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0 Introduction

Cluster categories were introduced in [7] and, for type A, also in [11], as a
categorical model allowing to understand better the cluster algebras of Fomin
and Zelevinsky [13]. Cluster-tilted algebras were defined in [11] for type A,
and in [8] for arbitrary hereditary algebras as follows: Let A be a hereditary
algebra and T be a tilting object in the associated cluster category C4, that is,
an object such that Ext;, . (T, T) = 0 and the number of isomorphism classes of

indecomposable summands of T" equals the rank of the Grothendieck group of
A, then the algebra B = End¢ AT is called cluster-tilted. These algebras have
been studied by several authors, see, for instance, [1,8-10,12,17]. In particular,
they were shown in [1] to be closely related to the tilted algebras introduced by
Happel and Ringel in the early eighties [15] Indeed, let C be a tilted algebra,
then the trivial extension C' = C' x ExtZ(DC,C) of C' by the C-C-bimodule
ExtZ(DC, C) is cluster-tilted, and every cluster-tilted algebra is of this form.
Thus, we have a surjective map C — C from tilted to cluster-tilted algebras.
However, easy examples show that this map is not injective. Our objective
in this paper is to give a criterion allowing to verify whether for two tilted
algebras C and (5, the corresponding cluster-tilted algebras C’1 and C’2 are
isomorphic or not.

Since tilted algebras are characterised by the existence of complete slices in
their Auslander-Reiten quiver (see, for instance, [15,20,19,21] or [3]), it is nat-
ural to study the corresponding concept for cluster-tilted algebras. For this
purpose, we introduce what we call a local slice, by weakening the axioms of
complete slice (thus, in a tilted algebra, complete slices are local slices). We
show that a complete slice in a tilted algebra C' embeds as a local slice in C
(and, in fact, any local slice in C' is of this form).

Our main theorem is the following:

Theorem 1 Let B be a cluster-tilted algebra. Then a tilted algebra C' is such
that B = O x Ext%(DC, C) if and only if there exists a local slice > in mod B
such that

C = B/Anng¥.

We also show that cluster-tilted algebras have many local slices. In fact, all but
at most finitely many indecomposable modules lying in the transjective compo-
nent of the Auslander-Reiten quiver belong to a local slice. If the cluster-tilted
algebra is of tree type (which is the case, for instance, if it is of Dynkin type or
of Euclidean type distinct from A), then this is the case for all indecomposable
modules in this component.

We now describe the contents of our paper. In the first section, we introduce



the notion of local section in a translation quiver and in the second section we
study sections and local sections in the derived category. In the third section,
we introduce the concept of a local slice and prove our main result, and in
section four, we prove that cluster-tilted algebras of tree type have sufficiently
many local slices.

We would like to thank David Smith for useful comments on the paper.

1 Preliminaries on translation quivers

1.1 Notation

Throughout this paper, all algebras are connected finite dimensional algebras
over an algebraically closed field k. For an algebra C, we denote by mod C' the
category of finitely generated right C'-modules and by ind C' a full subcategory
of mod C' consisting of exactly one representative from each isomorphism class
of indecomposable modules. When we speak about a C-module (or an inde-
composable C-module), we always mean implicitly that it belongs to mod C
(or to ind C| respectively). Also, all subcategories of mod C' are full and so are
identified with their object classes. Given a subcategory C of mod C, we some-
times write M € C to express that M is an object in C. We denote by add C the
full subcategory of mod C' with objects the finite direct sums of modules in C
and, if M is a module, we abbreviate add { M} as add M. We denote the pro-
jective (or injective) dimension of a module M as pd M (or id M, respectively).
The global dimension of C'is denoted by gl.dim.C' and its Grothendieck group
by Ko(C). Finally, we denote by I'(mod C') the Auslander-Reiten quiver of an
algebra C, and by 7 = DTr, 7;* = Tr D its Auslander-Reiten translations.
For further definitions and facts needed on mod C' or I'(mod C'), we refer the
reader to [3]. We also need facts on the bounded derived category D’(mod C)
of mod C, for which we refer to [14].

1.2 Sections

For translation quivers, we refer to [3,20]. Let (I', 7) be a connected translation
quiver. We recall that a path v = 29y —» ;1 — ... —» 2, = y in " is called
sectional if, for each i with 0 < i < t, we have 7 x;,1 # x;_1. A full connected
subquiver ¥ of I' is said to be conver in I' if, for any path x = g — 21 —

.—xy =y in I’ with z,y € X, we have x; € ¥, for all 7. It is called acyclic
if there is no cycle x = xy — 1 — ... — x; = x (with ¢ > 0) which is entirely
contained in X. The following definition is due to Liu and Skowronski (see



[18,21] or else [3]).

Definition 2 Let (I',7) be a connected translation quiver. A connected full
subquiver 3 of ' is a section in I' if:

(S1) ¥ is acyclic.
(S2) For each x € Ty, there exists a unique n € Z such that 7" x € X.
(S3) ¥ is convex in I

This definition is motivated by the study of tilted algebras. The well-known
criterion of Liu and Skowronski asserts that, if C' is an algebra, and X is
a faithful section in a component of its Auslander-Reiten quiver such that
Hom (X, 7¢Y) = 0 for all X|Y € %, then C is tilted having > as complete
slice (see [18,21,3]).

We note that, if a translation quiver I' contains a section, then I' is acyclic.

1.3 Presections

We need some weaker notions. The first one is the following.

Definition 3 Let (I',7) be a connected translation quiver. A connected full
subquiver ¥ of I is called a presection in I' if it satisfies the following two
conditions:

(P1) If v € ¥y and x — y is an arrow, then either y € Xg or Ty € Xy.
(P2) Ify € ¥y and x — y is an arrow, then either x € Yo or 77 tx € Xy.

The following Lemma collects the elementary properties of presections. Recall
that a translation quiver is called stable if there are neither projective, nor
injective points in I'.

Lemma 4 Let (I',7) be a connected translation quiver.

(a) If X is a section in T, then X is a presection.

(b) Any path entirely contained in a presection ¥ is a sectional path.

(¢) If the translation quiver I' is stable, then conditions (P1) and (P2) are
equivalent.

(d) If ¥ is a presection in a stable translation quiver I', then 3 intersects every
T-orbit of I' at least once.

PROOF. (a) This is well-known (see, for instance, [3, VIII.1.4 p.304]).



(b) Assume that ¥ is a presection in I', and that z =z - 11 — ... > 2, =y
is a path lying entirely in . If this path is not sectional, then there exists a
least ¢ with 0 < ¢ < t and 7x;,.1 = x;_. But, in this case, we have arrows
iy — x; and x; — 7w = w4 with x;, 2;_1, 2541 € Yo, a contradiction.

(c) Assume (P1) holds and that z — y is an arrow with y € ¥g. Since z is not
injective, there exists an arrow y — 7 'z. Applying (P1) to the latter yields
that 77z € ¥y or x = 7(77 ') € Xy. Thus (P2) holds. The converse is shown
in the same way.

(d) It suffices to prove that, if x € ¥y and y € 'y lie in two neighbouring 7-
orbits, then ¥ intersects the 7-orbit of y. Since I' is stable, there exists m € Z
such that there is an arrow  — 7™y. But then 7™y € ¥y or 7"y € ¥y. O

For instance, let I be a stable tube. A ray in I' is a presection but clearly not
a section. On the other hand, if I' is a component of type ZA,, then a ray is
a section.

1.4 Local sections

We now define an intermediate notion between those of presection and section.

Definition 5 Let (I',7) be a connected translation quiver. A presection X
in I' is called a local section if it satisfies moreover the following additional
condition:

Y is sectionally convex, that s, if x = x9g — 1 — ... = Ty = Y IS a
sectional path in T' such that x,y € Xy, then x; € ¥g for all i.

The following Lemma is immediate.

Lemma 6 Any section is a local section.

PROOF. Indeed, any section is convex, and hence sectionally convex. We
then apply Lemma 4 (b). O

The main result of this section is the following.

Proposition 7 Let () be a finite acyclic quiver and I' = ZQ). The following
conditions are equivalent for a connected full subquiver 3 of T such that |Xq| =

|Qol-



(a) X is a section.
(b) ¥ is a local section.
(c) X is a presection.

PROOF. Because of Lemma 6 (and the definition of local section), it suffices
to prove that (c) implies (a). Since I' is a stable translation quiver, then,
because of Lemma 4 (d), ¥ intersects every 7-orbit of I" at least once. Then, it
follows from the hypothesis that |Xg| = |Qo| that X intersects each 7-orbit of
" exactly once. Since ¥ is clearly acyclic (because I is), there only remains to
prove convexity. Suppose that there exists apathx =29 > 21 — ... w1, =y
in I' with z,y € ¥ but z1,...,2,1 ¢ 3o (t > 2). Since X is a presection, we
have 7 x1 € ¥g. From the arrow 7 z; — 7 x9, we deduce that either 7 x5 € ¥ or
7229 € ¥y. Repeating this argument ¢ times, we get that one of 7y, 72y, ..., 7ty
lies in X. This contradicts the fact that ¥ cuts each 7-orbit exactly once,
because y € ¥p. O

2 Sections and local sections in the derived category.

Let A denote a hereditary algebra, and D = D’(mod A) denote the bounded
derived category of mod A. We denote by 7p, 7' the Auslander-Reiten trans-
lations in D. We recall that the Auslander-Reiten quiver of D consists of two
types of components: the regular (which correspond to the regular components
of I'(mod A) and their shifts) and the transjective (which are the form ZQ,
where @) denotes the ordinary quiver of A), see [14].

We need the following result, known as Skowroniski’s Lemma [22,3].

Lemma 8 Let C' be an artin algebra. Assume that a C'-module M is the direct
sum of m pairwise non-isomorphic indecomposable modules and is such that

Hom (M, 7 M) = 0. Then m < rk Ky(C).
The following Lemma is motivated by [21,19].

Lemma 9 Let ¥ be a section in a connected component I' of T'(D) then the
following conditions are equivalent:

(a) ¥ is conver in ind D, that is, if X = Xg — X1 — ... = Y is a sequence of
non-zero morphisms between indecomposable objects in D such that X,Y €
Yo, then X; € ¥q for all 7.

(b) Hom (X, m7pY) =0 for all X, Y € Xy.

(¢) Hom (75 X, Y) = 0 for all X,Y € X.

(d) X is finite.

(e) |20] =1k Ko(A).



(f) T is a transjective component.

PROOF. The equivalence of (b) and (c¢) follows trivially from the fact that
7 is an automorphism of D.

(a) implies (b). A non-zero morphism X — 7p Y induces a path X — 7pY —
x — Y in ind D. The hypothesis implies that both Y and 7pY lie in X, a
contradiction.

(b) implies (f). If " is not a transjective component, then we may assume with-
out loss of generality that I' is concentrated in degree zero. By Skowronski’s
Lemma 8, > is finite. Now this contradicts the fact that X intersects each
Tp-orbit exactly once.

(f) implies (e). The number of Tp-orbits in a transjective component is exactly
rk K(] (A)

(e) implies (d). This is trivial.

(d) implies (a). Suppose that X = X, Lox, B X, =Yisa path, where
the f; are non-zero morphisms, the X; lie in I' and X,Y € ¥,. Now, since ¥
is finite, then I' has finitely many 7p-orbits. Therefore, I' is transjective. This
implies that the f; lie in a finite power of the radical of D. Therefore the path
above can be refined to a path of irreducible morphisms. Convexity of ¥ in I'
then implies that X; € 3, for all . O

Corollary 10 Let ¥ be a connected full subquiver in a connected component
[ of (D) such that |Xo| =tk Ko(A). The following are equivalent:

(a) ¥ is a section.
(b) ¥ is a local section.
(c) ¥ is a presection.

PROOF. Again, it suffices to prove that (c) implies (a). Since I' is a stable
translation quiver, then the presection Y intersects each mp-orbit of I' at least
once. Since, by hypothesis, |Xg| = rk Ko(A) < oo, then I' is a transjective
component. The statement then follows from Proposition 7. O



3 Local slices

3.1 Definition and examples

We now define the main concept of this paper.

Definition 11 Let C be a finite dimensional algebra. A local slice 3 in mod C
is a local section in a component I' of I'(mod C') such that |X| = rk Ko(C).

Remark 12 Let C' be an algebra, and X be a local slice in mod C.

(a) Since local sections are presections, every path entirely contained in ¥ is
sectional (because of Lemma 4 (b)). This implies that ¥ is acyclic.

(b) If T is a stable component of I'(mod C) and X C T" then, by Lemma 4 (d),
Y intersects any To-orbit of ' at least once. Since |%o| < oo, this implies
that T has only finitely many tc-orbits.

Example 13 Let C be a tilted algebra, and I' be a connecting component of
['(mod C). Then any complete slice in I' is also a local slice. We shall prove
below that any cluster-tilted algebra has (many) local slices in its Auslander-
Reiten quiver.

Example 14 The following is an example of an algebra which is neither tilted,
nor cluster-tilted, but whose Auslander-Reiten quiver contains a local slice. Let
B be given by the quiver

2/6\5

bound by a3 =0, 0e =0, ey =0 and v6 = 0. The Auslander-Reiten quiver
['(mod B) of B is shown in Figure 1, where modules are represented by their
Loewy series and we identify the two copies of the underlined module 2. Here

4 5 5
> = 231’3’3’?’3 and X' = §75’435’Z5’>’3 are local slices.
2 1 1

Note that neither X nor X' is a section, because both intersect twice the Tp-
orbit of 2. It is an interesting question to identify the algebras which have local
slices.
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Fig. 1. Auslander-Reiten quiver of Example 13
3.2 Cluster-tilted algebras

Let A be a hereditary algebra. The cluster category C4 of A is defined as
follows. Let I be the automorphism of D = D’(mod A) defined as the com-
position 75'[1], where 75 is the Auslander-Reiten translation in D and [1] is
the shift functor. Then C4 is the orbit category D/F', that is, the objects of
C4 are the F-orbits X = (F'X);ez, where X € D, and the set of morphisms
from X = (F'X)iez to Y = (F'Y ez is

Hom, (X,Y) = @ Hom p(X, F'Y).

1€Z

It is shown in [7,16] that C, is a triangulated category with almost split tri-
angles. Furthermore, the projection functor 7y : D — C4 is a functor of
triangulated categories and commutes with the Auslander-Reiten translations
in both categories. We refer to [7] for facts about the cluster category.

An object T in C, is called a tilting object provided Extg R (T,T) = 0 and
the number of isomorphism classes of indecomposable summands of 7' equals
rk Ko(A). The endomorphism algebra B = Ende, (T) is then called a cluster-
tilted algebra [8]. Of particular interest to us is the fact that the functor
Hom, (T, —) : C4 — mod B induces an equivalence

C4/add (1T) = mod B,

where 7 denotes the Auslander-Reiten translation in C4, see [8]. This result
entails several interesting consequences. For instance, it is shown it [17] that
any cluster-tilted algebra is 1-Gorenstein and hence of global dimension 1 or
oo. For the convenience of the reader, we give here a short proof of this fact.



Proposition 15 Let B be a cluster-tilted algebra.

(a) For every injective B-module I, we have pdI <1 (and for every projective
B-module P, we have id P < 1).
(b) gl.dim. B € {1,00}.

PROOF. (a) By [3, (IV.2.7) p.115], we need to prove that Hom g(DB, 751) =
0. Now mod B 2 C4/add (rT) (where A and T are as above) and, under
this equivalence, every injective C-module is the image of an object of the
form 72T, € Ca, where T, € addT. It thus suffices to show that, for every
Ty € add T, we have Hom ¢, (72T, 7°T,) = 0. But 7 is an equivalence in Cy,
hence the result follows from Hom ¢, (T, 7T}) = ExtéA(T, Ty) = 0.

(b) This is the proof of [17], but we include it for completeness. It suffices to
prove that, for every B-module M, id M = d < oo implies pd M < 1. Thus,
let
1 d
0—M—=10-L>p1 L pa—0
be a minimal injective coresolution. Let K* = Im f* for every i. Then the exact
sequence 0 — K971 — [4°1 — [ — (0 and (a) give pd K971 < 1. An easy
induction yields pd M < 1. 0O

It is also shown in [8] that the equivalence C4/add (7T) = mod B commutes
with the Auslander-Reiten translations in both categories. Let m denote the
composition of the functors

HOch (Tv_)

D ul C mod B,

where 7 is, as above, the canonical projection. We notice that m commutes
with the Auslander-Reiten translations in both categories and also that, if
X € D, then n(X) = 0 if and only if X € add (mpT).

3.8 Auslander-Reiten quivers of cluster-tilted algebras

With the above notations, we deduce the shape of the Auslander-Reiten quiver
of C4 and mod B. Let @@ be the ordinary quiver of A. If A is representation-
finite, then the Auslander-Reiten quiver I'(C4) is of the form ZQ/ < ¢ >,
where ¢ is the automorphism of Z@ induced by the functor F. Since I'(C4) is
stable and has sections isomorphic to (), we say that it is transjective. If, on
the other hand, A is representation-infinite, then I'(C4) consists of a unique
component of the form Z@), which we call transjective because it is the im-
age under 7y of the transjective component of I'(D), and also of components

10



which we call regular because they are the image under m of the regular com-
ponents of I'(D). In both cases, we deduce I'(mod B) from I'(C4) by deleting
the |Qo| points corresponding to the summands of 77" In particular, I'(mod C)
always has a unique transjective component, deduced from that of I'(C4) upon
applying the functor Hom ¢, (T, -).

Lemma 16 Let I" be a component of the Auslander-Reiten quiver of a cluster-
tilted algebra B. If T' contains a local slice, then I' is the transjective compo-
nent.

PROOF. Assume that I' is not transjective. Then I' is either a stable tube or
a component of type ZA ,, or is obtained from one of these by deleting finitely
many points. Also, since the functor Hom ¢, (T, —) : C4 — mod B commutes
with the Auslander-Reiten translations, deleting these points will not change
the 7-orbits. Consequently, a local slice ¥ in I' lifts to a unique finite local
section Y in a regular component I of I'(C ). In particular, [ is stable. Let
thus X € ¥ and X = X0—>X1—>...—>X — ... be a sectional path of
irreducible morphisms (a ray) starting at X. Then Xl or 7X; belongs to 5.
By induction, for each i > 0, one of the objects 7' X;, 71X, ..., X; belongs
to . Therefore ¥ is infinite, a contradiction. O

3.4 Lifting to the derived category

Lemma 17 Let 3 be a connected full subquiver of the transjective component
of the Auslander-Reiten quiver of a cluster-tilted algebra B arising from a
hereditary algebra A and ¥ be a connected full subquiver of D = D®(mod A)
such that wls : ¥ — X is bijective. Then ¥ is a local slice in mod B if and
only if ¥ is a section in D such that |3g| = tk Ko(A).

PROOF. Since both subquivers are full, then the bijection 7|5 induces an
isomorphism of quivers. Assume that X is a local slice in mod B. We claim
that X is a presection in D. Assume that X — Y is an irreducible morphism
in D with X € ¥,. Then we have two cases to consider:

(1) If 7(Y) # 0, then either 7(Y) € Xg or 7p7(Y) = n(mpY) € ¥g. Therefore
Y € ¥y or 7pY € Y.

(2) If 7(Y) = 0, then 7(7pY) # 0 because Hom p(Y,7pY[1]) # 0. But we
have an arrow X — Y which gives an arrow 7pY — X, hence an arrow

7(rpY) — m(X). Since 7(X) € %, then 7(7pY) € Xy and so 7pY € 3.

Because of Lemma 4 (c), this shows that ¥ is a presection. Since 7|5 is a
bijection, we have |Xg| = |Xg| = rk Ko(A). By Corollary 10, 3 is a section.

11



Conversely, assume that 3 is a section in D and that |Xg| = rk Ko(A). By
Lemma 9, ¥ lies in a transjective component of T'(D). Note that |S| = ||
and rk Ko(A) = rk Ko(B). Hence |Xy| = rk Ko(B).

We show that X is sectionally convex. Let X = Xg — X; — ... = X; =Y be
a sectional path with XY € X,. It lifts to a unique path X = X, — X; —

.— X; =Y in D with X,Y € ¥,. Since ¥ is a section, then this path is
sectional and all X; € ¥y. Applying 7, we get that all X; lie in X.

Finally, we show that ¥ is a presection. Assume that X — Y is an irreducible
morphism in mod B with X € . Let X = n|<'(X) and choose Y in ' (Y')
such that we have an irreducible morphism X — Y in D. Then Y € X,
or /pY € Y. Hence Y € ¥y or 7gY € X,. Note that if 7pY € ¥, then
m(tpY) # 0 because 7|5 is a bijection. We treat similarly the case of an
irreducible morphism X — Y with Y € ¥,. O

3.5  Construction of local slices

There is a close relation between tilted and cluster-tilted algebras. First, if B
is a cluster-tilted algebra, then there exist a hereditary algebra A and a tilting
A-module T such that B = Ende, (T'), see [7, 3.3]. Also, if A is a hereditary
algebra and T is a tilting A-module so that the algebra C' = End 4(T) is tilted,
the trivial extension C' = C'x Ext%,(DC, C) (called the relation-extension of C)
is cluster-tilted, and conversely, every cluster-tilted algebra is of this form, see
[1]. Now, since C' = C'xExt%(DC, C), then any C-module can be considered as
a C-module under the standard embedding i : mod C' — mod C. Note that, in
general, 7 does not preserve irreducible morphisms. We consider the complete
slice ¥ = add Hom 4(7', DA) in mod C, where C' = End T4 (see, for instance,
3] or [20]) and denote its image as i(X) = ¥’ in mod C'. The following Lemma
collects the important properties of >'.

Lemma 18 Let ¥ = Hom 4(T, DA) and ¥’ = i(X), then

(a) The image ¥ is a local slice in mod C.
(b) i induces an isomorphism of quivers between ¥ and Y.
(c) Anng Y = Ext}(DC, C) as C-C-bimodules.

PROOF. (a) We have Hom ¢, (T, DA) = Hom 4(T, DA) because T is an A-
module. Thus the image i(X) = 3’ of ¥ is equal to the image of ¥ under the
composition

modC—j>Db(m0d C) %Db(mod A)—">mod C,

12



where j is the inclusion in degree zero and ¢ the equivalence — ®ET'. Let ¥ be
a connected full subquiver of D?(mod A) such that the restriction 7|5 : ¥ — ¥/
is bijective, that is, 7(3) = ¥’ = (32). Using the fact that ¢ is a quasi-inverse
of the derived functor RHom4 (T, —) : D’(mod A) — D*(mod C), we see that
Y = ¢ o j(X) is equal to DA which is a connected section in a transjective
component of D°(mod A). Since add (7 T) Nadd (DA) = 0, then () # 0 for
each I € add DA, so that T|aaapa : DA — ¥/ is bijective. By Lemma 17, ¥’

is a local slice in mod C.

(b) This follows from the fact that ¥’ = 7w¢j(X) and each one of j|g, ¢
and 7|y preserves irreducible morphisms (in the case of 7, this is because
add DANaddrT = ().

(¢) By [1], we have an isomorphism ExtZ(DC,C) = Hom p(T, FT) of C-C-
bimodules. Now

Hom 4(7, DA) - Hom p(T, FT) = Hom p(T, DA) - Hom p(T', FT)
C Hom (7, F(DA))
= Homp(T, A]2]) = 0,

because T is an A-module. Therefore Hom (7', F'T) C Anng X'

Now let f : T — T be a non-zero morphism. Since its image is an A-module,
then Hom 4(Imf, DA) # 0. Let g : Imf — DA be a non-zero morphism
and denote by p : T" — Imf the canonical epimorphism. Since DA is an
injective module, there exists ¢’ : T'— DA such that ¢'f = gp # 0. Therefore
Anng ¥ NHom 4(T,T) = 0. Since, as a k-vector space, C = Hom (T, T) ®
Hom p (T, FT). We have dim C' = dim Hom (7, T) 4 dim Hom p(T, FT) <
dim Hom (7', T') + dim Ann >, because dim Hom (7', FT') C Anng3. Since
Hom p(T, FT) and Ann> are in direct sum, then we have dim Hom (7, T")+
dim AnngY' = dim(Hom p(T,T) + AnngY') < dim C. Hence dim AnngY’ =
dim Hom (7', F'T'). This shows that Hom p(7, FT) and AnnzY’ are equal as
subspaces of C, and the statement follows. O

3.6 Main result

We are now ready for the proof of our main theorem.

Theorem 19 Let B be a cluster-tilted algebra. Then a tilted algebra C' is such
that B = C' x Ext%(DC, C) if and only if there exists a local slice > in mod B
such that C' = B/Anng ¥.

13



PROOF. Necessity. It is well-known (see, for instance, [3]) that any com-
plete slice ¥ in mod C' is of the form ¥ = add Hom 4(7, DA) for some hered-
itary algebra A and some tilting A-module 7. By Lemma 18 (a), ¥ em-
beds as a local slice in mod B (because B = C). Moreover, by Lemma 18
(c), we have Anng¥ = ExtZ(DC,C) as C-C-bimodules. Therefore C' =
B/Ext%(DC,C) = B/Anng ¥

Sufficiency. Let B be cluster-tilted, and > be a local slice in mod B. Set C =
B/Anng Y. Because of the definition of a cluster-tilted algebra, there exist a
hereditary algebra A and a tilting object T’ € C4 such that B = Endg, (T). Let
Y be a connected component of the preimage 7 ~1(3) of X in D®(mod A). Since
the local slice ¥ can only occur in the transjective component of I'(mod B), be-
cause of Lemma 16, then ¥ lies in a transjective component of I'(D?(mod A)).
Since ¥ and ¥ have the same number of points, then 7|5 : ¥ — 3 is bijective,
whence ¥ is a section in I['(D°(mod A)) such that |¥y] = rk Ko(A), by Lemma
17. We may suppose without loss of generality that ¥ = add DA.

The fact that 7|,qapa : add DA — X is a bijection implies that the F-
orbit 7p 77 1(T) in D’(mod A) does not intersect add DA. Therefore, we have
add 7= 1(T) N add A[1] = 0, because 75" DA = A[1] in D’(mod A). Thus, we
can choose a representative 7' in the F-orbit W‘l(T) such that T' is an A-
module and 7(T) = T. Then T is a tilting A-module. Let C, = End4(T) be
the corresponding tilted algebra. By [1], we have B = Cyx Extz, (DCs, Cs). B
Lemma 18 (c), we have ExtZ, (DCs,C5) = Anng X. Thus Co = B/Amnp ¥ =
C1. In particular, C] is tilted and verifies B = ('} x Extél(DCl, cy). O

Corollary 20 Let C be a tilted algebra and C be the corresponding cluster-
tilted algebra. Then any complete slice in mod C' embeds as a local slice in
mod C' and any local slice in mod C' arises this way.

PROOF. This follows directly from Lemma 18 and Theorem 19. O

3.7  Computing the annihilator

Our Theorem 19 actually gives a concrete way to compute the tilted algebra C
starting from C. Given a local slice & in mod C, one computes its annihilator
using the following result.

Corollary 21 Let B be a cluster-tilted algebra and X be a local slice in mod B.
Then AnngY. is generated (as an ideal) by arrows in the quiver of B.
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Fig. 2. Auslander-Reiten quiver of Example 3.8

PROOF. This follows from [4, 1.3] using that C is a trivial extension (hence
a split extension) of C' by the C-C-bimodule ExtZ,(DC,C) = AnngY. O

We can be a bit more precise. Let C' = kQ/ I. Since C' = End, AT there is a
bijection between the points x € Qo and the indecomposable summands 7T, of
T so that each arrow a :  — y in @y corresponds to a non-zero morphism
fa € Home, (T, T,) = Hom p (T}, T,) @ Hom p(T},, F'T,). With this notation,
AnnsY is generated by all arrows « : © — y such that f, € Hom (T}, F'T,).
This indeed follows immediately from the isomorphisms

Hom p (T, FT) & ExtZ(DC,C) = AnngY.

Note that, as shown in [2], the arrows o which generate Anng3 have to satisfy
certain conditions. Moreover, if C'= kQ/I, then I = I N kQ.

3.8 FExample

Let C be the cluster-tilted algebra (of type ID;) given by the quiver
2
/ \
1 < 4
\ /
3
bound by af = ~d, fe = 0, de = 0, ea = 0, ey = 0. The Auslander-Reiten

quiver of C' is of the form shown in Figure 2 where indecomposable modules
are represented by their Loewy series, and one identifies the two copies of the

underlined simple module 1 (and also the two copies of the modules % and ?)

The entries |77}| indicate the position of 77} in the cluster category. We find




B8 o
c 1 4 ¥ = 243 1044
1 1 17237273
3
2
e
€ _J1 2 3
CQ 1 4 22_{4717171}
\
3
2
\ )44 1
Cg 1 4 23_{273?474}
/
3

Fig. 3. Tilted algebras and corresponding local slices

easily all the local slices hence all the tilted subalgebras of C' which realise it
as a relation-extension. There are only the three algebras C; shown in Figure
3 each corresponding to a local slice ¥;. with the inherited relations in each
case.

4 Cluster-tilted algebras of tree type

In view of our main result, Theorem 19, it is reasonable to ask whether there
exist sufficiently many local slices in the Auslander-Reiten quiver of a cluster-
tilted algebra. Since the latter is deduced from the Auslander-Reiten quiver
of the cluster category by dropping finitely many points, and since local slices
can only occur in the transjective component, then all but at most finitely
many indecomposables lying in the transjective component of the cluster-
tilted algebra belong to a local slice. That not necessarily all indecomposables
in the transjective component belong to a local slice is seen in the following
example.
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Example 22 Let A be the hereditary algebra given by the quiver

1 3
SR
and consider the tilting A-module T = 1 & 12 & 1 Note that while Ty = 1
1
3 3
and Ty = 1 2 are projective A-modules, the module T3 = | 1s simple reqular
1

non-homogeneous. The transjective component of the Auslander-Reiten quiver
of C = End¢,T s thus of the form

. M . .
AT,
/N LN N
where P, = Home, (T, T)), fori € {1,2}, and the two e represent 7T and

7Ty, It is easily seen that the indecomposable C-module M = rad Py lies on no
local slice.

We say that a cluster-tilted algebra Endc, (T) is of tree type if the ordinary
quiver of A is a tree.

Theorem 23 Let C be a cluster-tilted algebra of tree type. Then any inde-
composable C-module lying in the transjective component lies on a local slice.

PROOF. Let M be an indecomposable C’—modulejn the transjective compo-
nent and M be an indecomposable object in 7=!(M); here, as in section 3, 7
denotes the composition of the natural functors

Hom Cp (Tv_)

Db(mod A) o Ca mod C' -

We claim that M lies on a section X in D’(mod A) such that [So| = rk Ko(A)
and X Nadd7T = 0.

Before proving this claim, we show that the theorem follows from it. Indeed,
under these conditions, 7|y : X — 7w(X) is bijective and 7(X) is a connected
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full subquiver of the transjective component of the Auslander-Reiten quiver
of C. By Lemma 17, (%) is a local slice. Obviously M = n(M) € 7(%).

We now prove the claim. First, we fix some terminology. For any connected
full subquiver 7 of I'(D*(mod A)) such that 7 is a tree and M € Ty, there is
a unique reduced walk in 7 from M to any other point N € 7,. We define
the distance d7 (M, N) between M and N in 7 to be the number of arrows of
this walk. Moreover, we define

rk Ko(A) if 7 NaddrT =0

T = N N
min{d7r(M,N) | Ne TNnaddrT}if T NnaddrT # 0.
Thus d7 measures the distance between M and the set add 7T in the tree
T. Note that dr > 1 because M ¢ add 7T and dr = rk Ko(A) if and only if
TNnaddrT = 0.

Now, let 31 be any section in D’(mod A) containing M. By hypothesis, ¥ is
a tree. If dy, = rk K¢(A) we are done. Suppose that dy, < rk Ko(A). Consider
the set N = {N € ¥y Nadd 7T | dy, = ds,(M,N)} and let N € N'. Consider
the unique reduced walk

M=X—X1—... =Xy, -1y = L— X4, =N

in 3, from M to N. Deleting the edge L—N cuts ¥; into two subtrees. Let
Y™ be the subtree containing M (and L) and let XY the subtree containing
N. There are two cases to consider, according to the orientation of the arrow
between L and N.

(1) If L — N, we define 35 to be the full subquiver of I'(D?(mod A)) having
as points those of M U7 XY,

(2) If L «+ N, we define ¥ to be the full subquiver of I'(D?(mod A)) having
as points those of 2 U~ 2},

By construction, Y5 is a connected tree, it lies in the transjective component
and it intersects every 7-orbit exactly once.

We now show that ¥, is also convex. Assume that L — N (the proof in
case L + N is entirely similar). Then 3, has two subtrees ¥ and 7%V,
connected by the arrow 7 N — L. We show first that these two subtrees
are convex. Suppose that X = Xy — X; — ... — X, =Y is a path in
[(D’(mod A) with X, Y € M. By convexity of ¥, we have X; € ¥; for all
1. Since there is exactly one walk from X to Y in ¥; we actually have X; in
YM for all i. Thus X} is convex. Similarly, 7 ¢ is also convex. Now suppose
that X = X — X; — ... — X, =Y is a path with X, Y € ¥,. If X € ¥}
then Y € ¥ because of the structure of the transjective component, and
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then the convexity of ¥ implies the result. If X, Y € 7 X we are done by
convexity of 7. Hence the only remaining case is when X € 73V and
Y € ¥M. Suppose that there is an i € {1,...,s — 1} such that X; ¢ ¥,. We
may suppose, without loss of generality, that ¢ = 1. Now 7 X is a section such
that [(7X1)o| = rk Ko(A), hence, in particular, it is a presection. Therefore
Xery, X — X;and X; ¢ 7% imply 7 Xy € 7%, hence X; € ¥;. Then
all X; with 1 <14 < s lie in 3; because ¥ is convex. Since X; ¢ Yo, we have
X, € ¥V, Then, since Y € ¥} and the subtrees X%, ¥} are only joined by
the arrow L — N, there exists j such that X; = N and X,;; = L. But then
there is an arrow L < N, a contradiction. This shows that X, is convex and
hence is a section in D°(mod A) satisfying |(322)o| = rk Ko(A).

We repeat this construction for every element N of N. Note that, since N €
add 7T, neither 7 N nor 7~!N are in add7 7. In this way, we obtain, after
k = |N| steps, a section ¥;,; in I'(D’(mod A)) that contains M, such that
|(Xk+1)o0] =tk Ko(A) and

dgk+1 > dgl.
If ds,,, = 1k K¢(A) then Sy Nadd (7 T) = 0 and we are done. Otherwise,
we repeat the construction with the set

Nk+1 = {N S | deH(Mv N) = deJrl}‘

This algorithm will find the required section 3 in a finite number of steps. O

Corollary 24 Let C be a representation-finite cluster-tilted algebra. Then any
indecomposable C-module lies on a local slice.
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