 of [ASS1], f is a cluster
automorphism. �

We end the paper with a discussion of unistructurality. For cluster algebras of
Dynkin type, unistructurality is derived from Theorem 1.3, which we just proved
(in Lemma 5.1).
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Theorem 5.3. Let A be a cluster algebra of Dynkin type, then A is unistructural.

Proof. We first observe that the rank n of A is determined by the set of cluster
variables. This is the transcendence degree of the ambient field. The number of
cluster variables is n(n + 3)/2 in the case An, it is n2 in the case Dn and is equal
to 42, 70 or 128 in the cases E6, E7 or E8, respectively. Therefore the number of
cluster variables determines the type.

Denote now by X the set of all cluster variables of A and suppose that A1 is
another cluster algebra of Dynkin type which has the same set X of cluster variables.
Then A and A1 are of the same type. Therefore, we can choose two seeds of these
cluster algebras that share the same quiver.

Let (x, Q) and (y, Q) be seeds of A and A1, respectively. Define f : X → X
by f(xi) = yi, where xi and yi are cluster variables of x and y, respectively,
corresponding to the same point i ∈ Q0.

Because x and y are transcendence bases of the ambient field, f extends to a
field automorphism.

Note that the variables obtained by successive mutations of (y, Q) are precisely
the images under f of the variables obtained by the corresponding mutations of
(x, Q). Thus we obtain that X = f(X ) and therefore f is an automorphism of the
ambient field permuting the elements of X . By Theorem 1.3 for algebras of Dynkin
type, f is a cluster automorphism.

Thus the image y under f of the cluster x, is a cluster in A, and therefore
A = A1 as cluster algebras, that is their sets of clusters coincide. �

Next we show Conjecture 1.2 for cluster algebras of rank 2.

Theorem 5.4. Let A be a cluster algebra of rank 2. Then A is unistructural.

Proof. Let us fix a cluster structure on A. Let ((x1, x2), Q) be the initial seed,

where Q denotes the quiver Q = 1
r→ 2 with r ≥ 0 the number of arrows from 1

to 2. If r = 0 or r = 1, the algebra is of finite type and the result follows from
Theorem 5.3. Let r ≥ 2. Using the expansion formula of [LS1], we see that the
only cluster variables that do not have both x1 and x2 in the denominator are

x1, x2,
xr
1+1
x2

,
xr
2+1
x1

. Moreover there are exactly two clusters containing x1, namely

(x1, x2) and (x1,
xr
1+1
x2

). Suppose there is another cluster structure of rank 2 on A
with the same set of variables. Then there exists a cluster (x1, y) with

y = L(y, (x1, x2)) =
P (x1, x2)

xd11 x
d2
2

such that d1 > 0 and P is a polynomial in Z[x1, x2] which is not divisible by x1.
Mutating this cluster in direction y produces the following cluster

(x1,
xm1 + 1

P (x1, x2)
xd11 x

d2
2 )

where m is the number of arrows in the quiver of the cluster (x1, y) in the second
cluster structure. The Laurent phenomenon implies that

P (x1, x2) = Q(x1, x2)M(x1, x2),

where M is a monomial and Q is a divisor of xm1 + 1 in Z[x1, x2]. Moreover, x1

does not divide M because it does not divide P . We consider two cases. If M = 1
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then P = Q and so our cluster is

(x1,
xm1 + 1

P (x1, x2)
xd11 x

d2
2 ) = (x1, P

′(x1, x2))

where P ′ is a polynomial in Z[x1, x2]. Because of our description of the cluster
variables, it follows that P ′ = x2. If M 6= 1 then, because x1 does not divide M ,

M = xe22 with e2 ≥ 1. Thus the denominator of the cluster variable
xm
1 +1

P (x1,x2)x
d1
1 x

d2
2

is equal to x−d2+e2
2 . Again because of our description of the cluster variables, this

cluster variable is equal to
xr
1+1
x2

. This implies that d1 = 0, a contradiction. �
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