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AssTrACT. We discuss the known generalisations of the classes of tilted and
quasi-tilted algebras such as the left and right supported algebras, the laura
algebras, the left and right glued algebras, the weakly shod and the shod
algebras. We present their characterisations and main properties, underlining
the role of the left part £4 and the right part R4 of the category of finitely
generated modules over an artin algebra A.

Introduction

The objective of the representation theory of artin algebras is to characterise an
algebra by properties of its module category. For this purpose, numerical invariants,
such as the projective and the injective dimensions of a module, are especially
useful. As a first step, one wishes to study modules of projective dimension at most
one (and dually, those of injective dimension at most one). However, it is easily
seen in elementary examples that such modules occur in a scattered fashion inside
the module category. To overcome this difficulty, Happel, Reiten and Smalg have
considered in [42] the so-called left and right parts of the module category. Let
A be an artin algebra, and modA denote the category of finitely generated right
A-modules, then the left part £ 4 is the full subcategory of modA consisting of all
indecomposable A-modules whose predecessors have projective dimension at most
one. The right part R4 is defined dually. These classes were used successfully
in [42] to study the quasi-tilted algebras. Since then, many generalisations of the
quasi-tilted algebras were introduced and studied over the years, such as the shod,
weakly shod, laura or left (and right) supported algebras. In the study of all these
classes, the left and the right parts of the module category have played an essential
role.

The object of these notes is to present these classes of algebras, their existing
characterisations and main properties, underlining the use of the left and right
parts. In order to convey the flavour of the subject, we have tried to present proofs
or sketches of proofs for several of the results stated here. We have also inserted
many examples.
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This paper is organised as follows. After a preliminary section devoted to fixing
the notations and recalling the basic facts needed in this survey, we recall the
main facts on the left part in our section two : their elementary properties, the
Ext-projective and Ext-injective modules, the case where its additive closure is an
abelian exact subcategory and the left (and right) supported algebras. Section 3
is devoted to the Auslander-Reiten components which occur in these classes : it is
seen there that properties of the left and the right parts are reflected in properties
of certain paths of the module category, an observation that proves crucial in the
sequel. Sections 4, 5 and 6 are respectively devoted to laura algebras of which the
left (and right) glued algebras are special cases, weakly shod and shod algebras. In
our last section 7, we describe three constructions which preserve these properties,
namely passing to full subcategories, to subalgebras such that the original algebra
becomes a split extension of the latter, and finally to skew group algebras.

1. Notations and preliminaries

1.1. Algebras. Throughout this survey, all algebras are basic and connected
artin algebras. We sometimes consider an algebra A as a category, of which the
object class Ay is a complete set of primitive orthogonal idempotents, and the group
of morphisms from e; to e; is e;Ae;j. An algebra B is a full subcategory of another
algebra A if there exists an idempotent e € A such that B = ede. It is convex
in A if, whenever there exists a sequence e;,,é€;,,-..,e; of primitive orthogonal
idempotents such that e;,, Ae;, # 0 for 0 <1 <t and ee;, = €;,, ee;, = e;,, then
ee;, = e;, for each [. Finally, A is triangular if there exists no sequence of primitive
orthogonal idempotents e;,, e;,,- - -,e; = e;, such that e;_, Ae; # 0 for 0 <1 < t.

1.2. Modules. For an algebra A, we denote by modA the category of all
finitely generated right A-modules, and by indA a full subcategory of modA con-
taining exactly one representative from each isomorphism class of indecomposable
A-modules. We say that a full subcategory C C indA is finite if it has only finitely
many indecomposable objects and that it is cofinite if indA \ C is finite. We some-
times writes M € C to express that M is an object in C. Further, we denote by
addC the full subcategory of modA having as objects the direct sums of indecom-
posable summands of objects in C, and if M is a module, we abbreviate add{M}
as addM. Given an algebra A, we denote by K((A) the Grothendieck group of A.
We denote the projective (or injective) dimension of a module M as pdM (or idM,
respectively). The global dimension of an algebra A is denoted by gl.dimA.

Given M, N € indA, we write M ~» N in case there exists a path

(+) M=X,Ihx, ... 5%, , I x, =N

(t > 0), from M to N in ind A, that is, the f; are non-zero morphisms and the X; are
indecomposable modules. In this case, we say that M is a predecessor of N and
N is a successor of M. Thus each indecomposable module is a predecessor and
a successor of itself. A path in indA starting and ending at the same module and
involving at least one non-isomorphism is a cycle. An indecomposable module M
which lies on no cycle in ind A is a directed module. When each f; in the path (x)
is an irreducible morphism, we say that (x) is a path of irreducible morphisms.
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For an algebra A, we denote by I'(modA) its Auslander-Reiten quiver, and by
T4 the Auslander-Reiten translation DTr. Given a module M, we say that M is
left (or right) stable if 74 M # 0, for any integer n > 0 (or n < 0, respectively).
Given a connected component I' of I'(modA), we say that T' is convex if, for any
path (x) : M ~» N in indA as above, where M, N € T, all the X; in (x) belong to
T'. A path (%) of irreducible morphisms is sectional if 74(X;41) # X;_1, for all ¢
such that 1 < i < t. In case there exists ig such that 74(X;,4+1) = X;,—1, the triple
(Xio—1,Xig, Xig+1) is a hook. A refinement of (x) is a path

(%) M=x, By xt By laxr Loy
with s > ¢ such that there exists an order-preserving function o : {1,---,¢t — 1} —

{1,---,s— 1} such that XiEX(’T(i),for all i with 1 <i<t—1.

For further definitions or facts needed on the module category, we refer the reader
to [19, 58].

1.3. Tilted and quasi-tilted algebras. For tilting theory, we refer to [3,
43, 58]. We recall that, if T is a tilting module over an hereditary algebra H, then
its endomorphism algebra A = End Ty is said to be tilted. Tilted algebras play a
crucial role in the representation theory of artin algebras. It is especially significant
for us to recall that, if A is tilted, then either it is concealed, or else its Auslander-
Reiten quiver ['(modA) has a unique so-called connecting component I" which
is faithful and such that every other component either maps to I' or receives maps
from T (see [47, 51]). The quasi-tilted algebras [42] generalise the tilted algebras.
We recall that, if T is a tilting object in a connected locally finite hereditary abelian
category H, then its endomorphism algebra A = End T} is said to be quasi-tilted.
An algebra A is quasi-tilted if and only if gl.dimA < 2 and, for every M € indA,
we have pdM < 1 or idM < 1 (see [42, (II.2.3)]). One important property of
quasi-tilted algebras is the existence of a trisection of the module category, see [42,
(IL.1.7)].

2. The left and the right parts of a module category

2.1. General properties of L4 and R4. Let A be an algebra. Following
[42], we let £4 denote the full subcategory of indA having as objects those modules
X such that, for any predecessor Y of X, the projective dimension pdaY of Y does
not exceed one. The class L4 is called the left part of modA. Dually, the right
part R4 is the full subcategory of indA having as objects those modules X such
that, for any successor Z of X, the injective dimension id4Z of Z does not exceed
one.

For the sake of brevity, we refrain from now on stating the dual of each statement
and leave the primal-dual translation to the reader.

REMARK. Since, clearly, £ 4 is closed under predecessors, then £ 4 is the torsion-
free class of a split torsion pair (add(indA \ £4),addL4).

The definition of the left part does not say how to verify in practice whether a
given indecomposable module X belongs to £4 or not. The following result says
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that instead of checking all predecessors of X, it suffices to look at the "immediate"
predecessors.

THEOREM 2.1.1. [10] Let A be an artin algebra, and X be an indecomposable
A-module. Then X € L4 if and only if, for every indecomposable module M such
that pda M > 2, we have Homa(M,X) =0. O

The proof is heavily inspired from the proof of [42, (II.1.5)] (done under the
assumption that A is quasi-tilted : this assumption turns out to be unnecessary).

The following results give a finer description of the left part and some of its
properties.

PROPOSITION 2.1.2. [6, (1.6)] Let A be an artin algebra. Then L4 consists of the
modules N € indA, such that, if there exists a path from an indecomposable injective
module to N, then this path can be refined to a path of irreducible morphisms, and
any such refinement is sectional.

Proof (Sketch). Assume M, N are modules such that M ~» N and pdaM > 2,
then it is easy to construct a path I — 74M — x — M ~~ N not refinable to
a sectional path. For the converse, we show that, if I is indecomposable injective,
then there are only finitely many N € L4 with a path I ~ N. Moreover, any such
path is refinable to a path of irreducible morphisms, and any such refinement is
sectional. O

PROPOSITION 2.1.3. [8, (1.5)] Let A be an artin algebra, and T' be a connected
component of T'(modA). If T contains injective modules, then Lo NT contains no
module lying on a cycle of T'.

Proof (Sketch). If there exists a module M € L4 NT, lying on a cycle (x) of T,
then using [6, (1.4)], we construct a path of irreducible morphisms from an injective
in " to M and, by using (2.1.2) above, we construct a sectional path containing the
cycle () as a subpath, a contradiction to [22, 24]. O

COROLLARY 2.1.4. [8, (1.6)] Let A be a representation-finite artin algebra. Then
L4 is directed. O

EXAMPLE 2.1.5. Let k be a field and A be the the radical square zero k-algebra
given by the quiver
2
[ ]
.</—\.

1 3
We get the following Auslander-Reiten quiver:

where we identify the two copies of S;. Here (and in the sequel), we denote by
P, (or I, or S;, or e;) the indecomposable projective (or injective, or simple, or
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primitive idempotent, respectively) corresponding to the point z of the quiver. It
is easy to check that L4 = {Pi, P2}, that R4 = {I, I3} and that the directed
modules are precisely those of L4 U R 4.

2.2. Ext-projective and Ext-injective modules. We recall that, if C is an
additive full subcategory of mod A, closed under extensions, then an indecomposable
M € C is called Ext-projective (or Ext-injective) in C if Ext! (M, —)|c =0 (or
Exty(—, M)|c = 0, respectively). It is shown in [21, (3.4)] that if C is a torsion-free
class, then M is Ext-injective in C if and only if TXIM is a torsion object.

Roughly speaking, the Ext-projectives lie at the beginning of the subcategory C,
and the Ext-injectives at the end. Therefore, characterising them gives "bounds"
for the subcategory.

We define the following subclasses of L4, see [8, (3.1)].

DEFINITION 2.2.1. Let

(a) &1 ={ M € L4 | there exists an injective I € indA, which is a predecessor
of M}.

(b) Ea={ M € La\ & | there exists a projective P € indA\ L4 and a
sectional path from P to TXIM}.

(C) SA = 51 U 52.

We write £ = £4 when there is no place for ambiguity.
The next theorem gives a complete characterisation of the Ext-projective and the
Ext-injective modules in £ 4.

THEOREM 2.2.2. [8, (3.1)] Let A be an artin algebra, and M be an indecomposable
A-module. Then:

(a) M is Ext-injective in addL4 if and only if M € &;
(b) M is Ext-projective in addLa if and only if M is projective and lies in
La. O

Since L 4 is closed under predecessors, the Ext-injectives are evidently more useful
than the Ext-projectives. In fact, their description can be made more precise with
the following result.

PROPOSITION 2.2.3. [8, (3.4)] Assume that M € £ and that there exists a path
M ~~ N, with N € La. Then this path can be refined to a sectional path of
irreducible morphisms and N € £. In particular, £ is convezr in modA. O

EXAMPLE 2.2.4.

Let A = kQ/I be given by the quiver:

4./. e A S/ I
AR DA 2 1
k4 i

0

L] a )
4 5



6 I. ASSEM - F. U. COELHO - M. LANZILOTTA - D. SMITH - S. TREPODE

bound by fa = 0, 6 = 0 and dn = 0. Then A has a unique postprojective
component :

and &£ consists of the indicated modules.

2.3. The left support algebra. In order to study the objects in L4, it is
useful to consider the following full subcategory of A.

DEFINITION 2.3.1. [8, 64| Let A be an artin algebra, and P denote the direct sum
of a full set of indecomposable projectives in L. The algebra Ay =EndP is called
the left support of A.

It is clear that any indecomposable in £ 4 has a canonical Ay-module structure:
if X € L4 and P, is an indecomposable projective such that Homa(P,, X) # 0,
then P, € L4.

PROPOSITION 2.3.2. [8, (2.3)], [64, (3.1)] Let A be an artin algebra. Then Ay is
a direct product of connected quasi-tilted algebras.

Proof (Sketch). It is easily seen that A can be written in the form

[ A4y 0
a=|5 5]

and, for every = € By, we have P, ¢ L 4. Now, one can show that, in this situation,
L4 C L4,. The result then follows from [42, (IL.1.14)]. O

As an easy consequence of this proposition, and of an obvious induction, one can
show that, if A is a triangular artin algebra, then there exists a filtration of A by
full subcategories A = A; D ... D A; D Ag = Ay and A;-modules M; such that
Aiv1 = Ai[M;] and M; ¢ addL 4, +1. Moreover, L4 C L4, , C...C Ly, =La,.
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2.4. The case where add(,4 is abelian. We consider more generally a full
subcategory C of ind A, closed under predecessors, and ask when is addC an abelian
subcategory of modA such that the embedding addC — modA is exact (we then
say simply that addC is an abelian exact subcategory of modA).

It is easy to see that addC is an abelian exact subcategory of modA if and only if
it is closed under cokernels, or if and only if it is closed under composition factors.
We have the following theorem.

THEOREM 2.4.1. [15] Let A be an artin algebra, and C be a full subcategory of
indA. The following statements are equivalent:

(a) C is closed under predecessors and addC is an abelian exact subcategory

of modA;
. . . ~|CO0
(b) There exists an isomorphism A = M B

injective C'-module, and addC = modC.

] such that M¢ is an hereditary

If this is the case, then gl.dim.C =sup{pd,X | X €eC}. O

. cof. . 00
One can show that, if A = MB] is as in (b), and e = [0 1

indecomposable A-module not in C is generated by eA.

] , then any

Taking C = L4, it follows directly from the above theorem that, if its equivalent
conditions are satisfied, then the left support Ay is an hereditary algebra.

COROLLARY 2.4.2. Let A be a triangular algebra such that addL 4 is an abelian
exact subcategory of modA, then A = Ay (and, in particular, is hereditary).

Proof. If this is not the case, there exists an indecomposable projective P, which is
not an Ay-module. Therefore, rad P, has at least one indecomposable summand not
lying in £4. Consequently, there exists z1 ¢ (Q 4, )o such that Hom 4(P,,, P;) # 0.
As before, radP,, has at least one indecomposable summand not lying in L4.
Inductively, we get a sequence of non-zero non-isomorphisms between projectives
-+« = P, & P,, = P,. Since there are only finitely many indecomposable projec-
tives, this yields a contradiction to the triangularity of A. O

Another application of this theorem is in the case of local extensions of hereditary
algebras, see [53]. An algebra A is called a local extension of an hereditary

algebra H if A = []\Ij }0%] where R is a local algebra and g My is a bimodule.
H O . .
COROLLARY 2.4.3. Let A = [M R be a local extension of an hereditary algebra

H, where R is not a skew field, then addL,4 is an abelian exact subcategory of
modA if and only if My is injective. O

EXAMPLES 2.4.4.

(a) Let k be a field, and A be the k-algebra given by the quiver

B
ey QL
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bound by 62 = 0 and 6v8 = 0. Then A is the local extension of the
hereditary algebra H given by the quiver

.&a.&.
1 2 3
by the injective module I; & I>. In this case, addL4 = modH is an abelian
exact subcategory of modA.
(b) Let A be as in (2.1.5). Then addL 4 is not an abelian exact subcategory of
modA, because it does not contain the cokernel Sy of the monomorphism
P - P.

2.5. Left supported algebras. We now study the situation where an arbi-
trary A-module can be (left or right) approximated by a module in addL 4, in the
sense of [18]. We recall from [20] that a full subcategory C of modA is called con-
travariantly finite if, for any A-module M, there exists a morphism f¢ : M¢ - M
such that M¢ € C and, if f : N — M is any morphism with N € C, then there
exists g : N — M¢ such that f = fcg. The dual notion is that of a covariantly
finite subcategory. Since L4 is closed under predecessors, then addL 4 is trivially
covariantly finite. This leads us to the following definition:

DEFINITION 2.5.1. [8] An artin algebra A is called left supported provided the
class addL 4 is contravariantly finite in modA.

We define dually right supported algebras.

We need some notation. We denote by E the direct sum of all indecomposable A-
modules lying in £ (see (2.2)) and by F the direct sum of a full set of representatives
of the isomorphism classes of indecomposable projective A-modules not lying in £ 4.
Finally, set T = E @ F. It follows easily from (2.2.2) that T is a partial tilting
module. It turns out that it is a tilting module if and only if the algebra is left
supported.

THEOREM 2.5.2. [8, (4.2)(5.1)] The following are equivalent for an algebra A:

(a) A is left supported;

(b) addL4 = CogenkE;

(¢ T=E@®F is a tilting module;

(d) Each connected component of Ay is o tilted algebra, and the restriction to
this component of E is a slice module.

Proof (Sketch). (a) implies (d). This is done by checking that the Liu-Skowroriski
criterion is satisfied (see [52, 63]).

(d) implies (b). We may, without loss of generality, assume that Ay is connected.
First observe that, since A, admits the restriction of E as slice module, then any
indecomposable A-module is either a predecessor or a successor of £. Moreover,
the class of predecessors of £ in modA, coincides with the class of Ax-modules
cogenerated by E. This, together with (2.2.3), imply the statement.

(b) implies (c). Since T is a partial tilting module, it remains to show that the
number of isomorphism classes of summands of E equals the number of isomorphism
classes of indecomposable projective A-module lying in £4 that is, by (2.2.2), the
number of isomorphism classes of of indecomposable Ext-projectives in £ 4. But, as
addL4 = CogenE by assumption, it follows from [21, (A.6)] that the latter equals
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the number of isomorphism classes of indecomposable Ext-injectives in addL 4. The
result then follows from (2.2.2).

(c) implies (a). It is not hard to prove that the assumption implies that the objects
in L4 either lie in &, or in the torsion-free class F(T') induced by the tilting module
T. Moreover, F(T') is contravariantly finite by [68]. Therefore so is addL4. O

The above theorem generalises the results of [30]. For this reason, the module T'
is called the camnonical tilting module.

One word of caution is necessary: one could imagine that the sets £4 of A and
€4, of Ay coincide and then conclude that the above conditions are equivalent to
the fact that each connected component of Ay is left supported. This is not the
case as is shown in (2.5.5)(d) below.

COROLLARY 2.5.3. [8, (5.3)] Let A be a left supported algebra, and M € addL 4
be such that ExtYy (M, M) = 0. Then C = EndMy is a tilted algebra.

Proof. Since M € addfa, then M is an Ajy-module. Furthermore,
Ext}‘h (M,M)=0and C = EndM4,. By (2.5.2), there exists an hereditary algebra
H and a tilting module Ug such that Ay = EndUg. Then there exists a module
V € T(U) such that M = Hompg (U, V). Furthermore, Ext};(V,V) = 0, so that V
is a partial tilting module. By [41, (II1.6.5)], EndVy is a tilted algebra. But now,

COROLLARY 2.5.4. Let A be a quasi-tilted algebra. The following are equivalent:

(a) A is left supported;

(b) LA consists of predecessors of £;

(c) E#0;

(d) L4 contains an injective;

(e) I'(modA) has a connecting component containing an injective.

In this case A is tilted, having £ as complete slice.

Proof. Since A is quasi-tilted, then £, contains all indecomposable projective
A-modules by [42, (I1.1.14)|. Hence, L4 # 0 and & = 0.

(a) implies (b). If A is left supported, then addCa = CogenE by (2.5.2), and so
each module in L4 is a predecessor of £. Now, since £ C L4 by definition, (b)
follows from the fact that £,4 is closed under predecessors.

(b) implies (¢). This clearly follows from L4 # 0.

(c) implies (d). If £ # @, then & # ) because & = & U & and & = P. The claim
follows from the definition of £ and the fact that £4 is closed under predecessors.
(d) implies (e). Let I be an indecomposable injective A-module such that I € L4.
By [37, (6.5)], the connected component of I'(modA) containing I is connecting.
(e) implies (a). Let I" be a connecting component in I'(modA) containing an in-
decomposable injective A-module and let ¥ be a complete slice in I'. Then there
exists a complete slice ¥’ induced from ¥ containing only injective modules as
sources. Indeed, if ¥ satisfies this condition, then ¥ = ¥'. Otherwise, if M is a
non-injective source of X, replace M by TXlM in ¥ and all the morphisms M — N
by the corresponding morphisms N — TglM . This procedure must stop because
I" contains injective modules by assumption. In particular, every element in X' is
a successor of an injective. Now, since each complete slice belongs to £ 4, we infer
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that ¥’ C &;. But then, since ' contains injectives and, clearly, £ C T, it follows
from [8, (3.5)] that |&1| = |€] = |X'|. Therefore £ = ' and A is left supported by
(2.5.2)(d) above. O

EXAMPLES 2.5.5.

(a) If A is representation-finite, then A is obviously left (and right) supported.
(b) For any n > 2, let A = A(n) be the radical square zero algebra given by
the quiver

Here, £4 is given by the full subcategory generated by the Kronecker
algebra I: e . Each morphism M — N in indA, with M € L4 and

N ¢ L4 factorthhrough I, and hence A is left supported. Since n is
as large as we want, this example underlines the basic intuition about
left supported algebras : A is left supported whenever the left part £4 is
well-behaved, but the rest of the module category may have any possible
shape.

(c) Let A be such that addL4 is an abelian exact subcategory of modA. It
follows from 2.4.1 that addL4 = modAy. Since modA, is cogenerated by
DA,, it follows from [68] that addL 4 is contravariantly finite in modA,
that is, A is left supported.

(d) Consider the algebra A of (2.2.4). Here, F' = Pj5 and it is easy to check
that T = E @ F is a tilting module. So, A is left supported by (2.5.2).
Further, A, is the direct product of tilted algebras A; and A, given
by the full subcategories generated by the sets of vertices {1,2,3} and
{4,5,6,7,8,9,10,11}, respectively. Obviously, A; is representation-finite,
and hence left supported. On the other side, the tilted algebra A has a
unique connecting component of the form

P6 ................... @ e [
v

NSNS

x>P; >0 —>0-—>0>0 ......

2N N0 N\

P4 ................. S5 ................... @ e [

In particular, this component contains no injective module, and so A, is
not left supported by (2.5.4). Moreover, £4, is empty while the restriction
of £4 to A, is not.

Theorem 2.5.2 also gives information on the structure of the Auslander-Reiten
quivers of representation-infinite left supported algebras. Indeed, if A is such an
algebra, it is easy to show (see [8, (5.5)]) that L4 is infinite if and only if there exists
a component I' of ['(modA) lying entirely in £4, and this is the case if and only
if I(modA) has a postprojective component without injectives. In fact, applying
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[51], we see that the components of I'(modA) lying entirely in £4 are of one of
the following forms : postprojective component(s), semiregular tube(s) without
injectives, component(s) of the form Z A, or ray extension(s) of ZA.

3. Paths and quasi-directed components

3.1. Paths from injective modules to projective modules. As we see in
further sections, many families of left supported algebras may be characterised in
terms of paths from indecomposable injective modules to indecomposable projective
modules (see Sections 4, 5 and 6). For instance, it is well-known (see [42, (I1.1.14)])
that an artin algebra A is quasi-tilted if and only if any path in indA from an
injective module to a projective module can be refined to a sectional path.

In order to have a larger view of this process, it is convenient to study the case
where the paths in indA from the injective modules to the projective modules
contain a small number of hooks, that is, the case where there exists a fixed integer
myg for which any such path contains at most mg distinct hooks. This leads to the
(seemingly more general) case where there exists an integer ng such that any path in
indA from an injective module to a projective module contains at most ng distinct
modules. In fact, we show in this section that these approaches are equivalent.

3.2. Quasi-directed components. We start with some definitions. We
recall that an Auslander-Reiten component I' is generalised standard if
rad®(X,Y) =0 for all X, Y in T, see [62]. A generalised standard Auslander-
Reiten component is quasi-directed if it contains only finitely many non-directed
modules, that is, modules lying on a cycle in indA, see [6, (3.1)]. Finally, an
Auslander-Reiten component T' is directed if it contains only directed modules,
and is convex if any path in indA with end-points in I' lies entirely in T'.

EXAMPLES 3.2.1.

(a) Let A be a representation-finite algebra. Then the unique component of
I'(modA) is trivially quasi-directed.

(b) Let A be a tilted algebra. It follows from the well-known description of
its Auslander-Reiten quiver [51] that the only quasi-directed components
are the postprojective component(s), the preinjective component(s) and
the connecting component(s), all of which are actually directed.

(c) Let A be an artin algebra. A component I' of I'(modA) is called a -
component if all but at most finitely many modules in I lie in the 74-
orbit of a projective module and I contains only finitely many non-directed
modules (the dual notion is that of ;-component), see [28]. Tt follows
from [28, (4.2)] and [69, (1.1)] that, if T is a m-component, then T is
convex and quasi-directed.

(d) Let k be a field, and A be the k-algebra given by the quiver



12 I. ASSEM - F. U. COELHO - M. LANZILOTTA - D. SMITH - S. TREPODE

bound by a8 =0, 8v; =0, v:6 =0,0e =0, ex =0, nv; = 0 and pv; =0
(for i € {1,2}). Then I'(modA) is of the form:

AT Ay \/></SS VITSALSE

AV
INCNET NS
® \/\ nol

&

T, T, Ty

where we identify the two copies of S3. Then it is easy to see that the
components I'y, I's and I's are convex and quasi-directed. In particular,
the tilted algebra B = A/Ann(T';) is the Kronecker algebra generated by
the set of vertices {1, 2}, and we observe that I'; is a connecting component
of I'(modB). We recall that the annihilator of an Auslander-Reiten
component I' is Ann(I") = |y AnnX.

The purpose of this section is to give a complete classification of the quasi-directed
components of the Auslander-Reiten quiver of an artin algebra as well as some of
their basic properties. The first important property to mention at this stage is
that since each generalised standard component admits at most finitely many non-
periodic T4-orbits by [62, (2.3)], then any quasi-directed component contains only
finitely many 74-orbits.

3.3. Semiregular quasi-directed components. The first theorem deals
with the quasi-directed components which are semiregular (that is, do not simulta-
neously contain a projective module and an injective module). For the convenience
of the reader, we sketch the proof.

THEOREM 3.3.1. [69] Let A be an artin algebra. If T is a semiregular quasi-
directed component of T'(modA), then T is directed and convezr. Furthermore, B =
A/Ann(T) is a tilted algebra, and T is the connecting component of I'(modB).

Proof (Sketch). We only prove the first statement. Suppose that I' is quasi-
directed. Since I' is semiregular, it contains no cycles by [50, (2.6)]. Thus, I has
only finitely many 74-orbits by [62, (2.3)], so it follows from [50, (3.6)] that " is
isomorphic to a full subquiver of ZA, where A is a finite and acyclic quiver. Then T’
is a convex and directed component of I'(modA). Indeed, suppose that there exists
apath X = X 25 X; 2 ... 2% X, = Y inindA, where X,Y € T but X; ¢ T for
some . In particular, there is a j such that X; 1 ¢ T but X; € I'. Then, for each
s > 0, it follows, for instance from [69, (1.1)] and its dual, that there is a path of
distinct modules in indA of the form X;_; Ly Zy— Zy g —> o —> Zy = X;,
where Z; € T for each i. Since I' is acyclic and has only finitely many 74-orbits,
it follows from [32, (1.1)] that there is an s > 0 for which Z, is a predecessor of
X. Therefore, we have a cycle X ~ X;_4 25 Z, ~ X with g, € rad®(X;_1,Zs).
Applying [69, (1.1)] to g, yields arbitrarily many non-directed modules in T', a
contradiction. So I is convex, and therefore directed. O
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3.4. Non-semiregular quasi-directed components. As we saw above,
the semiregular quasi-directed components are actually directed. For the non-
semiregular case, the situation changes since as seen in (3.2.1)(d), there exist non-
semiregular quasi-directed components with cycles. The following theorem char-
acterises non-semiregular quasi-directed and convex Auslander-Reiten components.
We refer the reader to [69] for the proof.

THEOREM 3.4.1. [69, Theorem 2] Let A be an artin algebra. If T is a non-
semiregular component of T'(modA), then the following are equivalent:

(a) T is quasi-directed and convez;

(b) Given X,Y €T, there exists an integer nxy such that any path in ind A
from X toY contains at most nx y distinct modules;

(c) Given X,Y €T, there exists an integer mx,y such that any path in indA
from X toY contains at most mxy distinct hooks;

(d) There exists an integer ng such that any path in indA from an injective
in I to a projective in T’ contains at most ng distinct module;

(e) There exists an integer mqo such that any path in indA from an injective
in I to a projective in T’ contains at most mqg distinct hooks. O

As we shall see in Section 4, the components satisfying the equivalent conditions
of the theorem appears naturally as faithful Auslander-Reiten components of a
certain class of algebras.

An important example of non-semiregular quasi-directed and convex component
is given by the pip-bounded components. A non-semiregular Auslander-Reiten
component I' is a pip-bounded component if there exists an integer ng such
that any path of non-isomorphisms in indA from an injective module in I" to a
projective module in T' has length at most ng, see [32, 33|. Similarly, a non-
semiregular Auslander-Reiten component I' is a hip-bounded component if there
exists an integer mgo such that any path of non-isomorphisms in indA from an
injective module in T" to a projective module in I' passes through at most myg
hooks.

Combining the results obtained in [33, (1.6)] and [69, (3.12)], we get easily the
following theorem:

THEOREM 3.4.2. Let A be an artin algebra. If T is a non-semiregular component
of T'(modA), then the following are equivalent:

(a) T is a pip-bounded component;

(b) T is a hip-bounded component;

(c) Given X,Y €T, there exists an integer nx y such that any path of non-
ismorphisms in indA from X to Y has length at most nxy;

(d) Given X,Y €T, there exists an integer mx y such that any path of non-
ismorphisms in indA from X to Y passes through at most mx,y hooks;

(e) T is generalised standard, conver and directed. O

We shall study in Section 5 a class of algebras having faithful Auslander-Reiten
components satisfying the equivalent conditions of the above theorem.
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EXAMPLES 3.4.3.

(a) Let A be a representation-finite algebra. The unique component of
I'(modA) is a pip-bounded component if and only if it contains no cy-
cles, that is, if and only if A is representation-directed.

(b) Consider the bound quiver algebra A of (3.2.1)(d) and its Auslander-
Reiten quiver. The component I'; is a pip-bounded component. However,
since the injective I and the projective P, lie on a common cycle, the
component I's is not a pip-bounded component because we can find paths
of arbitrary length from I, to P;.

3.5. The case of representation-finite algebras. We conclude this section
with some properties of representation-finite algebras proved in [69].

PROPOSITION 3.5.1. [69, (3.14)] Let A be an artin algebra. If T is a quasi-
directed component of T'(modA), then, either A is representation-finite, or T'(modA)
contains infinitely many non-directed modules.

Proof (Sketch). Assume that A is representation-infinite and, consequently, that
T is infinite. Since I" contains only finitely many 74-orbits by [62, (2.3)], we may
suppose that the right stable part .I' of T' is infinite. Let C be a component of ,.T"
and ¥ be a maximal subsection of C. Then, if M is the direct sum of all modules
lying in ¥, we get Hom4 (M, 74 M) = 0 since I is generalised standard. In addition,
if B = A/Ann(Y), then M is a faithful B-module and Hompg(M,75 M) = 0 since
M is a submodule of 74 M. Hence, M is a slice B-module and B is tilted by
the Liu-Skowronski criterion [52, 63]. Consequently, B admits infinitely many
non-directed indecomposable modules, and so does A. O

PROPOSITION 3.5.2. [69, (3.15)] An artin algebra A is representation-finite if and
only if each component of T'(modA) is quasi-directed.

Proof. Since the necessity is obvious, we assume that A is representation-infinite
and that each component of I'(modA) is quasi-directed and hence generalised stan-
dard. Since this implies that rad* (M, M) = 0 for each M € indA, then, by [60,
(8.6)], I'(mod A) admits infinitely many stable tubes of rank one, which are clearly
not quasi-directed. O

4. Laura algebras

4.1. Gluings. The motivation for defining laura algebras comes from two
sources. The first is the consideration of the non-semiregular quasi-directed compo-
nents studied in Section 3. As will be seen in this section, the left (and right) stable
parts of such components resemble those of the connecting component of a (non
concealed) tilted algebra (see [47]). Moreover, the left and the right stable parts,
together, comprise all of the component, except for at most a finite part. The other
motivation comes from the observation that a left (or right) supported algebra has
a well-behaved left (or right, respectively) part, but the rest of the module category
can assume any form. In order to have a predictable module category, we not only
have to require the algebra to be both left and right supported, but also that the
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middle part, consisting of the indecomposables lying neither in the left nor in the
right part, be relatively small. In fact, a simple assumption on this middle part will
prove sufficient.

4.2. Left and right glued algebras. The left glued algebras were introduced
in [4] when studying algebras whose Auslander-Reiten quivers have components
consisting of postprojective modules in the sense of Auslander and Smalg[20]. Such
a component is a m-component [28] and it is quasi-directed (see (3.2.1)(c)). The
next result gives equivalent definitions of left glued algebras.

THEOREM 4.2.1. [28, 4, 6] The following are equivalent for an algebra A:

(a) Ra is cofinite in indA;

(b) idaX <1 for all but at most finitely many X in indA;

(¢) The support of Hom(—, A) is finite;

(d) All indecomposable projective modules lie in a unique mw-component. O

An algebra A is called left glued provided it satisfies one of the equivalent
conditions of the theorem above. We refer to [4] for further characterisations.
Dually, one can define right glued algebras. The following consequence of the
above considerations characterises concealed algebras.

THEOREM 4.2.2. [4] The following are equivalent for a representation-infinite al-

gebra A:
(a) A is concealed;
(b) A is a left and right glued algebra;
(¢) LaNTRa4 is cofinite in indA;
(d) pdaX <1 and idaX <1 for all but finitely many X in indA. O

4.3. Laura algebras. Following the strategy of imposing some finiteness as-
sumption in the middle part of the category indA, the class of laura algebras was
introduced in [6] and, independently, in [57, 64].

DEFINITION 4.3.1. An artin algebra is laura if the union L4 U R4 is cofinite in
indA. A laura algebra is strict if it is not quasi-tilted.

The next result gives several characterisations of laura algebras. The equivalence
of conditions (a), (b) and (c) is shown in [6] (2.4). and their equivalence with (d),
(e), (f) and (g) is shown in [49]. The equivalence of (a) and (b) is also shown in
[64]. We denote by u(M) the Gabriel-Roiter measure of a module M, see [59].

THEOREM 4.3.2. [6, (2.4)], [49, 64] The following are equivalent for an algebra
A:

(a) A is laura;

(b) There are only finitely many M € indA with a path I ~ M ~ P in indA,
with I injective and P projective;

(¢) There are only finitely many M € indA with a path L ~ M ~» N in
indA, with L ¢ L4 and N ¢ R4;

(d) The number of distinct hooks on a path I ~ P in indA, with I injective
and P projective, is bounded;
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(e) The number of distinct hooks on a path L ~ M in indA, with L ¢ L4
and M ¢ R4, is bounded;

(f) The set of all u(M), with M lying on a path I ~> M ~~ P in indA, with
I injective and P projective, is finite;

(g) The set of all u(M), with M lying on a path L ~> M ~> N in indA, with
L¢ L and N ¢ Ra, is finite.

Proof. We only prove the equivalence of (a), (b) and (c).

(a) implies (b) : follows at once from (2.1.2) and the cofiniteness of L4 UR 4.

(b) implies (¢). Let M € indA be such that there exists a path L ~» M ~» N with
L¢ L4and N ¢ Ry4. So, there exists a path X ~» L in indA with pd4 X > 2, and
hence an injective I and a path I — 74X — * — L ~» M. Dually, we construct a
path N ~» P, with P projective, which proves this implication.

(c) implies (a). If £4 U R4 is not cofinite, there exists an infinite family (M)
of indecomposable modules not in £4 U R4. Considering, for each A, the path

M), Ny Vs \ Ny Vs A gives a contradiction to (¢). O

EXAMPLES 4.3.3.

(a) The following classes of algebras are, clearly, laura: (i) representation-
finite algebras; (ii) quasi-tilted algebras; (iii) left and right glued algebras.

(b) Let k be a field, and A be the radical square zero k-algebra given by the
quiver

3
'Y.,H
17 e 2 & y4+~%B—5

The Auslander-Reiten quiver I'(modA) of A consists of:

(i) The postprojective component and the family of orthogonal homo-
geneous tubes corresponding to the Kronecker algebra given by the
full subcategory of A generated by 1 and 2;

(ii) The preinjective component and the family of regular components
corresponding to the generalised Kronecker algebra given by the full
subcategory of A generated by 4 and 5;

(iii) A non-semiregular component T' of the form:

I By

where we identify the two copies of Ss.
There are no morphisms from injective modules to one of the components
in (i), and therefore, those components lie in £4. Also, all modules lying
in the components in (i) are predecessors of Sy. Since id4.S52 > 1, these
components lie in £4 \ R4. Dually, the components in (ii) liein R4\ La.
Concerning the remaining component I', it is easy to see that I'N L4
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consists of the predecessors of P3, while I' MR 4 consists of the successors
of I3. Therefore, L4 U R 4 is cofinite and so A is laura.

Before going on, we mention the following problem, formulated in [64]. Let A be
an artin algebra such that the subcategory {X € indA| pdaX <1loridsaX <1}is
cofinite. Is it true that A is a laura algebra?

The next result shows that laura algebras have well-behaved left and right parts.

PROPOSITION 4.3.4. [8, (4.4)], [64] Let A be a strict laura algebra. Then A is left
and right supported. O

4.4. The Auslander-Reiten quiver of a laura algebra. The structure of
the Auslander-Reiten quiver of a strict laura algebra resembles much that of a tilted
algebra in the following way : any semiregular component is a component of a tilted
algebra and the unique non-semiregular component plays the role of connecting the
left part of the module category to its right part.

THEOREM 4.4.1. [6, (3.4)(4.6)] Let A be a laura algebra. Then,

(a) Any non-semiregular component of T'(modA) is quasi-directed;
(b) If A is not quasi-tilted then I'(modA) has a unique faithful non-semiregular
component I'. Moreover, if T' #T', then I is semiregular and either
(i) Homu(T',T) #0 and I lies in L4 \ Ra; or
(ii) Homy(T,T") #0 and ' lies in Ra\ L4. O

It follows directly from this statement that the distinguished non-semiregular
component I' is convex. Conversely, we have the following proposition.

PROPOSITION 4.4.2. [69, Theorem 2| Let A be an artin algebra and T' be a
non-semiregular quasi-directed and convexr component of I'(modA). Then B =

A/Ann(T') is a laura algebra, and T is a faithful non-semiregular component of
P(modB). O

Assume now A to be a representation-infinite strict laura algebra. We have just
seen that the unique faithful non-semiregular component I' of I'(modA) plays a
role similar to that of the connecting component of a tilted algebra. Thus, in
order to describe the remaining components of I'(modA), it is useful to define a
left and a right end algebras generalising those introduced by Kerner for tilted
algebras [47]. Since T is infinite, then so is the left stable part ;I" or the right
stable part ,.I" of T. Suppose ;I is infinite. Since I' has finitely many 7-orbits, ;T
has finitely many non-trivial components. We choose, for each component of ;T’, a
maximal subsection, and denote these by 13, ---; . For each 4, let ., 4; be the full
subcategory of A generated by the support of ;¥. The left end algebra ., A of
A8 oA =0 A1 Xoo Ag -+ Xoo Ag. The right end algebra A, is defined dually.
Observe that A = 0 (or oA = 0) if and only if A is right glued (or left glued,
respectively).

Clearly, the left (or the right) end algebra does not coincide with the left (or
right, respectively) support algebra (see example 4.3.3 (b) above).

LEMMA 4.4.3. [6, (4.3)] With the above notation, each - A; is a tilted algebra
having ;¥ as a complete slice.
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Proof. This is done by checking the Liu-Skowronski criterion [52, 63]. O

Let now be I be an Auslander-Reiten component of A, distinct from T'. If
Hom4(I",T') # 0, it is easy to show that I’ is in fact a component of I'(mod,, A4).
Dually if Hom4(I',I") # 0, then I is in fact a component of I'(modAy,). The
Auslander-Reiten quiver of A then has the following form:

)
)

1 (L
NI
IR
)\

(
k

,CA\'R,A RA\LA

It turns out that the existence of a faithful quasi-directed component actually
characterises strict laura algebras.

THEOREM 4.4.4. [57, (3.1)] Let A be an artin algebra which is not quasi-tilted.
Then A is laura if and only if T'(modA) admits a faithful quasi-directed component.
O

Remark. In [57] Reiten and Skowronski introduced a concept of multisection and
obtain a criterion (generalising the one of Liu-Skowronski [52, 63]) allowing to
verify whether an artin algebra which is not quasi-tilted is laura or not.

From the above description of the laura algebras, we deduce information on the
infinite radical. Let A be an artin algebra. If there exists ya € N such that
(rad*®(mod A))#*4~1 #£ 0 but (rad*™(mod A))*4 = 0, we say that rad® (mod A) is
nilpotent of nilpotency index p4. We recall that A is representation-infinite
if and only if p4 > 3, see [35]. The nilpotency index of quasi-tilted algebras was
studied in [67]

THEOREM 4.4.5. [6, (6.3)] Let A be a representation-infinite laura algebra. The
following conditions are equivalent:

(a) A is domestic;

(b) A is tame and no full convex subcategory of A is a tubular algebra;

(¢) rad*™(modA) is nilpotent. If this is the case, and pa is the nilpotency
index of rad®(modA), then pua € {3,4,5}. Moreover pg = 3 if A or
A, is zero, or if A is quasi-tilted, then it is tilted. O

Laura algebras can have arbitrary global dimension, even infinite. We refer the
reader to [6] for examples. We end with two other classes of laura algebras.

EXAMPLES 4.4.6. (a) A quiver () is called a toupie if it has a unique source 0
and a unique sink oo, and, for any other point x there is exactly one arrow having
x as source and exactly one arrow having x as target:
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The distinct paths from 0 to oo, are the branches of (). Let now k be a field, ) be a
toupie and A = kQ/I, where I is an admissible ideal of kQ). Set m =dimy(egAes).
It is shown in [27] that A is laura if and only if:

(T1) m=0, or

(T2) m =1, and only one branch lies in I, or

(T3) m e {1 2}, no branch lies in I and A is simply connected, or

(T4) no branch lies in I, dimyI = 1, A is simply connected and there is at most
one branch of length at least three.

(b) Let k be an algebraically closed field, and B, C be two non-simple finite dimen-
sional k-algebras, considered as locally bounded k-categories [25]. An algebra A is
called an articulation of B and C (denoted as A = (B, (C)) if

a) B and C are subcategories of A such that Ag = By U Cy;
b) BoNCy # 0 and, if z € Bg N Cy, then either z is a source of B and a sink
of C, or is a source of C' and a sink of B;
c) For every z,y € Ay, the set of morphisms A(z,y) in A from z to y is given
by
B(.’L’,y) if z,y EBO;
A(Z’,y) = C(l’,y) if T,y € CO;
0 otherwise.

We denote by Spnc the set of simple A-modules corresponding to the points of
By N Cy. It is shown in [38] that A = (B, () is laura if and only if both B and
C are laura, and moreover Sgnc C T'®) N T where I®) and I'°) are non-
semiregular or connecting components of I'(modB) and I'(modC'), respectively.

5. Weakly shod algebras

5.1. Weakly shod algebras. As seen above, the Auslander-Reiten quiver
of a strict laura algebra has a non-semiregular convex quasi-directed component
which is extremely useful for the understanding of the module category. We now
study a subclass of the laura algebras where this distinguished component is in fact
directed.

DEFINITION 5.1.1. An algebra A is called weakly shod if there exists a bound
on the length of any path of non-isomorphisms in indA from an injective module to
a projective module. A weakly shod algebra is called strict if it is not quasi-tilted.
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Weakly shod algebras are triangular and can have any finite global dimension
(see [33] for examples). The next result relates weakly shod algebras, informations
on the Auslander-Reiten components and the union £4 U R 4.

THEOREM 5.1.2. The following conditions are equivalent for an algebra A:

(a) A is weakly shod;

(b) A is a laura algebra such that none of the non-semiregular components of
the Auslander-Reiten quiver contains cycles;

(c) There exists an integer nq such that any path of non-isomorphisms in
indA from an injective module to a projective module passes through at
most ny hooks;

(d) There exists an integer ny such that any path of non-isomorphisms M ~~
N in indA where M € L4 and N & R4 has length at most ns;

(e) There exists an integer ng such that any path of non-isomorphisms M ~
N in indA where M & L4 and N € R4 passes through at most n3 hooks.
O

We suggest to the reader to compare the above theorem to (4.3.2) : whereas
for laura algebras, the finiteness conditions are in terms of the number of distinct
modules, in the case of weakly shod algebras, they are in terms of their total number,
allowing repetitions.

In order to state the following results, we need some definitions. Let P(Ra4)
denote the set of all projective modules lying in R 4. The successor relation defines
a partial order in the set P(Ra4). Since this set is finite, it contains maximal
elements. This leads to the next definition.

DEFINITION 5.1.3. Let A be an artin algebra, P = eA be a mazximal projective in
P(Ra) for the successor relation, B = (1 — e)A(1 —e) and M =radP. Then the
one point extension A = B[M] is said to be a maximal extension.

Our next theorem says that any strict weakly shod algebra is obtained by iterated
one-point (maximal) extensions starting from a tilted algebra.

THEOREM 5.1.4. [33, (4.9)], [9, (3.3)] Let A be a strict weakly shod algebra. Then
there exist a sequence of algebras Ag, A1, ..., Ay = A with Ay a tilted algebra, and
a sequence of A; 1-modules M; such that A; = A; 1[M;] is a mazimal extension,
for each i with0<i<m. O

We use the following notation. Let A be a strict weakly shod algebra and B =
Ay C Ay C --- C A1 C A, = A be a filtration of A as iterated maximal
extensions with B tilted, as in the above theorem. For each i with 0 < i < m, let
M; be the A;_1 module such that A; = A;_1[M;], P; be the extending projective A;-
module (thus, M; =rad4 P; and P; is maximal in P(R 4,)) and z; be the extension
point associated to P;. Such a filtration is called a maximal filtration of A. Note
that, while B is a tilted algebra, all A;, with i > 0, are strict weakly shod.

As well as for laura algebras, it is possible to describe the shape of the Auslander-
Reiten quiver of a strict weakly shod algebra. However, we emphasise that for
strict weakly shod algebras there exists a unique non-semiregular directed convex
component, and this one is faithful. This component is a pip-bounded component,
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or also a hip-bounded component (see (3.4)). Conversely, we have the following
result.

PROPOSITION 5.1.5. [69, (3.12)] Let A be an artin algebra, and T be a pip-bounded
component of T'(modA). Then B = A/Ann(T") is a weakly shod algebra, and T is a
faithful pip-bounded component of '(modB). O

For the other components, we refer to the description of the Auslander-Reiten
quiver of a laura algebra.

EXAMPLES 5.1.6.

(a) It is shown in [27] that a toupie algebra A = kQ/I (see (4.4.6)(a) above)
is weakly shod if and only if it satifies one of the conditions (T1), (T3) or
(T4) of (4.4.6)(a).

(b) It is shown in [38] that an articulation A = (B,C) (see (4.4.6)(b)) is
weakly shod if and only if it is laura and moreover, every module in Spn¢
is directed.

(c) Let k be a field, and A be the k-algebra given by one of the quivers :

~ ._> ._>. _>. R LN
(S1) (S2) (S3)

where the dotted lines indicate zero-relations. Then A is weakly shod.

5.2. Hochschild cohomology. The Hochschild cohomology groups Hi(A),
i > 1, of a finite dimensional algebra A, introduced in [44], have been much in-
vestigated lately (see, for instance, [39, 55]). In this section we give a complete
description of the Hochschild cohomology groups for weakly shod algebras.

PROPOSITION 5.2.1. [34, (2.2), (2.3)], [9, (2.3)] Let A = B[M] be a mazimal
extension. Then for all i > 1, we have Exti (M, M) = 0.

Proof: (Sketch for i = 1) Assume Exth(M, M) # 0. There exists an indecom-
posable summand N of M such that ExtL(M,N) # 0. Let M = N & N' and P
be the extending projective (that is, M =rad4P). Then N’ is a submodule of P
and L = P/N' is indecomposable. Since ExtlL (M, N) # 0, it follows from [42,
(I11.2.2)(a)] that idaL > 2. Since P belongs to P(R4) and L is a successor of P
we get a contradiction. The case 1 > 1 is proved using similar techniques. O

Using Happel’s sequence (see [39]) and applying (5.1.4) and (5.2.1), we get the
following result.
COROLLARY 5.2.2. [9, (2.4)] Let A = B[M] be a mazimal extension. Then:

(a) There exists an exact sequence:
0— H°A) - H°B) = (EndsM)/k - H'(4) - HY(B) =0
(b) For all i > 2, we have H*(A) = H{B). O
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As a consequence of the previous results we get the main theorem of this section:

THEOREM 5.2.3. [34, (2.4)] Let A be a strict weakly shod algebra. Then
H {(A) =0, for eachi>2. O

We recall that the Hochschild cohomology groups for quasi-tilted algebras were
computed in [40].

5.3. Simple connectedness and the orbit graph. The previous section
shows that the first Hochschild cohomology group is the only one that may not
vanish for a strict weakly shod algebra. It is therefore important (for instance,
for the understanding of the Hochschild cohomology ring) to describe it. A finite
dimensional algebra A over an algebraically closed field & is simply connected
if it is triangular and, for any presentation A = kQa/I of A as a bound quiver
algebra (see [25]), the fundamental group of (Qa4,I) is trivial (see, for instance,
[2, 14, 66]). A well-known result, due to Bongartz and Gabriel [25, (6.5)], states
that a representation-finite algebra is simply connected if and only if the orbit graph
of its Auslander-Reiten quiver is a tree. On the other hand, it is shown in [26] that a
representation-finite algebra A is simply connected if and only if H! (A) vanishes. It
is natural to ask whether similar results hold for a representation-infinite algebra.
In this case, the Auslander-Reiten quiver is no longer connected so one should
consider the orbit graph of each of its connected components. However, if one
deals with a tilted algebra, then much information is contained in its connecting
component(s). Indeed, it was shown in [12] that a tame tilted algebra A is simply
connected if and only if the orbit graph of its connecting component is a tree and
this, by [39, (1.6)] or [11, (1.4)], is equivalent to saying that H!(A) = 0. This also
answered positively (for tilted algebras) Skowronski’s question in [66](Problem 1)
whether it is true that a tame triangular algebra A is simply connected if and only
if H'(A) = 0. Now, for strict weakly shod algebras, we may use the pip-bounded
component (3.4), which resembles the connecting component of a tilted algebra.

Let thus A be a strict weakly shod algebra. Using a maximal filtration B = Ag C
A1 C...CAn_1 CA, = Aasin (5.1.4), we may reduce the problem to the tilted
algebra B.

LEMMA 5.3.1. [9] Let B = Ag C A1 C ... C A1 C Ay, = A, be a mazimal
filtration of A. Then:

(a) H(A) =0 if and only if: (i) H(Ao) = 0; and (ii) each x; is separating;

(b) A is of tree type if and only if: (i) each A; is of tree type; and (i) each
T; 18 separating;

(¢) If A is tame then A is simply connected if and only if: (i) each A; is
simply connected; and (ii) each x; is separating.

Proof (Sketch). (a) The pip-bounded component of a strict weakly shod algebra
C contains all projectives in P(R¢). Moreover, since it is generalised standard and
directed, all its indecomposables are bricks. The statement follows from (5.2.2), [7,
(2.2)] and an obvious descending induction.
(b) and (c) We refer to [9] for a proof. O

Applying the previous results, we get the main theorem of this subsection.
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THEOREM 5.3.2. [9, Theorem A] Let A be a strict weakly shod algebra. The
following conditions are equivalent:

(a) H'(4)=0;
(b) The orbit graph of the pip-bounded component of A is a tree.

If, moreover, A is tame, then the above are further equivalent to:

(c) A is simply connected.

Proof. We first show that (a) is equivalent to (b). Let B = 49 C Ay C --- C
Apm—1 C Ay, = A be a maximal filtration of A. Applying (5.3.1)(a) and induction,
we see that H'(A) = 0 if and only if H'(B) = 0 and each z; is separating. Since B
is a tilted algebra, H'(B) = 0 if and only if it is of tree type (see [39, (1.6)]). The
statement then follows from (5.3.1)(b) and another induction. Assume now that
A is tame. If A is simply connected, then, using the same notation as above, it
follows from (5.3.1)(c) that each A; is simply connected and each x; is separating,.
In particular, B is simply connected. Since B is tilted and tame, this implies,
by [12], that H!(B) = 0. Applying (5.3.1)(b) and induction yields H'(4) = 0.
Conversely, if H'(4) = 0, then H!(B) = 0 and each =; is separating. Since B is
tilted and tame, it follows from [12] that B is simply connected. Since each z; is
separating, it follows from [14, (2.5)] and induction that A is simply connected. O

Since a similar result was obtained in [7] for the tame quasi-tilted algebras, this
completely characterises the simple connectednes of a weakly shod tame algebra.

On the other hand, we conjecture that the above result holds true as well for the
more general case of (not necessarily tame) strict laura algebras.

We then turn to one particular subclass, that of the strongly simply connected
algebras, introduced by Skowronski in [66]. We recall that an algebra A is strongly
simply connected whenever any full convex subcategory of A is simply connected.
The strong simple connectedness of tame quasi-tilted algebras was characterised in
[7]. We now consider the strict weakly shod algebras. We also recall that an
algebra A is strongly A-free if it contains no full convex subcategory which is
hereditary of type A. It is separated if, for each point z in its quiver, the number
of indecomposable summands of rad P,, equals the number of connected components
of the full subquiver generated by the non-predecessors of z. The following theorem
generalises the main result of [11].

THEOREM 5.3.3. [9, Theorem B] Let A be a strict weakly shod tame algebra. The
following conditions are equivalent:

(a) A is strongly simply connected;

(b) the orbit graph of every directed component of T'(modA) is a tree;
(c) HY(A) =0 and A is strongly A-free;

(d) A is separated and strongly A-free. O

6. Shod algebras

6.1. Shod algebras. As seen above, the informations given by the subcate-
gories L4 and R4 are useful for the understanding of the whole category modA
and, in particular, for the description of I'(modA). As stressed, this is particularly
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useful in case A is laura or weakly shod, both cases where the union £4 U R4 is
cofinite in ind A. In this section, we look at the particular situation of when £4UR 4
gives the whole of indA. This is true, for instance, for quasi-tilted algebras. We
start our discussion with the following result.

THEOREM 6.1.1. [31] The following are equivalent for an algebra A:

(a) indA = L4 UR4;

(b) For each X € indA, pdaX <1 oridaX < 1;

(c) Any path in indA from an injective to a projective module can be refined
to a path of irreducible maps with at most two hooks and, in case there
are two, they are consecutive.

Proof (Sketch). (a) implies (b). This is clear.

(b) implies (c) Suppose there exists a path I ~» P in indA from an injective module
I to a projective module P. Using [31](1.3) (see also [29](4.1)) this path can be
refined to a path of irreducible morphisms

(*) I:X0—>X1—)"'—>Xt_1—)Xt:P.

Assume that (x) has two hooks. Hence, there exist j and [ such that 7;'X; =
Xjt2, TaX; = X;—» and the paths T — X; — --- — X4, and X;-, —
-+ — X;_1 — P are sectional. Since there are at least two hooks, we infer that
j+1<1—1. Observe that pdaX;io > 2 (because Homy4(I,74X;12) # 0) and
idaX;—2 > 2 (because HomA(T;1X1_2,P) #0). If now j+2 <[ -1, we get a path
Xjt2 ~ Xi_o, a contradiction to [31](1.2). So, j +2 =1 —1 and in this case the
above path has only two hooks and they are consecutive.

(c) implies (a) Suppose there exists an indecomposable module X which does not
lie in the union £4 UR 4. Then X has a predecessor Y with pd4Y > 2 and a
successor Z with id4Z > 2. Hence, there exists a path

I—74Y —%—=Y~X~wZ—x—71,'Z—P

in ind A, where I is an injective module and P is a projective module. Clearly, such
a path passes through two non-consecutive hooks, a contradiction. [

DEFINITION 6.1.2. An algebra satisfying the equivalent conditions of theorem
(6.1.1) is called shod (for small homological dimension). A shod algebra which is
not quasi-tilted is called strict shod.

As observed in [42, (II.1.1)], a shod algebra has global dimension at most 3.
The original impetus for studying shod algebras was to extend the existence of the
trisection indA = (L4 \Ra) V(LaNR4)V (Ra\ L4) proven by Happel-Reiten-
Smalg for a quasi-tilted algebra A to a broader class of algebras. It is not difficult
to see that a quasi-tilted algebra is a shod algebra of global dimension 2. A shod
algebra is strict if and only if it has global dimension 3.

Observe that a shod algebra is weakly shod. Indeed, suppose there are paths of
non-isomorphisms from an injective module I to a projective module P of arbitrary
length. Since A is shod, any such path passes through at most two hooks and
so, there are paths from I to P having sectional subpaths of arbitrary length.
However, if X; — Xy — -+ — X, is a sectional path with ¢ > rk(Kq(4)),
then Hom4(X;,74X;) # 0 for some 4 and j (by [65]) and so one can construct a
path from X; to X; with one hook 74X; — % — X;. Hence, it is possible to
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construct paths from I to P with an arbitrary number of hooks, a contradiction,
which proves the claim.

REMARK 6.1.3. In [57], Reiten-Skowroniski introduced a concept of double sec-
tions and obtained a criterion (generalising the Liu-Skowronski criterion) allowing
to verify whether an artin algebra is strict shod or not. See also [61].

EXAMPLE 6.1.4. Let k be an algebraically closed field. A finite dimensional k-
algebra A is a string algebra if A = kQ/I, with (Q,I) a bound quiver satisfying:

(a) The ideal I is generated by a set of paths;

(b) Each point of @ is the source and the target of at most two arrows;

(¢) For any arrow «, there exist at most one arrow § and at most one arrow
v such that a8 and ya do not belong to 1.

A reduced walk w in (@, I) is a double-zero if w contains exactly two zero-relations
which point to the same direction. It was shown by Huard and Liu in [46] that
a string algebra A = kQ/I is quasi-tilted if and only if (@, I) contains no double-
zero. We now consider the shod case. Let w be a reduced walk in (Q,I) with at
least two zero-relations and such that all zero-relations point to the same direction
in w, then any subwalk in w having at least two zero-relations is a consecutive-
zero. Finally, a path w in @ is said to contain two overlapping zero-relations if
w = wiwsows where the w; are non-trivial non-zero paths such that wiws and wows
are zero-relations. If wy (or ws) is an arrow, we say that w is a start-tight (or
end-tight, respectively).

It was shown by Bélanger and Tosar in [23] that a string algebra A = kQ/I is shod
if and only if A is triangular and (Q, I) satisfies the following conditions :

(i) Every consecutive zero in (@, I) contains at most two zero-relations. In
case there are two, then they are overlapping and the path containing
them is either start-tight or end-tight;

(i) (@,I) contains no full subcategory of one of the forms (S1), (52) and (S3)
of (5.1.6)(c) or their duals.

As a consequence, it is possible to classify the shod gentle algebras as well, and
hence, also, the shod algebras which are derived equivalent to a hereditary algebra
of type A, or A,, and the shod algebras with discrete derived category not of
Dynkin type, see [23] for details.

6.2. The Auslander-Reiten quiver of a shod algebra. Let A be a strict
shod algebra. Clearly, A is strict laura and so I'(modA) contains a non-semiregular
quasi-directed component I' and any other possible component is also a component
of a tilted algebra. Not much more can be said in general about the other compo-
nents but one can describe I better. Firstly, I' is directed (since A is weakly shod).
Secondly, it can be embedded in a stable component.

THEOREM 6.2.1. [1] Let A be a strict shod algebra and T' be the unique non-
semiregular component of ['(modA). ThenT can be embedded in a stable component
ZA, where A is a finite quiver without cycles. O

We refer to [1] for a proof of this result. Actually, it is a bit more general than
stated here. As shown in [1] this result cannot be extended in general to weakly
shod algebras.
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6.3. One-point extension shod algebras. Since shod algebras are trian-
gular, it is convenient to look at them as one-point extensions of smaller algebras.
Let A = B[M] be the one-point extension algebra of B by M. If A is shod, so is B
but for the converse, clearly, we also need that M be well-behaved. If M is directed,
then either M is a projective B-module or 78 M € add(Lg) and we refer to [36]
for a further discussion of these two cases. However, we mention an useful result
for the case when M is a projective A-module. The equivalence of conditions (a)
and (c) was first established by Huard in [45].

THEOREM 6.3.1. [36, 45| Let B be an algebra and let M be a projective B-module.
The following conditions are equivalent:

(a) A = B[M] is shod;
(b) For each (kt,X, f) € indA, either X € addLp or X € addRp;
(c) For each (k', X, f) € indA, either pdpX <1 oridgX <1. O

We also refer to the survey article [29] for further details on shod algebras.

7. Full subcategories, split-by-nilpotent extensions and skew group
algebras

7.1. Full subcategories. We consider the following problem. Let A, B be
artin algebras such that modB is embedded in modA, then which properties of
modA are inherited by modB? More specifically, we are interested in the case
where A belongs to one of the classes studied before, namely, those of the left
supported, laura, left (or right) glued, weakly shod and shod algebras.

We first assume that B is a full subcategory of A. Let A be an algebra, and e € A
be an idempotent. We may, without loss of generality, choose e so that B = eAe
is connected. It is well-known (see, for instance, [19](I1.2.5)) that, if P = eA, then
the functor Hom4 (P, —) : modA — modB induces an equivalence between mod B
and the full subcategory of modA consisting of the P-presented modules, that is,
of the A-modules M admitting a presentation

P—PFP—M-—70
with Py, P, € addP.

Now, for any B-module X, the A-module X ®p P4 is P-presented: indeed,
applying to a presentation B — B% — Xp — 0 the right exact functor
— ®p P4 yields an exact sequence P}* — P} — X ®@p P4 — 0. Furthermore,
applying to the second sequence the exact functor Hom 4 (P, —) and comparing with
the first yields a functorial isomorphism Homy4 (P, X ®p P) = Xp.

LEMMA T7.1.1. [5, (2.2)] Let M be a P-presented A-module.

(a) If pdaM <1, then pdg Homa(P, M) < 1;

(b) If M € L4, then Homa (P, M) € Lp;

(¢) If M € Ry, but Homs(P,M) ¢ Rp, then there exists a projective A-
module P' € Ra and o path M ~ P';

(d) If M € Ra\ L4, then Homu (P, M) € Rp.
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Proof. We only prove (a) and (b). Assume that M is a P-presented module such
that pdaM < 1. There exists a presentation P| — P} — M — 0 with P}, P €
addP. Therefore, in a minimal projective resolution P, — Py — M — 0, the
projective modules Py and P; are, respectively, summands of P} and P| and thus
lie in addP. Applying Hom 4 (P, —) shows that pdgHom 4 (P, M) < 1. This proves
(a).

If now M € L4, let Xg =5 X; =2 ... 5 X; = Homy (P, M) be a path in indB.
Setting, for each i, M; = X; ®p P and f; = u; ®p P, the comments above show
that we have a path M £> M, £> i> M; = M in indA, where all M;
are P-presented. Since M € L4, then pdaMy < 1. By (a), pdpXo < 1. Thus
Homa(P, M) € Lp and (b) is proven. O

We now state the first theorem of this section, of which part (d) was first shown
in [48](1.2) and part (e) in [42](IL.1.5).

THEOREM 7.1.2. [5]. Let A be an algebra, and e € A be an idempotent such that
B = eAe is connected.

) If A is a laura algebra, then so is B;

) If A is a left (or right) glued algebra, then so is B;
) If A is a weakly shod algebra, then so is B;

) If A is a shod algebra, then so is B;

) If A is a quasi-tilted algebra, then so is B.

Proof. (a) Let X € indB. If X ¢ Lp U Rp, then by (7.1.1), the P-presented
A-module X ® g P does not lie in £4 U R 4. The statement follows.

(b) This is shown similarly.

(d) If A is shod, and X € indB, then X ®p P either liesin L4 orin R4\ L4. In
the first case X € Lp and, in the second, X € Rp.

(e) Let P’ be an indecomposable projective B-module. Since A is quasi-tilted the
projective A-module P' @ p P4 lies in L4. By (7.1.1), P' € Lp. Hence, B is quasi-
tilted by [42, (I1.1.14)].

(c) [Sketch] Assume A to be weakly shod. We may, by (e), suppose that it is not
quasi-tilted. Let s; denote the number of P-presented A-modules M € R4 such
that Hom4(P,M) ¢ Rp. By (2.1.2) and (7.1.1), s; is finite. Let also sy be the
cardinality of the set indA \ (L4 UR4). Clearly s2 < oo. In view of (5.1.2), it
suffices to show that s; + so — 1 is a bound on the length of the paths from an
indecomposable not in L to one not in Ry . O

We recall from [41, (IIL.6.5)] that every full subcategory of a tilted algebra is
tilted. We now prove that a tubular algebra cannot occur as a full subcategory of
a strict laura algebra.

COROLLARY 7.1.3. [5, (3.4)] Let A be a strict laura algebra. If B is quasi-tilted,
then it is tilted.

Proof. If all indecomposable summands of P = eA lie in L4, then P is a module
over the left support Ay, which is tilted, by (4.3.4). Hence, B = EndP is tilted.
Otherwise, let P’ be an indecomposable summand of P lying in R4 \ £4. By
(7.1.1)(d), Hom4 (P, P') € Rp and is projective, so if B is quasi-tilted, it follows
from [42, (I1.3.4)] that B is tilted. O
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ExXAMPLE 7.1.4. If A is left supported, it does not follow that so is B. Let A be
given by the quiver

. ﬂ3wﬂzx
B \\ /

bound by ajasas + B162083 + v1v2v3 = 0, azd =0, 830 = 0, v36 = 0. de; = 0,
dea = 0. Then A is left supported, but the full (even convex!) subcategory
generated by all points except 1 and 2, is tubular, thus is not left supported.

7.2. Split extensions. We now consider another construction. Informally, if
one can roughly think of taking full subcategories as deleting points, the construc-
tion we now outline can be thought of as deleting arrows.

DEFINITION 7.2.1. [13] Let A and B be artin algebras and let Q be a nilpotent
ideal of A (that is, Q CradA). We say that A is a split extension of B by @ if
there exists a split surjective algebra morphism A — B with kernel Q.

In particular, B is a subalgebra of A (and has the same primitive idempotents).

For instance, if Q2 = 0, then the above definition coincides with that of trivial

extension of B by ). Another example is the following: let A = [ ]\C; 2 ] be the
one point extension of C' by M¢, and z be the extension point. Then A is a split
extension of B = C x k by the bimodule @ such that Qp = Mp and pQ = St for

some t > 1. For further examples, we refer the reader to [13, 16, 17].

Clearly, if A and B are as above, and B is a connected algebra, then so is A, but
the converse is generally not true.

We have the change of rings functors — ® g A :modB — modA, — ®4 B :
modA — mod B, Homp(Ap,—) : modB — modA, Hom4(Ba,—) : mod4A —
modB, which satisfy the functorial isomorphisms — g A ® 4 B = Lnods and
HOIIIA(BA, HomB(A37 _)) = 1m0dB'

We refrain from proving the following key lemma.
LEMMA 7.2.2. [17, (2.4)] Let X be an indecomposable B-module.

(a) If X ®p A belongs to L4, then Xp belongs to Lp;

(b) X ®p A belongs to Ra, then Xp belongs to Ri;

(¢) If Homp(A, X) belongs to R4, then Xp belongs to Rp;

(d) If Homp(A, X) belongs to L4, then Xp belongs to L. O
The second main theorem of this section is the following.

THEOREM 7.2.3. [17]| Let A be a split extension of B.

(a) If A is a laura algebra, then so is B;
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(b) If A is a left (or right) glued algebra, then so is B;
(¢) If A is a weakly shod algebra, then so is B;

(d) If A is a shod algebra, then so is B;

(e) If A is a quasi-tilted algebra, then so is B.

Proof. (a) Let X € indB. If X ¢ Lp URp, then by (7.2.2) X g A ¢ LA UR 4.
The statement follows.

(b) This is shown similarly.

(c) Follows directly from (7.2.2) and (5.1.2).

(d) Follows directly from (7.2.2).

(e) Let Pg be indecomposable projective. Since A is quasi-tilted, the indecompos-
able projective A-module P®p A lies in £4. Hence Pg € Lpg, by (7.2.2). Invoking
[42, (I1.1.14)] concludes the proof. O

It is not known whether, if A and B are as above, and A is tilted, then so is B.
We have, however, the following partial result.

PROPOSITION 7.2.4. [17, (2.6)] Assume that B is connected. If A is tilted hav-
ing an indecomposable projective (or injective) in a connecting component of its
Auslander-Reiten quiver (for instance, if A is tame), then B is tilted.

Proof. Assume that B is connected, so is A. Also, by (7.2.3), B is quasi-tilted.
By [42, (I1.3.4)], there exists, up to duality, an indecomposable projective Pg such
that P®@p A € R4 By (7.2.2), P € Rp. Another application of [42, (I1.3.4)] finishes
the proof. O

An interesting problem would be the following. Assume that B is a laura algebra
(or is left or right glued, or is weakly shod, or is shod, or is quasi-tilted, or is tilted)
then under which conditions on @ does one have A lying in the same class?

EXAMPLE 7.2.5. Since one-point extensions are special cases of split extensions,
it follows from (7.1.3) that, if A is laura not quasi-tilted, and B is quasi-tilted, then
B is tilted. We show that any of the remaining cases may occur. Let A be the
radical square zero algebra given by the quiver of (4.3.3)(b). Then A is a laura
algebra which is not weakly shod.

(a) Let Q1 be the ideal of A generated by as. Then A is a split extension of
the laura, not weakly shod, algebra 4/Q;

(b) Let Q2 be the ideal of A generated by €1,e2. Then A is a split extension
of the left glued, not weakly shod, algebra A/Q2;

(c) Let Q3 be the ideal generated by §. Then A is a split extension of the
weakly shod algebra, not shod, algebra A/Qs;

(d) Let Q4 be the ideal of A generated by 3,. Then A is a split extension of
the shod, not quasi-tilted, algebra A/Qu4;

(e) Let @5 be the ideal do A generated by aiq,as,a3,8. Then A is a split
extension of the quasi-tilted, even tilted, algebra A/Qs.

7.3. Skew group algebras. Another contructing preserving homological
properties is that of skew group algebras. We recall the relevant definitions and
refer the reader to [19, 56, 54] for details. A finite group G (of identity 1) is said
to act on an artin k-algebra A if there is a function: G x A — A, (0,a) — o(a)
satisfying the following;:
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i) 0: A—> A, a~ o(a) is a k-linear automorphism for all o € G;
ii) (o102)(a) = 01(02(a)) for all 01,09 € G and a € A;
iii) 1(a) = a for all a € A.

If G acts on A, then the skew group algebra R = A[G] is defined as follows:

i) As an A-module, A[G] is the free right A-module having the elements of
G as a basis;
ii) The multiplication in A[G] is defined by the rule:

(pb)(oa) = (po)(o(b)a) for all a,b e A and o,p € G.

Throughout, we assume that the order |G| of G is invertible in A. The embedding
A < R given by a — 1.a induces the functors —®4 R : modA — modR (induction)
and Hompg(4RR,—) : modR —modA (restriction of scalars). It is shown in [56]
that — ® 4 R is both left and right adjoint to Homg (4R, —). The interest of skew
group algebras comes, among other reasons, from its connexion with finite coverings
[54]. It was shown in [42, 56| that the skew group algebra R = A[G] is quasi-tilted
(or tilted) if and only if so is A. In fact, if one reads carefully the proof in [42,
(II1.1.6)], it is also shown that R is shod if and only if so is A.

LEMMA 7.3.1. [10] With the above notation, we have:

(a) (addLa) ®a R C addLg;
(b) (addRa) ®4 R C addRp;
()
)

Hompg(R,addLg) C addL4;
(d) H

omg(R,addRg) C addR4. O

The proof of this lemma uses essentially (2.1.1).

THEOREM 7.3.2. [10] Let A be an artin algebra, G be a finite group acting on A
such that |G| is invertible in A, and R = A[G] be the skew group algebra. Then:

(a) R is a laura algebra if and only if so is A;

(b) R is a left (or right) glued algebra if and only if so is A;
(¢) R is weakly shod if and only if so is A;

(d) R is shod if and only if so is A.

Proof. We just prove (a). Assume A to be laura, and let F be the subset of indR
consisting of the summands of the modules in the class

[indA\ (L4 URA)] ®4 R.

Since A is laura, then F is finite. Let X € indR be such that X ¢ £Lr URg. By
the above lemma, X ¢ addC4 ® 4 R and X ¢ addR4 ® 4 R. Consequently X € F.
Thus indR\ (Lg URR) C F and so R is laura. The converse is proven in the same
manner. [
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SUMMARY

The following inclusion diagram between classes of algebras may be useful.

Left supported Right supported

Weakly shod Left glued Right glued

Shoﬂ Repres_er_nation—
finite

Quasi-tilted

Representation—
directed

Tilted with connecting Tilted with connecting
postprojective component preinjective component

Concealed

Hereditary
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