Cluster-tilted algebras without clusters

Ibrahim Assem¹,

D´epartement de Math´ematiques, Universit´e de Sherbrooke, Sherbrooke (Qu´ebec), J1K 2R1, Canada

Thomas Brüstle²,

D´epartement de Math´ematiques, Universit´e de Sherbrooke, Sherbrooke (Qu´ebec), J1K 2R1, Canada and *Department of Mathematics, Bishop's University, Lennoxville, (Qu´ebec), J1M 1Z7, Canada*

Ralf Schiffler³,

Department of Mathematics, University of Connecticut, Storrs CT, 06269-3009, USA

Abstract

Key words: cluster-tilted algebra, cluster repetitive algebra, reflections of tilted algebras *1991 MSC:* 16S70, 16G20

1 Introduction

Cluster-tilted algebras were introduced in [BMR] and also, independently, in [CCS] for type A, as a by-product of the theory of cluster algebras of

Email addresses: ibrahim.assem@usherbrooke.ca (Ibrahim Assem),

thomas.brustle@usherbrooke.ca (Thomas Brüstle),

schiffler@math.uconn.edu (Ralf Schiffler).

 1 Partially supported by the NSERC of Canada and the Université de Sherbrooke

² Partially supported by the NSERC of Canada and the universities of Sherbrooke and Bishop's

³ Partially supported by the NSF grant DMS-0908765 and the University of Connecticut

Fomin and Zelevinsky [FZ]. They are the endomorphism algebras of the socalled tilting objects in the cluster category of [BMRRT]. Since their introduction, they have been the subject of several investigations, see, for instance, [BMR,CCS,ABS1,KR,BFPPT,BOW]. Part of their interest comes from the fact that the cluster category is a 2-Calabi-Yau category. In particular, the representation theory of cluster-tilted algebras has been shown to be very similar to that of the self-injective algebras, see [ABS1,ABS2,ABS3]. One of the essential tools in the study of self-injective algebras is the notion of reflection of a tilted algebra, introduced by Hughes and Waschbüsch in [HW]. This allowed to prove that, if C is a tilted algebra, then its trivial extension $T(C)$ by the minimal injective cogenerator bimodule is representation-finite if and only if C is of Dynkin type and, in this case, $T(C) \cong T(B)$ if and only if B is an iterated reflection of C (or, equivalently, B is iterated tilted of the same type as C), see also [BLR, AHR, Ho]. Moreover, the proofs of these results developed into algorithms allowing to compute explicitly the module category of $T(C)$, starting from that of C, see [HW,BLR].

We recall from $[ABS1]$ that, if C is a tilted algebra, then the trivial extension \tilde{C} of C by the C-C-bimodule $\text{Ext}^2_C(DC, C)$ is cluster-tilted, and conversely, every cluster-tilted algebra is of this form. On the other hand, this (surjective) map from tilted algebras to cluster-tilted algebras is certainly not injective and it is an interesting question to find all the tilted algebras B such that $\tilde{B} = \tilde{C}$. This problem has already been considered in [ABS2] and [BOW], see also [BFPPT]. In the present paper, we define notions of reflections (and, dually coreflections) of complete slices and of tilted algebras. Our main result may now be stated as follows.

Theorem 1 Let C be a tilted algebra having a tree Σ as a complete slice. *A tilted algebra B is such that* $\ddot{B} = \ddot{C}$ *if and only if there exists a sequence of reflections and coreflections* $\sigma_1, \ldots, \sigma_t$ *such that* $B = \sigma_1 \cdots \sigma_t C$ *has* $\Omega =$ $\sigma_1 \cdots \sigma_t \Sigma$ *as a complete slice and* $B = \tilde{C}/\text{Ann }\Omega$ *.*

The restriction to tilted algebras of tree type seems to be necessary to ensure the existence of reflections.

As a consequence of this construction and our proof, we obtain, as in [HW], an algorithm allowing to compute explicitly the transjective component of the module category of C , having as starting data only the knowledge of the tilted algebra C . In particular, if C is of Dynkin type, this yields the whole module category of \tilde{C} . We observe that, since the transjective component of the module category of \tilde{C} is standard, then it is uniquely determined by combinatorial data.

The paper is organised as follows. After a short preliminary section, in which we fix the notation and recall the needed results, we devote our section 3 to general properties of the Auslander-Reiten quiver of a cluster-tilted algebra. In section 4, we define reflections of complete slices and of tilted algebras. Section 5 is devoted to the proof of our main results, and section 6 to the algorithm. We end the paper in section 7 by showing how our algorithm may be applied to construct the tubes of cluster-tilted algebras of euclidean type.

2 Preliminaries

2.1 Notation

Throughout this paper, algebras are basic and connected, locally finite dimensional over an algebraically closed field k . For an algebra C , we denote by $mod C$ the category of finitely generated right C-modules. All subcategories are full and so are identified with their object classes. Given a category \mathcal{C} , we sometimes write $M \in \mathcal{C}$ to express that M is an object in C. If C is a full subcategory of mod C, we denote by add $\mathcal C$ the full subcategory of mod C having as objects the finite direct sums of summands of modules in C.

Following $[BG]$, we sometimes consider equivalently an algebra C as a locally bounded k-category, in which the object class C_0 is (in bijection with) a complete set $\{e_x\}$ of primitive orthogonal idempotents of C, and the space of morphisms from e_x to e_y is $C(x, y) = e_xCe_y$. A full subcategory B of C is *convex* if, for any path $x = x_0 \rightarrow x_1 \rightarrow \ldots \rightarrow x_t = y$ in the quiver Q_C of C, with $x, y \in B$, we have $x_i \in B$ for all i. For a point x in Q_C , we denote by P_x, I_x, S_x respectively the indecomposable projective, injective and simple C-modules corresponding to x. We denote by $\Gamma(\text{mod } C)$ the Auslander-Reiten quiver of C and by $\tau_C = D \, Tr, \tau_C^{-1} = Tr D$ the Auslander-Reiten translations. Given two indecomposable C-modules M and N , a path from M to N is a sequence of non-zero morphisms

$$
M = M_0 \stackrel{f_1}{\rightarrow} M_1 \stackrel{f_2}{\rightarrow} \cdots \stackrel{f_t}{\rightarrow} M_t = N
$$

where all M_i are indecomposable. We then say that N is a *successor* of M , and that M is a *predecessor* of N. We denote this situation by $M \sim N$ or by $M \leq N$.

More generally, if S_1, S_2 are two sets of indecomposable modules, we write $S_1 \leq S_2$ if every module in S_1 has a successor in S_2 , no module in S_2 has a successor in S_1 , and no module in S_1 has a predecessor in S_2 . The notation $\mathcal{S}_1 < \mathcal{S}_2$ stands for $\mathcal{S}_1 \leq \mathcal{S}_2$ and $\mathcal{S}_1 \cap \mathcal{S}_2 = \emptyset$.

For further definitions and facts, we refer the reader to [ARS,ASS].

Let Q be a finite connected and acyclic quiver. A module T over the path algebra kQ of Q is called *tilting* if $\text{Ext}_{kQ}^1(T, T) = 0$ and the number of isomorphism classes of indecomposable summands of T equals $|Q_0|$, see [ASS, p.193]. An algebra C is called *tilted* of type Q if there exists a tilting kQ -module T such that $C = \text{End}_{kQ}T$, see [ASS, p.317]. If, in particular, Q is a tree, we say that C is tilted of *tree type*. It is shown in [Ri, p.180] that an algebra C is tilted if and only if it contains a *complete slice* Σ , that is, a finite set of indecomposable modules such that:

- (S1) $\oplus_{U \in \Sigma} U$ is a sincere *C*-module.
- (S2) If $U = X_0 \to X_1 \to \cdots \to X_t = V$ is a path from U to V, with $U, V \in \Sigma$, then $X_i \in \Sigma$ for all *i*.
- (S3) If $0 \to L \to M \to N \to 0$ is an almost split sequence in mod C and at least one of the indecomposable summands of M belongs to Σ , then exactly one of L, N belongs to Σ .

For more tilting theory, we refer to [ASS,Ri].

2.2 Cluster-tilted algebras

Let A be a finite dimensional hereditary k-algebra, The *cluster category* C_A of A is defined as follows. Let F be the autoequivalence of the bounded derived category $\mathcal{D}^b(\text{mod }A)$ defined as the composition $\tau_{\mathcal{D}}^{-1}[1]$, where $\tau_{\mathcal{D}}^{-1}$ is the inverse of the Auslander-Reiten translation in $\mathcal{D}^b(\text{mod }A)$ and [1] is the shift (suspension) functor. Then \mathcal{C}_A is the orbit category $\mathcal{D}^b(\text{mod }A)/F$, its objects are the F-orbits $\tilde{X} = (F^i X)_{i \in \mathbb{Z}}$ of the objects $X \in \mathcal{D}^b(\text{mod } A)$ and the space of morphisms from $\tilde{X} = (F^i X)_i$ to $\tilde{Y} = (F^i Y)_i$ is

$$
\operatorname{Hom}_{\mathcal{C}_A}(\tilde{X}, \tilde{Y}) = \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{D}^b(\operatorname{mod} A)}(X, F^i Y).
$$

 \mathcal{C}_A is a triangulated Krull-Schmidt category with almost split triangles. The projection π : $\mathcal{D}^b(\text{mod }A) \to \mathcal{C}_A$ is a triangle functor which commutes with the Auslander-Reiten translations [BMRRT,K]. Moreover, for any two objects \tilde{X}, \tilde{Y} in \mathcal{C}_A , we have a functorial isomorphism $\text{Ext}^1_{\mathcal{C}_A}(\tilde{X}, \tilde{Y}) \cong D\text{Ext}^1_{\mathcal{C}_A}(\tilde{Y}, \tilde{X}),$ in other words, the category C_A is 2-Calabi-Yau.

An object $\tilde{T} \in \mathcal{C}_A$ is *tilting* if $\text{Ext}^1_{\mathcal{C}_A}(\tilde{T}, \tilde{T}) = 0$, and the number of isomorphism classes of indecomposable summands of \tilde{T} equals the rank of the Grothendieck group $K_0(A)$ of A. The endomorphism algebra $B = \text{End}_{\mathcal{C}_A} T$ is then called *cluster-tilted*. Moreover, we have an equivalence mod $B \cong C_A/\text{iadd}(\tau_{C_A}T)$, where τ_{C_A} is the Auslander-Reiten translation in C_A and iadd $(\tau_{C_A}\tilde{T})$ is the ideal of \mathcal{C}_A consisting of all morphisms factoring through objects of add $(\tau_{\mathcal{C}_A}T)$. Also, this equivalence commutes with the Auslander-Reiten translations in both categories [BMR].

We now describe the Auslander-Reiten quivers of C_A and B. If $A = kQ$ is representation-finite, the $\Gamma(\mathcal{C}_A)$ is of the form $\mathbb{Z}Q/\langle\varphi\rangle$, where φ is the automorphism of $\mathbb{Z}Q$ induced by F. If $A = kQ$ is representation infinite, then $\Gamma(\mathcal{C}_A)$ has a unique component of the form $\mathbb{Z}Q$, called *transjective*, because it is the image (under π) of the transjective components of $\Gamma(\mathcal{D}^b(\text{mod }A)).$ Moreover, $\Gamma(\mathcal{C}_A)$ also has components called *regular*, because they are the image of the regular components of $\Gamma(\mathcal{C}_A)$. In both cases, we deduce $\Gamma(\text{mod } B)$ from $\Gamma(\mathcal{C}_A)$ by simply deleting the $|Q_0|$ points corresponding to the summands of $\tau_{\mathcal{C}_A}T$.

2.3 Relation-extensions and slices

If B is cluster-tilted, then there exists a hereditary algebra A and a tilting A-module T such that $B = \text{End}_{\mathcal{C}_A}T$, see [BMRRT, 3.3]. Moreover, if $C =$ End $_{A}T$ is the corresponding tilted algebra, then the trivial extension \tilde{C} = $C \ltimes \text{Ext}^2_C(DC, C)$ (the *relation-extension* of C) is cluster-tilted and, actually, isomorphic to B, see [ABS1, 3.4]. Now, tilted algebras are characterised by the presence of so-called complete slices in the connecting components of their Auslander-Reiten quivers [ASS,Ri]. The corresponding notion for cluster-tilted algebras is as follows [ABS2, 3.1]. A full subquiver Σ of $\Gamma(\text{mod } C)$ is a *local slice* if :

(LS1) Σ is a presection, that is

(a) If $X \in \Sigma$ and $X \to Y$ is an arrow, then either $Y \in \Sigma$ or $\tau_{\tilde{C}} Y \in \Sigma$.

(b) If $Y \in \Sigma$ and $X \to Y$ is an arrow, then either $X \in \Sigma$ or $\tau_{\tilde{C}}^{-1} X \in \Sigma$.

- (LS2) Σ is sectionally convex, that is, if $X = X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_t = Y$ is a sectional path in $\Gamma(\text{mod } C)$, with $X, Y \in \Sigma$, then $X_i \in \Sigma$ for all i.
- (LS3) $|\Sigma_0| = \text{rk} K_0(C)$.

Let C be tilted, then, under the standard embedding mod $C \to \text{mod } C$ any complete slice in mod C embeds as a local slice in mod \tilde{C} , and any local slice occurs in this way. If B is cluster-tilted, then a tilted algebra C is such that $B = \tilde{C}$ if and only if there exists a local slice Σ in $\Gamma(\text{mod } B)$ such that $C = B/\text{Ann}_B\Sigma$, where $\text{Ann}_B\Sigma = \bigcap_{X \in \Sigma} \text{Ann}_B X$, see [ABS2, 3.6].

2.4 Cluster-repetitive algebras

For Galois coverings and pushdown functors, we refer the reader to [BG].

Let C be a tilted algebra. Its *cluster-repetitive algebra* \check{C} is the locally finite

dimensional algebra given by

$$
\check{C} = \begin{bmatrix} \ddots & & & & 0 \\ & C_{-1} & & & \\ & E_0 & C_0 & & \\ & & E_1 & C_1 & \\ & & & & \ddots \end{bmatrix}
$$

where matrices have only finitely many non-zero coefficients, $C_i = C$ and $E_i = \text{Ext}^2_C(DC, C)$ for all $i \in \mathbb{Z}$, all the remaining coefficients are zero, and the multiplication is induced from that of C , the $C-C$ -bimodule structure of $\text{Ext}^2_C(DC, C)$ and the zero map $\text{Ext}^2_C(DC, C) \otimes_C \text{Ext}^2_C(DC, C) \to 0$. The identity maps $C_i \to C_{i-1}$, $E_i \to E_{i-1}$ induce an automorphism φ of \check{C} . The orbit category $\check{C}/\langle \varphi \rangle$ is isomorphic to $\tilde{C} = C \ltimes \text{Ext}^2_C(DC, C)$. The projection $G: \check{C} \to \tilde{C}$ is thus a Galois covering with infinite cyclic group generated by φ . It is shown in [ABS3, Theorem 1] that the corresponding pushdown functor mod $\check{C} \to \text{mod } \tilde{C}$ is always dense, so it induces an isomorphism $\Gamma(\text{mod } \tilde{C}) \cong$ $\Gamma(\text{mod }\overset{\vee}{C})/\mathbb{Z}$. Also, if $C = \text{End }_A T$, where T is a tilting module over the hereditary algebra A, then $\text{mod } \check{C} \cong \mathcal{D}^b(\text{mod }A)/\text{is}(\tau_{\mathcal{D}}F^iT)_{i\in \mathbb{Z}}$, where $\tau_{\mathcal{D}}$ is the Auslander-Reiten translation in $\mathcal{D}^b(\text{mod }A)$ and iadd $(\tau_{\mathcal{D}}F^iT)_{i\in\mathbb{Z}}$ is the ideal of $\mathcal{D}^b(\text{mod }A)$ consisting of all morphisms which factor through add $(\tau_{\mathcal{D}}F^iT)_{i\in\mathbb{Z}}$. Finally, every local slice in $\Gamma(\text{mod }\tilde{C})$ is the image under G_{λ} of (several) local slices in $\Gamma(\text{mod }\mathcal{C})$ (that is, full subquiver of $\Gamma(\text{mod }\mathcal{C})$ satisfying the axioms $(LS1), (LS2), (LS3)$ of (2.4) above). Throughout this paper, we identify C_0 with C , and thus any complete slice of mod C can be considered as a local slice in $\mod \check{\mathcal{C}}$.

3 Properties of the Auslander-Reiten quiver of a cluster-tilted algebra

3.1

In this section, we let C be a tilted algebra, having Σ as a complete slice, and $\tilde{C} = C \ltimes \text{Ext}^2_C(DC, C)$ be its relation extension. The following lemma is borrowed from [ABDLS]; we include the proof for the convenience of the reader.

Lemma 2 *Let* C *be a tilted algebra,* Σ *a complete slice in* mod C *and* $M \in \Sigma$ *,*

then we have:

(a) $M \otimes_C \text{Ext}^2_C(DC, C) = 0$, and (b) $\text{Hom}_C(\text{Ext}^2_C(DC, C), \tau_C M) = 0.$

PROOF. (a) Let $A = \text{End}(\bigoplus_{X \in \Sigma} X)$ and T_A be a tilting module such that $C = \text{End } T_A$. Since $M \in \Sigma$, there exists an injective A-module I such that $M_C \cong \text{Hom}_A(T, I)$. Using standard functorial isomorphisms, we have:

$$
D(M \otimes_C \text{Ext}^2_C(DC, C)) \cong \text{Hom}_C(M, D\text{Ext}^2_C(DC, C))
$$

\n
$$
\cong \text{Hom}_C(\text{Hom}_A(T, I), D\text{Hom}_{\mathcal{D}^b(\text{mod }A)}(T, FT))
$$

\n
$$
\cong \text{Hom}_C(\text{Hom}_A(T, I), D\text{Hom}_{\mathcal{D}^b(\text{mod }A)}(T, \tau^{-1}T[1]))
$$

\n
$$
\cong \text{Hom}_C(\text{Hom}_A(T, I), D\text{Hom}_{\mathcal{D}^b(\text{mod }A)}(\tau T, T[1]))
$$

\n
$$
\cong \text{Hom}_C(\text{Hom}_A(T, I), D\text{Ext}^1_{\mathcal{D}^b(\text{mod }A)}(\tau T, T))
$$

\n
$$
\cong \text{Hom}_C(\text{Hom}_A(T, I), \text{Hom}_A(T, \tau^2 T))
$$

\n
$$
\cong \text{Hom}_A(I, t(\tau^2 T)),
$$

where $t(\tau^2T) \cong \text{Hom}_A(T, \tau^2T) \otimes_C T$ is the torsion part of the A-module $\tau^2 T$ in the torsion pair induced by T in mod A. Since $\tau^2 T$ is not an injective A-module, neither is its submodule $t(\tau^2T)$. Since A is hereditary, and I is injective, we get Hom $_A(I, \tau^2 T) = 0$.

(b) Since $\tau_{C}M$ precedes the complete slice Σ in mod C, it suffices to prove that $\text{Ext}^2_C(DC, C)$ succedes it. Note first that

$$
\text{Ext}^2_C(DC, C) \cong \text{Ext}^1_C(DC, \Omega^{-1}C)
$$

$$
\cong D\underline{\text{Hom}}_C(\tau^{-1}\Omega^{-1}C, DC),
$$

using the first cosyzygy $\Omega^{-1}C$ of C and the Auslander-Reiten formula. Now notice that for every indecomposable summand X of $\Omega^{-1}C$, there exists an injective C-module J such that Hom $_C(J, X) \neq 0$. But all injectives are successors of Σ , so there exists $L \in \Sigma$ such that we have a path $L \to J \to X \to * \to \tau^{-1} X$. This shows that every indecomposable summand of $\tau^{-1} \Omega^{-1} C$ succedes (properly) the slice Σ . Since no indecomposable projective module is a successor of Σ, we get

$$
\underline{\mathrm{Hom}}_C(\tau^{-1}\Omega^{-1}C, DC) = \mathrm{Hom}_C(\tau^{-1}\Omega^{-1}C, DC).
$$

Hence

$$
\text{Ext}^2_C(DC, C)_C \cong D\text{Hom}_C(\tau^{-1}\Omega^{-1}C, DC) \cong \tau^{-1}\Omega^{-1}C_C.
$$

But as we have already shown, every indecomposable summand of $\tau^{-1} \Omega^{-1} C_C$ is a (proper) successor of Σ . The required statement follows at once. \square

3.2

Proposition 3 Let C be a tilted algebra, Σ be a complete slice in mod C and $M \in \Sigma$. Then:

(a) $\tau_C M \cong \tau_{\tilde{C}} M$, and (b) $\tau_C^{-1} M \cong \tau_{\tilde{C}}^{-1} M$.

PROOF. Part (a) follows directly from Lemma 2 and the main result of [AZ]. Part (b) follows by duality. \Box

3.3

We need to apply Proposition 3 also to the cluster repetitive algebra \check{C} of C.

Corollary 4 *Let* C *be a tilted algebra,* Σ *be a complete slice in* mod C *and* $M \in \Sigma$. Then:

(a)
$$
\tau_C M \cong \tau_V M
$$
,
\n(b) $\tau_C^{-1} M \cong \tau_V^{-1} M$. \square

For the next lemma, we need some notations: let A be a hereditary algebra, T be a tilting A-module such that End $_A T = C$ and End $_{A} T = \tilde{C}$ (where \mathcal{C}_A denotes the cluster category associated to A). Let also \tilde{P}_x , \tilde{I}_x and T_x be the indecomposable projective C -module, the indecomposable injective C -module and the indecomposable summand of T corresponding to an object x in C . Note that part (a) of the Lemma below is well-known and actually used, for instance, in [ABS2, 3.2].

Lemma 5 *With the above notation:*

- (a) *For every object* x in \tilde{C} *, we have* $\underline{Hom}_{\mathcal{C}_A}(T, \tau^2 T_x) \cong \tilde{I}_x$ *.*
- (b) For every pair of objects x, y in \tilde{C} *, we have an isomorphism of the spaces of irreducible morphisms* $\text{Irr}_{\tilde{C}}(\tilde{P}_x, \tilde{P}_y) \cong \text{Irr}_{\tilde{C}}(\tilde{I}_x, \tilde{I}_y)$.

PROOF. Using standard functorial isomorphisms we have:

(a)
$$
\tilde{I}_x \cong D\text{Hom}_{\mathcal{C}_A}(T_x, T)
$$

\n $\cong D\text{Hom}_{\mathcal{D}^b(\text{mod }A)}(T_x, T) \oplus D\text{Hom}_{\mathcal{D}^b(\text{mod }A)}(T_x, \tau^{-1}T[1])$
\n $\cong \text{Ext}_{\mathcal{D}^b(\text{mod }A)}^1(T, \tau T_x) \oplus D\text{Ext}_{\mathcal{D}^b(\text{mod }A)}^1(T_x, \tau^{-1}T)$
\n $\cong \text{Hom}_{\mathcal{D}^b(\text{mod }A)}(T, \tau T[1]) \oplus \text{Hom}_{\mathcal{D}^b(\text{mod }A)}(T, \tau^2 T_x)$
\n $\cong \text{Hom}_{\mathcal{C}_A}(T, \tau^2 T_x).$

(b)
$$
\operatorname{Irr}_{\tilde{C}}(\tilde{P}_x, \tilde{P}_y) \cong \operatorname{Irr}_{\tilde{C}_A}(T_x, T_y)
$$

$$
\cong \operatorname{Irr}_{\tilde{C}_A}(\tau^2 T_x, \tau^2 T_y)
$$

$$
\cong \operatorname{Irr}_{\tilde{C}}(\operatorname{Hom}_{\mathcal{C}_A}(T, \tau^2 T_x), \operatorname{Hom}_{\mathcal{C}_A}(T, \tau^2 T_y))
$$

$$
\cong \operatorname{Irr}_{\tilde{C}}(\tilde{I}_x, \tilde{I}_y),
$$

where we have used the category equivalence $\text{Hom}_{\mathcal{C}_A}(T, -) : \mathcal{C}_A/\text{iadd}(\tau T) \to$ mod \tilde{C} of [BMR], and part (a) above. \Box

Remark 6 *Statement (b) above does not hold true for arbitrary algebras. Let indeed* C *be given by the quiver*

$$
1 \stackrel{\gamma}{\longleftarrow} 2 \stackrel{\beta}{\longleftarrow} 3 \stackrel{\alpha}{\longleftarrow} 4
$$

bound by $\alpha \beta = 0$ *. Note that* $\text{Irr}_C(I_1, I_2) = 0$ *while* $\text{Irr}_C(P_1, P_2) = k$ *.*

4 Reflections

4.1

The objective of this section is to define a notion of reflection on a local slice in a cluster-tilted algebra. This will in turn induce a notion of reflection on a tilted subalgebra of the given cluster-tilted algebra.

Let, as before, C be a tilted algebra, $\tilde{C} = C \ltimes \text{Ext}^2_C(DC, C)$ its relationextension algebra and \check{C} its cluster repetitive algebra. We still identify C with the full convex subcategory C_0 of \check{C} . We assume throughout that C is of tree type.

Let Γ be a connecting component of mod C, and Σ be a complete slice in Γ .

Assume first that $M \in \Sigma$ is a source in Σ which is not injective, then $(\Sigma \setminus$ $\{M\}\cup\{\tau_C^{-1}M\}$ is also a complete slice in Γ . In the language of [BOW], these two slices are *homotopic*. Homotopy is clearly an equivalence relation on slices, and there are either one or two equivalence classes in $\text{mod } C$ (two if and only if C is concealed). We need distinguished representatives of these classes. If there exists a complete slice in which all sources are injective C-modules, then such a slice is unique and is called the *rightmost slice* of mod C. We denote it as Σ^+ . Dually, we define the *leftmost slice* Σ^- of mod C. Note that, if C is representation-finite, then rightmost and leftmost slices exist.

We recall from [HW] that a point $x \in C_0$ is a *strong sink* if the injective module I_x has no injective module as a proper predecessor in mod C. Clearly, strong sinks are sinks.

Lemma 7 *A point* $x \in C_0$ *is a strong sink if and only if* I_x *is an injective source of the rightmost slice* Σ^+ *.*

PROOF. Assume first that I_x is an injective source of Σ^+ . If x is not a strong sink, then there exists $y \neq x$ in C such that we have a path $I_y \rightsquigarrow I_x$. Since Σ^+ is sincere, there exists $M \in \Sigma^+$ and a morphism $M \to I_y$ yielding a path $M \to I_y \to I_x$. Since Σ^+ is convex in ind C, we get $I_y \in \Sigma^+$ which contradicts the hypothesis that I_x is a source in Σ^+ .

Conversely, assume x to be a strong sink in C , and suppose that I_x is not an injective source of Σ^+ . Because Σ^+ is sincere, then there exist $N \in \Sigma^+$ and a morphism $N \to I_x$. Now there exists a source (necessarily injective) I_z in Σ^+ and a path $I_z \rightsquigarrow N$ in Σ^+ . This yields a path $I_z \rightsquigarrow N \rightarrow I_x$, contrary to the hypothesis. \square

4.2 The completion G_x

Let x be a strong sink in C. We define the *completion* G_x of x in Σ^+ to be a non-empty full connected subquiver of Σ^+ such that

- (a) $I_x \in G_x$,
- (b) G_x is closed under predecessors in Σ^+ ,
- (c) If $I \to M$ is an arrow in Σ^+ , with $I \in G_x$ injective, then $M \in G_x$,
- (d) If $N \to I$ is an arrow in Σ^+ , with $I \in G_x$ injective, then N is injective (and in G_x).

Completions do not always exist.

Example 8 *The tilted algebra* C *given by the quiver*

$$
1 \frac{\beta}{\gamma} 2 \frac{\alpha}{\gamma} 3
$$

bound by $\alpha \beta = 0$ *admits the complete rightmost slice consisting of the modules* I_1, S_2 and I_2 , and I_1 *is the only source. A part of the Auslander-Reiten quiver of* mod C *containing this slice is shown below, where modules are represented by their dimension vectors.*

In this example G_1 does not exist, because by condition (c) it would contain *both* S_2 *and* I_2 *, and this contradicts condition (d).*

The tilted algebra C in the example above is of euclidean type \tilde{A}_2 , so it is not of tree type. The following Lemma guarantees the existence of some completion in a rightmost slice, if the tilted algebra is of tree type.

Lemma 9 Let C be a tilted algebra of tree type having a rightmost slice Σ^+ . *Then there exists a strong sink* x in C such that the completion G_x exists.

PROOF. Let I_{x_1} be a source in Σ^+ and G'_1 its closure under condition (c) above, then let G_1 be the closure of G'_1 under condition (b).

If G_1 satisfies condition (d), then we are done. Otherwise there exist an injective $I \in G_1$ and an arrow $N \to I$ in Σ^+ with N not injective. Then there exists a sectional path in Σ^+ ending at N. Let I_{x_2} be the source of such a path.

Let G'_{2} be the closure of I_{x_2} under condition (c), and then let G_2 be the closure of G'_{2} under condition (b). Clearly, G'_{2} does not contain the injective I, since there is an arrow $N \to I$ in the sectional path, with N non-injective. Using that Σ^+ is a tree, we see that $I_{x_1} \notin G_2$.

If G_2 satisfies condition (d), then we are done. Otherwise we repeat the procedure. Since Σ^+ is a tree, this procedure must ultimately stop. \Box

Example 10 *Let* C *be the tilted algebra of tree type* D⁵ *given by the quiver*

bound by $\alpha \beta \gamma = 0$ *and* $\alpha \delta = 0$ *. Its Auslander-Reiten quiver is shown below.*

(here, modules are represented by their composition factors). The rightmost slice

$$
\left\{\frac{3}{2}, \frac{3}{2}, \frac{3}{4}, \frac{5}{3}, 3\right\}
$$

in this example has the two injective sources: I_1 *and* I_4 *. We have*

$$
G_1 = \begin{Bmatrix} 3 \\ 2 \\ 1 \end{Bmatrix}
$$
 and $G_4 = \begin{Bmatrix} 3 \\ 2 \\ 1 \end{Bmatrix}, \begin{Bmatrix} 3 \\ 3 \\ 4 \end{Bmatrix}, 3 \begin{Bmatrix} 3 \\ 2 \\ 1 \end{Bmatrix}$.

4.3 The reflection of a slice

Let now x be a strong sink in C such that the completion G_x exists. We then say that x is an $admissible$ sink. We are now able to define the reflection $\Sigma' = \sigma_x^+ \Sigma^+$ of the complete slice Σ^+ . The set of objects in G_x is of the form $\mathcal{J} \sqcup \mathcal{M}$, where \mathcal{J} and \mathcal{M} consist respectively of the injective, and the noninjectives in G_x . Let $\mathcal{P} = \{P_x \in \text{mod } C_1 \mid I_x \in \mathcal{J}\}\$, where we recall that C_1 is the copy of C next to C_0 on the diagonal blocks of \check{C} . We then set

$$
\sigma_x^+ \Sigma^+ = \left(\Sigma^+ \setminus G_x \right) \cup \mathcal{P} \cup \tau_{\underset{C}{\vee}}^{-1} \mathcal{M}.
$$

Recall that, by Corollary 4, $\tau_{\vee}^{-1}M \cong \tau_C^{-1}M$ for every $M \in \Sigma^+$.

Lemma 11 $\sigma_x^+ \Sigma^+$ *is a local slice in* mod \check{C} *.*

PROOF. We first consider in the cluster category \mathcal{C}_A the full subquiver defined by:

$$
\Sigma'' = \left(\Sigma^+ \setminus G_x\right) \cup \tau_C^{-1} \mathcal{M} \cup \tau_{\mathcal{C}_A}^{-1} \mathcal{I}.
$$

Thus Σ'' is a local slice in \mathcal{C}_A because G_x is closed under predecessors and we have $\Sigma' = (\Sigma'' \setminus \tau_{\mathcal{C}_A}^{-1} \mathcal{I}) \sqcup \mathcal{P}.$

We claim that Σ' is connected. The objects lying in Σ' and Σ'' are in oneto-one correspondence, since any object of Σ' is either an object of Σ'' or the Auslander-Reiten translate of an object in Σ'' . Hence it is enough to show that whenever there is an arrow between M'' , N'' in Σ'' , then there is an arrow between the two corresponding objects M', N' in Σ' .

Because of Lemma 5(b), we only need to consider the case where $M'' \in$ $(\Sigma^+ \setminus G_x) \cup \tau_C^{-1} \mathcal{M}$ and $N'' \in \tau_{\mathcal{C}_A}^{-1} \mathcal{I}$. Thus $M' = M''$ and $N' = \tau_{\mathcal{C}_A}^{-1} N'' = \tau_{\mathcal{C}_A}^{-2} I$ for some $I \in \mathcal{I} \subset G_x$.

Either we have $M'' \to N''$ or $N'' \to M''$ in Σ'' . In the latter case, there is an arrow from $(M' = M'')$ to $(N' = \tau_{C_A}^{-1} N'')$ in Σ' , and we are done. On the other hand, if $M'' \to N''$, then there is an arrow $\tau_{C_A} N'' \to M''$ with $\tau_{C_A} N'' = I \in G_x$ injective, and thus $M' \in G_x$, by condition (c) of the completion G_x . This establishes our claim.

Consequently, Σ' may be identified to a local slice in $\mathcal{D}^b(\text{mod } C)$. Since, furthermore, Σ' consists of \check{C} -modules then, by [ABS2, 3.6] and [ABS3, Theorem 1], σ' is a local slice in mod \check{C} . \Box

4.4 A hereditary subcategory

We deduce from our definition of reflection of Σ^+ a definition of reflection of the tilted algebra C, which we denote by σ_x^+C .

Define S_x to be the full subcategory of C consisting of the objects y such that $I_y \in G_x$.

Lemma 12 *With the above notation*

- (a) S_x *is hereditary,*
- (b) S_x *is closed under successors in C*,

(c) C *may be written in the form*

$$
C = \left[\begin{array}{cc} H & 0 \\ M & C' \end{array} \right]
$$

with *H* hereditary, C' tilted and M a C'-H-bimodule.

PROOF. (a) We let $H = \text{End}(\bigoplus_{y \in S_x} I_y)$. Then H is a full subcategory of the hereditary algebra End ($\bigoplus_{X\in\Sigma^+} X$). Therefore H is also hereditary, that is, \mathcal{S}_x is hereditary.

(b) Let $y \in \mathcal{S}_x$ and $y \to z$ be an arrow in C. Then there exists a morphism $I_z \rightarrow I_y$. Since I_z is an injective C-module and Σ^+ is sincere, there exist $N \in \Sigma^+$ and a morphism $N \to I_z$. Thus we have $N \to I_z \to I_y$. Since $N, I_y \in \Sigma^+$ and Σ^+ is convex in mod C, then $I_z \in \Sigma^+$ and so $z \in \mathcal{S}_x$.

(c) This follows at once from (a) and (b). \Box

4.5 The structure of the cluster duplicated algebra

We recall from [ABS3, 4.1] that the cluster duplicated algebra \overline{C} of C is the (finite dimensional) matrix algebra

$$
\overline{C} = \left[\begin{array}{cc} C & 0 \\ \text{Ext}^2_C(DC, C) & C \end{array} \right]
$$

with the ordinary matrix addition and the multiplication induced from that of C and from the C-C-bimodule structure of $\text{Ext}^2_C(DC, C)$. Clearly, \overline{C} is useful as a "building block" for the cluster repetitive algebra \check{C} .

Corollary 13 *The cluster duplicated algebra of* C *is of the form*

$$
\overline{C} = \left[\begin{array}{cccc} H & 0 & 0 & 0 \\ M & C' & 0 & 0 \\ 0 & F_0 & H & 0 \\ 0 & F_1 & M & C' \end{array} \right]
$$

,

where $F_0 = \text{Ext}^2_C(DC', H)$ *and* $F_1 = \text{Ext}^2_C(DC', C').$

PROOF. We start by writing C in the matrix form of Lemma 12 (c). Since, by definition, H consists of the objects y in C such that $I_y \in G_x \subset \Sigma^+$, then the projective dimension $\text{pd }_{C}DH$ is at most 1, hence $\text{Ext}^{2}_{C}(DH, -) = 0$. The result follows upon multiplying by idempotents. \Box

4.6 The reflection of a tilted algebra

We can now define the *reflection* $\sigma_x^+ C$ of C to be the matrix algebra

$$
\sigma_x^+ C = \left[\begin{array}{cc} C' & 0 \\ F_0 & H \end{array} \right],
$$

where $F_0 = \text{Ext}^2_C(DC', H)$. Note that $\sigma_x^+ C$ is a quotient algebra of \check{C} .

We now prove that this definition is compatible with the definition of reflection of local slices. We recall that the *support* Supp X of a subclass X of \check{C} is the full subcategory of \check{C} having as objects the x in \check{C} such that there exists a module $M \in \mathcal{X}$ satisfying $M(x) \neq 0$.

Proposition 14 The reflection $\sigma_x^+ C$ is a tilted algebra having $\sigma_x^+ \Sigma^+$ as a *complete slice. Moreover, the cluster-tilted algebras of* C *and* $\sigma_x^+ C$ *and the cluster repetitive algebras of* C *and* $\sigma_x^+ C$ *are isomorphic.*

PROOF. It follows directly from the definition of $\sigma_x^+ \Sigma^+$ that $\text{Supp } (\sigma_x^+ \Sigma^+) \subset$ $\sigma_x^+ C$. Indeed, in the notation of Lemma 11, we have $\sigma_x^+ \Sigma^+ = (\Sigma^+ \setminus G_x) \cup \mathcal{P} \cup$ τ_{\vee}^{-1} M. Since, as observed before, $\tau_{\vee}^{-1}M \cong \tau_C^{-1}M$ by Corollary 4, and the injectives in $\mathcal I$ are replaced by the projectives in $\mathcal P$, then we get the wanted inclusion.

Now, as shown in Lemma 11, $\sigma_x^+ \Sigma^+$ is a local slice in mod \check{C} . Denoting by $G_{\lambda}: \text{mod }\overset{\vee}{C} \to \text{mod }\tilde{C}$ the pushdown functor associated to the Galois covering $G: \check{C} \to \check{C}$, we get that $G_{\lambda}(\sigma_x^+\Sigma^+)$ is a local slice in mod \tilde{C} . By [ABS2], $C^* = \tilde{C}/\text{Ann}(G_{\lambda}(\sigma_x^+\Sigma^+))$ is a tilted algebra of the same type as C. Moreover we have $\tilde{C} = C \ltimes \text{Ext}^2_C(DC, C) \cong C^* \ltimes \text{Ext}^2_{C^*}(DC^*, C^*)$ so that we also have $\check{C}=\check{C}^*$.

On the other hand, $\sigma_x^+ \Sigma^+$ is a complete slice in mod C^* so, in particular, it is sincere over C^{*}. Therefore, Supp $\sigma_x^+ \Sigma^+ = C^*$. Using that $\check{C} = \check{C}^*$, we thus have $C^* \subset \sigma_x^+ C$. Finally, since the Grothendieck groups of $C^*, \sigma_x^+ C$ and C are all of the same rank, it follows that the full subcategories C^* and $\sigma_x^+ C$ of \tilde{C} are equal. This completes the proof. \Box

Dually, one defines coreflections σ_x^- with respect to admissible sources x. We leave the straightforward statements to the reader.

5 Main result

5.1 The distance between two local slices

We introduce the following notation. Let Σ_1, Σ_2 be two local slices in mod \check{C} , considered as embedded in $\mathcal{D}^b(\text{mod } C)$. We define $\check{d}(\Sigma_1, \Sigma_2)$ to be the number of $\tau F^j T_i$ (where $1 \leq i \leq \text{rk} K_0(C)$ and $j \in \mathbb{Z}$) in $\mathcal{D}^b(\text{mod } C)$ such that either $\Sigma_1 < \tau F^j T_i < \Sigma_2$, or $\Sigma_2 < \tau F^j T_i < \Sigma_1$.

Note that $\check{d}(\Sigma_1, \Sigma_2)$ is always a non-negative integer but it can be arbitrarily large. Also, if \check{C} is locally representation-finite (that is, \tilde{C} is representationfinite), then $\check{d}(\Sigma_1, \Sigma_2) = 0$ if and only if the local slices $G_{\lambda} \Sigma_1$ and $G_{\lambda} \Sigma_2$ in mod \tilde{C} are homotopic in the sense of [BOW] (see section (4.1) above).

Lemma 15 *Let* $\Sigma_1, \Sigma_2, \Sigma_3$ *be local slices in* mod \tilde{C} *, then:*

(a) $\check{d}(\Sigma_1, \Sigma_2) = \check{d}(\Sigma_2, \Sigma_1),$ (b) $d(\Sigma_1, \Sigma_3) \leq d(\Sigma_1, \Sigma_2) + d(\Sigma_2, \Sigma_3)$.

PROOF. (a) is obvious and (b) follows from a straightforward counting argument. \square

5.2 The metric space of fibre quotients of a cluster repetitive algebra

Clearly, \check{d} is not yet a distance function. Our objective is to use it in order to define a distance function. We say that an algebra C ′ is a *fibre quotient* of \check{C} if C' is tilted and such that $\check{C'} \cong \check{C}$. This terminology is motivated by the observation that such an algebra C' lies in the fibre of \check{C} under the mapping $C \mapsto \check{C}$ from the class of tilted algebras to the class of cluster repetitive algebras.

Let now C_1, C_2 be two fibre quotients of \check{C} , and Σ_1, Σ_2 be complete slices in mod C_1 , mod C_2 respectively, considered as local slices in mod \check{C} . Then we set

$$
\check{d}(C_1, C_2) = \check{d}(\Sigma_1, \Sigma_2).
$$

This does not depend on the choice of the complete slices Σ_1 and Σ_2 . Indeed, let Σ_1, Σ'_1 be two complete slices in mod C_1 , then it is clear that $\check{d}(\Sigma_1, \Sigma'_1)$ $'_{1})=0.$ Hence Lemma 15(b) yields $\check{d}(\Sigma_1, \Sigma_2) \leq \check{d}(\Sigma_1, \Sigma_2)$ χ'_1) + $d(\Sigma'_1, \Sigma_2) = d(\Sigma'_1, \Sigma_2).$ Similarly, $d(\Sigma_1', \Sigma_2) \leq d(\Sigma_1, \Sigma_2)$, so $d(\Sigma_1, \Sigma_2) = d(\Sigma_1', \Sigma_2)$, and our notion is well-defined.

Proposition 16 Let C_1, C_2 be two fibre quotients of $\overset{\vee}{C}$, then $\overset{\vee}{d}(C_1, C_2) = 0$ if *and only if* $C_1 = C_2$ *.*

PROOF. Assume indeed that $\check{d}(C_1, C_2) = 0$. Let Σ_1, Σ_2 be complete slices in $\text{mod } C_1$, mod C_2 , respectively, considered as local slices in mod \check{C} . By [ABS2, 3.6], we have $C_1 = \check{C}/\text{Ann }\Sigma_1$ and $C_2 = \check{C}/\text{Ann }\Sigma_2$.

Let T be a tilting module over the hereditary algebra A such that End $_A T \cong C$, and End ${}_{C_A}T \cong \tilde{C}$, (so that End ${}_{\mathcal{D}^b(\text{mod }A)}(\bigoplus_{i\in \mathbb{Z}}F^iT) = \check{C}$). By [ABS2, 3.7], the annihilator Ann Σ_1 is generated by the arrows α : $(x_0, i) \rightarrow (y_0, j)$ of $\overset{\vee}{C}$ (here x_0, y_0 are points of C_1 , while $i, j \in \mathbb{Z}$) such that the corresponding morphism $f_{\alpha}: F^{j}T_{y_{0}} \to F^{i}T_{x_{0}}$ in the derived category lies in Hom $_{\mathcal{D}^{b}(\text{mod }A)}(F^{j}T, F^{j+1}T)$ and $\Sigma_1 = F^j D A$. Now, this is the case if and only if

$$
F^j T_{y_0} \le \Sigma_1 \le \tau^2 F^{j+1} T_{x_0}
$$

in $\mathcal{D}^b(\text{mod }A)$. Indeed, notice first that the existence of the arrow α means that $i \in \{j, j+1\}$. Moreover $\tau^2 FT_{x_0} = \tau T_{x_0}[1] \geq DA$ implies $\tau^2 F^{j+1}T_{x_0} \geq$ $F^jDA = \Sigma_1$. On the other hand, $T_{y_0} \le DA$ gives clearly $F^jT_{y_0} \le F^jDA = \Sigma_1$.

We next claim that $\check{d}(\Sigma_1, \Sigma_2) = 0$ implies

$$
F^j T_{y_0} \le \Sigma_2 \le \tau^2 F^{j+1} T_{x_0}.
$$

Indeed, if $F^jT_{y_0} \nleq \Sigma_2$, then $\Sigma_2 \langle F^jT_{y_0} \rangle$, so that $\Sigma_2 \langle \tau F^jT_{y_0} \rangle$ because $\tau F^j T_{y_0} \notin \Sigma_2$. This implies that $\Sigma_2 < \tau F^j T_{y_0} < \Sigma_1$ and we have a contradiction to $d(\Sigma_1, \Sigma_2) = d(C_1, C_2) = 0$. On the other hand, if $\Sigma_2 \nleq \tau^2 F^{j+1} T_{x_0}$, then $\tau^2 F^{j+1} T_{x_0} < \Sigma_2$ and so $\tau F^{j+1} T_{x_0} < \Sigma_2$ because $\tau F^{j+1} T_{x_0} \notin \Sigma_2$. This implies that $\Sigma_1 < \tau F^{j+1} T_{x_0} < \Sigma_2$, another contradiction to $\check{d}(\Sigma_1, \Sigma_2) = \check{d}(C_1, C_2) = 0$. This establishes our claim.

Now, that claim implies that the annihilators of Σ_1 and Σ_2 have the same generators. Therefore $C_1 = C_2$. Since the converse is obvious, the proof of the proposition is complete. \Box

Corollary 17 The set $\check{\mathcal{F}}$ of all fibre quotients of \check{C} is a discrete metric space with the distance \overline{d} .

PROOF. It follows from Lemma 15 and Proposition 16 that \check{d} is a distance in $\overrightarrow{\mathcal{F}}$. It is clear that the resulting metric space is discrete. \Box

5.3 The metric space of fibre quotients of a cluster-tilted algebra

We now bring down this information to \tilde{C} . We say that an algebra C' is a *fibre quotient* of \tilde{C} if C' is tilted and such that $\tilde{C}' \cong \tilde{C}$. Let C_1, C_2 be two fibre quotients of \tilde{C} , then we set

$$
d(C_1, C_2) = \min_{C_1^*, C_2^* \in \mathcal{F}} \{ \check{d}(C_1^*, C_2^*) \mid GC_1^* = C_1, GC_2^* = C_2 \}.
$$

Corollary 18 Let C_1, C_2 be two fibre quotients of \tilde{C} , then $d(C_1, C_2) = 0$ if *and only if* $C_1 = C_2$ *.*

PROOF. This follows immediately from Proposition 16. \Box

Remark 19 *This gives another interpretation and proof of [BOW, Theorem 4.13].*

Notice that while our definition implies that the set $\check{\mathcal{F}}$ of fibre quotients of \check{C} is infinite, clearly the set $\tilde{\mathcal{F}}$ of fibre quotients of \tilde{C} is finite. Moreover, it is easily seen that $\check{\mathcal{F}}$ is (trivially) a topological covering of $\tilde{\mathcal{F}}$.

Corollary 20 *The set* $\tilde{\mathcal{F}}$ *of all fibre quotients of* \tilde{C} *is a discrete metric space with the distance* d*.*

PROOF. This follows from Corollary 17. \Box

5.4

The following lemma and its proof, which relate fibre quotients of \check{C} and \check{C} , are valid without assuming that C is of tree type.

Lemma 21 Let C be a tilted algebra. If C' is a fibre quotient of \tilde{C} , then $G^{-1}(C)$ *is the* φ *-orbit of a fibre quotient of* \check{C} *. Conversely, if* C^* *is a fibre* quotient of \check{C} , then $G(C^*)$ is a fibre quotient of \tilde{C} .

Remark 22 *By abuse of language, we quote from now on this lemma by saying that* C' *is a fibre quotient of* \tilde{C} *if and only if* C' *is a fibre quotient of* ∨ C*.*

PROOF. Suppose $\check{C} = \check{C}^*$. Let Σ be a complete slice in mod C considered as a local slice in $\check{C} = \check{C}^*$. By [ABS2, 3.4], Σ lifts isomorphically as a section both in $\mathcal{D}^b(\text{mod } C)$ and in $\mathcal{D}^b(\text{mod } C^*)$. This implies that we have equivalences of triangulated categories $\phi : \mathcal{D}^b(\text{mod } C) \stackrel{\cong}{\to} \mathcal{D}^b(\text{mod } k\Sigma)$ and $\phi^* : \mathcal{D}^b(\text{mod } C^*) \stackrel{\cong}{\to}$ $\mathcal{D}^b(\text{mod }k\Sigma)$. Let $T = \phi C$ and $T^* = \phi^* C^*$. Then:

End
$$
p^b(\text{mod } k\Sigma)
$$
 $(\bigoplus_{j\in \mathbb{Z}} F^jT)$ \cong End $p^b(\text{mod } C)$ $(\bigoplus_{j\in \mathbb{Z}} F^jC)$
\n $\cong C'$
\n $\cong C^*$
\n \cong End $p^b(\text{mod } C')$ $(\bigoplus_{j\in \mathbb{Z}} F^jC^*)$
\n \cong End $p^b(\text{mod } k\Sigma)$ $(\bigoplus_{j\in \mathbb{Z}} F^jT^*)$.

Define $C' = G(C^*)$, then, passing to the cluster category, we have $\mathcal{C}_C \cong \mathcal{C}_{k\Sigma} \cong \mathcal{C}_{k\Sigma}$ $\mathcal{C}_{C'}$ and

$$
\tilde{C} \cong \text{End}_{C_C} C
$$

$$
\cong \text{End}_{C_{k\Sigma}} T
$$

$$
\cong \text{End}_{C_{k\Sigma}} T^*
$$

$$
\cong \text{End}_{C_{C'}} C'
$$

$$
\cong \tilde{C'}
$$
.

This proves the sufficiency. The necessity is obvious. \Box

5.5 Example

Let \tilde{C} be the cluster-tilted algebra of type \mathbb{A}_5 given by the quiver

bound by $\alpha \beta = 0$, $\beta \gamma = 0$, $\gamma \alpha = 0$ $\lambda \mu = 0$, $\mu \nu = 0$ and $\nu \lambda = 0$. Its Auslander-Reiten quiver is shown in Figure 1, where modules are represented

Fig. 1. Auslander-Reiten quiver of Example 5.5

by their Loewy series and we identify the vertices that have the same label, thus creating a Moebius strip. Let $\Sigma_1, \Sigma_2, \Sigma_3$ be respectively given by

$$
\Sigma_1 = \left\{ \begin{array}{c} 4 \\ 3 \\ 2 \end{array}, \begin{array}{c} 4 \\ 3 \\ 3 \end{array}, \begin{array}{c} 4 \\ 3 \\ 3 \end{array}, 4 \begin{array}{c} 1 \\ 4 \\ 4 \end{array} \right\}
$$

$$
\Sigma_2 = \left\{ \begin{array}{c} 5 \\ 3 \\ 1 \end{array}, \begin{array}{c} 5 \\ 3 \\ 3 \end{array}, \begin{array}{c} 4 \\ 3 \\ 3 \end{array}, 5 \begin{array}{c} 5 \\ 3 \\ 3 \end{array}, 5 \begin{array}{c} 2 \\ 5 \\ 2 \end{array} \right\}
$$

$$
\Sigma_3 = \left\{ \begin{array}{c} 2 \\ 5 \\ 5 \end{array}, \begin{array}{c} 3 \\ 1 \\ 2 \end{array}, \begin{array}{c} 3 \\ 2 \\ 2 \end{array}, \begin{array}{c} 3 \\ 3 \\ 2 \end{array}, \begin{array}{c} 4 \\ 3 \\ 2 \end{array} \right\}.
$$

Then $C_1 = \tilde{C}/\mathrm{Ann}\, \Sigma_1$ is given by the quiver

while $C_2 = \tilde{C}/\mathrm{Ann}\, \Sigma_2$ is given by the quiver

and $C_3 = \tilde{C}/\text{Ann }\Sigma_3$ is given by the quiver

with the inherited relations in each case. Then we have $d(C_1, C_2) = d(C_1, C_3)$ $d(C_2, C_3) = 2$. Notice that if \tilde{C} has n points, then clearly, for any two fibre quotients C_1, C_2 of \tilde{C} , we have $d(C_1, C_2) \leq \lfloor \frac{n}{2} \rfloor$.

5.6

We are now able to state and prove the key lemma.

Lemma 23 *Let* Σ_1 , Σ_2 *be two local slices in the same transjective component* of mod \check{C} *such that* $\check{d}(\Sigma_1, \Sigma_2) \neq 0$ *. Then either:*

- (a) there exists a rightmost slice Σ_1^+ such that $\check{d}(\Sigma_1, \Sigma_1^+) = 0$ and a reflection σ_x^+ such that $\check{d}(\sigma_x^+ \Sigma_1^+, \Sigma_2) < \check{d}(\Sigma_1, \Sigma_2)$, or
- (b) *there exists a leftmost slice* $\Sigma_1^ \frac{1}{1}$ such that $d(\Sigma_1, \Sigma_1^-)$ $\binom{1}{1} = 0$ and a coreflection $\sigma_{\overline{u}}^{\scriptscriptstyle -}$ $\frac{1}{y}$ such that $\check{d}(\sigma_y^{-} \Sigma_1^{-})$ $(\overline{\Sigma}_1, \Sigma_2) < \check{d}(\Sigma_1, \Sigma_2).$

PROOF. (1) Assume first that $\Sigma_1 \cap \Sigma_2 = \emptyset$, then we can assume without loss of generality that $\Sigma_1 < \Sigma_2$. Let Σ_1^+ be the rightmost slice such that $\check{d}(\Sigma_1, \Sigma_1^+) = 0$. Such a rightmost slice exists since $\check{d}(\Sigma_1, \Sigma_2) \neq 0$ and the two slices lie in the same transjective component. Let $x = (x_0, j)$ be an admissible sink in Σ_1^+ . We claim that $\sigma_x^+ \Sigma_1^+$ gives the result. Indeed, T_{x_0} is such that

$$
\Sigma_1 < \tau F^j T_{x_0} < \Sigma_2
$$

in $\mathcal{D}^b(\text{mod } C)$, but $\tau F^j T_{x_0} < \sigma_x^+ \Sigma_1^+$. Also, if T_{y_0} is such that $\sigma_x^+ \Sigma_1^+ < \tau F^i T_{y_0} <$ Σ_2 in $\mathcal{D}^b(\text{mod } C)$, then $\Sigma_1 \leq \Sigma_1^+ < \tau F^i T_{y_0} < \Sigma_2$. Moreover, $\Sigma_2 < \tau F^i T_{y_0} <$ $\sigma_x^+ \Sigma_1^+$ is impossible, because $\sigma_x^+ \Sigma_1^+ \leq \Sigma_2$. We deduce that $d(\sigma_x^+ \Sigma_1^+, \Sigma_2)$ < $d(\Sigma_1, \Sigma_2)$. This proves (a). Similarly, assuming $\Sigma_2 < \Sigma_1$ yields (b).

(2) Suppose now that $\Sigma_1 \cap \Sigma_2 \neq \emptyset$. Since $\check{d}(\Sigma_1, \Sigma_2) \neq 0$, there exists $z =$ (z_0, j) such that either $\Sigma_1 < \tau F^j T_{z_0} < \Sigma_2$ or $\Sigma_2 < \tau F^j T_{z_0} < \Sigma_1$. Assume $\Sigma_1 < \tau F^j T_{z_0} < \Sigma_2$ and let $x = (x_0, i)$ be an admissible sink in Σ_1^+ such that

$$
\Sigma_1^+ < \tau F^i T_{x_0} < \Sigma_2.
$$

We claim that $\check{d}(\sigma_x^+\Sigma_1^+, \Sigma_2) < \check{d}(\Sigma_1, \Sigma_2)$.

We first prove that $G_x < \Sigma_2$ (see section 4.2 for the notation G_x). By definition, G_x is constructed by taking closures under socle factors of injectives (lying on the slice) and predecessors. Taking predecessors (of predecessors) of Σ_2 cannot create elements of Σ_2 or successors of Σ_2 . Therefore, it suffices to show that, if I is an injective predecessor of Σ_2 and $I \to M$, then $M < \Sigma_2$. Suppose that this is not the case, then $M \in \Sigma_2$ and, since Σ_2 is a local slice and I is injective, then I must belong to Σ_2 , a contradiction.

Now the same argument as in case (1) above completes the proof of (a). Similarly, in case $\Sigma_2 < \tau F^j T_{z_0} < \Sigma_1$, we get (b). \Box

5.7 The main result

We may now state and prove our main theorem.

Theorem 24 *Let* C *be a tilted algebra having a tree* Σ *as complete slice and* C ′ *be a tilted algebra. The following conditions are equivalent:*

- (a) C' is a fibre quotient of \tilde{C} *.*
- (b) C' is a fibre quotient of \check{C} .
- (c) *There exists a sequence of reflections and coreflections* $\sigma_1, \ldots, \sigma_t$ *such that* $C' = \sigma_1 \cdots \sigma_t C$ has $\Sigma' = \sigma_1 \cdots \sigma_t \Sigma$ as complete slice and $C' = \tilde{C}/\text{Ann }\Sigma'$.

PROOF. Since the equivalence of (a) and (b) follows from Lemma 21, and since Proposition 14 yields easily that (c) implies (a), it suffices to prove that (a) implies (c) .

Let C' be a fibre quotient of \tilde{C} . Then there exist two local slices Σ and Σ'' in mod \tilde{C} such that $\tilde{C} = \tilde{C}/\text{Ann }\Sigma$ and $C' = \tilde{C}/\text{Ann }\Sigma''$ (because of [ABS2, 3.6]). Lifting this information to \check{C} , there exist two local slices $\check{\Sigma}$ and $\check{\Sigma''}$ lying in the same transjective component of $\Gamma(\text{mod }\check{C})$ such that $G_\lambda \Sigma = \Sigma$ and $G_\lambda \Sigma'' = \Sigma''$. Applying Lemma 23 and an obvious induction, the finiteness of the distance function yields a sequence of reflections and coreflections $\sigma_1, \ldots, \sigma_t$ such that $d(\sigma_1 \cdots \sigma_t \Sigma, \Sigma'') = 0$. This implies that $d(\sigma_1 \cdots \sigma_t \Sigma, \Sigma'') = 0$. Let $\Sigma' = \sigma_1 \cdots \sigma_t \Sigma$. By Proposition 14, $C' = \sigma_1 \cdots \sigma_t C$ is tilted and has Σ' as a complete slice. Let $C^* = \tilde{C}/\text{Ann }\Sigma'$, then $d(\Sigma', \Sigma'') = 0$ implies $d(C^*, C') = 0$. Because of Corollary 18, we get indeed $C' = C^*$. This completes the proof. \Box

5.8 Example

Let again \tilde{C} be the cluster-tilted algebra of Example 5.5. We assume that C is the tilted algebra given by the quiver

bound by $\alpha \beta = 0$, $\lambda \mu = 0$. A rightmost complete slice Σ of mod C is given by

$$
\Sigma = \left\{ \begin{array}{c} 4\\3\\2 \end{array}, \begin{array}{c} 4\\3 \end{array}, \begin{array}{c} 4\,\,5\\3 \end{array}, \begin{array}{c} 4\\4 \end{array}, \begin{array}{c} 1\\4 \end{array} \right\}
$$

Reflecting successively at all admissible sinks yields successively the local slices

$$
\sigma_2 \Sigma = \begin{cases}\n4 & 5, 5, 4, 2, 1 \\
3 & 5, 4, 2, 1, 3 \\
2 & 1, 2, 1, 3 \\
1 & 2\n\end{cases},
$$
\n
$$
\sigma_4 \sigma_3 \sigma_2 \Sigma = \begin{cases}\n2 & 1, 2, 1, 3 \\
5 & 4, 2, 1, 3 \\
5 & 2, 1, 2, 2, 3\n\end{cases},
$$
\n
$$
\sigma_5 \sigma_3 \sigma_2 \Sigma = \begin{cases}\n1 & 1, 3, 3, 3 \\
4 & 1, 2, 1, 3\n\end{cases},
$$
\n
$$
\sigma_5 \sigma_4 \sigma_3 \sigma_2 \Sigma = \begin{cases}\n3 & 3, 3, 3, 5 \\
1 & 2, 1, 2, 3\n\end{cases},
$$

Then we have $\Sigma' = \sigma_5 \sigma_4 \sigma_3 \sigma_2 \Sigma = \sigma_4 \sigma_5 \sigma_3 \sigma_2 \Sigma$. The rightmost slice corresponding to Σ' is

$$
\Sigma'^{+} = \left\{ \begin{array}{ccc} 4 & 5 \\ 3 & 3 \\ 2 & 1 \end{array}, \begin{array}{ccc} 4 & 5 \\ 3 & 3 \end{array}, \begin{array}{ccc} 5 & 4 & 5 \\ 3 & 3 \end{array}, \begin{array}{ccc} \end{array} \right\},
$$

therefore

$$
\sigma_2 \Sigma^{+} = \left\{ \begin{array}{ccc} 5 & 5 & 4 & 5 \\ 3 & 3 & 3 \end{array}, 5, 5, \frac{2}{5} \right\},\
$$

while $\sigma_1 \Sigma'^{+} = \Sigma$. Therefore the fibre quotients of \tilde{C} are the algebras

(1) $\sigma_2 C$ given by the quiver

bound by $\alpha \beta = 0$ and $\nu \lambda = 0$.

(2) $\sigma_3 \sigma_2 C$ given by the quiver

bound by $\gamma \alpha = 0$ and $\mu \nu = 0$.

(3) $\sigma_4 \sigma_3 \sigma_2 C$ given by the quiver

bound by $\beta \gamma = 0$ and $\mu \nu = 0$.

(4) $\sigma_5 \sigma_3 \sigma_2 C$ given by the quiver

bound by $\gamma \alpha = 0$ and $\lambda \mu = 0$. (5) $\sigma_5 \sigma_4 \sigma_3 \sigma_2 C = \sigma_4 \sigma_5 \sigma_3 \sigma_2 C$ given by the quiver

bound by $\beta \, \gamma = 0$ and $\lambda \, \mu = 0.$

(6) $\sigma_2 \sigma_5 \sigma_4 \sigma_3 \sigma_2 C$ given by the quiver

bound by $\beta \gamma = 0$ and $\nu \lambda = 0$.

Finally $\sigma_1 \sigma_5 \sigma_4 \sigma_3 \sigma_2 C = C$. It is easily seen that we so obtain all fibre quotients of C .

The reader can easily locate these reflections (fibre quotients) of C in the quiver of \check{C} :

bound by the lifted relations $\alpha \beta = 0$, $\beta \gamma = 0$, $\gamma \alpha = 0$ $\lambda \mu = 0$, $\mu \nu = 0$ and $\nu \lambda = 0$. We have illustrated one copy of C in bold face.

6 Algorithm

6.1

Let C be a tilted algebra of tree type, and Γ a connecting component of mod C. We recall that a tilted algebra has a unique connecting component, except if it is concealed, in which case it has two. We denote by Σ^+ and Σ^- , respectively, the rightmost and leftmost slice in Γ. We assume both Σ^+ and Σ^- exist. Let $Γ_1$ be the full subquiver of Γ having as points

$$
\Gamma_1 = \{ M \in \text{ind } C \mid \tau \Sigma^- \le M \le \tau^{-1} \Sigma^+ \}.
$$

Lemma 25 *With the above notation,*

- (a) Γ_1 *embeds as a full subquiver of* $\Gamma(\text{mod }\mathring{C})$ *.*
- (b) Let M be a \check{C} -module such that $\tau \Sigma^- \leq M \leq \tau^{-1} \Sigma^+$ then M is a C-module *lying in* Γ_1 *.*

PROOF. (a) follows from Proposition 3.

(b) Let M be such a \check{C} -module. It follows from the structure of $\Gamma(\text{mod }\check{C})$ that M lies in a transjective component and furthermore there exists $t \geq 0$ such that $\tau_{\vee}^{-t}M \in \Sigma^{+}$, that is, there exists a C-module $N \in \Sigma^{+}$ such that $\tau_{\vee}^{-t}M = N$. $M = N$. Applying Proposition 3, we get $M = \tau_v^t \tau_v^{-t}$ $M = \tau_{\vee}^t N \cong \tau_C^t N$, hence the statement. \Box

Remark 26 *Note that if, for instance,* Σ^- *does not exist, but* Σ^+ *does, then the statement of the Lemma applies to the full subquiver of* Γ *with points* ${M \in \text{ind } C \mid M \leq \tau^{-1} \Sigma^+}.$

6.2

Let now x be an admissible sink in C such that G_x is contained in the rightmost slice Σ^+ of mod C. Let I_y be a source in G_x and define a \check{C} -module \overline{P}_y by

top
$$
\overline{P}_y = S_y
$$

rad $\overline{P}_y = \tau_C^{-1}(I_y/S_y) = \bigoplus_{I_y \to M} (\tau_C^{-1}M).$

Note that, since I_y is a source, then all indecomposable modules M such that there exists an arrow $I_y \to M$ in $\Gamma(\text{mod } C)$ lie in G_x (see Section 4.2). Also, as morphisms from top \overline{P}_y to rad \overline{P}_y , we take, for every arrow $\alpha : y \to z$, the linear map $f_{\alpha} : \overline{P}_y(y) \to \overline{P}_y(z)$ defined by the right multiplication by the residual class of the arrow α in $\check{C} = \kappa \check{Q} / \check{I}$.

Recursively, for every I_z in G_x with the property that for each predecessor I_w of I_z in G_x , we have already introduced a corresponding projective module \overline{P}_w , we define \overline{P}_z by

$$
\begin{aligned} \operatorname{top} \overline{P}_z &= S_z \\ \operatorname{rad} \overline{P}_z &= \tau_C^{-1}(I_z/S_z) \bigoplus \left(\bigoplus_{I_w \to I_z} \overline{P}_w \right), \end{aligned}
$$

where the second direct sum is taken over all arrows $I_w \to I_z$ in G_x .

Again, for morphisms from top \overline{P}_z to rad \overline{P}_z , we take, for every arrow $\alpha : z \to z$ v, the linear map $f_{\alpha}: \overline{P}_z(z) \to \overline{P}_z(v)$ defined by the right multiplication by the residual class of the arrow α in $\check{C} = k\check{Q}/\check{I}$. The module \overline{P}_z is thus located at the position $\tau^{-2} I_z$ in $\Gamma(\text{mod }\mathring{C})$.

Lemma 27 For each injective module I_y in G_x , the \check{C} -module \overline{P}_y thus constructed is isomorphic to the indecomposable projective \dot{C} -module \dot{P}_y at y.

PROOF. Clearly, it suffices to show that rad \check{P}_y = rad \overline{P}_y . We have that rad \check{P}_y is the direct sum of all $N \in \text{ind}\,\check{C}$ such that there exists an arrow $N \to \check{P}_y$ in $\Gamma(\text{mod }\mathring{C})$. There are two possibilities for such a radical summand $N:$

Either N is not projective, and then there exists an arrow $I_y \to M$ with $M \cong \tau_{\chi} N$ because \Pr_{y} is also situated at the position $\tau^{-2} I_y$ in $\Gamma(\text{mod }\mathcal{C})$ (see Lemma 5(a)), or $N = \check{P}_w$ is projective, and then there exists an arrow $P_w \to P_z$ in $\Gamma(\text{mod } \check{C})$.

Thus

$$
\operatorname{rad}\check{P}_y = \left(\bigoplus_{I_y \to M} \tau_{\vee}^{-1} M\right) \bigoplus \left(\bigoplus_{\substack{\vee \\ P_w \to P_z}} \check{P}_w\right),\,
$$

where the two direct sums are taken over arrows in $\Gamma(\text{mod }\mathring{C})$.

Now, if $I_y = \check{I}_y$ is a source in G_x , then there is no arrow $I_z \to I_y$ in $\Gamma(\text{mod } C)$ and, because of Lemma 25, there is no arrow $\check{I}_z \to \check{I}_y$ in $\Gamma(\text{mod }\check{C})$. By Lemma 5(b), there is no arrow $\check{P}_z \to \check{P}_x$ in $\Gamma(\text{mod }\check{C})$. Therefore, using Proposition 3,

$$
\operatorname{rad}_{\stackrel{\vee}{C}}\stackrel{\vee}{P}_{y}=\bigoplus_{\stackrel{\vee}{I}_{y}\to M}\tau_{\stackrel{\vee}{C}}^{-1}M=\bigoplus_{I_{y}\to M}\tau_{C}^{-1}M=\operatorname{rad}_{\stackrel{\vee}{C}}\overline{P}_{y},
$$

where the first direct sum is taken over arrows in $\Gamma(\text{mod }\mathcal{C})$ and the second over arrows in $\Gamma(\text{mod } C)$.

Now assume that I_z is not a source in G_z , By induction, we may suppose that $P_w = \overline{P}_w$ for all w such that I_w precedes I_z in G_x . Thus

$$
\bigoplus_{\substack{\vee\\ P_w \to P_z}} \, \sum_{\nu}^{\vee} \cong \bigoplus_{\substack{\vee\\ I_w \to I_z}} \sum_{\nu}^{\vee} \cong \bigoplus_{I_w \to I_z} \sum_{\nu}^{\vee} \cong \bigoplus_{I_w \to I_z} \overline{P}_w,
$$

where the last equality holds by induction. Since we have, as before,

$$
\bigoplus_{\substack{V\\I_z\to M}} \tau_{C}^{-1}M = \bigoplus_{I_z\to M} \tau_{C}^{-1}M,
$$

the proof is complete. \Box

Corollary 28 *With the above notation, we have*

 $\sigma_x^+ \Sigma^+ = \{ \Sigma \setminus G_x \} \cup \{ \overline{P}_y \mid I_y \in G_x \text{ injective} \} \cup \{ \tau_C^{-1} M \mid M \in G_x \text{ not injective} \}.$

PROOF. This follows directly from Lemma 27 and the construction in Section 4.3.

Remark 29 *Clearly, the dual construction, starting from an admissible source* y in C and constructing the local slice $\sigma_y \Sigma^-$ in $\Gamma(\text{mod }\mathring{C})$ holds as well. We *leave its statement to the reader.*

6.4

We now describe an algorithm allowing to construct the transjective component of a cluster-tilted algebra \tilde{C} knowing only a complete slice of a tilted algebra C. Since the pushdown functor G_λ : mod $\check{\check{C}} \to \text{mod } \tilde{C}$ is dense and thus induces an isomorphism of quivers $\Gamma(\text{mod }\tilde{C}) \cong \Gamma(\text{mod }\tilde{C})/\mathbb{Z}$ (see [ABS3]), it suffices to construct a transjective component of $\check{\check{C}}$.

Let Σ be a complete slice in mod C, then Σ embeds as a local slice in a transjective component Γ of the cluster repetitive algebra \check{C} . For clarity, we treat separately the representation-finite and the representation-infinite case.

- (a) Assume \tilde{C} is representation-finite, that is, \check{C} is locally representation-finite. In this case, Σ is a Dynkin quiver. We carry out the following steps.
	- (1) If there exists a source M of Σ which is not injective, then we replace Σ by

$$
\Sigma' = \{ \Sigma \setminus \{M\} \} \cup \{ \tau^{-1} M \}
$$

(here, the Auslander-Reiten translation τ is computed with respect to the support of Σ which, at the start, is equal to C). If not go to 2. Repeat until every source is injective.

(2) If all sources of Σ are injective then there exists a source I_x in Σ such that G_x exists (because of Lemma 9). Then we replace Σ by

$$
\Sigma' = \sigma_x^+ \Sigma.
$$

Go to 1.

Since \check{C} is locally representation-finite, we eventually construct a slice Σ such that for every module M in Σ , the module $\varphi^{-1}M$ has already been

constructed before, where φ is the automorphism of $\check{\check{C}}$ inducing the covering $\check{C} \to \tilde{C}$ (see Section 3.3). At this point the algorithm stops. After identification under φ , we have thus obtained the Auslander-Reiten quiver of the cluster-tilted algebra C .

- (b) Assume \tilde{C} is representation-infinite, that is, \check{C} is locally representation-infinite. We carry out the following steps.
	- (1) If there exists a source M of Σ which is not injective, then we replace Σ by

$$
\Sigma' = \{ \Sigma \setminus \{M\} \} \cup \{ \tau^{-1} M \}
$$

(where, again, τ^{-1} is computed with respect to the support of Σ). Repeat. If this procedure produces a Σ in which every source is injective, then go to 2. If not, then this procedure produces the right stable part of Γ. Then go to 3.

(2) If all sources of Σ are injective then there exists a source I_x in Σ such that G_x exists. Then we replace Σ by

$$
\Sigma' = \sigma_x \Sigma.
$$

Go to 1. Since there are finitely many injectives in Γ then, at some point, we get to 3.

- (3) Return to the initial slice Σ .
- (4) If there exists a sink N of Σ which is not projective, then we replace Σ by

$$
\Sigma' = \{\Sigma \setminus \{N\}\} \cup \{\tau N\}
$$

(where, again, τ is computed with respect to the support of Σ). Repeat. If this procedure produces a Σ in which every sink is projective, then go to 5. If not, then this procedure produces the left stable part of Γ. Then the algorithm stops.

(5) If all sinks of Σ are projective then there exists a sink P_y in Σ such that G_y exists. Then we replace Σ by

$$
\Sigma' = \sigma_y \Sigma.
$$

Go to 4. Since there are finitely many projectives in Γ then, at some point, the algorithm stops.

Theorem 30 *Let* C *be a tilted algebra of tree type. Then the transjective component of* $\Gamma(\text{mod } C)$ *is constructed by the preceding algorithm. Moreover, if* C *is of Dynkin type, then the algorithm yields* $\Gamma(\text{mod } C)$ *.*

PROOF. This follows from Corollary 28 and the density of the pushdown functor $G_{\lambda} : \text{mod } \check{C} \to \text{mod } \tilde{C}$. \Box

6.5 A representation-finite example

Let C be the tilted algebra of type \mathbb{D}_4 given by the quiver

bound by $\alpha\beta = \gamma\delta$. We construct its Auslander-Reiten quiver until we reach its rightmost slice

$$
\Sigma^{+} = \left\{ \begin{array}{c} 4 \\ 2 \ 3 \end{array}, \begin{array}{c} 4 \\ 2 \ 3 \end{array}, \begin{array}{c} 4 \\ 2 \end{array}, \begin{array}{c} 4 \\ 3 \end{array} \right\}.
$$

Since Σ^+ has a unique source 4 2 3 1 , the corresponding sink 1 is admissible and so we get

$$
\sigma_1^+ \Sigma^+ = \left\{ \begin{array}{cc} 4 \\ 2 \end{array}, \begin{array}{cc} 4 \\ 3 \end{array}, 4, \begin{array}{cc} 1 \\ 4 \end{array} \right\}.
$$

In the next step we must move the points $\frac{4}{2}$ and $\frac{4}{3}$ simultaneously (because $G_2 = G_3$, hence we get

$$
\sigma_2^+ \sigma_1^+ \Sigma^+ = \sigma_3^+ \sigma_1^+ \Sigma^+ = \left\{ \begin{array}{ccc} 1 & 1 & 2 & 3 \\ 4 & 1 & 1 & 1 \end{array} \right\}.
$$

A further reflection yields

$$
\sigma_4^+ \sigma_2^+ \sigma_1^+ \Sigma^+ = \left\{ \begin{array}{ccc} 2 & 3 & 2 & 3 \\ 1 & 1 & 1 \end{array}, \begin{array}{c} 4 \\ 2 \\ 1 \end{array}, \begin{array}{c} 4 \\ 2 \\ 1 \end{array} \right\},
$$

which is the leftmost slice Σ^- in $\Gamma(\text{mod } C)$. The Auslander-Reiten quiver of \tilde{C} is of the form shown in Figure 2.

Fig. 2. Auslander-Reiten quiver of Example 6.5

6.6 A representation-infinite example

Let C be the tilted algebra of type $\tilde{\mathbb{D}}_4$ given by the quiver

bound by $\alpha \beta = \gamma \delta$ and $\alpha \beta \epsilon = 0$. Here, \tilde{C} is representation-infinite. We show part of its transjective component.

The rest of the transjective component is constructed by the "knitting" procedure, constructing successively the Auslander-Reiten translates of the modules

thus obtained. The remaining projectives lie in the tubes. The cluster repetitive algebra \check{C} is given by the quiver

bound by $\alpha \beta = \gamma \delta$, $\alpha \beta \epsilon = 0$, $\beta \lambda = \beta \epsilon \mu$, $\lambda \alpha = \epsilon \mu \alpha$, $\delta \lambda = 0$ and $\lambda \gamma = 0$.

7 Tubes

The same algorithm seems to work for the tubes of the cluster-tilted algebras of Euclidean type. We have no proof of this fact but we give partial results and an example here.

We recall from [Ri, p.241] that the Auslander-Reiten quiver of a representationinfinite tilted algebra of Euclidean type contains, besides the postprojective and the preinjective component, also an infinite family of so-called tubes (see [Ri, p.113]), only finitely many of which have rank larger than one, and thus may contain projectives (or injectives). Consequently, cluster tilted algebras of Euclidean type also contain tubes, see [ABS2, 3.3].

Let A be a hereditary algebra of Euclidean type and T be a tilting A-module without preinjective summands. Assume that T_i is a summand of T that lies in a tube and such that i is a source of $C = \text{End}_A T$. Denote by r the quasi length of T_i and let M be the quasi simple module that lies on the same ray as T_i on the mouth of the tube.

Lemma 31 *The immediate predecessor of* T_i *on the semi-ray ending at* T_i *is a summand of* T*.*

PROOF. If $r = 1$, then $M = T_i$ and the result holds since there is no such predecessor. If $r > 1$, it follows from the assumption that i is a source in $C. \square$

We denote this predecessor by T_j . Thus there is a sectional path $M \to \cdot \to$ $\cdots \rightarrow T_j \rightarrow T_i$ of length $r-1$, and M lies on the mouth of the tube.

Lemma 32 *In the above situation, we have*

$$
\operatorname{Hom}_A(T, \tau^2 T_i) \cong \operatorname{Hom}_A(T, \tau^2 M).
$$

PROOF. Applying the functor Hom $_A(T, -)$ to the short exact sequence

$$
0 \to \tau^2 M \to \tau^2 T_i \to \tau T_j \to 0,
$$

the result follows from $\text{Hom}_A(T, \tau T_j) = D \text{Ext}_A(T_j, T) = 0. \quad \Box$

Lemma 33 In the above situation, let \tilde{I}_i denote the indecomposable injective and \tilde{S}_i the indecomposable simple module of the cluster-tilted algebra $C \ltimes$ $\operatorname{Ext}^2_C(DC,C)$ corresponding to the point *i*. Then

$$
\tilde{I}_i/\tilde{S}_i = \text{Hom}_A(T, \tau^2 T_i).
$$

PROOF. A straightforward computation shows that

$$
\tilde{I}_i = \text{Hom}_{\mathcal{C}}(T, \tau^2 T_i)
$$
\n
$$
= \text{Hom}_{A}(T, \tau^2 T_i) \oplus \text{Hom}_{\mathcal{D}^b(\text{mod } A)}(\tau T[-1], \tau^2 T_i)
$$
\n
$$
= \text{Hom}_{A}(T, \tau^2 T_i) \oplus D\text{Hom}_{A}(\tau^2 T_i, \tau^2 T).
$$

The simple socle of \tilde{I}_i corresponds in this description to the direct summand $D\text{Hom}_A(\tau^2T_i, \tau^2T_i)$ of the second term. Thus

$$
\tilde{I}_i/\tilde{S}_i = \text{Hom}_A(T, \tau^2 T_i) \oplus D\text{Hom}_A(\tau^2 T_i, \tau^2 \overline{T}),
$$

where $\overline{T} \oplus T_i = T$. The statement now follows, because $\text{Hom}_A(\tau^2 T_i, \tau^2 \overline{T}) =$ $\text{Hom}_A(T_i, \overline{T}) = 0$, because *i* is a source in *C*. \Box

Now consider the image of the tube in the module category of the tilted algebra $C = \text{End}_A T$. The A-modules T_j and T_i correspond to the indecomposable projective C-modules P_j and P_i respectively. Moreover P_j is a direct summand of the radical of P_i . Since P_i lies in a tube its radical rad $P_i = P_j \oplus N$, for some indecomposable C -module N . Since i is a source, it follows from the construction of the tube in mod C from the tube in mod A that $\tau_C N =$ Hom $_A(T, \tau^2 M)$.

Lemma 34 *With the notation above,*

$$
\tilde{I}_i/\tilde{S}_i = \tau_C N.
$$

PROOF. $\tau_C N = \text{Hom}_A(T, \tau^2 M) = \text{Hom}_A(T, \tau^2 T_i) = \tilde{I}_i / \tilde{S}_i$, where the second equality follows from Lemma 32 and the last from Lemma 33. \Box

This shows that at least in certain cases, a similar algorithm as for the transjective component can be used to construct the tubes of the cluster-tilted algebra. Starting from the tube of the tilted algebra, we use knitting to the left until we reach an indecomposable projective C -module P_i . We insert a new injective at the position $\tau^2 P_i$ by requiring that its socle quotient is equal to τ_C of the unique non-projective indecomposable summand of the radical of P_i in mod C. Lemma 34 shows that this module is actually the indecomposable injective module I_i of the cluster-tilted algebra.

The arguments above will stop functioning if we come to another projective P_{ℓ} inside the same tube for which there is no sectional path from P_{ℓ} to P_i . The algorithm still seems to work in all the examples we have computed, but we do not know how to prove it.

Example 35 *We conclude with an example of a tube. Let* C *be given by the quiver*

bound by the relations $\alpha\beta = 0$ *and* $\gamma\delta = 0$ *. One of the two exceptional tubes in* mod C *is given as*

where modules with identical labels must be identified. The module $P_1 =$ 1 3 4 *is projective and each module in the tube lies in the* τ -*orbit of* P_1 .

We use our algorithm to construct the tube of the corresponding cluster-tilted

algebra $\tilde{C} = C \ltimes \text{Ext}^2_C(DC, C)$ which is given by the quiver

bound by the relations $\alpha\beta = \beta\sigma = \sigma\alpha = \gamma\delta = \delta\rho = \rho\gamma = 0$ *. First we construct the new injective module*

and then we continue knitting to the left until the modules start repeating.

The tube in the cluster-tilted algebra consists of the modules in bold face. Modules (in bold face) with identical labels must be identified. Note that the tube of the cluster-tilted algebra in this example is obtained by inserting a coray into the tilted tube.

References

- [ABS1] I. Assem, T. Brüstle and R. Schiffler, Cluster-tilted algebras as trivial extensions, *Bull. Lond. Math. Soc.* 40 (2008), 151–162.
- [ABS2] I. Assem, T. Brüstle and R. Schiffler, Cluster-tilted algebras and slices, *J. of Algebra* 319 (2008), 3464–3479.
- [ABS3] I. Assem, T. Brüstle and R. Schiffler, On the Galois covering of a clustertilted algebra, *J. Pure Appl. Alg.* 213 (7) (2009) 1450–1463.
- [ABDLS] I. Assem, J. C. Bustamante, J. Dionne, P. Le Meur and D. Smith, Decompositions of the extension bimodule and partial relation extensions, in preparation.
- [AHR] I. Assem, D. Happel and O. Roldan, Representation-finite trivial extension algebras, *J. Pure Appl. Alg.* 33 (1984), 235–242.
- [ASS] I. Assem, D. Simson and A. Skowronski, *Elements of the Representation Theory of Associative Algebras, 1: Techniques of Representation Theory*, London Mathematical Society Student Texts 65, Cambridge University Press, 2006.
- [AZ] I. Assem and D. Zacharia, Full embeddings of almost split sequences over splitby-nilpotent extensions, *Coll. Math.* 81, (1) (1999) 21–31.
- [ARS] M. Auslander, I. Reiten and S.O. Smalø, *Representation Theory of Artin Algebras*, Cambridge Studies in Advanced Math. 36, Cambridge University Press, Cambridge, 1995.
- [BLR] O. Bretscher, C. Läser and C. Riedtmann, Selfinjective and simply connected algebras, *Manuscripta Math.* 36 (3) (1981), 253–308.
- [BFPPT] M. Barot, E. Fernandez, I. Pratti, M. I. Platzeck and S. Trepode, From iterated tilted to cluster-tilted algebras, *Advances in Math.* 223, (2010) 1468– 1494.
- [BOW] M. A. Bertani-Økland, S. Oppermann and A Wr˚alsen, Constructing tilted algebras from cluster-tilted algebras, preprint, arXiv:0902.166.
- [BG] K. Bongartz and P. Gabriel, Covering spaces in representation-theory, *Invent. Math.* **65** (1981/82), no. 3, 331-378.
- [BMRRT] A. B. Buan, R. Marsh, M. Reineke, I. Reiten and G. Todorov, Tilting theory and cluster combinatorics, *Adv. Math.* 204 (2006), no. 2, 572–618.
- [BMR] A. B. Buan, R. Marsh and I. Reiten, Cluster-tilted algebras, *Trans. Amer. Math. Soc.* 359 (2007), no. 1, 323–332 (electronic).
- [CCS] P. Caldero, F. Chapoton and R. Schiffler, Quivers with relations arising from clusters (Aⁿ case), *Trans. Amer. Math. Soc.* 358 (2006), no. 3, 1347–1364.
- [FZ] S. Fomin and A. Zelevinsky, Cluster algebras I. Foundations, *J. Amer. Math. Soc.* 15 (2) (2002) 497–529 (electronic)
- [Ho] M. Hoshino, Trivial extensions of tilted algebras, *Comm. Algebra* 10 (18) (1982), 1965–1999.
- [HW] D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, *Proc. London Math. Soc.* 46 (1983) 347–364.
- [K] B. Keller, On triangulated orbit categories, *Documenta Math.* 10 (2005), 551- 581.
- [KR] B. Keller and I. Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, *Adv. Math.* 211 (2007), 123–151.
- [Ri] C. M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Math., vol. 1099, Springer-Verlag, 1984.