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Abstract. In this paper, we introduce and study a class of algebras which we

call ada algebras. An artin algebra is ada if every indecomposable projective
and every indecomposable injective module lies in the union of the left and

the right parts of the module category. We describe the Auslander-Reiten

components of an ada non quasi-tilted algebra, showing in particular that its
representation theory is entirely contained in that of its left and right supports,

which are both tilted algebras. Also, we prove that an ada algebra over an

algebraically closed field is simply connected if and only if its first Hochschild
cohomology group vanishes.

Introduction

Let A be an artin algebra. We are interested in studying the representation
theory of A, thus the category modA of finitely generated right A-modules. One of
the classes of algebras whose representation theory is best understood is that of the
quasi-tilted algebras introduced by Happel, Reiten and Smalø in the seminal paper
[21]. In particular, the ideas and techniques introduced in this paper were used to
define and study successfully several generalisations of quasi-tilted algebras, such
as shod, weakly shod, laura, left or right supported algebras. For an overview, we
refer to the survey [6] or to the more recent [1].

The objective of the present paper is to introduce and study a new class, which
we call ada algebras. This also generalises quasi-tilted algebras. Indeed, an artin
algebra is quasi-tilted if and only if every indecomposable projective module lies in
the so-called left part of the module category, or equivalently if and only if every in-
decomposable injective module lies in the right part. We say that an algebra is ada
if any indecomposable projective and any indecomposable injective lies in the union
of these two parts. Ada algebras which are not quasi-tilted have the nice property
that their representation theory is entirely contained in that of two tilted algebras.
Namely, we recall from [5, 26] that the left support Aλ of an artin algebra is the
endomorphism ring of the direct sum of all the indecomposable projective modules
lying in the left part of modA, and the right support Aρ is defined dually. We
prove that the left and right support of an ada algebra which is not quasi-tilted are
tilted and describe the structure of the module category as in the following theorem.

Theorem A Let A be an ada algebra which is not quasi-tilted. There exists
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a finite family (Γi)
t
i=1 of Auslander-Reiten components of modA which are

directed, generalised standard, convex and containing right sections such that:

(a) indA = indAλ ∪ indAρ and each of Aλ and Aρ is a direct product of tilted
algebras.

(b) If Γ is an Auslander-Reiten component of modA distinct from the Γi, then
Γ is an Auslander-Reiten component of either modAλ or modAρ. Moreover

(i) If HomA(Γ,∪iΓi) 6= 0, then Γ is an Auslander-Reiten component of modAλ,
and,

(ii) If HomA(∪iΓi,Γ) 6= 0, then Γ is an Auslander-Reiten component of modAρ.

Furthermore, the portion of the module category of an ada algebra which lies
neither in the left nor in the right part is fairly well-understood (see (4.3) below),
the structure of the left and right parts being known due to [1].

Considering next the case where A is a finite dimensional algebra over an
algebraically closed field, we study its simple connectedness. We recall that a
triangular algebra A is called simply connected if the fundamental group of any
bound quiver presentation of A is trivial, see, for instance [9]. A well-known prob-
lem of Skowroński [25] links the simple connectedness of A to the vanishing of the
first Hochschild cohomology group HH1(A) of A with coefficients in the bimodule

AAA. The equivalence of these conditions holds true for several classes of algebras,
and among others for tilted algebras, see [22]. This brings us to our second theorem.

Theorem B Let A be an ada algebra over an algebraically closed field. Then A is
simply connected if and only if HH1(A) = 0. Moreover, if this is the case, then the
Hochschild cohomology ring HH•(A) reduces to the base field.

The paper is organised as follows. After a short preliminary section, we define
and study the first properties of ada algebras in section 2. The sections 3 and 4 are
occupied with the proof of Theorem A, and section 5 with the proof of Theorem B.

1. Preliminaries

1.1. Notation. Throughout this paper, all our algebras are basic and connected
artin algebras. For an algebra A, we denote by modA its category of finitely gen-
erated right modules and by indA a full subcategory of modA consisting of one
representative from each isomorphism class of indecomposable modules. When-
ever we speak about a module (or an indecomposable module), we always mean
implicitly that it belongs to modA (or to indA, respectively).

Also, all subcategories of modA are full and so are identified with their object
classes. We sometimes consider an algebra A as a category, in which the object class
A0 is a complete set {e1, . . . , en} of primitive orthogonal idempotents and the set
of morphisms from ei to ej is eiAej . An algebra B is a full subcategory of A if there
is an idempotent e ∈ A, sum of some of the distinguished idempotents ei, such that
B = eAe. It is convex in A if, for any sequence ei = ei0 , ei1 , · · · , eit = ej of objects
in A such that eikAeik+1

6= 0 for all k, with 0 ≤ k < t, and ei, ej ∈ B0, all eik lie in
B. We say that A is triangular if there is no sequence ei = ei0 , ei1 , · · · , eit = ei of
objects in A such that eik(radA)eik+1

6= 0 for all k, with 0 ≤ k < t. We denote by Px
(or Ix, or Sx) the indecomposable projective (or injective, or simple, respectively)
A-module corresponding to the idempotent ex.
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Let C be a subcategory of indA. We sometimes write M ∈ C to express that
M is an object in C. We denote by addC the subcategory of modA with objects
the direct sums of summands of modules in C. If C, C′ are two full subcategories of
indA, we write HomA(C, C′) 6= 0 whenever there exist M ∈ C,M ′ ∈ C′ such that
HomA(M,M ′) 6= 0.

Given a module M , we let pdM (or idM) stand for its projective (or injective,
respectively) dimension. The global dimension of A is denoted by gl.dimA.

For an algebra A, we denote by Γ(modA) its Auslander-Reiten quiver and τA =
DTr, τ−1

A = TrD its Auslander-Reiten translations. For further definitions and
facts on modA or Γ(modA) we refer to [10, 12].

1.2. Paths. Let A be an algebra. Given M,N in indA, a path from M to N in
indA (denoted by M  N) is a sequence of non-zero morphisms

(∗) M = X0
f1−→ X1 → . . .

ft−→ Xt = N,

(t ≥ 1) where Xi ∈ indA for all i. We then say that M is a predecessor of N and
N is a successor of M (denoted by M ≤ N).

A path from M to M involving at least one non-isomorphism is a cycle. A
module M ∈ indA which lies on no cycle is directed. If each fi in (∗) is irreducible,
we say that (∗) is a path of irreducible morphisms or path in Γ(modA). A path (∗)
from M to N is called sectional if it is a path of irreducible morphisms such that
τAXi+1 6= Xi−1 for all i with 0 < i < t. In particular, any path in indA which is not
a path of irreducible morphisms cannot be sectional. For a path (∗), a refinement
of (∗) is a path

(∗∗) M = X ′0
f ′
1−→ X ′1 → . . .→ X ′s−1

f ′
s−→ X ′s = N,

with s ≥ t such that there exists an order-preserving injective map σ : {1, · · · , t−
1} → {1, · · · , s − 1} such that Xi

∼= X ′σ(i). A path (∗) in indA is refinable to a

sectional path if there exists a refinement (∗∗) of (∗) which is a sectional path.
The left and the right parts of modA are defined by means of paths. Indeed, the

left part is the full subcategory of indA with object class

LA = {M ∈ indA| for any L with L M , we have pdL ≤ 1}.
Note that LA is closed under predecessors: if M ∈ LA and L M then L ∈ LA.

The right part RA is defined dually and is closed under successors.
We need to recall the definitions of Ext-projective and Ext-injective objects. Let

C be a full additive subcategory of modA closed under extensions (such as addLA,
or addRA, for instance), then an indecomposable M ∈ C is called Ext-projective
(or Ext-injective) in C if Ext1

A(M,−)|C = 0 (or Ext1
A(−,M)|C = 0, respectively). It

is shown in [13](3.4) that M is Ext-injective in addLA if and only if τ−1
A M /∈ LA

and similarly, M is Ext-projective in addRA if and only if τAM /∈ RA. For further
characterisations of these objects, we refer to [5].

1.3. Left and right sections. A full subquiver Σ of a translation quiver (Γ, τ) is
called a right section if:

(1) Σ is acyclic ,
(2) for any x ∈ Γ0 such that there exist y ∈ Σ0 and a path y  x in Γ, there

is a unique n ≥ 0 such that τnx ∈ Σ0,
(3) Σ is convex in Γ.
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Left sections are defined dually, see [1]. It is shown in [1] that, if A is an artin
algebra, and Σ is a right section in a generalised standard component of Γ(modA),
then A/AnnΣ is a direct product of tilted algebras having Σ as disjoint union
of complete slices [1](3.6). This notion applies well to the study of the left and
right parts. Namely, if E is the subcategory consisting of all the Ext-projectives in
addRA, and Γ is a component of Γ(modA), then:

(a) If Γ ∩ E = ∅, then either Γ ⊆ RA or Γ ∩RA = ∅.
(b) If Σ = Γ ∩ E 6= ∅, then Σ is a right section of Γ, convex in indA, and

moreover A/AnnΣ is a direct product of tilted algebras having Σ as disjoint
union of complete slices, see [1], Theorem (B).

By component of Γ(modA), we always mean connected component.

2. Ada algebras: Definition and first properties

Definition 2.1. An artin algebra A is called an ada algebra if A⊕DA ∈ add(LA∪
RA).

Clearly, this is equivalent to requiring that, for every x ∈ A0, we have both Px
and Ix lying in LA ∪RA.

Also, an algebra A is ada if and only if Aop is ada. This follows easily from the
fact that DLA = RAop and DRA = LAop .

Quasi-tilted algebras are clearly ada. We call strict an ada algebra which is not
quasi-tilted.

Examples 2.2. (a) Let A be a shod algebra [16]. Then indA = LA ∪ RA.
Therefore A is ada.

(b) Let A be given by the quiver

•
1

•
2

•
3

•
4

•
5

bound by rad2A = 0. Then P1, P2 = I1, P3 = I2 lie in LA, while P4 = I3,
P5 = I4 and I5 lie in RA. Then A is a (representation-finite) ada algebra.
On the other hand, the one-point extension A[I5] is not ada.

(c) Let A be given by the quiver

•
1

•
2

•
3

•
4

bound by rad2A = 0. Then A is a (representation-infinite) ada algebra.
This example shows that, in contrast to laura algebras [3], an ada algebra
may have infinitely many indecomposables which are not in LA ∪RA.

Let P denote the direct sum of a complete set of representatives of the isomor-
phism classes of the indecomposable projective A-modules lying in LA. Then the
algebra Aλ = EndPA is called the left support of A, see [5, 26]. We recall from
[5](2.2) that Aλ is a full convex subcategory of A, closed under successors and that
LA ⊆ indAλ. Moreover, because of [5] (2.3), Aλ (which is not connected in general)
is a direct product of quasi-tilted algebras. The right support Aρ is defined dually
and has dual properties.

Lemma 2.3. Let A be an ada algebra, then A = Aλ ∪Aρ.
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Proof. Let x ∈ A0. If Px ∈ LA, then x ∈ (Aλ)0. If not, then Px ∈ RA and
the non-zero morphism Px → Ix with image Sx yields Ix ∈ RA so that x ∈ (Aρ)0. �

Lemma 2.4. Let A be an ada algebra, then A is triangular.

Proof. Because of [5](2.2)(a), we can write A in triangular matrix form

A =

[
Aλ 0
M B

]
. Since Aλ is a direct product of quasi-tilted algebras, then

it is triangular. On the other hand, let x ∈ B0, then the indecomposable
projective A-module Px does not lie in LA, hence it lies in RA. Now, projectives
inRA are directed because of [1](6.4). In particular, B is triangular hence so is A. �

We have an easy characterisation of ada algebras.

Theorem 2.5. An artin algebra A is ada if and only if we have
indA = LA ∪ indAρ = indAλ ∪ RA. In particular, if A is ada, then indA =
indAλ ∪ indAρ.

Proof. Assume first that A is ada, and let M be an indecomposable A-module.
Suppose that M /∈ indAρ. Then there exists x ∈ A0 such that M(x) 6= 0 and
x /∈ (Aρ)0. Thus Ix /∈ RA and there exists a non-zero morphism M → Ix. Since
A is ada, then Ix ∈ LA and so M ∈ LA. This shows that indA = LA ∪ indAρ.
Similarly, we have indA = indAλ ∪RA.

Conversely, assume that these two equalities hold, and let x ∈ A0, then
Px ∈ RA or Px ∈ indAλ. By definition of Aλ, the latter implies Px ∈ LA.
Therefore Px ∈ LA ∪RA. Similarly, Ix ∈ LA ∪RA. �

Notice that both conditions indA = LA ∪ indAρ and indA = indAλ ∪ RA are
necessary for A to be ada.

We deduce homological properties of ada algebras.

Corollary 2.6. Let A be an ada algebra, then

(a) For any indecomposable module M , we have pdM ≤ 2 or idM ≤ 1.
(b) gl.dimA ≤ 4.

Proof. (a) This follows from the equality indA = indAλ ∪ RA and the fact that
gl.dimAλ ≤ 2 (using that projective Aλ-modules are also projective A-modules).

(b) Let M be an indecomposable A-module and suppose that pdM ≥ 2. Then
there exists a minimal projective resolution

0→ Ω2(M)→ P1 → P0 →M → 0

and for every indecomposable summand X of Ω2(M), we have Ext2
A(M,X) 6= 0. In

particular, idX ≥ 2. Because of (a), we get pdX ≤ 2. This implies that pdM ≤ 4.
�

Remark 2.7. a) The bound obtained in (b) above is sharp: indeed, the algebra
A of example 2.2(b) has global dimension 4.

b) Dually, for every M ∈ indA, we have pdM ≤ 1 or idM ≤ 2.

We now prove that a full subcategory of an ada algebra is ada.
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Proposition 2.8. Let A be an ada algebra, and e ∈ A be an idempotent, then
B = eAe is ada.

Proof. Let x ∈ B0 and Px = exB denote the corresponding indecomposable pro-
jective B-module. Then Px⊗B eA ∼= exA ∈ LA∪RA. Now, because of [4](Corollary
2.1), we have HomA(eA, Px ⊗B eA) ∈ LB ∪ RB . But HomA(eA, Px ⊗B eA) ∼= Px,
because of [4](Lemma 2.1).

Then Px ∈ LB ∪RB . Similarly, using that Aop is ada, we get Ix ∈ LB ∪RB . �

For the notion and main results about split-by-nilpotent extensions, we refer the
reader to [11].

Proposition 2.9. Let R be a split extension of A by a nilpotent bimodule. If R is
ada, then so is A.

Proof. Let x ∈ A0, then we clearly have exRR ∼= exA ⊗A RR and
D(Rex) ∼= ex(DR) ∼= HomAop(Aex, DR) ∼= HomA(R,D(Aex)). The state-
ment then follows immediately from [11](2.4). �

Ada algebras also behave well with respect to the skew group algebra construc-
tion, see [12, 8].

Proposition 2.10. Let A be an artin algebra, and G be a group acting on A with
|G| invertible in A. Then the basic algebra R = A[G]b associated to the skew group
algebra is ada if and only if A is ada.

Proof. Assume first that A is ada, and let P be an indecomposable projective R-
module. Because of [8](4.3), there exists an indecomposable projective summand
PA of HomR(R,P ) such that PR is a direct summand of P ⊗A R.

Suppose P ∈ LA. Because of [8](5.2)(a), we have P ⊗A R ∈ addLR. Therefore
P ∈ LR. Suppose next that P ∈ RA. Let X be an indecomposable R-module
such that HomR(P ,X) 6= 0. We claim that idX ≤ 1. Because of [8](4.6), there
exist σ ∈ G and an indecomposable summand MA of HomR(R,X) such that X
is a summand of σM ⊗A R and HomA(P, σM) 6= 0. Because P ∈ RA, we get
idσM ≤ 1. Since the functor − ⊗A R : modA → modR is exact and carries
injectives to injectives, we get id(σM ⊗A R) ≤ 1. Therefore idX ≤ 1, as asserted.
Applying [8](1.1) yields P ∈ RR. The proof is entirely similar if we start with an
indecomposable injective R-module.

Conversely, let R be ada, and PA an indecomposable projective A-module. Then
there exists an indecomposable projective summand P of P ⊗A R such that PA is
a direct summand of HomR(R,P ).

Suppose P ∈ LR. Because of [8](5.2)(b), HomA(R,P ) ∈ addLA. Therefore
P ∈ LA. Suppose now that P ∈ RR, and let M be an indecomposable A-module
such that HomA(P,M) 6= 0. We claim that idM ≤ 1. Because of [24], or [8](4.4)(a),
we have HomR(P ,M ⊗AR) 6= 0. Because of [24](1.1, 1.8), there exists an indecom-
posable decomposition M ⊗A R = ⊕mi=1Xi such that HomR(R,Xi) = ⊕σ∈HiσM
for some Hi ⊆ G. Hence there exists i such that 1 ≤ i ≤ m and HomR(P ,Xi) 6= 0.
Because P ∈ RR, we get idXi ≤ 1. This implies that, for every σ ∈ Hi, we have
idσM ≤ 1. Therefore idM ≤ 1, as required. Another application of [8](1.1) yields
P ∈ RA. Again the proof is similar if we start with an indecomposable injective
A-module. �
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3. The module category of an ada algebra

3.1. Assume A is a strict ada algebra. Then there exists x ∈ A0 such that
Px /∈ LA. By definition, Px ∈ RA and is clearly Ext-projective in addRA.
Therefore the set Σ of indecomposable Ext-projectives in addRA is non-void. Let
Σ = Σ1

∐
Σ2

∐
· · ·
∐

Σt where we assume that each Σi is the set of Ext-projectives
in addRA lying in the same component Γi of Γ(modA). Note that Σi is not neces-
sarily connected.

Because of [1](6.7), each Σi is a right section in Γi, convex in indA. More-
over, A/AnnΣi is a direct product of tilted algebras having Σi as disjoint union of
complete slices. The objective of this section is to prove the following theorem.

Theorem 3.1. Let A be a strict ada algebra. Then there exists a finite family
(Γi)

t
i=1 of components of Γ(modA) which are directed, generalised standard, convex,

containing right sections such that, if Γ is an Auslander-Reiten component distinct
from the Γi, then Γ is either a component of Γ(modAλ) or is contained in RA (and,
in this latter case, is a component of Γ(modAρ)). Moreover,

(i) if HomA(Γ,∪iΓi) 6= 0, then Γ is a component of Γ(modAλ), and
(ii) if HomA(∪iΓi,Γ) 6= 0, then Γ is a component of Γ(modAρ).

Clearly, the dual statement holds as well: there exists a finite family (Γ′j)
s
j=1 of

directed, generalised standard, convex components of Γ(modA), each containing a
left section Σ′j consisting of indecomposable Ext-injectives in addLA, and equipped
with the obvious properties. We leave the primal-dual translation to the reader.

We illustrate the theorem with the following example:

Examples 3.2. Let A be given by the quiver

• • • • • •

bound by rad2A = 0. The Auslander-Reiten quiver Γ(modA) of A looks as follows.

F

• �� �� . . . �� �� • F F

• • • . . . • F

• •

• F F

F

where we have illustrated the objects of the subcategory RA by F. Let Γ1 denote
the postprojective component and Γ2 the preinjective component. Then Σ = Σ1 ∪
Σ2 with Σ1 ⊆ Γ1 and Σ2 ⊆ Γ2. Notice that HomA(Γ1,Γ2) 6= 0 (and so the
components Γi are not orthogonal). Also, if Γ is a regular tube, then HomA(Γ1,Γ) 6=
0 but Γ is not contained in RA.

The proof of Theorem 3.1 will be split into a series of lemmata.

Lemma 3.3. Let Px ∈ Σi be projective. Then every projective successor of Px lies
in the same connected component of Σi.
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Proof. Assume we have a path Px  Py with Py projective. Since Px ∈ RA, we
have also Py ∈ RA. Therefore, Py is Ext-projective in addRA and so there exists
j so that Py ∈ Σj . By [1](6.3), the path Px  Py can be refined to a path of
irreducible morphisms and every module on each such refinement is Ext-projective
in addRA. But then, Px and Py belong to the same connected component of Σ. In
particular, i = j. �

We denote by (Γi)≥Σi the full subquiver of Γi consisting of the successors of
Σi (and by (Γi)�Σi

the full subquiver of Γi consisting of the non-successors). By

definition of Σ, the successors of Σi on Γi are Aρ-modules. In fact we have the
following result.

Lemma 3.4. (Γi)≥Σi = Γi ∩RA.

Proof. Assume X ∈ (Γi)≥Σi . Then there exist Y ∈ Σi and a path Y  X. Since
Y ∈ RA, we have X ∈ RA and so X ∈ Γi ∩ RA. Conversely, let X ∈ Γi ∩ RA.
Because of [1](6.6), there exists m ≥ 0 such that τmA X ∈ Σi. Clearly, X ∈ (Γi)≥Σi .
�

We have a similar statement for non-successors.

Corollary 3.5. Let X ∈ (Γi)�Σi
, then X /∈ RA and X ∈ indAλ.

Proof. The first statement follows from 3.4, and the second from 2.5. �

Since Σ is convex (because of [1](6.3)) we deduce the following statement.

Corollary 3.6. Let X ∈ Γi be a proper predecessor of Σ, then X /∈ RA and
X ∈ indAλ.

Lemma 3.7. The modules in τAΣi are directed in indA.

Proof. Since Σi is acyclic, and τAΣi contains no injectives, then τAΣi is acyclic.
Let X ∈ Σi and assume that we have a cycle in indA

τAX = M0
f1−→M1 → . . .

ft−→Mt = τAX.

Assume first that none of the fj factors through an injective module. Then the
above cycle induces another one in indA

X = τ−1
A M0 → τ−1

A M1 → . . .→ τ−1
A Mt = X.

contradicting the directedness of X (see [1](6.4)). Therefore, we can assume that
there exists j such that Mj is injective. Since τAX /∈ RA, we have Mj /∈ RA and
thus Mj ∈ LA. Because of [1](6.4), Mj is directed, a contradiction. �

Lemma 3.8. For any i, τAΣi lies in a union of directed components of Γ(modAλ).

Proof. Because of 3.7, modules in τAΣi are directed in indA, hence they are also
directed in indAλ.

Assume that X ∈ Σi is such that τAX does not lie in a directed component
of Γ(modAλ). Because of the structure of the module category of the product of
quasi-tilted algebras Aλ (see [15], [23]), we have one of two cases:
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(1) τAX belongs to an inserted tube or component of type ZA∞ in Γ(modAλ).
Since τAX is directed, there exists a path of irreducible morphisms

τAX  Y , where Y is a non-directed indecomposable Aλ-module which
is a predecessor of a non-directed indecomposable projective Aλ-module P
in indAλ, hence in indA. Note that P is also projective as an A-module and
lies in LA. Hence τAX ∈ LA. Also, this implies that the path τAX  Y is
a path of irreducible morphisms in modA. Indeed, let this path be

τAX = X0
f1−→ X1 → . . .

ft−→ Xt = Y

where the Xi are indecomposable Aλ-modules and fi are irreducible in
modAλ. Assume that fi : Xi−1 → Xi is not irreducible in modA. Then
there exist an indecomposable A-module Z and non-isomorphisms Xi−1 →
Z → Xi with nonzero composition. But Z  Y  P implies Z ∈ LA and
so Z is an indecomposable Aλ-module. This contradicts the irreducibility
of fi in modAλ and establishes our claim. On the other hand, the path
τAX  Y contains no injective Aλ-module because of the semiregularity
of the component. Since any injective A-module lying in indAλ is also
injective as an Aλ-module, then this path contains no injective A-module
either. Therefore, we have a path X  τ−1

A Y of irreducible morphisms.

Since X ∈ RA, then τ−1
A Y ∈ RA. On the other hand, Y /∈ RA, because P

is a non-directed projective A-module and thus P /∈ RA. Hence τ−1
A Y ∈ Σi

and Y ∈ τAΣi is directed in indA, hence in indAλ, a contradiction.
(2) τAX belongs to a co-inserted tube or component of type ZA∞ in Γ(modAλ).

We denote this component by Γ′. Recall that LAλ intersects no co-inserted
tube or component of type ZA∞. Therefore, no module in Γ′ belongs to
LAλ . Because of 2.5 and LA ⊆ LAλ , this means that Γ′ consists entirely of
Aρ-modules.

We claim that any irreducible morphism f : Y → Z between two prede-
cessors of τAX in Γ′ remains irreducible in modA. Let h = (h1, · · · , ht) :
⊕tj=1Ej → Z be right minimal almost split in modA, where the Ej are
assumed indecomposable. Now, each Ej belongs to the component Γi of
Γ(modA) containing X: for, we may assume inductively that Z lies in Γi,
but then so do all the Ej . Applying 3.5, we get that Ej is in modAλ.

On the other hand f factors through h, that is, there exists

g =

 g1

...
gt

 : Y →
t⊕

j=1

Ej such that f =

t∑
j=1

hjgj .

Since Z is in modAλ, then the right minimal almost split morphism h
in modA remains right minimal almost split in modAλ. Consequently, g is
a section and we are done.

Since Y,Z are predecessors of τAX in Γ′, then they are also indecom-
posable Aρ-modules, and hence f : Y → Z remains irreducible in modAρ.
This implies that the full subquiver Γ′≤τAX of all predecessors of τAX in Γ′

is contained in exactly one component Γ of Γ(modAρ).
Now, there exist a non-directed indecomposable Aλ-module U ∈ Γ′ and

a path U  τAX of irreducible morphisms in Γ′. Because of the previous
argument, this path induces a path U  τAX of irreducible morphisms
in Γ. Thus, Γ is a component of Γ(modAρ) containing at the same time
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directed modules (such as τAX) and non-directed ones (such as U) and
also a path from a non-directed to a directed module. Using [15], [23],
this shows that Γ is also a co-inserted tube or component of type ZA∞ in
Γ(modAρ). Since injective Aρ-modules are also injective A-modules, there
is a non-directed injective A-module J ∈ Γ and a path J  τAX in indAρ
and therefore in indA. Since τAX /∈ RA, then J /∈ RA. On the other hand,
J is not directed, so J /∈ LA, because of [1](6.4), and this contradicts the
hypothesis that A is ada.

�

We may now start the proof of Theorem 3.1.

Lemma 3.9. Each of the components Γi is directed, generalised standard and con-
vex in indA.

Proof. Suppose first that we have a cycle in indA lying in the component Γi. Since
Σi is a right section, (Γi)≥Σi is directed, because of [1](2.2). On the other hand,
(Γi)�Σi

consists of Aλ-modules, because of 3.5. We now claim that each connected

component Γ of (Γi)�Σi
contains at least a module of the form τAX, with X ∈ Σi.

Assume Γ∩τAΣi = ∅. Let Y ∈ Γ (thus, Y ∈ Γi). Since, by definition Γi∩Σi 6= ∅
and Γi is connected, then there exists a walk in Γi,

Y = Y0 − Y1 − . . .− Yt = X

for some X ∈ Σi. We know that Y is not a successor of Σi, since Y /∈ RA while
X ∈ RA. Since there exists a least j such that 1 ≤ j ≤ t and Y0, Y1, · · · , Yj−1 /∈ RA
while Yj ∈ RA, then we have an arrow Yj−1 → Yj . Assume first that Yj is not
projective, then there is an arrow τAYj → Yj−1, so τAYj /∈ RA. Therefore, Yj ∈ Σi.
Next, if Yj is projective (so that Yj belongs to Σi), then Yj−1 is not injective and

so there is an arrow Yj → τ−1
A Yj−1. Since τ−1

A Yj−1 ∈ RA we get τ−1
A Yj−1 ∈ Σi.

This establishes our claim. Applying 3.8, we get that (Γi)�Σi
is directed.

This shows that, if we have a cycle in Γi, then it must be of the form

M = M0 →M1 → . . .→Mj → . . .→Mt = M

where there exists j such that M ∈ (Γi)≥Σi and Mj ∈ (Γi)�Σi
. But now, M ∈

(Γi)≥Σi yields M ∈ RA, and so Mj ∈ RA, a contradiction to 3.4. This shows that
Γi is directed.

Now, we assume that Γi is not generalised standard and let L, M ∈ Γi be such
that rad∞A (L,M) 6= 0. Since (Γi)≥Σi is generalised standard, because of [1](3.2), and
(Γi)�Σi

also, because it is part of a directed, hence generalised standard component

of the Auslander-Reiten quiver of the quasi-tilted algebra Aλ, then we must have
L ∈ (Γi)�Σi

and M ∈ (Γi)≥Σi . Let f ∈ rad∞A (L,M) be non-zero. For any t ≥ 0,

the morphism f induces a path in indA

L
gt−→Mt

ft−→ . . .→M1
f1−→M0 = M

with f1, . . . , ft irreducible, gt ∈ rad∞A (L,Mt) and f1 . . . ftgt 6= 0. Therefore, there
exists t such that Mt ∈ (Γi)�Σi

and rad∞A (L,Mt) 6= 0, a contradiction to the fact

that (Γi)�Σi
is generalised standard.

It remains to prove the convexity of Γi. Assume that we have a path in indA:
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M = M0
f1−→M1 → . . .

ft−→Mt = N

with M , N ∈ Γi and M1, . . . ,Mt−1 /∈ Γi (thus t ≥ 2). Then, ft ∈ rad∞A (Mt−1, N).
Suppose first that N ∈ (Γi)≥Σi then, for any s ≥ 0, we have a path in indA

Mt−1
hs−→ Ns

gs−→ . . .→ N1
g1−→ N0 = N

with g1, . . . , gs irreducible and hs ∈ rad∞A (Mt−1, Ns) such that hsgs . . . g1 6= 0.
Then there exists s such that Ns ∈ (Γi)�Σi

.

We may thus suppose from the start that N ∈ (Γi)�Σi
. In particular, N /∈ RA

and thus M /∈ RA and they are Aλ-modules because of 3.5. We claim that all
Mj are Aλ-modules. Indeed, if this is not the case, by 2.5 there exists Mj ∈ RA,
a contradiction. Then the given path consists entirely of Aλ-modules, with
M,N ∈ (Γi)�Σi

. The conclusion then follows from the fact that (Γi)�Σi
is part of

a directed component, hence convex component of Γ(modAλ). �

Recall that an artin algebra A is laura if the class indA \ (LA ∪ RA) contains
only finitely many objects [3]. A laura algebra which is not quasi-tilted always has
a unique Auslander-Reiten component which is non-semiregular and faithful. The
algebra A is called weakly shod [17] if this component is directed.

Corollary 3.10. Let A be a strict ada algebra. If A is laura, then it is weakly shod.

Proof. Let Γ be the faithful non-semiregular component of Γ(modA). Since A is
strict, there exists a projective A-module Px such that Px ∈ RA \ LA. Because Γ
is faithful, there exists M ∈ Γ such that HomA(Px,M) 6= 0 and so M ∈ RA \ LA.
This shows that Γ ∩RA 6= 0 and that Γ * LA. Dually Γ * RA.

Because of [1], Theorem B, the intersection of Γ with the class Σ of indecom-
posable Ext-projectives in addRA is a right section of Γ. Since Γ = Γi is directed
because of 3.9, we get that A is weakly shod. �

The proof of Theorem 3.1 will be completed once we prove the following lemma

Lemma 3.11. Let A be a strict ada algebra. If Γ is a component of Γ(modA)
distinct from the Γi, then Γ is either a component of Γ(modAλ) or is contained in
RA (and in this latter case, is a component of Γ(modAρ)). Moreover, we have

i) If HomA(Γ,∪iΓi) 6= 0 then Γ is a component of Γ(modAλ), or
ii) If HomA(∪iΓi,Γ) 6= 0 then Γ is a component of Γ(modAρ)

Proof. Because Γ 6= Γi for all i, we have Γ∩Σ = ∅. Because of [1](Theorem B), we
get that either Γ ⊆ RA or Γ∩RA = ∅. In the first case, clearly, Γ is a component of
Γ(modAρ) contained in RA. We claim that, if Γ ∩RA = ∅, then Γ is a component
of Γ(modAλ). It suffices to prove that each X ∈ Γ is an Aλ-module. Indeed, X ∈ Γ
implies X /∈ RA. Applying 2.5, X ∈ indAλ.

Now, assume that HomA(Γ,∪iΓi) 6= 0 and Γ is not a component of Γ(modAλ).
Let X ∈ Γ be not an Aλ-module. Then, again by 2.5, X ∈ RA and so Γ∩RA 6= ∅.
Because of [1](Theorem B), we have Γ ⊆ RA.

Since HomA(Γ,∪iΓi) 6= 0, there exist M ∈ Γ and N ∈ Γi for some i such
that HomA(M,N) 6= 0. Since M ∈ RA, thus N ∈ RA. Because of 3.4, we have
N ∈ (Γi)≥Σi . Since Γ 6= Γi, we have HomA(M,N) = rad∞A (M,N) 6= 0. Thus, for
any s ≥ 0, there exists a path in indA
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M
hs−→ Ns

gs−→ . . .→ N1
g1−→ N0 = N

with g1, . . . , gs irreducible and hs ∈ rad∞A (M,Ns) such that g1 . . . gshs 6= 0. There-
fore, there exists s such that Ns ∈ (Γi)�Σi

. But then Ns ∈ RA, a contradiction to

3.4. This completes the proof of i).
Finally, assume similarly that HomA(∪iΓi,Γ) 6= 0 and Γ is not a component of

Γ(modAρ). In particular, Γ is not contained in RA and since moreover Γ ∩ Σ = ∅,
we deduce from [1], Theorem B, that Γ ∩RA = ∅.

By hypothesis, there exist i, M ∈ Γi and X ∈ Γ such that HomA(M,X) 6= 0. If
M ∈ (Γi)≥Σi , then M ∈ RA by 3.4, so that X ∈ RA, a contradiction. Therefore,
M is not a successor of Σi. We then consider two cases.

Suppose first that (Γi)�Σi
contains no injective. In this case, Σi is a section in

the directed component Γi, because of [1](2.3) and moreover Γi is the connecting
component of the tilted algebra A/AnnΣi, and Σi is a complete slice, because of
[1](3.6). Now, (Γi)≥Σi ⊆ RA by 3.4, then (Γi)≥Σi consists of Aρ-modules. Since
Σi cogenerates (Γi)�Σi

, then (Γi)�Σi
also consists of Aρ-modules. In particular,

A/AnnΣi is a connected component of Aρ. Because Σi is a complete slice, M ∈
Γi is not a successor of Σi if and only if M is a predecessor of Σi. Therefore
rad∞A (M,X) 6= 0 gives, for any t ≥ 0, a path in indA

M = M0
f1−→M1 → . . .

ft−→Mt
gt−→ X

where the fi are irreducible and gt ∈ rad∞A (Mt, X) is such that gtft · · · f1 6= 0. Let
t ≥ 0 be such that Mt is a successor of Σi, then Mt ∈ RA, hence X ∈ RA and we
get a contradiction in this case.

Suppose next that (Γi)�Σi
contains an injective A-module I. Because of 3.5, we

have I /∈ RA. Hence I ∈ LA and so is Ext-injective in addLA. Using the notation
in 3.1, this shows that the Ext-injectives in addLA form a left section Σ′j in some
component Γ′j . Note that Γ′j = Γi. Since rad∞A (M,X) 6= 0, there exists, for each
t ≥ 0, a path in indA

M = M0
f1−→M1 → . . .

ft−→Mt
gt−→ X

where the fi are irreducible and gt ∈ rad∞A (Mt, X) is such that gtft · · · f1 6= 0. Let
t ≥ 0 be such that Mt is not a predecessor of Σ′j . Because of 3.4, this gives Mt /∈ LA.
Therefore, X /∈ LA. This shows that Γ contains at least an indecomposable X
which is not in LA. Now, we claim that Γ ∩ LA = ∅. By induction, it suffices to
show that no neighbour Y of X belongs to LA. If there is an arrow X → Y , then
X /∈ LA implies Y /∈ LA. Assume that we have an arrow Y → X and that Y ∈ LA.
We claim that in this case Y is Ext-injective in addLA. This is obvious if Y is
injective, and, if it is not, then there is an arrow X → τ−1

A Y so that τ−1
A Y /∈ LA

and again Y is Ext-injective in addLA. In particular, Γ = Γ′l for some l and
Y ∈ Σ′l. Now there exists a non-zero morphism gs ∈ rad∞A (Ms, X). This morphism
factors through Σ′l (because X is a successor of Σ′l). Then Σ′l ⊆ LA yields Ms ∈ LA
and this is a contradiction. Therefore Y /∈ LA. This shows that Γ ∩ LA = ∅.
Because of 2.5, Γ consists of Aρ-modules and hence is a component of Γ(modAρ). �



ALGEBRAS DETERMINED BY THEIR SUPPORTS 13

4. The supports of an ada algebra

Throughout this section, we let A be a strict ada algebra. As in 3.1, we denote
by Σ the class of Ext-projectives in addRA and by Σ′ the class of Ext-injectives in
addLA.

Proposition 4.1. Each of Aλ and Aρ is a direct product of tilted algebras.

Proof. Indeed, assume that B is a connected component of Aλ and is not tilted.
Since A is strict, we have B 6= A and so there exist an indecomposable B-module
X and an irreducible morphism X → Px with Px an indecomposable projective
A-module which is not a B-module. Since X is isomorphic to an indecomposable
summand of radA(Px), then Px /∈ LA hence Px ∈ RA and therefore is Ext-projective
in addRA.

We claim that X is a directed A-module. Indeed, X is not injective, so we have
an arrow Px → τ−1

A X and then we have two cases. If X /∈ RA then τ−1
A X ∈ RA

yields τ−1
A X ∈ Σ and so X ∈ τAΣ is a directed A-module. If X ∈ RA, then

X ∈ Σ and so is again directed. In fact, it follows from 3.9 that X lies in a
directed component of Γ(modA) and 3.8 that it lies in a directed component of
Γ(modB). Since B is quasi-tilted but not tilted, then this is the postprojective or
the preinjective component of Γ(modB).

Let e = ex +
∑
y∈B0

ey. Then A′ = eAe is ada, because of 2.8 and is a one-point

extension of B. Because of 2.9, we may assume that A′ = B[X].
Assume first that X lies in the postprojective component of Γ(modB). Let P ′x

be the indecomposable projective A′-module corresponding to the point x. Then,
considering P ′x as an A-module under the standard embedding of modA′ into modA,
we have an epimorphism Px → P ′x. Since Px ∈ RA \ LA, then P ′x ∈ RA \ LA
as well. Applying [4](Proposition 2.1), we get P ′x ∈ RA′ . On the other hand,
since B is quasi-tilted but not tilted, there exists a non-directed indecomposable
projective B-module Py lying in an inserted tube or component of type ZA∞. We
may assume that y is a source in B and hence also in A′. Thus Py = P ′y is a non-
directed indecomposable projective A′-module. On the other hand, P ′x lies in the
postprojective component of Γ(modA′). We claim that there exists a path P ′x  P ′y
in modA′. Indeed, since B is connected and y is a source, there exists z ∈ B0 such
that P ′z lies in the postprojective component of Γ(modA′) and a non-zero morphism
f : P ′z → P ′y. Since f ∈ rad∞A′(P ′z, P

′
y), there exists, for any t ≥ 0, a path in indA

P ′z = M0
f1−→M1 → . . .

ft−→Mt
gt−→ P ′y

with the fi irreducible and gt ∈ rad∞A′ (Mt, P
′
y) such that gtft . . . f1 6= 0.

Let t be such that Mt is a successor of P ′x. This yields the required path P ′x  P ′y
in modA′. But we have already seen that P ′x ∈ RA′ , a contradiction because P ′y is
not directed.

Therefore, we may assume X to lie in the preinjective component of Γ(modB).
Now, since B is quasi-tilted but not tilted, there exists a non-directed indecompos-
able injective B-module Iy lying in a co-inserted tube or component of type ZA∞.
Because A′ = B[X] and X is preinjective, then Iy is also an injective A′-module.
However, we have P ′x ∈ RA′ , and there exists a non-sectional path Iy  X → P ′x.
Because of [3](1.5), this implies that Iy /∈ RA′ . The algebra A′ being ada, we get
Iy ∈ LA′ a contradiction, because Iy is not directed. The proof is now complete. �
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It follows from 3.1 and 4.1 that, if A is an ada algebra, then we have a good
description of the indecomposable modules (or components) lying in LA∪RA: these
are modules (or components) over one of the tilted algebras Aλ and Aρ. We now
wish to describe those modules which do not belong to LA ∪RA.

Lemma 4.2. Let A be a strict ada algebra and X an indecomposable A-module not
lying in LA ∪ RA. Then there exist an indecomposable projective module P ∈ Σ
and a path X  P which is not refinable to a sectional path.

Proof. Indeed, since X /∈ RA, then there exists a path X  Y in indA where Y
is such that idY > 1. Hence there exists an indecomposable projective A-module
P such that we have a path X  Y → ∗ → τ−1

A Y → P in indA. Since X /∈ LA,
we also have P /∈ LA. Therefore P ∈ RA and so P ∈ Σ. �

Now, notice that C = Aλ ∩ Aρ is a full convex subcategory of Aλ (or Aρ) and
therefore is tilted, because of [19](III.6.5).

Proposition 4.3. Let A be a strict ada algebra, and X be an indecomposable A-
module. The following conditions are equivalent.

(a) X /∈ LA ∪RA.
(b) There exist P ∈ Σ projective, I ∈ Σ′ injective and two paths I  X and

X  P which are not refinable to sectional paths.
(c) X is a proper predecessor of Σ and a proper successor of Σ′.

Moreover, if this is the case, then X is an indecomposable C-module, generated
by Σ′ and cogenerated by Σ.

Proof. That (a) implies (b) follows from 4.2 and its dual. That (b) implies (c)
follows from [1](6.3), because the given paths are non-sectional. Finally, assume
that (c) holds. Since X is a proper predecessor of Σ, then there exists a non-
sectional path from X to some M ∈ Σ. Because of [1](6.3), this implies that
X /∈ RA. Similarly, X /∈ LA.

Now, if this is the case, then X being a proper predecessor of Σ implies
X ∈ indAλ, because of 3.6. Similarly, X ∈ indAρ. Therefore X ∈ indC. The
statements about generation and cogeneration follow from the fact that there exist
neither projectives nor injectives lying strictly between Σ′ and Σ. �

5. Hochschild cohomology and simple connectedness

Throughout this last section, all our algebras are finite dimensional algebras over
an algebraically closed field k.

Let A be a strict ada algebra. Then there exists an indecomposable projective
Px lying in RA \LA. Since projectives in RA are directed, we may assume that Px
has no projective successor. We then say that A is an ada extension of B = A\{x}.
Denoting by M the radical of Px, we have A = B[M ]. Note that ada extensions
are maximal extensions in the sense of [7].

Lemma 5.1. Let A = B[M ] be an ada extension. Then for every i ≥ 1, we have
ExtiB(M,M) = 0.

Proof. Same as [7](2.3). �



ALGEBRAS DETERMINED BY THEIR SUPPORTS 15

Let HHi(A) denote the ith Hochschild cohomology group of A with coefficients in
the bimodule AAA (see [18] for details). It is shown in [18](5.3) that, if A = B[M ],
then there exists a long exact sequence

0→ HH0(A)→ HH0(B)→ EndM/k → HH1(A)→ HH1(B)→ Ext1
B(M,M)→ · · ·

· · · → HHi(A)→ HHi(B)→ ExtiB(M,M)→ · · ·
We refer to this sequence in the sequel as Happel’s sequence. We also recall that the
extension point x is called separating if the number of indecomposable summands
of radPx equals the number of connected components of B = A \ {x}, see, for
instance [9].

Lemma 5.2. Let A = B[M ] be an ada extension. Then:

(a) There exists an exact sequence

0→ HH0(A)→ HH0(B)→ EndM/k → HH1(A)→ HH1(B)→ 0.

(b) For any i ≥ 2, we have HHi(A) ∼= HHi(B).
(c) HH1(A) ∼= HH1(B) if and only if the extension point is separating.

Proof. The statements (a) and (b) follow from 5.1 and Happel’s sequence. We
proceed to prove (c). The surjective morphism HH1(A)→ HH1(B) has kernel with
dimension equal to

dimk(EndM/k)− dimk HH0(B) + dimk HH0(A) = dimk EndM − dimk HH0(B)

because A is connected. Therefore, HH1(A) ∼= HH1(B) if and only if dimk EndM
equals the number of connected components of B, and this is the case if and only
if the extension point x is separating and M is a direct sum of bricks. Because of
3.1, every indecomposable projective lying in RA belongs to a directed generalised
standard component. Therefore, every indecomposable summand of M is a brick.
The statement follows. �

Remark 5.3. In particular, we proved that the module M is separated, see [9] for
the definition.

A triangular algebra A is called simply connected if, for every presentation A ∼=
kQ/I of A as a bound quiver algebra, the fundamental group of (Q, I) is trivial,
see [25, 9]. Let A = B[M ] where we denote by x the extension point. We fix a
presentation of A and consider the induced presentation of B. Let ∼ be the least
equivalence relation on the arrows of source x such that α1 ∼ α2 if there exists a
minimal relation of the form λ1α1v1 + λ2α2v2 +

∑
j≥3 λjwj . Let t be the number

of equivalence classes of arrows of source x under this relation. For each i, with
1 ≤ i ≤ t, let l(i) be the number of tuples of paths (u1, v1, . . . , un, vn) such that there
are minimal relations of the forms λ1,1α1u1 +λ2,1αnvn +

∑
j≥3 λj,1wj,1, λ1,2α1v1 +

λ2,2α2u2 +
∑
j≥3 λj,2wj,2, · · · where α1, · · · , αn are distinct arrows in the same

equivalence class, see [9](2.4).

Lemma 5.4. Let A be a strict ada algebra.

(a) If B is a direct product of simply connected algebras, then A is simply
connected if and only if the extension point is separating.

(b) If A is a simply connected strict ada extension, then B is a direct product
of simply connected algebras.
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Proof. (a) This statement follows from [2](3.6).
(b) Let B ∼= kQB/I

′ be an arbitrary presentation of B, then there exist a presenta-
tion A ∼= kQA/I of A such that I ∩kQB = I ′. Because of [9](2.4) it suffices to show
that l(i) = 0 for all i. However, if l(i) 6= 0 for some i, then there exists a tuple of
paths (u1, v1, · · · , un, vn) and a full subcategory C of A which is a split extension
of a subcategory D of the form

x
α1

α2

αn

x1

u1

v1
x2

u2

v2
· · · xn

un

vn

y1 y2 · · · yn

(indeed, there might be in C additional arrows from some yi to some yj). We
denote respectively by Px, P ′x, P ′′x the indecomposable projective module corre-
sponding to x in modA, modC and modD. Then P ′x = P ′′x ⊗D C and we have an

epimorphism from Px to P
′
x where P

′
x = P ′x ⊗C A. Now, Px ∈ RA \ LA (because

A is an ada extension), hence P
′
x ∈ RA \ LA. But then, because of [4](Proposition

2.1), P ′x ∈ RC . Hence, because of [11](2.4), we have P ′′x ∈ RD. However, radP ′′x is
a simple homogeneous module over the hereditary full subcategory of D with class
of objects D \ {x}. In particular, radP ′′x is not directed in indD, hence neither is
P ′′x . This however contradicts the fact that P ′′x ∈ RD (and [1](6.4)). Therefore
l(i) = 0 for all i as asserted and so B is a direct product of simply connected
algebras. �

We say that an ada algebra is of tree type if the orbit graph (see, for instance,
[14] or [7](4.1)) of each of the Γi is a tree.

Lemma 5.5. Let A = B[M ] be an ada extension. Then A is of tree type if and
only if B is of tree type and the extension point is separating.

Proof. Same as [7](4.1). �

A sequence of ada algebras of the form

Aλ = A0 & A1 & · · · & Am = A

is called an ada filtration of A provided that for each i, with 1 ≤ i ≤ m, there exists
an Ai−1-module Mi such that Ai = Ai−1[Mi] is an ada extension.

Proposition 5.6. Let A be a strict ada algebra. Then A admits an ada filtration.

Proof. Since A is strict, there exists an indecomposable projective in RA which is
not in LA. Since every such projective is directed, because of [1](6.4), there exists
(at least) a maximal projective Px ∈ RA \ LA. Let A = B[M ] where B = A \ {x}
and M = radPx. Because of 2.8, B is also an ada algebra. If B is not strict, then
every indecomposable projective B-module lies in LA ∩ indB = LB ⊆ LA and so
B = Aλ. Otherwise, we apply induction. �
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Corollary 5.7. Let A be a strict ada algebra, then

(a) HH1(A) = 0 if and only HH1(Aλ) = 0 and each of the extension points of
an ada filtration is separating.

(b) HHi(A) = 0 for all i ≥ 2.

Proof. (a) This follows immediately from 5.5 and 5.2.
(b) Follows from 5.5 and 5.2, using that Aλ is tilted and [20], Theorem 2.2. �

We also have the immediate corollary.

Corollary 5.8. Let A be a strict ada algebra. Then A is of tree type if and only if
Aλ is of tree type and each of the extension points in an ada filtration is separating.
�

We are now in a position to prove our main result of this section.

Theorem 5.9. Let A be an ada algebra. The following are equivalent:

(a) A is simply connected.
(b) HH1(A) = 0
(c) A is of tree type.

Proof. We may assume that A is strict ada.
Assume first that HH1(A) = 0. Because of 5.7(a), we have HH1(Aλ) = 0 and

each of the extension points in a maximal filtration is separating. Because of [22],
HH1(Aλ) = 0 if and only if Aλ is a direct product of simply connected algebras.
Applying 5.4(a) and induction, we get that A is simply connected.

Conversely, assume that A is a simply connected ada algebra. Therefore there
exists a maximal projective Px ∈ RA, such that A = B[M ] is a maximal extension
where, as usual, B = A \ {x} and M = radPx. Now, x is a source in A, hence,
by [9](2.6), x is separating. On the other hand, because of 5.4(b), B is a direct
product of simply connected algebras. Hence, inductively, HH1(B) = 0. Applying
5.2(c), we get HH1(A) = 0.

The equivalence with condition (c) is proved in the same way using 5.8, and the
fact proved in [22], that Aλ is of tree type if and only if HH1(Aλ) = 0. �

Corollary 5.10. Let A be an ada algebra. Then A is simply connected if and only
if the Hochschild cohomology ring is equal to k.

Proof. This follows from 5.9 and 5.7(b). �
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[26] A. Skowroński, On artin algebras with almost all indecomposable modules of projective or
injective dimension at most one, Cent. Eur. J. Math. 1 (2003), 108-122.
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